

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: http://www.tandfonline.com/loi/lagb20

On severi's proof of the double point formula

F. Catanese

To cite this article: F. Catanese (1979) On severi's proof of the double point formula, Communications in Algebra, 7:7, 763-773, DOI: <u>10.1080/00927877908822373</u>

To link to this article: http://dx.doi.org/10.1080/00927877908822373

	Published online: 27 Jun 2007.
	Submit your article to this journal $oldsymbol{oldsymbol{\mathcal{G}}}$
lılı	Article views: 27
Q	View related articles 🗗

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lagb20

ON SEVERI'S PROOF OF THE DOUBLE POINT FORMULA

F. Catanese Univ. di Pisa Harvard University*

\$0. Introduction

In his paper $[\underline{6}]$ of 1902 Severi considers the following situation: let $M \longrightarrow \mathbb{P}^{2k}(\mathfrak{C})$ be an irreducible variety of dimension k with "generic" singularities, i.e., only a finite number of transversal double points, P_1, \dots, P_d ("transversal" means that locally, at each P_i , M consists of two smooth branches intersecting transversally).

Severi then gives a formula expressing d in terms of certain projective characters of M:

$$2d = n(n-1) - \sum_{i=1}^{k} w_{i}$$
.

Here n is the degree of M, and w_i is the ith ceto

The author was supported by a N.A.T.O.-C.N.R. fellow-ship during his stay at Harvard University.

of M, which can be conveniently defined as follows: if $V \longrightarrow \mathbb{F}^N$ is a variety of dimension m, the mth ceto $\omega_{\mathfrak{m}}(V)$ is the number of m-dimensional linear subspaces tangent to V at smooth points which meet a general 2m-codimensional linear subspace, while $\omega_{\mathfrak{l}}(V)$ is the ith ceto of the intersection of V with a general (m-i)-codimensional linear subspace. During the past few years there has been a renewed interest in enumerative geometry and Severi's double point formula has been generalized to a greater extent (see [2], and especially [3] for wider historical and bibliographical references): we believe however it may be interesting to give in this note an account of Severi's elementary proof, clarifying it and filling in some details skipped in his paper [6].

We note that this proof works word by word in the case of any algebraically closed field of char. O.

Notations

G(r,N) is the Grassmanian of r-dimensional linear subspaces of \mathbb{P}^{N} .

O is a general point in \mathbf{F}^{k} , $\mathbf{F}_{0} \subset G(k,2k)$ is the Schubert cell of the subspaces containing O, $\mathbf{E}_{0} \subset G(1,2k)$ is defined analogously.

f: $M' \longrightarrow M \longrightarrow \mathbb{P}^{K}$ is the normalization of M (so that f is an immersion).

 $\mu: M' \longrightarrow G(k,2k)$ is the Gauss map of f.

 P_i', P_i'' are the two distinct points in M' whose image is P_i . P_i', P_i'' are two general linear forms on \mathbb{P}^{2k} .

S is the (2k-2)-dimensional linear subspace defined by $\phi_0 = \phi_1 = 0 \text{ and H is the hyperplane spanned by 0,S.}$ Δ_M is the diagonal in MxM.

Steps of Proof.

- 1) The projection of M \cap H from O to S is a birational immersion and its image \widetilde{M} has generic double points.
- 2) If \tilde{d} is the number of double points of \tilde{M} , $2\tilde{d} = 2d + w_k$.

Theorem: Steps 1), 2) imply that $2d = n(n-1) - \sum_{i=1}^{K} \omega_i$.

<u>Proof:</u> By induction on k. For k = 1 we have a plane curve with d nodes and of degree n: hence the equation is a particular case of the first Plücker formula. We remark then that by step 1) $n(M) = n(\widetilde{M})$, $w_i(M) = w_i(\widetilde{M})$ so that the inductive assumption plus step 2) imply the desired result.

§I. The basic construction (k > 1)

Consider in $(M \times M - \Delta_M) \times G(1,2k)$ the graph of the map which takes (P,Q) to the line joining them, and its closure Λ in $(M \times M) \times G(1,2k)$: Λ is irreducible of dimension 2k.

Denote by p: $\Lambda \longrightarrow G(1,2k)$ the canonical projection; set $Z = p(\Lambda)$.

