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ON A CLASS OF SURFACES OF GENERAL TYPE 

I. Introduction. 

This lecture contains an exposition, without many de ta i l s  

2nd proofs, (they w i l l  appear i n  a fixture paper), of a joint re- 

s e s c h  of E .Bombieri-F .Catanese , dealing whith surf aces having 
2 the following numerical invariants: K =2, p =q=? (of course they 

g 
are of general type). 

The interest  about the existence 02 these surfaces was mot& 

vated by thefollowing remark: i f  S i s  a minimal surface of ge- 
2 neral type, and one considers the numerical characters K , 

x =  X (0,) = 1 -Wg , then the following inequal i t ies  hold 

(*) Research made when t h i s  author was a member of G .N .S .A .G .A, 
of C.N.R.. 



( ~ o e t h e r  s inequality) 

2 ( ~ ~ g o m o l o v - ~ i ~ a o k a ~  s inequality) K 5 9 X . 
( a  consequence of castelnuovols c r i te r ion)  X 5 1 . 

Moreover, i f  S is i r regular ,  S admits m a m i f i e d  covers 
A A 

S of any order m ; a s  these two i'nvariants f o r  S are those 

of S multiplied by m , and Noether's inequality must hold for  
2 2 then, i t  turns  out tha t  KS >_ 2 K (US). In  the f~ ,K ) plane 

then, the minimal i r regular  surfaces of general type l i e  i n  a 

convex ragion whose lower vertex corresponds t o  surfaces with 
2 K =2 ,;y = I .  

Finally i n  t h i s  case one must have 
q=pg=' 

, by the r e s u l t s  

of .MJ (pag. 21 2) , and one is conducted t o  check iP  these ni- 

nimal values of K2, x are  r e a l l y  a t ta ined,  trying t o  construct 

such surfaces. 

We have proved f i r s t l y  an existence and unici ty  th~orem 

about these surfaces, namely tha t  there ex i s t  double ramified 

covers of the double symmetric product of an e l l i p t i c  curve vhich 

have these numerical invariants,  and moreover tha t  a l l  such sur- 

faces a r i s e  i n  t h i s  way. 

It has been then possible t o  show tha t  t h e i r  canonical mo- 

dels  a l l  belong t o  a family with non singular base space, hence 

by the r e s u l t s  of [ll] they are  a l l  deformation of each other 

(with non singular base), and are a l l  diffeomorphic; t he i r  funds 

mental group i s  proven t o  be abelian exploiting t h i s  remark and 

a su i tab le  degeneration of the branch locus: Finally it  is  poss2- 

ble t o  prove tha t  the constructed family coincides with the Ku- 

ran ish i  family (when the canonical models are nonsingular) . 



11. Geometry of t$e_double symme_tric product of an e l l i p t i c  

curve. -- 

Let E be an e l l i p t i c  c m ;  g2= E x B : E(2), the  d o ~ -  

ble symmetric product of E is  the  quot ient  oP E~ by the  in- 

volution taking (x,y) E' t o  (y,x). 

The quotient  nap n: E2 -4 E") has the diagonal OF 

a s  ramif ica t ion locus, and E (2) is  non s ingular  (campare 

sj ) .  Fixing a base point  i n  E as the  zero element of a group 

law on E , the map p 1 : ~ 2 - > E  s.t, p l ( ( x , y ) )  = x-ty ind~ces a 

mapping p:E(2)--4 13 (note t h a t  a d i f f e r e n t  choice of the  base 

point  a l t e r s  p only up t o  a t r a n s l a t i o n  on E) . 
The following hold: 

Proposit ion I . p : E'2)---+ S makes E 
I ( 2 )  i n t o  a P -bundle 

over E . 
Proposit ion 1 bis .  p possesses a I-dimensional E m i l y  oP 

c ross  sect ions ,  two of vhich i n t e r s e c t  t r ansversa l ly  i n  only one 

point .  

