Simple-connectedness of Fano log pairs with semi-log canonical singularities

Wenfei Liu

Xiamen University

Joint work with Osamu Fujino

Differential, Algebraic and Topological Methods in Complex Algebraic Geometry, Cetraro, September 6-15, 2018
A (complex) projective manifold X is Fano if its anti-canonical divisor $-K_X$ is ample.
Definition

A (complex) projective manifold X is Fano if its anti-canonical divisor $-K_X$ is ample.

Fano manifolds and their generalizations form a fundamental class in birational geometry.
A (complex) projective manifold X is Fano if its anti-canonical divisor $-K_X$ is ample.

Fano manifolds and their generalizations form a fundamental class in birational geometry.

- $\dim X = 1$: $X \cong \mathbb{P}^1$
Fano manifolds

Definition

A (complex) projective manifold X is Fano if its anti-canonical divisor $-K_X$ is ample.

Fano manifolds and their generalizations form a fundamental class in birational geometry.

- $\dim X = 1$: $X \cong \mathbb{P}^1$
- $\dim X = 2$: 10 families of del Pezzo surfaces
- $\dim X \geq 4$: complete classification virtually impossible
A (complex) projective manifold X is Fano if its anti-canonical divisor $-K_X$ is ample.

Fano manifolds and their generalizations form a fundamental class in birational geometry.

- $\dim X = 1$: $X \cong \mathbb{P}^1$
- $\dim X = 2$: 10 families of del Pezzo surfaces
- $\dim X = 3$: 105 deformation classes

Wenfei Liu

Simple-connectedness of Fano log pairs
Fano manifolds

Definition

A (complex) projective manifold X is Fano if its anti-canonical divisor $-K_X$ is ample.

Fano manifolds and their generalizations form a fundamental class in birational geometry.

- $\dim X = 1$: $X \cong \mathbb{P}^1$
- $\dim X = 2$: 10 families of del Pezzo surfaces
- $\dim X = 3$: 105 deformation classes
- $\dim X \geq 4$: complete classification virtually impossible
A (complex) projective manifold X is Fano if its anti-canonical divisor $-K_X$ is ample.

Fano manifolds and their generalizations form one class of building blocks of the minimal model program.

- Do n-dimensional Fano manifolds form a bounded family?
- Are there topological/geometric properties shared by the Fano manifolds in common?
Fano manifolds

Definition

A (complex) projective manifold X is Fano if its anti-canonical divisor $-K_X$ is ample.

Fano manifolds and their generalizations form one class of building blocks of the minimal model program.

- Do n-dimensional Fano manifolds form a bounded family?
 Yes, by Kollár–Mori–Mukai’92

- Are there topological/geometric properties shared by the Fano manifolds in common?
Fano manifolds

Definition

A (complex) projective manifold X is Fano if its anti-canonical divisor $-K_X$ is ample.

Fano manifolds and their generalizations form one class of building blocks of the minimal model program.

- Do n-dimensional Fano manifolds form a bounded family?
 Yes, by Kollár–Mori–Mukai’92

- Are there topological/geometric properties shared by the Fano manifolds in common?
 Rational connectedness (\Rightarrow simple connectedness)
 by KMM’92 and Campana’92
A log pair \((X, \Delta)\) consists of

- an equi-dimensional demi-normal scheme \(X\), and
- an effective \(\mathbb{R}\)-divisor \(\Delta\) on \(X\) such that
 1. \(\Delta\) does not contain any irreducible component of the non-normal locus of \(X\)
 2. \(K_X + \Delta\) is \(\mathbb{R}\)-Cartier.

A projective log pair \((X, \Delta)\) is Fano if
\[-(K_X + \Delta)\] is ample.

