CENTRO INTERNAZIONALE MATEMATICO ESTIVO

(CeIM.E.)

PLURTICANONICAL MAPPINGS OF SURFACES

WITH K2= 1,2, q=pg=o

F. CATANESE



PLURICANONICAL MAPPINGS OF SURFACES WITH X°= 1,2 , q=pg=o(*)

F. Catanese

(**)

Pisa

I. Introduction.

This lecture is a continuation of Dolgacev's ones on surfa-
ces with g=p =0, and considers those minimal models of such sur
faces for which X2=2 (numerical Campedelli surfaces) and those
for which X2=1 (numerical Godeaux surfaces): they are of general
type by classification of surfaces.

The Main Theorem of [1] (to which we will refer as [cM] )
asserted among other things that for a minimal surface of general
type, @ mK denoting the rational map associated to the complete
linear system | mKSI , P 0¥ is birational, for m > 3, with the

se exceptions

(#) This seminar is an exposition of joint work of E. Bombieri-
F. Catanese,

(**) This author is a member of G.N.S.A.G.A. 0f C.N.R..



a) K2=1. pg=2 , m=4,3
b) K2=2, pg=3 , m=3 and, possibly,
¢) %1, p =0, m=4,3, X’=2, p =0, m=3 .

It was later shown that the exceptions of c) don't really oc
cur: the case K2=1 ’ pg=0 m=4 was proven by Bombieri (unpubli-
shed) and subsequently by us along a simpler line of proof ([4]),
the case X2=1 , pg=°' m=3 by Miyaoka f6] and subsequently by Xuli~
kov and us (along a different line of proof, unpublished), the
case K2=2,pg=o, m=3, by Peters (ﬁo_]) in the particular case of
a Campedelli double plane, in the general one by us ([3]) and la
ter, independently by X . Benveniste (unpublished).

The main goal of this lecture is by one side to prove these
results in the simplest fashion and by the other one to exhibit
the application of some new lemmas (of [3] )} which allow one to
handle reducible curves in nearly the same way than non singular
ones., We will give our proof for the first case, for the second’
we will give the main steps (in which our differs from Miyaoka's
proof): Ffor numerical Campedelli surfaces, finally, we remark
that the proof appearing here is a combination of our with an ar
gument of Benveniste's proof.

II. Some auxiliary results,

Lemma 1, On a surface S of general type with K?g 2, gq=0
there is only a finite number of irreducible curves C with
K*C <1,

Proof. Observe that if c®<0 ¢ is isolated in its class
of numerical equivalence, hence in this case it suffices to show
that the number of such classes is finite., Here we use the index
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theorem ([9] page 128) to the effect that on the subspace of nu-
merical classes orthogonal to K the intersection form is negati
ve definites: if K +C=0 Cz= -2 (as 02 <0 and KXC + C2=

= 2 p(C)-2 > =2) and the number of such classes is finite (more-
over such curves are numerically 1ndependent, see [SJ pag. 177,
[p.M{] pag. 174-5). If K-C~1 , then (K—(K )e) 1s orthogonal to
K, hence 0O > (K~(K )C) =K ((K )C -1) and so C 5 1/&2; however
2p(C)-2 = 1 + C> -2 implies C2 odd, c> -3, c2<0 m
less only if it is K2=1 » C2=1 s X homologous to C .

Note that (K-(K2)C) belongs to a numerical class orthogo-

nal to X with selfintersection bounded from below by -14, hence
can belong only to a finite number of classes, and the same then
occurs for C ; Ffinally if C is homologous to X h°«93(c))=1
(compare [6] or Dolgacev's lecture), and, the surface being regu-
lar, there is a finite number of such curves,

Q.E.D.

