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I. Introduction.

This lecture contains an exposition, without many details
and proofs, (they will appear in a Ffuture paper), of a joint re-
search of E.Bombieri~F.Catanese, dealing whith surfaces having
the following numerical invariants: K2=2, pg=q=1(of course they
are of general type).

The interest about the existence of these surfaces was moti
vated by thefollowing remark: if S is a minimal surface of ge-
neral type, and one considers the numerical characters Kz,

X=X (Cbs) = 1—q+pg , then the following inequalities hold

(%) Research made when this author was a member of G.N.S.A.G.A.
of C.N.Rs.»



270

. . 1.2 5 s 142
(Noether's inequality) Pg 2z K+2 ——>?( 27 K+3

(Bogomolov-Miyaoka's inequality) x2 <9X .

(a consequence of Castelnuovo's criterion) X > 1.

' Moreover, if S is irregular, S admits unramified covers
N ~

S of any order m ; as these two invariants for S are those
of S multiplied by m , and Noether's inequality must hold for

23_2)(((73). In the (,)(,K2) plane

then, the minimal irregular surfaces of general type lie in a

then, it turns out that X

convex ragion whose lower vertex corresponds to surfaces with
K2=2 , X =1.

Finally in this case one must have =pg=1 , Dby the results
of E:M.] (pag. 212), and one is conducted to check if these mi-
nimal values of K, X are really attained, trying to construct
such surfaces.,

We have proved firstly an existence and unicity thcorem
about these surfaces, namely that there exist double ramified
covers of the double symmetric product of an elliptic curve which
have these numerical invariants, and moreover that all such sur-
faces arise in this wvay.

It has been then possible to show that their canonical mo-
dels all belong to a family with non singular base space, hence
by the results of [11] they are all deformation of each other
(vith non singular base), and are all diffeomorphic; their funda
mental group is proven to be abelian exploiting this remark and
a suitable degeneration of the branch locus: finally it is possi
ble to prove that the constructed family coincides with the Xu-

ranishi family (when the canonical models are nonsingular).,
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II. Geometry of the double symmetric product of an elliptic

curve.

Let E be an elliptic curve; E2= ExBE : E(e), the dou-
ble symmetric product of E 1is the quotient of Ez by the in-
volution taking {x,y) 5% to (y.x).

The quotient map nEZ —3 8(2) has the diagonal A os
E2 as ramification locus, and E(z) is non singular (compare
{3} ). Fixing a base point in E as the zero element of a group
lav on E , the map p':EZ“—> E s.t. p'({%,7)) = x+y induces a
mapping p:E(2)—~9 E (note that a different choice of the base
point alters p only up to a translation on E).

The following hold:

Proposition 1. p:E‘2)-% E makes E(z) into a P -bundle

over E .

Proposition 1 bis. p possesses a 1-dimensional family of
cross sections, two of which intersect transversally in only one

point.,

Proof. For a e R consider the section aa:E —_— E(z) S.te.

oa(z) = (a,z-a). Denoting by Fa the image of o, s f‘a and

(‘a, meet transversally in (a,a').
Q.E.D.
Denoting by Yy the homology class of a section and by £
that of a fibre, we knowv that the second homology group oFf 5(2)
is freely dJenerated by y , £ and J £ =1 ,6 2: 1, 2= 0 {the
First assertion is by the Leray-Hirsch theorem).

If D is a divisor, denote by deg D the intersection num
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ber of D with a fibre; one has

Proposition 3. The folloving sequence is exact

< 0 .

P

d
0 — Pic(B) -—-17\Pic(E(2)) Iy =z
The proof of the preceding assertion is by diagram chasing, while,
by the Fact that every morphism of P® into an abelian variety

is constant, one gets.