Using resolution of singularities, one can define various types of singularities naturally appearing in the minimal model program:

- Kawamata log terminal (klt) for \(\epsilon > 0\)
- \(\epsilon\)-Kawamata log terminal (\(\epsilon\)-klt)
- log canonical (lc)
- semi-log-canonical (slc)

Wenfei Liu

Simple-connectedness of Fano log pairs
Definition

A log pair \((X, \Delta)\) consists of

- an equi-dimensional demi-normal scheme \(X\), and
- an effective \(\mathbb{R}\)-divisor \(\Delta\) on \(X\) such that
 1. \(\Delta\) does not contain any irreducible component of the non-normal locus of \(X\)
 2. \(K_X + \Delta\) is \(\mathbb{R}\)-Cartier.

A projective log pair \((X, \Delta)\) is Fano if \(- (K_X + \Delta)\) is ample.
Log pairs

Definition

A log pair \((X, \Delta)\) consists of

- an equi-dimensional demi-normal scheme \(X\), and
- an effective \(\mathbb{R}\)-divisor \(\Delta\) on \(X\) such that
 (a) \(\Delta\) does not contain any irreducible component of the non-normal locus of \(X\)
 (b) \(K_X + \Delta\) is \(\mathbb{R}\)-Cartier.

A projective log pair \((X, \Delta)\) is Fano if
\(- (K_X + \Delta)\) is ample.

Using resolution of singularities, one can define various types of singularities naturally appearing in the minimal model program:

- Kawamata log terminal (klt)
- for \(\epsilon > 0\), \(\epsilon\)-Kawamata log terminal (\(\epsilon\)-klt)
- log canonical (lc)
- semi-log-canonical (slc)
Theorem (Birkar)

Given a natural number \(n > 0 \) and a positive real number \(\epsilon > 0 \), Fano log pairs of dimension \(n \) with \(\epsilon \)-klt singularities form a bounded family.

Note: "\(\epsilon \)-klt" cannot be relaxed to "klt".
Theorem (Birkar)

Given a natural number $n > 0$ and a positive real number $\epsilon > 0$, Fano log pairs of dimension n with ϵ-klt singularities form a bounded family.

Note: "ϵ-klt" cannot be relaxed to "klt".

Theorem (Qi Zhang 06, Hacon–McKernan 04)

Let (X, Δ) be a (connected) Fano log pair. Then

1. X is rationally connected if (X, Δ) is klt;
2. X is rationally chain connected if (X, Δ) is lc.
Theorem (Birkar)

Given a natural number \(n > 0 \) and a positive real number \(\epsilon > 0 \), Fano log pairs of dimension \(n \) with \(\epsilon \)-klt singularities form a bounded family.

Note: "\(\epsilon \)-klt" cannot be relaxed to "klt".

Theorem (Qi Zhang 06, Hacon–McKernan 04)

Let \((X, \Delta)\) be a (connected) Fano log pair. Then

1. \(X\) is rationally connected if \((X, \Delta)\) is klt;
2. \(X\) is rationally chain connected if \((X, \Delta)\) is lc.

Corollary

Log canonical Fano pairs are simply connected.

Note: "Fano" cannot be replaced by "weak Fano".
Main results: Fano log pairs with slc singularities

However, "lc" can be indeed replaced by "slc":

Theorem A (Fujino–L. 17)
Let \((X, \Delta)\) be a (connected) Fano log pair with slc singularities. Then \(X\) is rationally chain connected and simply connected.

Note: on non-normal varieties, rational connectedness does not imply finiteness of fundamental groups.

To prove Theorem A, we need to prove a more general

Theorem B (Fujino–L. 17)
Let \((X, \Delta)\) be a (connected) Fano log pair with slc singularities. Then any union of slc strata is rationally chain connected and simply connected.
Main results: Fano log pairs with slc singularities

However, ”lc” can be indeed replaced by ”slc”:

Theorem A (Fujino–L. 17)

Let \((X, \Delta)\) be a (connected) Fano log pair with slc singularities. Then \(X\) is rationally chain connected and simply connected.

Note: on non-normal varieties, rational connectedness does not imply finiteness of fundamental groups.
However, "lc" can be indeed replaced by "slc":

Theorem A (Fujino–L. 17)

Let \((X, \Delta)\) be a (connected) Fano log pair with slc singularities. Then \(X\) is rationally chain connected and simply connected.