We refer to [3] for the proof of the following lemmas
A,B,B',

Lemma A, Let C be a positive divisor on a smooth surface
S, of an invertible sheaf on C with h°(C,<l) > 1 : then either

i) there exists a section S not vanishing identically on
any component of C , and degC‘£ > 0, equality holding
ige oL =®c

or

ii) there exists a section o, c1,02 > 0 such that

C=C,+ C,» alc“o but clc,;-:‘o if c,<c'<C, and

C,*C, < degca(ofa (9C2).



Lemma B. If [' is an irreducible Gorenstein curve and
|mn} #8 , then |w,| has no base points.
More generally a reduced point p of a curve C on a smoth

surface is not a base point of lwcj if either

i) p is simple on C and belongs to a component [' with

p(M) > 1
or

ii) p is singular and for every decomposition C=C1+ C2

s . . o . -
(cl 0) one has C1 c, > (C1 C2)P intersection mul

2

C at p .

tiplicity of C1 » G,

Remark., If C is given by two elliptic curves meeting tran
sversally at a point p , p is a base point of lmcl , and in
fact condition ii) is violated; however if C is given by more
than three lines in the projective plane all meeting in the. same
point p , condition ii) is violated but p is not a base point.
On a numerical Godeaux surface if € isatorsion class.# - £,
(D, denoting the unique curve of |[K+£[), C=D + D_. has
b=D_ ND__ as a base point of lwcl , and infact DE-D_E’=1 =

= (DE-D e)b (compare Dolgacev's lecture and the following of

this) .

Lemma B's If p 1is a reduced singular point of a curve C
lying on a smooth surface, denote by Wﬂp the maximal ideal of
p in C, and let mw:C — C be a normalization of C at p .
Then Hom(mlp,(DC’P) can be embedded in the ring A of regular

functions of C at n—1(p).
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Lemma 2 (X.Benveniste), Let S be a numerical Campedelli

surface and m a positive integer: then the family '§m of irre-
ducible curves E such that K+E <m and |E| = {E} is a finite
one.

o

Proof. If E ES:\ , h2(E)=h (x-E)< hL(K)=0, hence R,R, gi-
ves 1+ % (8%xm) = ¥ (O(B)) <1, so .(4) = > E°. Associate
to B € i?m the following numerical class g E orthogonal to K:
B = 28 - (KE)X.

» Here, as in lemma 1, we use the index theorem to infer
2 2 ) 2 .

B, < 0. But §° =128.€, =48~ 2(x*E)°, and this, together

with the already used inequality E2?_ - XE - 2, gives the re-
sult that E’g > - 2(K-E)2— 8 - 4K°E > ~(8+4m+2m?); in turn this
implies that ég may belong only to a finite set of numerical
classes.

Suppose now QE ~ EE : if we prove that then either
1 2

E1~ E 5 or E1~K+E2 we are done (the surface being regular each

class can be given by at most 2m such curves wvhere m is the

order of the torsion subgroup T of Pic(s)).
13 E1~ §E2 can be read as 2(E -E,)~(XE -KE,)K and ve can

assume :.f~=KE:1 -KE2 > 0; more over ¥ 1s an even number, because’

. t—3 R L] 3 .E N L]
r(X Ei) 2(22:1 Ez) B (r o0dd would imply X 4+ K*E, to be even,
which is obviously absurd),
This equality, in turn, when i=1, can be read as 2E12 =

= ZE1E2+rK'E1 and the fact that E1 -Ezi e]
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E, °E_=
1 72
2 .
Gk) By < KE1 soon imply J»r = 2 , finally 2(E1-E:2)~2K
2
E1—I E1 ioet E1"’Ez+ K .

Q.E.D.

III. Birationality of @ 4% for a numerical Godeaux surface.

Let S be a numerical Godeaux surface (a minimal model, as

ve always assume). We recall that for any S of general type,
° 1 2
and m > 2 Pm=h (6(mx)) = 3 m(m-1)X"+ ¥ (©) ([5] Pag. 184,[C.M£’

pag. 185), so that in this case p2=2, Py=4, p4=7.