Proof. For a c I: consider the  sec t ion  %:E 4 E(2) set. 

oa(z) = (a,z-a). Denoting by f the  irnageof o a ,  f a  and a 

'a t  
meet t ransversa l ly  i n  ( a , a 8 ) .  

g.s.0. 

Denoting by the  homology c l a s s  oE a sect ion and by f 

tha t  of a f i b r e ,  we knovi &at the  second homology group oP E (21 

i s  f ree iy  generated by 0' , f  and 8 *f = 1 2 , (j = I .  £L 0 ( the  

f i r s t  a s se r t ion  is  by the  Leray-Hirsch theorem). 

If D is  a d iv i so r ,  denote by deg D the  in te r sec t ion  nw; 



ber of D with a fibre; one has 

Proposition 3. The following sequence is exact 

P* 
0 7\ P~C(E) + Pic(E(')) 2 4 O . 

The proof of the preceding assertion is by diagram chasing, while, 

by the fact that every morphism of pn into an abelian variety 

is constant, one gets. 

proposition 4. If D is a positive divisor on E(2), D\O. 

we come now to the canonical bundle oP E(2): considering the 

map n and the triviality of K 
~2 * 

we obtain the equality 
/r f i  

-2K = A , where = n+ a. 
For z E E denote by F ~ =  ( z )  ; using prop. 3 and the 

structure of Pic (E) we can show that for a suitable choice of 

the base point in E K= -2 r + F,. 
AS for positive divisor D, deg (D) 20, one can sharpen prop. 

4 to 

2 
Proposition 5 .  If B is an irreducible curve with B =0, 

either i) B is a fibre 

or ii) B is homologous to -nK , n >_ 1 . 
There are on E ( ~ )  two rational pencils of curves, which 

will be of par.ticular use in the seque1,that ure are just going 

to describe. 

Consider on E* the following Family of curves, {C I a a e  E' 
given by C = { (x, x+a) x c E] : these curves are isomorphic to a 
E and are "translatedN of = C,. 

Observe that C n Cb = $ if a+b , and the symmetry 
a 

involution takes C to C-a (which is a different curve if 
a 



2a # 0). Denote by ai, i=1 ,2,3 , one of the three points such 

that  af0 2a=0: the symmetry operation operates t r i v i a l l y  on b , 
not on c, . Zi A 

~f ci = "(c,. ) x:CA 4 Ci is a double unramified cover, 

A 
ai ai 

A 

so Ci is  an e l l i p t i c  curve not isomorphic t o  E , ~ , ( c A . ) = z c ~  
"1 

while fo r  the other values of a 

n : c j p(c ) is an isomorphism. 
a a 

We can summarize t h i s  i n  the following 

Proposition 6. There ex i s t s  on E a ra t iona l  pencil of 

curves l inearly equivalent t o  -2K, whose elements-are a l l  iso- 

morphic t o  E , but three particular members which a re  Brice a 

non singular e l l i p t i c  curve not isomorphic t o  E . 
Piroof. The family is given by f x + ( ~ ~ ) f , ,  . 

1 
A s  r,(ca) = X,(C ) the Family can be parametrized by P : then 

-a * 
r e c a l l  t ha t  -2K Z h Z n,(c,). 

Q.-E -0. 

BY an ent i re ly  equal argument w e  have 

Proposition 7. 1 2  PI  contains the ra t iona l  pencil given 

fi  
~ r o p o s i t i o n  8. On E (2) the three curves C are the only i 

curves homologous t o  -K . 
Sketch of proof. I f  C is such a curve, 8 *C=O. SO 



fi  

b n C = $ : by an easy numerical argument one gets  tha t  TC" (C) 
N N 

is  a connected curve C. However, C being homologous t o  

and d i s jo in t  from it, it m 7 u t  be the graph of a t ranslat ion on 

E (cf .  [lo] ) . so one of the curves Ca: f i n a l l y  the condition 
+ N N  N 

TC x , (c)=~c implies C=Cn fo r  some i ~ { 1 , 2 , 3 ] .  
ai 

Corollary 9. I - 3 ~ 1  # $ , h O ( - n ~ )  = h1 ( - n ~ )  , Poi? n , 0. 
Froof. Consider that Ei s 2 V -FA - , so tha t  the sum of 

ai 
those three curves i s  Z -3K. 