Note: on non-normal varieties, rational connectedness does not imply finiteness of fundamental groups.

To prove Theorem A, we need to prove a more general

Theorem B (Fujino–L. 17)

Let \((X, \Delta)\) be a (connected) Fano log pair with slc singularities. Then any union of slc strata is rationally chain connected and simply connected.
slc strata

Definition

Let \((X, \Delta)\) be a log pair with semi-log canonical singularities. Let \(\nu : \bar{X} \to X\) be the normalization and write \(\nu^*(K_X + \Delta) = K_{\bar{X}} + \bar{\Delta}\).

- An *slc center* of \((X, \Delta)\) means the image of an lc center of \((\bar{X}, \bar{\Delta})\), and \(\mathbb{N}_{\text{klt}}(X, \Delta)\) is the union of all slc centers.
- An *slc stratum* means either an slc center of \((X, \Delta)\) or a component of \(X\).

Theorem (Hacon–McKernan 04)

For an lc Fano pair \((X, \Delta)\), \(\pi_1(\mathbb{N}_{\text{klt}}(X, \Delta)) \to \pi_1(X)\) is surjective.
slc strata

Definition

Let \((X, \Delta)\) be a log pair with semi-log canonical singularities. Let \(\nu : \tilde{X} \rightarrow X\) be the normalization and write \(\nu^*(K_X + \Delta) = K_{\tilde{X}} + \tilde{\Delta}\).

- An *slc center* of \((X, \Delta)\) means the image of an lc center of \((\tilde{X}, \tilde{\Delta})\), and \(\mathbb{Nklt}(X, \Delta)\) is the union of all slc centers.
- An *slc stratum* means either an slc center of \((X, \Delta)\) or a component of \(X\).

Slc strata have some nice properties:

1. there is a unique minimal slc stratum through any given point;
Definition

Let (X, Δ) be a log pair with semi-log canonical singularities. Let $\nu: \bar{X} \to X$ be the normalization and write $\nu^*(K_X + \Delta) = K_{\bar{X}} + \bar{\Delta}$.

- An *slc center* of (X, Δ) means the image of an lc center of $(\bar{X}, \bar{\Delta})$, and $\text{Nklt}(X, \Delta)$ is the union of all slc centers.
- An *slc stratum* means either an slc center of (X, Δ) or a component of X.

Snc strata have some nice properties:

1. there is a unique minimal slc stratum through any given point;
2. the minimal slc stratum at a given point is locally normal;
Definition

Let \((X, \Delta)\) be a log pair with semi-log canonical singularities. Let \(\nu : \bar{X} \to X\) be the normalization and write \(\nu^* (K_X + \Delta) = K_{\bar{X}} + \bar{\Delta}\).

- An \textit{slc center} of \((X, \Delta)\) means the image of an lc center of \((\bar{X}, \bar{\Delta})\), and \(\text{Nklt}(X, \Delta)\) is the union of all slc centers.
- An \textit{slc stratum} means either an slc center of \((X, \Delta)\) or a component of \(X\).

Slc strata have some nice properties:

1. there is a unique minimal slc stratum through any given point;
2. the minimal slc stratum at a given point is locally normal;
3. the intersection of two slc strata is a union of slc strata.

Theorem (Hacon–McKernan 04)

For an lc Fano pair \((X, \Delta)\), \(\pi_1(\text{Nklt}(X, \Delta)) \to \pi_1(X)\) is surjective.
Definition

Let (X, Δ) be a log pair with semi-log canonical singularities. Let $\nu : \bar{X} \to X$ be the normalization and write $\nu^*(K_X + \Delta) = K_{\bar{X}} + \bar{\Delta}$.

- An \textit{slc center} of (X, Δ) means the image of an lc center of $(\bar{X}, \bar{\Delta})$, and $\text{Nklt}(X, \Delta)$ is the union of all slc centers.
- An \textit{slc stratum} means either an slc center of (X, Δ) or a component of X.

