Taylor & Francis
Taylor & Francis Group

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: http://www.tandfonline.com/loi/lagh20

On severi's proof of the double point formula

F. Catanese

To cite this article: F. Catanese (1979) On severi's proof of the double point formula,
Communications in Algebra, 7:7, 763-773, DOI: 10.1080/00927877908822373

To link to this article: http://dx.doi.org/10.1080/00927877908822373

ﬁ Published online: 27 Jun 2007.

N\
[:1/ Submit your article to this journal &

||I| Article views: 27

A
h View related articles &'

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalinformation?journalCode=lagh20

( Download by: [Universitaetsbibliothek Bayreuth] Date: 08 October 2015, At: 07:20 )



http://www.tandfonline.com/action/journalInformation?journalCode=lagb20
http://www.tandfonline.com/loi/lagb20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00927877908822373
http://dx.doi.org/10.1080/00927877908822373
http://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00927877908822373
http://www.tandfonline.com/doi/mlt/10.1080/00927877908822373

Downloaded by [Universitaetshibliothek Bayreuth] at 07:20 08 October 2015

COMMUNICATIONS IN ALGEBRA, 7(7), 763-773 (1979)

ON SEVERI'S PROOF OF THE DOUBLE POINT FORMULA
F. Catanese

Univ. di Pisa
Harvard University*

Bo. Introduction

In his paper [6] of 1902 Severi considers the
. . . I?k .
following situation: 1let M —> (€) be an irredu-
cible variety of dimension k with "generic" singulari-
ties, i.e., only a finite number of transversal double

points, Pl,---,P "transversal" means that locally, at

d (
each Pi’ M consists of two smooth branches intersecting
transversally).

Severi then gives a formula expressing 4 in terms

of certain projective characters of M:

k

2d = n(n-1) =~ E:wi.
i=1

Here n is the degree of M, and w, is the ith ceto

*
The author was supported by a N.A.T.0.-C.N.R. fellow~
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764 CATANESE
of M, which can be conveniently defined as follows: if
V —— EN is a variety of dimension m, the mth ceto wm(v)
is the number of m-dimensional linear subspaces tangent
to V at smooth points which meet a general 2m-codimensional
linear subspace, while wi(v) is the ith ceto of the inter-
section of V with a general (m~i)-codimensional linear
subspace, During the past few years there has been a
renewed interest in enumerative geometry and Severi's
double point formula has been generalized to a greater
extent (see [2], and especially (3] for wider historical
and bibliographical references): we believe however it
may be interesting to give in this note an account of
Severi's elementary proof, clarifying it and £filling in
some details skipped in his paper [6].

We note that this proof works word by word in the

case of any algebraically closed field of char. O,

Notations
G{r,N) is the Grassmanian of r-dimensional linear sub~
spaces of IN.
. . . l?k .
O is a general point in , 9o € G(k,2k) is the
Schubert cell of the subspaces containing O,

L, ©G6(1,2k) is defined analogously.
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f: M' — M —> ch is the normalization of M {so that
f is an immersion).
p: M' = G6(k,2k) is the Gauss map of f.

Pi,P; are the two distinct points in M' whose image is %:

¢0,¢ are two general linear forms on n?k.

1

S is the (2k-2)~dimensional linear subspace defined by

¢0 = Ql = O and H is the hyperplane spanned by O,S.

AM is the diagonal in MxM.

Steps of Proof,

1) The projection of M N H from O to § is a birational
immersion and its image M has generic double points.

2) If d is the number of double points of ﬁ, 2d = 2d+wk.

k
Theorem: Steps 1), 2) imply that 24 = n{(n-1) =- Z w, .
i=1

Proof: By induction on k. For k = 1 we have a
plane curve with d nodes and of degree n: hence the
equation is a particular case of the first Plicker
formula. We remark then that by step 1) n(M) = n(M),
wi(M) = wi(ﬁ) so that the inductive assumption plus

step 2) imply the desired result.
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8I. The basic construction (k > 1)

Consider in (MxM ~ AM) x G(1,2k) the graph of the
map which takes (P,Q) to the line joining them, and its
closure A in (MxM) x G(1,2k): A is irreducible of
dimension 2k.

Denote by p: A —=G(1,2k) the canonical projection;

set Z = p(A).