The other asser t ion comes from R.R. plus duality.  

Proposition 1 0. 

m+l i f  r=2m 
h0 (6 ( - r ~ )  ) = 

m i f  r=2m+l 

Proof.. The proof of the f i r s t  asser t ion uses induction on - 
m i n  the cohomology sequence of 

t o  obtain h 0 ( 6  (-2mK)) m+l , and exploi ts  the f a c t  that 

\ -2mK I 3 ml-2x1 t o  deduce that  h 0 ( 6  ( - 2 m ~ ) )  >_ m+l . 
For the second one we apply Ramanujam's theorem A ( [ 9 ]  

[C .Mg ) : I-2mK ] being composed of the ra t iona l  pencil  \ -2K 1 , 
h1 ( 6  (2mK))=m-I . 

Then Serre dual i ty  and corollary 9 are  enough t o  f u l f i l l  the 

proof. 

Q .E .D . 
I f  7 is an automorphism of E , (x,y)  ( ~ ( x )  , T ( Y ) )  

defines an automorphis r(r) of E(2 '  ; any autoin~rphism g of 



E moreover has the  e f f e c t  of permuting the  f i b r e s  of p and 

so induces an autornorphism ~ ( g )  of E . A simple calcula t ion 

shows t h a t  H(K(T) )  (x) = T(x)+z(o) SO t h a t  Ker HoK is given 

by the  four t r ans la t ions  of period two. Then we observe t h a t ,  a s  

(a, b) = pa 0 f and \ pal =ira f , if g* i s  the  i d e n t i t y  on 

pic(E(')), g must be the  i d e n t i t y  ; so i f  g KeF H,  
* * * 

g ( F ~ ) = F ~ ,  g (K)=K, and g*(2 F )=g (-K+F,)=z P . 
* 

Hence g ( P  ) = ? - Fa+ Fp and Ker H has order 4 . 
ai 

Then, noticing t h a t  K i s  i n j e c t i v e ,  Ker HoK=Ker H , and 

HoK is Ontotone g e t s .  

Proposition 11 ,  H is an isomorphism of A U ~ ( E )  onto 

AUt(E'2)). 

1x1, Existence of surfaces v i t h  gL= 2, p --=I. 
g 

Given a l i n e  bundle L on E('2) , suppose we a r e  given 

with a cover 1 LJi{ = U , a cocycle ( r i  ) C H' ( q ,  o*) defining L, 
J 

and a pos i t ive  divisor  D defined by a sect ion S= {siJ of 

L @ * : then one may take i n  L the  surface  S '  defined by ta- 

king the  square r o o t s  of S , t h a t  i s  S '  is defined i n  Uix@ 
2 (with coordinates (x,zi))  by the equation si(x)=zi. I£ 

~ = d i v ( ~ )  i s  smooth, then S' i s  smooth too,  and S t  i s  normal 

i f  D has no multiple components, 

Supposing fha t  D e x i s t s ,  smooth, one obtains,  using t h e  sign2 

tu re  formula of 4 and other computations, t h a t ,  L being E 

; a p + ( (b-1 )F,+ Fx), S' has the des i red numerical invar iants  

i f f  a=3, b=l. 



So we are left with the task of showing that the generic 

element of I D I is non singular if D E 6 r-  2FxG -3KcF : in -2x 

view of th6 result of prop. 11 one can restrict himself to con- 

sider only the divisor D Z -3K+F0. 

Proposition 12. h1 (6 (D) )=o , / D I has dimension 6 and 
its generic element is irreducible non singular. 