Slc strata have some nice properties:

1. there is a unique minimal slc stratum through any given point;
2. the minimal slc stratum at a given point is locally normal;
3. the intersection of two slc strata is a union of slc strata.
Definition

Let \((X, \Delta)\) be a log pair with semi-log canonical singularities. Let \(\nu: \bar{X} \to X\) be the normalization and write \(\nu^*(K_X + \Delta) = K_{\bar{X}} + \bar{\Delta}\).

- An \textit{slc center} of \((X, \Delta)\) means the image of an lc center of \((\bar{X}, \bar{\Delta})\), and \(Nklt(X, \Delta)\) is the union of all slc centers.
- An \textit{slc stratum} means either an slc center of \((X, \Delta)\) or a component of \(X\).

Slc strata have some nice properties:

1. there is a unique minimal slc stratum through any given point;
2. the minimal slc stratum at a given point is locally normal;
3. the intersection of two slc strata is a union of slc strata.

Theorem (Hacon–McKernan 04)

For an lc Fano pair \((X, \Delta)\), \(\pi_1(Nklt(X, \Delta)) \to \pi_1(X)\) is surjective.
Let X be a demi-normal scheme and $\nu: \bar{X} \to X$. Then we have a push-out diagram in the category of algebraic spaces:

$$
\begin{array}{ccc}
\bar{D}^\nu & \longrightarrow & \bar{D} \\
\downarrow /\tau & & \downarrow \\
D^\nu & \longrightarrow & X
\end{array}
$$

- $D \subset X$ and $\bar{D} \subset \bar{X}$ are the conductors.
- $\bar{D}^\nu \to \bar{D}$ and $\bar{D}^\nu \to \bar{D}$ are normalizations.
- $\tau: \bar{D}^\nu \to \bar{D}^\nu$ is an involution.
Let X be a demi-normal scheme and $\nu: \bar{X} \to X$. Then we have a push-out diagram in the category of algebraic spaces:

\[
\begin{array}{ccc}
\bar{D}^{\nu} & \longrightarrow & \bar{D} \\
\downarrow /\tau & & \downarrow \\
D^{\nu} & \longrightarrow & X
\end{array}
\]

- $D \subset X$ and $\bar{D} \subset \bar{X}$ are the conductors.
- $\bar{D}^{\nu} \to \bar{D}$ and $\bar{D}^{\nu} \to \bar{D}$ are normalizations.
- $\tau: \bar{D}^{\nu} \to \bar{D}^{\nu}$ is an involution.

Two issues:

1. Normalization can change the topology dramatically.
2. D can be not slc even if X is.
Quasi-log canonical pairs

Way out: go to the larger category of quasi-log canonical pairs.

Definition

Let X be a scheme and ω an \mathbb{R}-Cartier divisor on X. Let $f : Z \to X$ be a proper morphism from a globally embedded simple normal crossing pair (Z, Δ_Z). If

- $\Delta_Z = \Delta_Z^{\leq 1}$, and $f^*\omega \sim_\mathbb{R} K_Z + \Delta_Z$,
- the natural map $\mathcal{O}_X \to f_*(\lceil - (\Delta_Z^{\leq 1}) \rceil)$ is an isomorphism

then $[X, \omega]$ is called a *quasi-log canonical pair* (qlc pair, for short).
Quasi-log canonical pairs

Way out: go to the larger category of quasi-log canonical pairs.

Definition

Let X be a scheme and ω an \mathbb{R}-Cartier divisor on X. Let $f: Z \to X$ be a proper morphism from a globally embedded simple normal crossing pair (Z, Δ_Z). If

- $\Delta_Z = \Delta_Z^{\leq 1}$, and $f^*\omega \sim_{\mathbb{R}} K_Z + \Delta_Z$,
- the natural map $\mathcal{O}_X \to f_*(\lceil -(\Delta_Z^{\leq 1}) \rceil)$ is an isomorphism

then $[X, \omega]$ is called a *quasi-log canonical pair* (qlc pair, for short).

Important examples:

- An slc log pair (X, Δ) with quasi-canonical class $\omega = K_X + \Delta$
- Any union Y of slc strata with $\omega = (K_X + \Delta)|_Y$
Way out: go to the larger category of quasi-log canonical pairs.