Proposition 4. If D is a positive divisor on 8(2), DQE_O.
(2)

map n® and the triviality of x:Ez , We obtain the equality
~ ~
-2k = A, vhere A =n, A.
For z ¢ E denote by F_= p-1 (z) ; using prop. 3 and the

We come now to the canonical bundle of B ¢ considering the

structure of Pic (E) we can show that for a suitable choice of
the base point in E X= -2['+ F,.

As for positive divisor D, deg (D) > 0, one can sharpen prop.
4 to

Proposition 5. If B 1is an irreducible curve with 32-_-0,

either i) B is a fibre
or ii) B is homologous to -nK , n>1 .

There are on 3(2) two rational pencils of curves, which
will be of particular use in the sequel,that we are just going
to describe.

Consider on 82 the following family of curves, {Ca%a c B’
given by C‘_=1 = {(x,x+a) X € E} :  these curves are isomorphic to
E and are "translated" of A =C,.

Observe that Can Cb =# if a#b , and the symmetry

involution takes Ca to C a (which is a different curve if
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2a # 0). Denote by a,, i=1,2,3, one of the three points such
that a#£0 2a=0: the symmetry operation operates trivially on A ’
not on Ca .

s

L A
1¢ G, = n(Cn ) m:iCn —>C, is a double unramified cover,
1 ai ai 1
~
S0 /C:\i is an elliptic curve not isomorphic to E , n*(cﬁ‘)=2(}i
L
while for the other values of a
™ C — p(Ca) is an isomorphism.

We can summarize this in the following

(2)

curves linearly equivalent to =-2K, whose elements-are all iso-

Proposition 6. There exists on E a rational pencil of
morphic to E , but three particular members which are twice a
non singular elliptic curve not isomorphic to E .

Proof. The family is given by {n*(ca)}ae E
As n*(ca) = n*(c_a) the Ffamily can be parametrized by JP1: then
N
recall that =2k = O = n_(C,).
Q.EDe

By an entirely equal argument we have
Proposition 7. 12| contains the rational pencil given

{P a+r‘-a%aé B °

Proposition 8., On E(z)
curves homologous to =K .

by

A
the three curves Ci are the only

A\
Sketch of proof. If C is such a curve, A «c=0, so
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N
ODnc= # : by an easy numerical argument one gets that n‘1(c)

is a connected curve E. However, 5 being homologous to A
and disjoint from it, it must be the graph of a translation on

E (cf. [10] ) , so one of the curves Ca: finally the condition
n*n*(8)=25 implies Eécai for some ie{1,2,3} .

(-]
Corollary 9. |-3k| £ @ , h (-nK) = h'(-nk) , Ffor n> o.

I

Proof. Consider that ei 2N —Fg , SO that the sum of

i
those three curves is = -3XK.
The other assertion comes from R.R. plus duality.

Q.E.D.
Proposition 10.
i o
h (O (~I‘K)) == i

m+1 1if r=2m

m if  r=2m#1

Proof. The proof of the first assertion uses induction on

m in the cohomology sequence of
0 —>0(n(-2x)) — O (1) (-2)) —2 O —=> o,

to obtain ho(CD(—me)) <m#1 , and exploits the fact that
\-ZmK[ o m|-2k| to deduce that ho(é7(~2mK)) > mel .

For the second one we apply Ramanujam's theorem A ([9]
B:J4ﬂ ): |-2mX| being composed of the rational pencil |-2k| ,
' (6 (2mK))=m-1.

Then Serre duality and corollary 9 are enough to fulfill the
proof.

Q.BE.D,
If t is an automorphism of E , (x,y) — (t(x),t(y))

defines an automorphis X(t) of E(Q); any automorphism g of
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(2)

so induces an automorphism H(g) of B . A simple calculation

E moreover has the effect of permuting the fibres of p and

shows that H(x(1))(x) = 1(x)+w(0) so that Ker HeK is given

by the four translations of period two. Then we observe that, as
. * . . R

(a,b) = Patqf‘b and \(1a]=ira} , if g is the identity on

Pic(E(z)), g must be the identity ; so if g ¢ Xer H,
* *
g*(Fa)=Fa, g*(K)=K, and g (2M)=g (~K+F )=2 I .

