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Introduction. 

Recently a result of Kynef (~4]) drew attention on minimal surfaces 

S with K 2 = Pg = 1 : he constructed a quotient of the Fermat sextic in 

~3 by a suitable action of ~/6 ' with these invariants, such that the 

differential of the period mapping (see [7] , ~J ) is not injective at 

it, thus answering negatively a problem posed by Griffiths in [8] . 

One may remark however that the local Torelli theorem (injectivity of 

the infinitesimal period mapping) fails , for curves, exactly when one 

has an hyperelliptic curve ([7J), though the global Torelli theorem holds. 

So one is motivated ~study these surfaces and their period mapping. 

They were first considered by Enriques in 1897, who proved their 

existence in ~ (see also ~6 l pag. 305 ) ; Bombieri (~, pag. 201) proved 

rigorously that for these surfaces the tricanonical map is birational. 

(+) The author was partly supported by a N.A.T.O.-C.N.R. fellowship during 
his stay at Harvard University. 



Here we prove that the bicanonical map ~ = ~2K is a morphism and 

that ++) any such surface is a weighted complete intersection of type (616) 

the weighted projective space ~(1,2,2,3,3) (see [~J , ~5J about in the 

theory of weighted complete intersections). 

We also show that these surfaces have equations in canonical form: 

this is a first step towards an explicit description of their moduli space, 

that we hope to accomplish in the future. Then we describe a geometric 

construction giving all the "special" surfaces,i.e, those for which ~ is 

a Galois covering (and it turns out that the Galois group is ~/2 + ~/2 )" 

Using this explicit description of our surfaces we prove that they are 

all diffeomorphic and simply connected, and that when K is ample the 

Kuranishi family is smooth of dimension 18 (as their local period space): 

our main result is that the differential of the period mapping is inverti- 

ble outside an hypersurface, so that the period mapping is generally finite. 

The 12 dimensional subfamily parametrizing "special" surfaces is strictly 

contained in the subvariety where the rank of the differential drops by 

2 (the maximum possible amount) and we prove, by means of a more general 

result on deformations of cyclic coverings, that the restriction of the 

period mapping to this subfamily is locally I-I : this suggests that the 

period mapping might have no positive dimensional fibres, but we have not 

yet pursued such investigation. 

One last remark is that our results on the failure of the local 

Torelli theorem for ~eighted complete intersections (w.c.i.) show that the 

++) The proof which appears here of this result is due to collaboration 
with Miles Reid. 
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restrictions put by S. Usui in his work ~OJ cannot all be eliminated. 

I would like here to thank P. Griffiths for suggesting this research 

and I. Dolgachev for useful conversations. 

Notations throughout the paper: 

= K 2 S is a minimal smooth surface with pg = 1 
o 

x o~H (S,O(K)) the unique (up to constants) non zero section 

C = div(Xo) the canonical curve 

R the graded ring C EXo,YI,Y2,Z3,Z4] , where deg Xo = 1 , deg Y.i = 2, 

deg Z. = 3 (i = 1,2, j = 3,4) 
i 

W = C EYI,Y2,Z3,Z4] as a graded subring of R 

Rm,W m the graded parts of degree m of R , resp. W 

Q = Q(1,2,2,3,3) = proj (R) 

oo o 
R(S) = ~]. H (S, ~(mK)) the canonical ring of S 

m=o 

hl(S,L) = dim Hi(S,L) if L is a coherent sheaf on S 



§ I . STRUCTURE OF SURFACES S WITH K 2 = P =I . 
g 

I m(m-1) + 2. LEMMA I. Pm=h°(S,~(mK)) = 

Proo£. Pm= ~1 m(m_l)K2+X( ~s) (see [1]  pag. 185, or ~1 ] )  

and by Theorems 11,15 o£ [1] q=O and S has no torsion, so X :  
=2. 

One can choose there£ore yl,Y2, Z3,Z 4 such that 
2 o 3 

x°'Yl 'Y2 are a basis o9 H (S ~(2K)) and Xo xoYl,Xoy 2 5 % 
O 

are a basis o£ H (S,O (3K)). 