Definition

Let X be a scheme and ω an \mathbb{R}-Cartier divisor on X. Let $f : Z \to X$ be a proper morphism from a globally embedded simple normal crossing pair (Z, Δ_Z). If

- $\Delta_Z = \Delta_{\leq 1}^Z$, and $f^*\omega \sim_{\mathbb{R}} K_Z + \Delta_Z$,
- the natural map $\mathcal{O}_X \to f_*(\lceil - (\Delta_{\leq 1}^Z) \rceil)$ is an isomorphism

then $[X, \omega]$ is called a quasi-log canonical pair (qlc pair, for short).

Important examples:

- An slc log pair (X, Δ) with quasi-canonical class $\omega = K_X + \Delta$
- Any union Y of slc strata with $\omega = (K_X + \Delta)|_Y$

One can define qlc centers, qlc strata, Nqklt locus for a qlc pair, which are compatible with slc centers, slc strata, and Nklt locus.
Let $[X, \omega]$ be a qlc pair, and Y any union of qlc strata.

1. (Adjunction) $[Y, \omega|_Y]$ is a quasi-log canonical pair. Moreover, the qlc strata of $[Y, \omega|_Y]$ are exactly those of $[X, \omega]$ that are contained in Y.

2. (Vanishing) Assume that X is proper. Let L be a Cartier divisor on X such that $L - \omega$ is nef and log big with respect to $[X, \omega]$. Then

$$H^i(I_Y \otimes L) = 0 \text{ for any } i > 0.$$
Adjunction and Vanishing for qlc pairs

Let $[X, \omega]$ be a qlc pair, and Y any union of qlc strata.

1. **(Adjunction)** $[Y, \omega|_Y]$ is a quasi-log canonical pair. Moreover, the qlc strata of $[Y, \omega|_Y]$ are exactly those of $[X, \omega]$ that are contained in Y.

2. **(Vanishing)** Assume that X is proper. Let L be a Cartier divisor on X such that $L - \omega$ is nef and log big with respect to $[X, \omega]$. Then

$$H^i(I_Y \otimes L) = 0 \text{ for any } i > 0.$$

Corollary

Let (X, Δ) be a Fano log pair with slc singularities. Then

1. any union of slc strata is connected;
2. there is a unique minimal slc stratum, which is normal.
Key ingredient: subadjunction formula for slc strata

- \(W \): an slc stratum of an slc log pair \((X, \Delta)\)
- \(E \): the union of all slc strata that are strictly contained in \(W \)

Let \(\nu: \bar{W} \to W \) be the normalization.

Lemma

There is an effective \(\mathbb{Q} \)-divisor \(B_{\bar{W}} \) on \(\bar{W} \) such that

1. \(K_{\bar{W}} + B_{\bar{W}} \sim_{\mathbb{R}} (K_X + \Delta)|_{\bar{W}}, \) and
2. \(\text{Nklt}(\bar{W}, B_{\bar{W}}) \subset \nu^{-1}(E). \)
Key ingredient: subadjunction formula for slc strata

- \mathcal{W}: an slc stratum of an slc log pair (X, Δ)
- E: the union of all slc strata that are strictly contained in \mathcal{W}

Let $\nu: \bar{\mathcal{W}} \rightarrow \mathcal{W}$ be the normalization.

Lemma

There is an effective \mathbb{Q}-divisor $B_{\bar{\mathcal{W}}}$ on $\bar{\mathcal{W}}$ such that

1. $K_{\bar{\mathcal{W}}} + B_{\bar{\mathcal{W}}} \sim_{\mathbb{R}} (K_X + \Delta)|_{\bar{\mathcal{W}}}$, and
2. $\mathrm{Nklt}(\bar{\mathcal{W}}, B_{\bar{\mathcal{W}}}) \subset \nu^{-1}(E)$.