*
Hence g (M) = "= F+ Fg » and Ker H has order 4 .
i
Then, noticing that K 1is injective, KXer HoK=Ker H , and

HoK is onto,one gets.

Proposition 11, H 1is an isomorphism of Aut(E) onto
Aut(E(z)).

IIT. BExistence of surfaces with K2= 2, pg=q=1.

(2)

Given a line bundle L on E sy Suppose we are given
with a cover {Uii = u,a cocycle (ri Ye H (&, (9*) defining 1,

and a positive divisor D defined by a section S= {Si} of
I;® 2: then one may take in L the surface S' defined by ta-
king the square roots of S , that is 8' 1is defined in UixC

(with coordinates (x,zi)) by the equation Si(x)zzg. If

D=div(S) dis smooth, then S' is smooth too, and S' is normal
if D has no multiple components,

Supposing that D exists, smooth, one obtains, using the signa
ture formula of 4 and other computations, that, L being =
=alls ((b=1)F + Fx), s' has the desired numerical iavariants
iff a=3, b=,
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So we are left with the task of showing that the generic

element of | D/ is non singular if D = 6 [~ oF . F -3K+F_, ; in

view of the result of prop. 11 one can restrict himself to con-

sider only the divisor D = —3K+F,.
Proposition 12. h1(€>(D))=O , 1Dl has dimension 6 and

its generic element is irreducible non singular.,

Ve
Sketch of proof. as |D|o|-2kl + C; + F g (i=1,2,3),
i

A
bl > C1+8 < +F, it is easily seen that |D| has neither fixed

part nor bise3points, and Bertini's theorem applies. The first
two assertions follow from R.R.,Serre duality and Ramanujam's
theorem (h1(® (D)) = h1(—4K+F°)).

By the results of [5] , When D has no multiple components,
S' has at most rational double.points as its singularities iff
D has no singular points of multiplicity greater than three,
and any triple point has no infinitely near singularities of mul
tiplicity greater than two; moreover if this conditions are sa-
tisfied , a minimal desingularization g:S — 8' of S' has
the desired numerical invariants.

We observe that the condition is fulfilled in our linear
system if D is irreducible (by the genus formula), and it is
possible to describe explicitly which are the reducible curves in
l—3K+F°1 » and which the "bad" ones: we omit this point for the

sake of brevity, as well as the verification of

Proposition 13:
i) S is a minimal surface
ii) s8' dis the canonical model of S (see B3J4J Por its de

finition and properties)
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iii) if £:8? ———QE(‘?) is the projection induced from L,
h=pofog : S —> E is the Albanese mapping of S .

We have moreover

Proposition 14. Let S, S, be two surfaces obtained in
the above described way: if W: s —> S, is an isomorphism,
EY A1b(S)=AID(S,)XE, and under this identification of E and
E, W is induced by an automorphism ¢ of E(e) taking L to

L,, D to D,.

Sketch of proof. By proposition 13 you may identify E , E,

and suppose that W commutes with the respective Albanese maps
of §, 8,.

Y induces an isomorphism ' of the canonical models S', mo
reover the fibres ? of the Albanese map are curves of genus
tvo, and F£(x)=f£(y) iff Oﬁ(xa—y) is the unique hyperelliptic
bundle of %‘\: this remark enables us to define ¥ on E(z).

IV. Surfaces with K2=2, X =1, ¢=1 are double covers of the

symmetric product of their Albanese variety.

Let Y:s —>E
for uw B, set G

Alb(S) Dbe the Albanese map of S , and ,
-1 .

v ({u}), K, EK+F =F,.

Ve refer to [C M .] for the proof of the following facts

il

o
iYYueE n(s, @(Ku))=1. (denote then by C, the uni-

que curve in | Ku[ ).
ii) C, is generically irreducible p(Cu)=3

1ii) h°((9(K+KV)) =3 VYVeE .