A 
Sketch of proof. as I D /  21-2~l + ci c F-2 (i=1,2,3), 

i 
101 3 ~1+?2$3+~o it is easily seen that ID / has neither fixed 
part nor base points, and Bertini's theorem applies. The first 

two assertions follow from R .R., Serre duality and Ramnujam's 
1 theorem (hl (0 (D)) = h (~K+F,)). 

By the results of r5] , when D has no multiple components, 

St has at most rational double.points as its singulaxities iff 

D has no singular points of multiplicity greater than three, 

and any triple point has no infinitely near singularities 02 mu2 

tiplicity greater than two; moreover if this conditions are sa- 

tisfied , a minimal desingularization g:S -4 S '  of S' has 

the desired numerical invariants. 

\Je observe that the condition is fulfilled in our linear 

system if D is irreducible (by the genus formula), and it is 

possible to describe explicitly which are the reducible curves in 

1 -3x+F0 I , and which the Itbad" ones: we omit this point for the 

sake of brevity, as well as the verification of 

Proposition 1 3 : 

i) S is a minimal surface 

ii) S ' is the canonical model of S (see [C .M.] Por its dg 

finition and properties) 



i i i )  if f : s t  4 E(*) is the projection induced Prom L, 

h=pof og : S -+ E is the Albanese mapping of S . 
We have moreover 

Proposition 14. Let S, So be two surfaces obtained i n  

the above described way: i f  W: S -+ So is  an isomorphism, 

EZ ~ l b ( s ) Z ~ l  b(so)ZE0 and under t h i s  ident i f icat ion of E and 

E, Ji( is  induced by an automorphism y oP E taking I to  
Lo, D to  Do. 

Sketch of proof. By proposition 13 you may ident i fy E , Eo 

and suppose that Y commutes with the respective Albanese maps 

of S ,  So.  

induces an isomorphism y ' of the canonical models S ' , m c  
A 

reover the f ib re s  F of the Albanese map are curves of genus 

two, and f (x)=f(y) i f f  @$(x+y) i s  the unique hyperelliptic 
(2) bundle of $: t h i s  remark enables us t o  define ly on E . 

2 IV. Surfaces with K =2, ;y = I ,  q=l are  double covers of the 

symmetric product o f  the i r  Albanese variety.  

Let 9 :S --+E = Alb(~) be the Albanese map of S , and , 
-1 - 

for  u E X ,  s e t  G~ = p ( @ I . )  , x u =  K + F~ - F,. 

Ire re fer  to  [G.M.] £or the proof of the following Pacts 

i )  y u c s hO ( s ,6 (I~) )=I (denote then by cU the uni- 

que curve i n  1 KU 1 ) . 
i i )  CU i s  generically irreducible p (cU)=3 

i i i )  hO ( 6 ( K + K ~ ) )  = 3 '+ v e B . 



Fixing v e E ,  !f u G E we have the divisor CU+CV-u E 

c J K + K ~ ~  . 
Proposition 1 5. The mapping u -> Cu+CV-u defines an ho- 

2 lornofphic mapping \YV of E into 1 K + X ~ /  2 P . 
~ r o p o i i t i o n  16'. The image A of Yv is an irreducible 

ra t iona l  curve. 

-C +C PrOoEo CU+CV-u- V-U v - ( ~ - ~ )  ' so yV  is  invariant by 

the involution which takes u --4v-u, and whose quotient is 
1 isomorphic t o  IP (denote now by yY: JP1 --+ (K+Kv 1 the induced 

mapping) . Q.E.D. 

Froposition 17. For general v 0 i s  non singular. 