Lemma 1: p: $\Lambda \longrightarrow Z$ is generically a 2-1 map if M is not contained in a linear subspace of dimension k+1 (note that if $d \ge 1$, M is not contained in any hyperplane): in particular, then, Z is irreducible of dimension 2k.

Proof: In our hypotheses you can find k+3 points of M spanning a subspace of dimension k+2, so that a general subspace L of dimension k will be such that L ∩ M is a finite set with the property that any k+3 points in it are linearly independent (compare [o], chapter II, iii), "Special linear systems I"), hence a fortiori any line through two of them won't contain a third one: this however immediately implies our assertion.

Fix a general point 0 and denote by $\hat{\vec{Y}} = p^{-1}(\Sigma_0 \cap Z)$, by $\hat{\vec{Y}}'$ its inverse image in M'XM'XG(1,2k), by Y,Y' the respective projections on M,M', by $\hat{\vec{Y}},\hat{\vec{Y}}'$ the projections on MXM, M'XM'.

<u>Proposition 2</u>: \tilde{Y}' is smooth; \tilde{Y}' is the graph of a birational involution τ on Y' such that $\tau(P'_i) = P''_i$.

We first prove two auxiliary lemmas:

Lemma A: Let P be a smooth point of M, and O a point in the space T_p tangent to M at P. Then P \in Y and Y is smooth at P if σ_O is transversal to $\mu(M')$ at $\mu(P)$; in this case also $(d\tau)_p = -$ Identity.

<u>Proof:</u> We can take affine coordinates $x = (x_1, \dots, x_k)$, $y = (y_1, \dots, y_k)$ so that P corresponds to the origin, y = 0 is T_p , O is the point at infinity on the x_1 -axis: (x, f(x)), where $f \in (m_X^2)^k$, will be then a parametric equation of M in a neighborhood U of P. Take coordinates (x, z) in UXU: then the line through (x, f(x)), (z, f(z)) contains $0 \Leftrightarrow x_2 - z_2 = 0, \dots, x_k - z_k = 0$, and $f_h(x) - f_h(z) = 0$ for $h = 1, \dots, k \Leftrightarrow x_2 - z_2 = 0$, $x_k - z_k = 0$

$$f_h(x_1,x_2,\dots,x_k) - f_h(x_1,x_2,\dots,x_k) = 0$$
 (h = 1,\dots,k).

We can write $f_h(x_1,x_2,...,x_k) = \sum_{v=0}^{2} f_h^v(x_2,...,x_k) \cdot x_1^v \pmod{m_x^3}$, hence

$$f_h(x_1, x_2, \dots, x_k) - f_h(z_1, x_2, \dots, x_k) = (x_1 - z_1) [f_h^1 + (x_1 + z_1) f_h^2] \pmod{m_X^3};$$

if at the origin $\det(f_h^2 \partial f_h^1/\partial x_r) \neq 0$ $\binom{h=1,\cdots,k}{r=2,\cdots,k}$ then it is easily seen by the implicit function theorem that $\widetilde{\gamma}$ is smooth and x_1,z_1 can be both chosen as a local coordinate (hence γ is smooth too). Moreover, $f_h^2(0)(dx_1+dz_1)=0 \quad \forall \quad h \Longrightarrow dx_1=-dz_1 \text{ at } P.$ We are going then to check the non-vanishing of our determinant. In fact, the subspaces near T_p have parametric equations (w,Aw+b), σ_0 consists locally of the submanifold defined by $Ae_1=0$ (the first column of A must vanish), the Gauss max μ takes x to $A=(\partial f_h/\partial x_r)$, b=f: hence transversality to σ_0 at $\mu(P)$ means that $\partial f_h/\partial x_1: U \longrightarrow \mathfrak{C}^k$ has invertible differential at

But $\partial f_h / \partial x_1 \equiv f_h^1 + 2x_1 f_h^2 \pmod{\frac{m^2}{x}}$ so its Jacobian matrix is at the origin

$$(2f_h^2 \partial f_h^1/\partial x_r) \begin{pmatrix} h = 1, \dots, k \\ r = 2, \dots, k \end{pmatrix}$$
.

the origin.

We remark finally that the tangent to Y at P passes through O.