Fixing v ¢E, ¥ u¢ E we have the divisor C,*Cy, €

-1
e lxex, |«

Proposition 15. The mapping u —--—>Cu+cV~u defines an ho-

lomorphic mapping Y, of E into lK+Kv,'; P2,

Proposition 16. The image Av of Yo is an irreducible

rational curve.

Proof. Cu—;-c =C +

= so is invariant b
v-u_  v-u \{)v Y

Cv—-(v—u) !
the involution which takes u — v-u, and whose quotient is
isomorphic to ]P1 (denote now by (fv: P’ - \K+Kv | the induced
mapping) . Q.E.D,

Proposition 17. For general v [} v is non singular.,

Sketch of proof. An uniformizing parameter on the univer-

sal cover of E induces a derivation D on each vector bundle,
and, given a section o , we use the classical notation o' Ffor
D(o) .

Take a cover {Uik of s on vhich (Ku) is trivialized FPor
u near W : then, o being the section of O(Ku) defining

Cu’ o'u = {ciu} , Vhere Giu depends holomorphically on u .

. . . A
The condition that \{'V is not of maximal rank at u=u can be

c'.an Ol A
u — .
read as P, = it _i(v-h) + A, for A a suitable constant
%% %i(v-h)

independent of i .
A
Now, for general v , if u # v-u , this equality implies

that Cfi is a regular function on u; .
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But then, if £, .(u) is a cocycle defining G (K ), one
(u)
gets after a simple computation that ——T—)— ?1 Y’J hence

it is a coboundary in H (s, ®). A similar conclusion can be
dravn in general if Cf is not of maximal rank at any point.
Denoting by A, .(u) a cocycle for O (u—O) (relative to a

ij
covering { Vi} compatible with {Ui} ), we have that

A N A
£:.(u) o [ MW . 1 ]
N h R N IR, D % H (E, () —> H (S,(») is however
£, () AL (W)
J 1]
(%)
an isomorphism (compare [3] ), so -—J—(——)’- is a coboundary. By

the homogeneity of E under translation, it is possible to wri-
1

A (u)
te for all u )\ (u) (F (u) - goj(u) , with ?i(u)ér(vi, ©).

Yow, 1ntegf1t1ng on any path from O to u , one gets
}\J(u) exP(oS?l(t)dt)

L = and so 0 and u should be two
llj(o) !

exp(oj (Fj (t)dt

linearly equivalent points, which is clearly absurd.
Q.E.D,

The fact that Cu'cv=2 and the irrationality of the pencil

{Cug implies that this pencil has no base points hence

Proposition 18, ¥ v [K+Kv| has no base points and Av is

an irreducible conic.

Proof, It suffices to show that deg AV=2(AV being irre-
ducible), and yet only that deg ]\ L 22 (Av being generally

non singular). Take then Cu'cu' general, meeting in two points
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X,y ¢ Cu+cv~u’ Cu'+Cv_u, represent two points in the plane

[K+Kv‘ which lie in the intersection of va with the line
|x+x_ x| .
v
Q.E.D.

Proposition 19. For general y ¢ 8§ , there exists a unique
point {u,u')e 8(2) (with u%u'), sste yeCon Cu"

Proposition 20. The correspondence of prop. 19 extend to
a holomorphic mapping £':s ~—~>E(2). Moreover f£' factors as

s J > 5t £ )E(Q), wvhere
a) 8' is the canonical model of S,g the canonical happing
b) £ 1is a finite map of degree two

(2)

such that S' dis isomorphic to the surfa-

¢) there exists a line bundle L on E and a section

o
ccH(L®?)
ce of the square roots of ¢ in L .

V. Some results on the structure of these surfaces and on their

deformations.