If (X, Δ) is Fano, then $\mathrm{Nklt}(\bar{\mathcal{W}}, B_{\bar{\mathcal{W}}})$ is connected.
Key ingredient: subadjunction formula for slc strata

- \(\mathcal{W} \): an slc stratum of an slc log pair \((X, \Delta)\)
- \(E \): the union of all slc strata that are strictly contained in \(\mathcal{W} \)

Let \(\nu : \bar{\mathcal{W}} \to \mathcal{W} \) be the normalization.

Lemma

There is an effective \(\mathbb{Q} \)-divisor \(B_{\bar{\mathcal{W}}} \) on \(\bar{\mathcal{W}} \) such that

1. \(K_{\bar{\mathcal{W}}} + B_{\bar{\mathcal{W}}} \sim_{\mathbb{R}} (K_X + \Delta)|_{\bar{\mathcal{W}}} \), and
2. \(\text{Nklt}(\bar{\mathcal{W}}, B_{\bar{\mathcal{W}}}) \subset \nu^{-1}(E) \).

If \((X, \Delta)\) is Fano, then \(\text{Nklt}(\bar{\mathcal{W}}, B_{\bar{\mathcal{W}}}) \) is connected.

Corollary

Let \((X, \Delta)\) be a Fano log pair with slc singularities. Then any union of slc strata of \((X, \Delta)\) is rationally chain connected.

Lemma (Franciosi–Pardini–Rollenske 14)

Let \(\nu: \tilde{X} \to X \) be a holomorphic map of compact complex analytic spaces. Assume \(A \subset X \) is a connected closed analytic subspace such that

- \(\tilde{A} = \pi^{-1}(A) \) is connected, and
- the map \(\pi: \tilde{X} \setminus \tilde{A} \to X \setminus A \) is an isomorphism.

Then \(\pi_1(X) \cong \pi_1(A) \ast_{\pi_1(\tilde{A})} \pi_1(\tilde{X}) \).
Lemma (Franciosi–Pardini–Rollenske 14)

Let $\nu: \tilde{X} \to X$ be a holomorphic map of compact complex analytic spaces. Assume $A \subset X$ is a connected closed analytic subspace such that

- $\tilde{A} = \pi^{-1}(A)$ is connected, and
- the map $\pi: \tilde{X} \setminus \tilde{A} \to X \setminus A$ is an isomorphism.

Then $\pi_1(X) \cong \pi_1(A) \ast_{\pi_1(\tilde{A})} \pi_1(\tilde{X})$.

In particular, if $\pi_1(\tilde{A}) \to \pi_1(\tilde{X})$ is surjective then so is $\pi_1(A) \to \pi_1(X)$.
\begin{itemize}
 \item (X, Δ): a Fano log pair with slc singularities
 \item W: any union of slc strata of (X, Δ)
 \item W_0: the minimal slc stratum of (X, Δ)
\end{itemize}
(\(X, \Delta\)): a Fano log pair with slc singularities

\(W\): any union of slc strata of \((X, \Delta)\)

\(W_0\): the minimal slc stratum of \((X, \Delta)\)

Define a filtration of reduced subschemes of \(W\):

\[
W = W^{(0)} \supset W^{(1)} \supset \cdots \supset W^{(k)} = W_0.
\]

where \(W^{(i+1)}\) is the union of slc strata that are strictly contained in an irreducible component of \(W^{(i)}\) for \(0 \leq i \leq k - 1\).
(X, Δ): a Fano log pair with slc singularities
W: any union of slc strata of (X, Δ)
W₀: the minimal slc stratum of (X, Δ)

Define a filtration of reduced subschemes of W:

\[W = W^{(0)} \supset W^{(1)} \supset \cdots \supset W^{(k)} = W₀. \]

where \(W^{(i+1)} \) is the union of slc strata that are strictly contained in an irreducible component of \(W^{(i)} \) for \(0 \leq i \leq k - 1 \). Then

\[\{1\} = \pi₁(W^{(k)}) \twoheadrightarrow \pi₁(W^{(k-1)}) \twoheadrightarrow \cdots \twoheadrightarrow \pi₁(W^{(1)}) \twoheadrightarrow \pi₁(W^{(0)}). \]
Thank You!