Lemma B: Let P be a double point of M: then if O does not belong to $\mu(P')$, $\mu(P'')$, $\widetilde{\gamma}'$ is smooth at (P',P''), γ' is smooth at (P',P''), (P'',P''), (P'',P'').

<u>Proof:</u> We can take affine coordinates $x = (x_1, \dots, x_k)$, $y = (y_1, \dots, y_k)$ such that P is the origin, $\mu(P')$ is y = 0, $\mu(P'')$ is x = 0. The two branches have parametric equations (x, f(x)), respectively (g(y), y), $(f \in (\mathbb{F}^2_x)^k)$, $g \in (\mathbb{F}^2_y)^k)$. We can also suppose 0 to be the point at infinity on the line through P and $((1,0,\dots,0))$, $(1,0,\dots,0)$), so that in a neighborhood of P two points of M can be collinear with 0 only if they lie in different branches.

 \widetilde{Y}' is then defined locally by the following equations:

$$F_h = Y_h - f_h(x) = 0$$

$$h = 2, \dots, k$$

$$G_h = x_h - g_h(x) = 0$$

and

$$G_1 = x_1 - g_1(y) - y_1 + f_1(x) = 0.$$

Clearly at the origin (corresponding to (P',P")), $\partial G_h/\partial x_k = \delta_{hk}, \ \partial F_h/\partial x_k = 0, \ \partial F_h/\partial y_k = \delta_{hk}, \ \partial G_h/\partial y_k = -\delta_{hk}, \ \partial G_h/\partial y_k = -\delta_{hk}, \ \partial G_h/\partial y_k = 0$ is smooth and both x_1, y_1 can be taken as a local coordinate.

<u>Proof of Prop. 2</u>: Observe that Λ is smooth outside $\Delta_{M} \times G(1,2k)$: by theorem 2 of [1] (page 290), then $\tilde{\gamma}$ is

smooth there, and (Λ being there a graph) \widetilde{Y} - $\Delta_{\widetilde{M}}$ is smooth.

For general 0, σ_0 has ω_k transversal intersections with $\mu(M')$ (by $\{\underline{1}\}$) at $\mu(\Omega_1), \cdots, \mu(\Omega_{\omega_k})$, where $\Omega_j \neq P_i$, hence we can apply Lemma A, and putting together with the above result and Lemma B we obtain that \widetilde{Y}' is smooth. Moreover Lemma 1 guarantees that the projection from \widetilde{Y}' to Y' is birational, and we observe for later use that the Ω_i are the only fixed points of T.

Remark: Though $\tilde{\gamma}'$ is smooth, γ' needs not to be so (a trisecant through O contributes three double points of γ).

SII. Proof of the main steps.

Step 1): For H general M \cap H is smooth of dimension k-l so you can find $0 \in H$ such that the projection of M \cap O with center O is a birational immersion and its image \widetilde{M} has "generic" singularities. (This is well known, see e.g. $[\frac{1}{4}]$).

Step $1+\frac{1}{2}$: For general 0, Y, you can find H a general hyperplane containing 0 such that

i) H intersects Y transversally in deg Y distinct smooth points $R_1, \cdots, R_{\text{deg Y}}$.

ii) H contains no Q_i (so you can suppose deg Y = 2m and $\tau(R_i) = R_{m+1}$ for $i \le m$).

iii) H,O satisfy the requirements of step 1).

To check i), ii), one needs to consider that only w_k tangents of Y pass through O, so that the hyperplanes containing O and not satisfying i), ii) form a (2k-2)-dimensional subvariety.

Now for S a general (2k-2)-dimensional linear subspace of H the projection $\pi\colon H^{-1}(0)\longrightarrow S$ is such that $\widetilde{M}=\pi(M\cap H)$ has \widetilde{d} double points corresponding to the pairs $\{R_i,\tau(R_i)\}$ in H \cap Y, hence $m=\widetilde{d}$.