Sharpening the result of prop. 20 one can show that it is
possible to choose I=3[ ~ P (essentially by using Aut(E(z)))e

We will sketch very rapidly the construction of a family
containing all the canonical models S' of our surfaces: take
g —> H the local universal family of elliptic curves over the

Siegel upper halfplane, and form its symmetric Ffibre product

E (2)—~—%I1 . All the invertible sheaves (O (2)(3 "~ F,) f£it to-
e .

gether to form an invertible sheaf 4€<x1 E (2) and one can choo
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se sections S,,...5.€ ( 28(2),96‘2 2) such that for all
toeesty, St =‘§Ztisi defines a relative divisor é)t on

E (2)-——7\H (we use the terminology of [8] ). Then on E (2)>< ]PG'

— HxIIP6 is defined an invertible sheaf that we still denote
by 43 and a relative divisor ds linearly equivalent to 2 df.
Define S 3> L to be the variety defined in.x? by the square
roots of a section defining 63 : then we have a family
R —Hx ¥° and an open dense subset V of ix1?° such that
the fibres over points of V are all the canonical models of the
surfaces we are considering.

By using the result of Tyurina about local resolution of
singularities of such families (Bﬂ) we deduce that our surfa-
ces are all diffeomorphic.

h
¥
Proposition 21. m,(8) ——> n,(E).

Sketch of proof. By the above remark we may consider the

particular surface Ffor which D=F°¥81¥82+63.

Then we observe that by Van Xampen's theorem n1(S)Zn1(S'); call
F,=£71(F,), and observe that S'ng —— E -{0] is a differentia
ble fibre bundle with fibre a smooth curve of genus two. Take U
to be a small disk around O in E : (pof)~1(U) = SYU is con-
tractible to ?o , which is simply connected, and we can apply
again Vaa Kampen's theorem to the open sets STU » s'n§° in S',
U and E—{O} in E , together w;ﬁh the exact homotopy sequence
of a bundle (where u € U- {0 t F, 1s the fibre of §' over
u), to obtain the Ffollowing diagram, commutative, exact in the

colums aad the rows , and which gives easily our result.
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1 1
0 1

1 — = (v~ {0}) n, (B~ {o} ) n, (B) —1

T ] T

v 2 ' Pal 1
1 ., (SU—FO) 3 (SA~ F,) >7!1 (s)

1 |
~ —~ A
“1 (Fu) —_ 'II1 (Fu)
Q‘E .D.

Ve end this talk by showing

Proposition 22. IFf 9 s denotes the tangent bundle of s,
then h'(6,)=7.

Sketch of the proof (in the simpler case when D is

smooth) . Using the Hirzebruch Riemann - Roch theorem one sees that
2y
sl
£irst one fact: you have an involution on S determined by

o -
£':8 ———}X:E(z), so H (Q1S ® Qg) =ut xH , Where " is the
subspace of invariant, H~ of anti invariant sections of

Q1s ) Qz and by one side the sections of ut correspond to

Sl
sections of Q;( x 9)2( x L, £ Q;( oO (M), by the other, sections

o
it is equivalent to show that h (Q; ® Q.)=1. One exploits

of H vanish on the ramification locus R , hence they come
*
from sections of Q1S ® O (KS-—R) = Q; x £ (KX) . Secondly one

exploits the unique section of O;{ (vhich defines a trivial sub-
bundle T of Q;() and the fact that Q;(@(Q(F) Q}cé‘(j(— M+F,)

has no non zero sections, to infer that every section of
Q;( ® (O(r) comes from a section of the subbundle T b)) =

2(G(r), which, though, possesses only one section. The same
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° *
method can be applied to show the vanishing of H (Q;gf (Kx) ).
Q.E .D.

Finally, when D is non singular, one can take the con-
structed family and show the injectivity of the Xodaira-Spencer
map: then locally our family is the Kuranishi family (compare

el , [71).
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[2] [c.n] Bombieri, E.

L3]

L]
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