Write now C=div(xo)= ~+ Z , where K'F =I, K.Z=O. 

LEMMA 2 .  I£  De ~2K~ and D > ~ , D=2C. 

P r o o f .  W r i t e  D=D'+ P and l e t  D" be t h e  movable  p a r t  

O£ ]D' I : D"-K=I , so by the index theorem either D" is homo- 

logous (hence linearly equivalent, as S has no torsion) to 

K, or D"2< -1, hence in both cases h°(S,(9 (D"))=I. 

COROLLA/~Y 3 .  H ( S , ( 9 ( 4 K ) ) =  xo-H (S,  O(3K))@(C (~ylY2(~ ) .  

Proo£. Because P4=8 it is enough to prove that the two 

vector subspaces have no common line. Supposing the contrary, 
O 

there would exist a section s ~ H (~(3K)), and costants 

k1,~1,k2,~2 such that x o. s= (llY1+~lY2)(k2Y1+~2Y2) . 



Taking the associated divisors C+div(s)=D1+D 2 , where D i 

EI2K I , and one o£ the D~, say D~, is > Q therefore. 

By lemma 2 D 1=2c, hence klY1+~1Y2 =cx° For a suitable c ~ ~, 

2 contradicting the independence o£ xo,yl,y 2. 

THEOREM 1. 12K~ has no base points, so that ~ = ~2K: S )~2 

is a morphism oF degree 4. 

ProoF. I£ b were a base point o£ 12KI, then xo,yl,Y2 %Duld 

vanish at b ; by coroll. 3 b would be a ba~ point o£ ~ aK~, 

contradicting Theorem 2 o£ ~] 

DeFine an homomorphism ~ : R ---~R(S) by sending X o 

to x o ..... Z 4 to z4: by theorem I ~ induces a morphism 

: S --->Q=Q(1,2,2,3,3). 
! 

Remark that Q is smooth outside the two ~1 s 

= Q-$2-$3, on ~ ~ o(m) is an invertible sheaf For every in 

teger m and ~ a,b ~ ~ one has an isomorphism 

Oo(a) ~ OQ(m~ b } %(a+bm) (compare ~5] , exp. pages 

619-624, and also c£. [4] ). 

PROPOSITION 4; [3K~ has no base points and ~ (S) m ~. 

Proo£. I£ ~ (b) ~ $3, then b is a base point o£ 12KI, 

iF ~ (b) e S 2 b is a base point oF 13KI : in view o£ theorem 

1 we need to show that 13K~ has no base points. 

I9 b is a base point o£ 13KI, we have that b~ ~ -Z : in 

Fact I 3KI has no Fixed part, but i£ b ~ E, E irreducible 

with K-E=O, any section o£ ~(3 K) vanishing on b vanishes 



on E too. 

Because o£ the exact sequence 

0--~H°(O(2K- r)) --~H°(O(2K)) -~H°(O(2K)® ~) 
o£ lamina 2, and the £act that ~ 2K=2, a general curve D 

o£ ~2K I passing through b is smooth at b , and one can sup 

pose that the component o£ D to which b belongs is not ra 

tional (S being o£ general type). 

It £ollows by prop. B o£ [2] that b is not a base point o£ 

w D = OD( 3 K): this is a contradiction by the exact sequence 

o o o 

0 ---~H (CO(K)) --9 H (O(3K)) ---) H (eD(3K)) ---) 0 . 

Denote by I the ideal ker ~ : because dim R6=19 , 

P6=dim R(S)6=17, there exist two independent elements £,g~ 16 • 

PROPOSITION 5. £,g are irreducible and ~( (S)=Y= {£=g=Oj. 

Proo£. I£ £ is reducible, by coroll. 3 £---X o'£' , 

£'ERs, and o((S)= {£'=g=O} . Denote nosy by P:O ___>]p2 the 

map given by (X~,Y 1 ,Y2) : clearly ~ = po ~ . Now rational 

one gets a contradiction considering that 

i) p : ~£'=g=O~ __~2 is o£ degree < 2 , because {9'=O} 

is irreducible and the variables Z3,Z 4 appear at most qua- 

dratically in g , and linearly in £'(observe that 

(-X°' YI' Y2'-Z3'-Z4)~(Xo'YI 'Y2'Z3'Z4 ))" 

ii) d is birational because the tricanonical map is such 

([ '1 ..7, pag. 202). 



iii) ~ is of degree four. 