Take U to be the Zariski open set whose complement is gi-
ven by the union of the curves D such that X+D <1 , with the
locus of base points of {21([ and of singular points of curves
celex|.

Remark indeed that & 4¢ Testricted to U is a regular map,
then we claim

Theorem 1. §4K! is an injective morphism.
U

Proof. Suppose that x,y are two points of U such that

§4K(x) = §4K(y); by our choice of U we may choose a curve

D el2k] s.t. ¥y 9€ D, and the unique curve Cel2K| s.t. x € C:
now C+4+D is a curve of [4K| passing through x, hence y e¢cC ,
and x,y are simple points of C .

Given a sheaf §, denote by % (~x)= gmx (where mx is
the ideal sheaf of the point Xx), and by }Kx the sheaf suppor-
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-]
ted at x with stalk X . We obtain that H (C,@C(K))=O by
the exact sequence O ——9(98(-32) -——?fﬁs(x) _ OC(K)-——> 0 to-

gether with the vanishing of H1(OS(—K)) (this is by the vani-
shing theorem of Mumford, [8J , asserting that if f is an inver
tible sheaf such that for large n R is spanned by global se
ctions and has three algebraically independcnt sections, then
H1(cC—1) : it can be applied to O© (mK) » m>1, and For later
use we observe that by duality also gnes n* ((D (mx))=0 for
i>1,m> 2).

We will derive a contradiction by showing that (DC(K) is
isomorphic to (© C(x-r-y) .

Consider for this the following exact sequences:
0 — O (4k-x-y) — (O (4K) — X o X, — 0

0 — O;(2%) — O (4F-%-y) — 'OC(4K-x-y) —o0.

Then from their cohomology sequences one gets
1= (0 (4K—x—y))~h (@ (4k-x~y)), and by Serre duallty on the
curve C n’(c,L£)=1 , where = @, ® C‘) (4K-x~y)~ _Oc(x+y-K).
We are ready to apply lemma A R after observing that
degcoe = 2-K+C=0; then if i) occurs o = OC’ vhat we wanted

to show. Case ii) cannot occur: infact one would have C-—C +C, ,

2
C,C, = deg (_’)C2 oL = ~KC,+ (number of points of czn{x,y}).
But by our choice of U, if x, or ¥ Gc2' then
XC, > 2, so in any case C, *C should be non positive, and this

2 172
contradicts the following result of Bombieri about connectedness
of divisors homologous to pluricanonical divisors ([C .M.] pag.
181) : if D~mK , m>1 and D=D +D2, Di> 0 , then
D D, > 2, except when K°=1, m=2 but then D ~D,K.

12
Q.EoDn
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IV. Birationality of § 3K for a numerical Campedelli surface.

By the just quoted formula here p2=3 ’ p3=7.

From nov on we suppose that X,y are two points such that
§3K(X) = @ax(y): as p,=3 there exists a curve C ¢ |2K| contai
ning them both.

Lemma 3. h1(C9c(3K-'x—y)) = 2.

Proof. The cohomology sequences of
0 —-}(DS(3K-x-y) — @S(sx) — ncxée X, —0

0 —> 0, (3xc) —> Oy(3x-xy) —> O, (3k-xy) — 0
m
K
give h1(Oc(3K—x-y)) = hT(Os(3K-—x-y)) + h2(O (x)) =141, as

B (0 (3r)) =0 and @,.(x) = §,, ().
Q.E.D.

Proposition 4. For general Xx,y , and C e|ox-x-y [, x
and y are simple points of the curve C which is hyperelliptic
having h.= Oc(x+y) as its hyperelliptic invertible sheaf.

Proof. The second part of the statement is an easy conse-
quence of the first part, lemma 3 plus Serre duality on C , the
first will be proven in two steps.

Step I: x belongs to only one irreducible component of C ,

the same holds for y .