Sketch of proof. An uniformizing parameter on the univer- 

sal  cover of E induces a derivation D on each vector bundle, 

and, given a section a , we use the c lass ica l  notation o '  fo r  

~ ( 0 )  0 

Take a cover { Ui)  of S on which 6 (K ) i s  t r i v i a l i zed  fo r  
A 

U 
u near u : then, Ou being the section of 6 (Ku) defining 

The conditton tha t  

where a depends holomorphically on u . i u  
A yv is not of maximal -rank a t  u=u can be 

- " (&) - + A ,  fo r  A a sui table  constant 
'i (v-^u) 

read as  <pi = - 
a iG 

independent of i . 
A A 

Now, for general v , i f  u + v-u , t h i s  equa1 i . t~  implies 

tha t  y i  i s  a regular function on Ui . 



~ u t  then, if f . . (u) is a cocycle deiining 6 (K~), one 
1 J  f; ( 4  

gets a f t e r  a simple computation tha t  = f) i- rj, hence 
1J 

it is a coboundaxy i n  HI (S ,  6). A similar conclusion can be 

drawn i n  general i f  y v  i s  not of maximal rank a t  any point. 

Denoting by A .  .(u) a cocycle for  bE(u-O) ( re la t ive  t o  a 
1J 

covering (vi\ compatible with pi] ) , we have that 

1; .(G) 
= P* ( A,&) 1 : @* H'(E, 0 )  - - + H ' ( S , @ )  is however f j ($1 

A; . (9) 
an isomorphism (compare f3-j ), so is  a coboundary. By 

A, j (3 
the homogeneity of E under translation, it i s  possible t o  w r i -  

x:  .(u) 
t e  f o r  a l l  u -&LJ--- = Yi(u) - Yj(u) , A .  .(u) with yi ( ~ 1 6  r 0) .  

1 3  

??OW, integrating on any path from 0 t o  u , one gets  

A .  x J .(u) exp( , ~ ; ~ ( t ) d t )  
- - u and so 0 and u should be two 

Aij 'O) e ~ p ( ~ s  yj ( t ) d t  ' 
l inearly equivalent points, which is  c lear ly  absurd. 

Q.E.D. 

The f ac t  that  Cu*CV=2 and the i r r a t i ona l i t y  of the pencil 

fcU 1 implies tha t  t h i s  pencil has no base points hence 

Froposition 18. Y v (KcKv 1 has no base points and bv is  -- 
an irreducible conic. 

Froof. It suf £ices t o  show that deg dv=2(5 being i r re-  

6ucible), and yet only that  deg h 2 2 ( bir being generally 

non sincgulm) . Take then Cu,CU, general, meeting i n  two points 



x,y : Cu+CV-u, CUI+CV_u, represent two points i n  the plane 

I K + K ~ I  which l i e  i n  the intersection of b y  with the l i ne  

I K+Kv-X / . 
Q.E .D. 

Proposition 1 9. For general y e S , there ex i s t s  a wique 

point (u,u*)a ~ ( 2 )  (with + * I ,  s.t. y c cU fi cut. 

Proposition 20. The cor~espondence oP prop. 19 extend t o  

a holomorphic mapping f ' : S -4 E( 2, . Moreover f ' fac tors  as 
g s ->sf -%\e(2), where 

a) S t  i s  the canonical node1 of S,g the canonical happing 

b) f is a F in i te  map of degree two 

c) there  ex i s t s  a line bundle L on E (2) and a section 

a. c H*(L @ ) such that  S is isomoqhic t o  the surfa- 

ce of the square roots  of o in L . 

V. Some r e su l t s  on the structure of these surfaces anclon-their 

deformations. 

Sharpening the r e su l t  oE prop. 20 one can show tha t  i-t is  

possible t o  choose ~ a 3 r  - F, (essent ial ly  by using AU~(E(~))). 