Lemma l: p: A —>2 is generically a 2~1 map if M is
not contained in a linear subspace of dimension k+l
(note that if d > 1, M is not contained in any hyperplane);
in particular, then, 2 is irreducible of dimension 2k,
Proof: 1In our hypotheses you can find k+3 points
of M spanning a subspace of dimension k+2, so that a
general subspace L of dimension k will be such that
L NMis a finite set with the property that any k+3
points in it are linearly independent (compare [0],
chapter II, iii), "Special linear systems I"), hence
a fortiori any line through two of them won't contain a
third one: this however immediately implies our
assertion.

N

Fix a general point O and denote by Y = p-l(gonZL
A
by ¥' its inverse image in M'xM'xG(1,2k), by Y,Y' the
respective projections on M,M', by 7,7' the projections

on MxM, M'xM',
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Proposition 2: 7' is smooth; Y' is the graph of a

birational involution T on Y' such that T(Pi) = p/.

We first prove two auxiliary lemmas:

Lemma A: Let P be a smooth point of M, and O a point in
the space TP tangent toM at P, Then P € ¥ and Y is
smooth at P if ¥, is transversal to M(M') at M(P);

in this case also (d'r)P = = Identity.

Proof: We can take affine coordinates x =(x1,~-,xQ,
y = (yl,---,yk) sothat P corresponds to the origin, y = ©
,-axis:
ﬂ? k . .
(x,£(x)), where £ € ( x) , will be then a parametric

is TP, O is the point at infinity on the x
equation of M in a neighborhood U of P, Take
coordinates (x,z) in UxU: then the line through

(x,£(x)), (z,£(z)) contains 0& Xy=Z, = 0, re,x -z, =0,

and fh(x) - fh(z) =0 for h = 1, ,k&>x,-2, = 0,
xk—zk = 0
fh(xl’XE’..."xk) - fh(zl:x2,"':’ﬁ<) =0 (h = 1:".:k)°

2

We can write fh(xl’x?!""’xk): X £ (x ,xk) x (mod zm3)

\)O

hence

fh(xl’x ’".’xk)-fh(zl’x2’".’,5()i(x z [f +(xl+z fﬂ(mo‘i !Df‘)i
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h
if at the origin det(fi Bfi/éxr) 4 0 (
r

1,:-4,k

E’ooo’k
then it is easily seen by the implicit function theorem

that v is smooth and x can be both chosen as a local

1’21

coordinate (hence Y is smooth too). Moreover,

1) =0 4 h = dx, = -dz, at P, We are

going then to check the non-=vanishing of our determinant.

fi(o)(dxl+dz

In fact, the subspaces near TP have parametric equations
(w,Awtb), @, consists locally of the submanifold defined

by Ae, = 0 (the first column of A must vanish), the

Gauss max M takes x to A = (afh/axr), b = £: hence
transversality to ¢, at W(P) means that
th/axl: U-———>¢k has invertible differential at

the origin.,

1 2 ,
But afh/bxl = £ +2x £ (mod ﬂi) so its Jacobian

matrix is at the origin

s .1 h=1,.0,k
(2fh afh/axr)(r . k).

We remark finally that the tangent to Y at P passes

through O.

Lemma B: Let P be a double point of M: then if O does
not belong to m(P'), u(P"), ¥' is smooth at (P',P"), ¥Y'

ig smooth at P',P", T is biregular at P',P",
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Proof: We can take affine coordinates

X = (xl,'--,xk), Y = (yl,---,yk) such that P is the

origin, m(P') is y = 0, H(P") is x = 0, The two branches
have parametric equations (x,f(x)), respectively (g(y),y),
(£ € (mﬁ)k, g € (mﬁ)k). We can also suppose O to be the
point at infinity on the line through P and ((1,0,---,0),
(1,0,-+.,0)), so that in a neighborhood of P two points
of M can be collinear with O only if they lie in
different branches.

Y' is then defined locally by the following

equations:

F

it
(o]

h = Yy - Ey(%)
h=2,+++,k

I
(o]

Gy = ¥y ~ Iplx) =

and

Gl = xl - gl(Y) - YI + fl(x) = 0.