In fact if, say, x belongs to two components r'1, Pz of

C, by lemma 1 K- Pi > 2, hence is equal to 2, and by lemma 2



o
h ((Ds(lqi)) > 2, Write C= F1+ F; + F (X*F=0) and consider
that l21<[3}f‘1‘ + l{’zl + F , dim | 2K|= 2 : from this we deduce
that P1 = [_'2. In fact if [—'1' is an irreducible curve elf’,ll
there exist by the previous remark [ é, P; € }[”zl such that
n B ! 1 n _ 1 U ' _
F1+:2—P1 +|—‘2 ’ andsoP2~F1 -|-H1,r'2--P1 +H1 ’
1 1
H1 = H1 , H1 *K = 0 ; but this implies H1=H1 and so H1 would
be a fixed part of H_‘Zl: then H must be O and P1 Pz .
If it were P1 # fwz % would be a base point of “ﬂil ’
which cannot hold for dgeneral x (the numerical class of P1 can

m

range in a finite set); wvhile if it were P1 = r"2 " one could.

. L
take, by what has just been said, a curve P'I € l P,l’ not passing
through x , and then consider C'= P1+ [_‘1' +F .

Step II: x and y are simple points of C .

For this we can use lemma 3 and Grothendieck duality to in-
fer that dim]K Hom(’mx’my, (’)C)=2. Taking C a normalization of

C at X,y wve observe that by step I C is connected exactly
[+
as C , hence by Ramanujam's result ([11] , lemma 3) h (O )=,
c

We can apply lemma B': X,y both singular would imply ho(ON)g_
C

> 2, a contradiction, while if however x 1is simple, y singu

lar, one gets h°(®~(x))=2 so x belongs to a rational curve;
C

S being of general type, this cannot occur for general X .

Q.E.D.

From now on ve suppose C g |2K-x~y | to satisfy the requi-
rements of proposition 4.
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Proof, 1IFf S1 , "'SG are six distinct general sections of
<
H (C,hc) and div(s.) = a;+b; , one has that a section of

Q
H (wc) vanishing at 3y s oo vanishes at bl'“‘b6 too,
Q.E.D.

We can pass nowv to the proof of

Theorem 2. For a nwnerical Campedelli surface § § = @31(

is a birational map.

Proof. Consider @ ; 5§ — ]P6: v = ®(S) is not contained
in any hyperplane so that d = deg V> 5 .
V 1is not a curve, otherwise the general element of | 3K} would
be decomposable in more than d elements, while we know that the
curves D with K-D <1 are a finite number,

By Theorem 5.1 of [2] (also [7] Th. &) we know that |3% |
has no base points, hence if m=deg § , dm = (35)°= 18.

We must then prove that it is impossible tc have either
deg ®=2 or deg =3,

Case I. deg § = 2

There is defined on S a birational involution ¢ such
that y=o0(x) if O® (x) = §(y) ; S being a minimal model o
is an automorphism, hence o (0 (x)) = ((x).

Remark that o(C) = C: in fact if a is a general point
of C, and b is the point of C st (‘Jc(a+b)‘~:-.' b, s
;l,} (a) = @ (b) (by lemma 5).
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o (-]
The exact sequence 0 —> H (O(-k))—H (O(x)) —
-]
SN H°(®C(K)) —3> 0 implies h (OC(K)) = 0 , vhich is impossi
ble by wvirtue of the following.
® 2

Lemma 6. OC(K) = hC .

Proof of the lemma. By lemma 5 OC(BK)'-—"' 12 6 S0 it suffices

to prove that, for instance, @C(SK)E’I'I? ® | But | 4x| nas no

base points, and we may pick up S ¢ H ( (93(41()) with 16 simple

* .
zeros on C , R EETL A Tnen o S has 16 simple zeros too,
c(a1),...a(a16) , therefore o*(S)-S Ic is a section of 00(81{)
wvhose divisor is linearly equivalent to h? 16.

Q.E.D.
Case II: deg § = 3.