Finally p : {f=g = O} __~2 is of degree four by the same 

argument o9 i), hence Y= ~(S) and is irreducible. 

PROPOSITION 6. The subscheme off'weighted complete interse- 

ction of type (6,6), Y = { £=g=O} is isomorphic to the cano- 

nical model of S. Therefore I is generated by f,g, and 

induces an isomorphism ~ =R'=R/I ) R(S). 

Proof. ~ : S ) Y is a desingularization such that the 

pull back o£ the dualizing sheaf on Y is the canonical bundle 

K o£ S (as ~y~ O0(1) by ~5] , prop. 3.3.): therefore Y 

has only rational double points as singularities and is the c! 

nonical model o£ S (c£. [I 7 , [16j ). 

THEOREM 2. The canonical models o£ minimal surfaces with 

K2=Pg =I correspond to weighted complete intersections Y o9 

type (6,6) in ~(I,2,2,3,3), with at most rational double 

points as singularities, and two surfaces are isomorphic if£ 

their canonical models are projectively equivalent in ~. 

Proof. If Y is as above, ~y(1) is the canonical sheaf 

and by prop. 3.2. of ~5] Oy(1)2=I; again by prop. 3.3 o£ 

[15] R' is isomorphic to H°(Y Oy(m)) so our first asser- 
m ' ' 

tion follows immediately. 

Note that an isomorphism of two surfaces gives isomorphismsof 
o 

the vector spaces H ( ~ (m/C)), so the second statement is 

obvious after we describe the projective gmoup o£ ~ : it con 



sists o£ the invertible transformations of the Following £c~m 

Xo ~ dXo 

2 i=1,2 Yi } diIY1 + di2 Y2 + dioX° 

3 
Z J" C j3  Z^+C.j J4" Z4+C j'oX° + C j l  XoY 1 + C j 2XoY 2 . 

PROPOSITION 6. There existsa projective change of coordina- 

tes such that Y is defined by 2 equations in canonical Form 

2 2 2 
F = Z3+XoZ4(aoXo+alY1+a2Y2) + F3(Xo,Y 1 ,Y2) 

2 2 2 
g = Z 4 + XoZ3(boXo+biYl+b2Y 2) + G3(Xo,Y 1 ,Y2) 

where F3,G 3 are cubic Forms. 

Proof. W~ite f = QI(Z3,Z4)+ ...... (terms of ~eg~1 in the Zj) 

g = Q2(Z3,Z4)+ ..... 

I claim that the quadratic Forms QI' Q2 are not proportional: 

otherwise, by taking a linear combination of the 2 equations 

one would have Q2=O, but then p:y __~2 would have degree 

2 and not 4. 
a 2 

By~Y'transFormation Zj --~ Cj3Z3+Cj4Z 4 one can suppose QI=Z 3 , 

2 
Q2=Z 4 : this is immediate i£ both Q1,Q2 have rank 1, while 

i£, say, Q1 has rank 2, one proceeds as Follows. 

First take coordinates such that QI=Z3-Z4Q ,then.~ subtracting 

to g a multiple o£ £ one can get 2=m3Z +m4Z . 

IF m 3 and m 4 are ~O, one takes First new variables 



~3 Z3 ' ~4Z4' so that for ~/m~m 4' g'QI'Q2 have now the 

2 2 
form Z3Z 4 , Z3+Z 4 : then one takes variables Z~,Z 4 with 

' , ' ' -'2 _'2 '2+Z42 ) Z3=Z3-Z4, Z4=Z3÷Z 4 so Q1 = ~3-~4 , Q2=2(Z3 , and 

nally 2Q1 +Q? Q2-2Q1 4 ' 4 are in the desired £orm. 

2 
I£, say m 4 is zero, one can suppose Q2=Z3 : but we have a 

contradiction because then the point (0,0,0,0,1) satis£ies 

£=g=0, against the £act that yc ]p . 
- ~ 2 t t . 