Clearly at the origin (corresponding to (P',P")),

BGh/Bxk = B,y BFh/Bxk = 0, BFh/Byk = By BGh/Byk

_alhﬁlk so that by the implicit function theorem v

is smooth and both x can be taken as a local

1°¥1

coordinate.

Proof of Prop. 2: Observe that A is smooth outside

ﬁqns(l,Ek): by theorem 2 of [1] (page 290), then ¥ is
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smooth there, and (A being there a graph) ¥ - AM is
smooth.

For general O, 9 has w, transversal intersections

with w(M') (by (1]) at w(Q;),-+«,u(Q, ), where 0, 4 Py,

W,
k
hence we can apply Lemma A, and putting together with the
above result and Lemma B we obtain that ?' is smooth.
Moreover Lemma 1 guarantees that the projection from 7'

to ¥' is birational, and we observe for later use that

the Qi are the only fixed points of T.

Remark: Though Y is smooth, Y' needs not to be so
(a trisecant through O contributes three double points

of ¥).

811. Proof of the main steps.

Step 1): For H general M N H is smooth of dimension
k-1 so you can find 0 € H such that the projection of
M N O with center O is a birational immersion and its
image M has "generic" singularities. (This is well

known, see e.g. [4]).

Step l+%§: For general O, Y, you can find H a

general hyperplane containing O such that
i) H intersects Y transversally in deg Y distinct

smooth points Rl,'--,Rdeg v
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ii) H contains no Q (so you can suppose deg Y = 2m
T = i .
and (Ri) R ,q for ig m)

iii) H,0 satisfy the requirements of step 1).

To check i), ii), one needs to consider that only w,
tangents of Y pass through O, so that the hyperplanes
containing O and not satisfying i), ii) form a

(2k-2)~dimensional subvariety.

Now for S a general (2k-2)=-dimensional linear
subspace of H the projection ™: H-{0} —> 8§ is such
that M = m(MNH) has d double points corresponding to the

pairs {Ri,T(Ri)} inH N Y, hence m = d.

Step 2): Take ¥, a linear form vanishing on H, ¢l

a general one, S defined by ”o = @l = 0. We will have
Yy Ns = g and (‘PO,” defines a morphism g: IPEk-S —?]Pl,

D
and naturally

(ge£,9-8): (u'=£7N(s)) x (w'=£71(s)) —> ' x T,
denote by ¥ its restriction to ¥', by D = ¥(Y'), by A
the'diagonal in ]Pl x]Pl.

Because O,P,T(P) are collinear, it is clear that

g(P) = g(7(P)) iff either P = 7(P) or P € H, hence
V_l(A) consists of the pairs (Ri,T(Ri)),(P},P;),(P;,P}),
(0,,9,) -
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Agsertion: For general vl, ¥ is transversal to 4,

¥(e,,0,) 4 '(Qj,Qj) for i 4 j (e=>g(0;) 4 g(QJ.))-

As a first consequence of this we get that
'-l((Qi,Qi)) = (Qi’Qi) go that ¥ is birational, hence D
has bidegree (2d,2d): in fact, if (uo,ul) € IPl, the
intersections of D with (uo,ul)xPl correspond then to
the points of Y in the hyperplane ul“o-u0°l = O, and are
then 24 = deg Y, and moreover D is clearly symmetric in
n}xz}. As a second consequence D<A = 2d + 24 + wk:
but, having computed the bidegree of D, we know also
that D-4 = 44, hence we infer that 2d = 2d + ® .

Proof of the agsertion: By Lemma A,B, we must prove

that g has maximal rank at each Qj’ at each Rj and Ph

gef and g+£f+T have not the same differential, the Qj's
have all distinct images.

If P is any of these points, take a nonzero tangent

2k
no

vector tP of v' at P and pick a hyperplane H' in P t

containing £(P) for any of these points: then on G TE

choose affine coordinates (zl,-o~,22k) such that

2k

g = (vo,¢l) = (zl, a, + iZlaizi).
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You can then identify f(P),df(tP) to a peoint and an
applied vector at it in this affine space, and if

£(p) = £{Tp), df(tP) 4 d(f-T)(tP): what we want then is
that g must separate a finite number of points (including
the vertices of the applied vectors), for which zy 4 o,

and this can clearly be achieved for general ai's.
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