Let a be a general point of C , and a be such that
a+a e]hc |: Eﬁ(va) = @ (a) , and the third point a' with the same
image under @ cannot lie on C , Set N= @ (C): then

— 1
o 1(C)=C UN and N' is a rational curve (there is a bira-
tional map from N'=locus {a'} and [hC]":‘ '), S50 S contains

a continuous family of rational curves, which is though absuxrd.,
Q.E.D.

V. Birationality of §3K for a numerical Godeaux surface.

Denote by ¢ = st and by V = & (s), d=deg V.
S

Lemma 7. V 1is not a curve.



Proof, Otherwise d would be > 3 and the moving part of
I3K! would be decomposable in more than d elements, which, by
lemma 1, have intersection with X at least 2: then one would
have 3K-.K > 2d.> 6,

Lemma 8, |3XK| has no fixed part.
see [6] , pag. 103 for the proof.

However | 3K| can have base points, and they are characte-
rized by the following proposition, in which we denote, as in
the following, by T = Tors (Pic(s)) and by D, , if ¢ A0,

¢ €T , the wnique curve in fK+E|.

Proposition 9. If b is a base point of |3K | there
exists ¢ T, £ # - €, such that C=D_+ D_
ve in |2K|[ passing through b : moreover D and D_. have b

is the unique cur-

as the unique point of transversal intersection. Conversely, if

€#-€,Dc0D _. gives a base point of |3K].

Proof. We recall first Miles Reid's lemma (see Dolgacev's
lecture) which asserts that if ¢ 4 t "are non zero torsion clas-
ses, D € and D, have no common component, hence intersect
transversally in only one point.

Take C e|2K| such that b€ C: then (s-c(31<)?~: W,
a base point of lwc} (because h'(0G (x))=0, so l3KllC=}wC§ ).

and b is

2p(C)~2 = (C+k)+C=6 = p(C)=4 and by lemma B C must be reduci
ble; moreover if [ is a component of C containing b,
K> 1 (Ke['=0 =» ["is rational non singular,hence that every se
ction of (© (3Xx), as it vanishes at b , vanishes on the wvhole
of ™ : this would contradict lemma 8), so that b belongs to

at most two components., Then pick up an irreducible component
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[, of C such that, if ©C= [(+C,, b belongs to one and only

one component of C,. Consider the exact sequence:
0 — O(x+ ",) —> O(3x) ——>®C (3x) =0 .
Qo

By Serre's duality hi((’)(K+ r'o))=h2—i(0(—- M,))=0 for i=0,1
(i=1 is a consequence of the exact sequence

o —=0(-r)— 00— (9 —> 0 and the irreducibility of [7)
and one obtains that b is a base point for[@ (31()‘

Then one has the exact sequence
T ¢ _—g! —
0 —X —>H (’Wtboco(sx)) H (Oco(sx)) )
and, duwalizing,
(*) 0 ¢=X ¢ Hom(i,, Oyo(= Ty)) €= H (Ogo(=1,)) é— 0

First, b must be a simple point of C,, otherwise lemma

B' implies n’ (0. (- f,))> 1, and using Lemma A plus the al-
Co

ready quoted connectedness theorem for pluricanonical divisor,

O@' (- Po) has degree < -1, hence there exists a decomposition
(-]

of C, = C1+02 such that - [",‘C2 > 0102: howvever then

0> ([Mg4C, )vC , and C=( F°+C )+C is not numerically conne-

cted, The same reasoning gives the vanlsh*ng of h (6 (- r.)),

and b being simple, (*) amounts to h ((9 ( r'°+b))..1 R

Again lemma A gives either O _ ()20 (b) or C,=C_+C
C, c, 172

such that - P°C2+1 >cC, if Db ec,

-, 2 C,C, if D ;écz .
This last is impossible, the other two possibilities imply

C=C'+C" where C'~X~C", again by the connectedness theorem
and OC'(C“):

’