We w i l l  sketch very rapidly the construction of a family 

containing a l l  the canonical models S t  of our surfaces: take 

+ R the local  universal family of e l l i p t i c  curves over the 

Siege1 upper halfplane, and f orm i t s  syrmnetr-ic f i b re  p~oduc t  

(2)- ) H . A l l  the invert ible  sheaves 6 ( 3  f - F,) fit to- 
,(2) 
I2 

gether t o  form an invert ible  sheaf (on ( 2, and o m  can chog 



(*) ,@ 2, such that  fo r  a l l  se sections so, ... S ~ B  l'(e 
to...t6, St  = 2 t iSi  defines a r e l a t i ve  divisor 6 on 

5 (2)+ H (we use the terminology of 18 J ) . Then on ( 2 ) x  p6- 

4 Hx p6 i s  defined azz invert ible  sheaf tha t  we s t i l l  denote 

by and a re la t ive  divisor 6 l inear ly  equivalent t o  2 d?. 
Define 5 I--) 4 to he the variety defined i n  by the square 

roots  of a section defining 6 : then we have a f ami3y 

3 Hx p6 and an open dense subset V of i Ix,?r6 such tha t  

the f i b r e s  over points of V m e  a l l  the canonical models of the 

surfaces we are  considering. 

By  using the r e su l t  of Tyurina about local  resolution oE 

s ingular i t ies  of such Earnilks ( fi 11 ) we deduce tha t  our surfa- 

ces a re  a l l  diffeomorphic. 

h* 
=osition 21 . n, (s) XI (E) * 

Sketch of proof. By the above remark 
A f i A  

part icular  surface £or which D=Fo+C +C +C 
1 2 3 '  

we may consider the 

- 
Then we observe that  by Van Kampenf s theorem n, (s)%, (S ) ; c a l l  
fi  n 
F ~ = £ - ~ ( F ~ ) ,  and observe tha t  St-F, - E -{o] i s  a d i f fe ren t ia  

ble fibye bundle with f ib re  a smooth curve of genus two. Take U 

t o  be a small disk around 0 i n  E : (pof)" (u )  = s IU is con- 
A 

t r ac t ib l e  t o  F, , which is  simply connected, a d  we can apply 
1 -  

agair, Van Xampent s theorem t o  the open s e t s  S , S -F, i n  S ', 
lu 

u and E - { o ~  i n  E , together with the exact honotopy sequence 
A 

of a bundle (where u e U- {O [ , FU is the  f ib re  of S over 

u) , t o  obtain the Poll.owing diagram, comnmutat ive, exact i n  the 

columns sad the rows , 'and which gives eas i ly  omt resu l t .  



Froposition 22. I f  0 denotes the tangent bundle of S,  

then h1(GS)=7. 

Sketch of the proof ( i n  the simpler case when D is 

smooth). Using the Hirzebruch Riemann-Roch theorem one sees that 
O 1 2 i t  is equivalent t o  show tha t  h (QS cg QS)=l. One exploi ts  

f i r s t  one fac t :  you have an involution on S determined by 
O 1 2 4- - f 1 : s - - + ~ = ~ ( 2 ) ,  so B (OS @ Q S )  = H  x H ,  where H* i s  the 

subspace of invariant,  H- of a n t i  invariant sections oE 
1 2 $2, e, Qs, and by one side the sections of H+ correspond t o  

1 2 1 sections of RX x QX x L ,  Z Q ~ 6 ( f  ), by the other, sections 
X 

of H- vanish on the ranif icat ion locus R , hence they come 
1 I *  from sections of RS Q 6 ( K ~ - R )  Z 52, x f (K,) , Secondly one 

1 exploi ts  the uniqne sectioa of Q (wllich defines a t r i v i a l  sub- 
I X 1 bundle T of QX) and the fac t  tha t  QX o ~ ( P )  52; ^.b(- f +F,) 

has no non zero sections,  t o  infer  that  every section oP 
1 

RX @ O(P) comes Prom a section of' the subbundle T @6 (P) 2 

rG(r) ,  which, though, possesses only one section. The sane 



method can be applied t o  shov the vanishing of HO (Q: @ £*(K ) ) . 
Finally, when D is non singular, one cal take the con- 

structed family a d  show the injectivity of the Kodaira-Spencer 

map: then local ly  our family is the Kuranishi family (compare 

[6J 9 [17J 1 
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