Step 2): Take φ_0 a linear form vanishing on H, φ_1 a general one, S defined by $\varphi_0 = \varphi_1 = 0$. We will have $\gamma \cap S = \emptyset$ and (φ_0, φ_1) defines a morphism $g: \mathbb{P}^{2k} - S \longrightarrow \mathbb{P}^1$, and naturally

 $(g \cdot f, g \cdot f) : (M' - f^{-1}(S)) \times (M' - f^{-1}(S)) \longrightarrow \mathbb{P}^1 \times \mathbb{P}^1;$ denote by \P its restriction to \widetilde{Y}' , by $D = \P(\widetilde{Y}')$, by Δ the diagonal in $\mathbb{P}^1 \times \mathbb{P}^1.$

Because O,P, $\tau(P)$ are collinear, it is clear that $g(P) = g(\tau(P)) \text{ iff either } P = \tau(P) \text{ or } P \in H, \text{ hence}$ $^{-1}(\Delta) \text{ consists of the pairs } (R_i,\tau(R_i)),(P_j',P_j''),(P_j'',P_j''),(\Omega_h,\Omega_h).$

Assertion: For general φ^1 , \dagger is transversal to Δ , $\dagger(Q_i,Q_i) \neq \dagger(Q_j,Q_j)$ for $i \neq j$ $(\Longleftrightarrow g(Q_i) \neq g(Q_j)$).

As a first consequence of this we get that $\P^{-1}((Q_1,Q_1)) = (Q_1,Q_1)$ so that \P is birational, hence D has bidegree $(2\widetilde{d},2\widetilde{d})$: in fact, if $(\mu_0,\mu_1) \in \mathbb{P}^1$, the intersections of D with $(\mu_0,\mu_1) \times \mathbb{P}^1$ correspond then to the points of \P in the hyperplane $\mu_1 \varphi_0 - \mu_0 \varphi_1 = 0$, and are then $2\widetilde{d} = \deg \P$, and moreover D is clearly symmetric in $\mathbb{P}^1 \times \mathbb{P}^1$. As a second consequence $D \cdot \Delta = 2\widetilde{d} + 2d + w_k$: but, having computed the bidegree of D, we know also that $D \cdot \Delta = 4\widetilde{d}$, hence we infer that $2\widetilde{d} = 2d + w_k$.

Proof of the assertion: By Lemma A,B, we must prove that g has maximal rank at each Q_j , at each R_j and P_h g of and g of or have not the same differential, the Q_j 's have all distinct images.

If P is any of these points, take a nonzero tangent vector $\mathbf{t}_{\mathbf{p}}$ of Y' at P and pick a hyperplane H' in $\mathbf{P}^{2\mathbf{k}}$ not containing $\mathbf{f}(\mathbf{P})$ for any of these points: then on $\mathbf{P}^{2\mathbf{k}}$ -H' choose affine coordinates $(z_1, \dots, z_{2\mathbf{k}})$ such that

$$g = (\varphi_0, \varphi_1) = (z_1, a_0 + \sum_{i=1}^{2k} a_i z_i).$$

You can then identify f(P), $df(t_p)$ to a point and an applied vector at it in this affine space, and if $f(P) = f(\tau P)$, $df(t_p) \neq d(f \cdot \tau)(t_p)$: what we want then is that g must separate a finite number of points (including the vertices of the applied vectors), for which $z_1 \neq 0$, and this can clearly be achieved for general a, 's.

REFERENCES

- [O] P. Griffiths, J. Harris, "Principles of algebraic geometry", Wiley Interscience (1978).
- [1] S.L. Kleiman, "The transversality of a general translate", Comp. Math., 28, Fasc. 3 (1974), pp. 287-297.
- [2] S.L. Kleiman, "Problem 15. Rigorous foundation of Schubert's enumerative calculus", Proce. of Symp. in Pure Math., 28, A.M.S. Providence (1976).
- [3] S.L. Kleiman, "The enumerative theory of singularities", to appear in Proc. Oslo Nordic Summer School (1976).
- [4] J.N. Mather, "Stable map germs and algebraic geometry", Springer Lecture Notes 197 (1971), pp. 176-193.
- [5] F. Severi, "Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni e ai suoi punti triple apparenti", Rend. Circ. Mat. di Palermo, 15, (1901), pp. 33-51; also in Memorie Scelte, I, Zuffi (Bologna) (1950).
- [6] F. Severi, "Sulle intersezioni delle varietá algebriche e sopra i loro caratterie singolaritá proiettive", Mem. Accad. Scienze di Torino, S. II, 52, (1902), pp. 61-118; also in Memorie Scelte, I, Zuffi (1950) (Bologna).

Received: March 1978