(DC,(b) by lemma A again,
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Finally the exact sequence
0= 1 (0(e"C")) = H©EE") D (6, (e = o
implies that C' #£ C* , so C'=D, for a suitable g £ - ¢,
Conversely, if b:DEI'l D-S we claim that b is a base point
£ or [3k|. In fact W'(O(3k-Dg)) = h'(-D_ g)=0 (the D!s
are ~K hence numerically connected), so that (3Kf ’D

i(? (SK)[ then, as OD£(3K)3’ wDEtS ODE(b) n' ((9 (3K)) =

n® (GD(—b)) =0, so b is a base point of !3KHD , and
£

!I

]

&
therefore of

Q.E.D,

Lemma 10, If there exists ¢ €T s.t. £ # -~ £, then
|3k | is spanned by the two linear subsystems D +l2K— £,
D__+ |2k+ &L

Proof. Note that by R.R. ¥ non zero torsion class ¢
h°(®(2K+1))=2, while p3=4, hence it suffices to show that
these two subsystems have no common element. This is clear, how-
ever, since if one should have D£+ = =D_ + M£ s ME - DE

would be a positive divisor = X (in fact Dg aad D_. have no
common component), contradicting pg=0.

QoEch

Proposition 11. Two general curves of |3K| are simple at
a base point b of IBK[ , and have there a transversal inter-

section.

Proof. If a general curve of |3K| would be singular at
b=:DEnD_ €

= b+[wD {+ s0 b would be a base point of the canonical system
< .

» b would then be a double base point of i3Ki}D =
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of D ; so if [ is the component of D -to which b belongs

p(M)=0 and, by Lemma A, D = C,+C where C;/ > [, C, *C, <

2’ 2

f'cz(K+DE‘)£2K-‘cz=o (as C, is made out of curves E s.t.

K+E=0): this however contradicts the numerical connectedness of
D¢ This reasoning tells also that a general curve is not tan-
gent at b neither to D , nor to D e If b is not a ba-
se point of \21(-— é\,‘ or'is ot a base point of | 2K+ ¢], we are
through' but in the contrary case, by lemma 10, b would be a
singular base po:.nt of |.3L | , whlch wve have Just shown ‘to be
impossible., - '

" Q.ED.

Denote by . n . the order oE' the torsion group T of 35 : by
theorem 14 of [C M] (pag. 214-5) n < 6 -; moreover n=6 —»

Tors(PJ.c(s))"’ 22/2% + ZL/ Nz hence there would exist a dou~
ble unramlfled cover p: T —s, with X (b~) 2, K’g"‘2 q(8)=0

([C .M] lemma 14, pag. 212), but then T—Tors(P:Lc(@')) should be
either 0O or 72/222([0.»1] th. 15, pag. 215).

Hence n <5, and Z/ZZZ. + 21./22 cannot be the torsion

group, by lHiles Reid's lemma (compare Dolgacev's lecture).

Combining these with the previous results, we obtain.

Corollary 12, There are no infinitely near base points for
[3k|, and the number b of them is

114

0 if T O,Z/2E
Z/amg v Bl ym

n

1 ifF T
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Theorem 3, @ is birational.

We refer the reader to [6], pag. 107-108 for the proof of
this last part. We only remark that one has to prove that
m=deg '§ cannot be more than 1, and so one must show that (as

9=md + b, and 4 > 2) the following cases cannot hold

i) d=2 m=4 Db=1
ii) d.= 3 m=3 b =20

iii) d=4 m=2 Db=1

For case i) it suffices to consider that V, a quadric, con
tains a pencil of reducible hyperplane sections, and by taking
inverse images one contradicts lemma 1.

Case ii) is managed showing that V cannot have a dounle
line (by a similar argument to the preceding one ), hence it is
a normal cubic, and then that there existsa pencil of quadrics
cutting on V the images of curves in [2K]: however this gives
rise to a numerical contradiction.

Finally case iiil) makes direct use of the existence of the
divisors DE homologous to X {guaranteed by corollary 12).
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