Finally, i9 now £=Z +XoZ3(aoXo+aiY1+a2Y2)+ .... one kills the 

a[ by completing the square, i.e. by taking 
J 

I. , ,.2 ,. , 
Z3+ ~Ao~aoxo+alz1+a2Y2) as new Z 3 coordinate, and analogo_u 

sly one then does £or g acting on the Z 4 variable. 

REMARK 7. I£ Y and Y' are de£ined by two canonical forms, 

they are isomorphic i9£ the canonical equations are equivalent 

under the projective subgroup 

d dl 0 d20 0 0 

0 dl I d21 0 0 

0 dl 2 d22 0 0 

0 0 0 C33 0 

0 0 0 0 C44 
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§ 2. A GEOMETRIC CONSTRUCTION OF THE "SPECIAL" SURFACES ( A 

GALOIS COVERING). 

Consider ]p2 with coordinates (Yo,Y1 'Y2 ) ' denote by 

the line {Yo=O} and choose a reducible sextic curve F+G. 

In O~2(3) take the double covering X o£ ~2 branched 

along F+G, and let F+G have neither multiple components 

nor singular points o£ multiplicity > 4, or of type (3,3): 

then (see e.g. [10] , peg. 47-50) X has only rational do_u 

ble points as singularities, and its minimal resolution 

is a K 3 surface (in Fact if p:~--~ IP 2 is the double co- 

ver, K~ : p*(%2 (3)+%2):0)" 

Suppose deg F = deg G = 3 and denote by L=p*(e), by 

E 1 ..... Ep the rational curves with self-intersection -2 co 

ming From the resolution, by F',G' the strict transforms 

of F, G. integers 
One has p*(~ 2(3)) ~ 2F'+~riE i (For some positive ri)=- 

--- 2G'+~siE i. If we set ~'= p*((9 2(2))e~(-F'-Z [~J Ei) , 
Z D X 

and Jc{1 .... p} is the subset o£ indexes J For which rj 

is odd, one can easily check that L+ Z Ej--2~ ; therefore 

one takes a double cover ~ o£ ~ in ~ , ramified over 

L+ ZEj. 
The E.'s become exceptional o£ the First kind in ~, and J 
after blowing them down I get a surface S >~p2 for 

which ~*( %2(I ))-=2Ks; clearly then K2=1 , and pg=l be- 
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c ause 
0 0 0 

H (S',K)~ H (~, ~(~) + H (X, (9) • 
S X 

REMARK 8. I£ one chooses F o£ degree 5, G o£ degree I, 
O 

H (X,~) becomes 1-dimensional, so that one gets thus a sur 

£ace S with K2=1 , pg=2. 

DEFINITION 9. A surface S is called "special" i£ it is 

obtained in the above described way. 

PROPOSITION I0. ~ A special S is simply connected and is a 

Galois covering o£ ~2 with group ~2 + ~ . The canonical 

model o£ S in ~(1,2,2,3,3) has equations 

2 F(X y I 
Z3 = 'Y2 ) F,G being the equations 

Z42 = G(X[,y I ,y2) o£ the 2 cubics. 

Proo£. For any S denote by R the rami£ication divi- 

sor o£ ~ , and by B= ~ (R). ~I (S) is a quotient o£ 

K 1 (S-R), a subg-~oup o£ index 4 in ~I ~p2-B)" 

I£ S is special B= £ +F+G; i£ then F,G are smooth, the 

mutual intersections o£ e ,F,G are transversal ~ n I ~p2-B) is 

abelian ([21 ]) . 

But S has no torsion, q=O ([17 theorems 11 and 15), so 

(y )3 ~ as a £ibre coordinate ~1(S)=0. Take now ~i = J/Yi J 

in 2(3) (X is de£ined by ~ i = F'G'y?6)I , and 

2 ~j3 ~ as a £ibre coordinate in ~ where i (Y /Yi) 9i3 J 
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~i3 is a local coordinate £or F', gi4 For G'. (So that 

i =  i3" i4 )" 

I£ X o is the section corresponding to (~i), Z h to (~ih), 

a£ter easy manipulations one obtains the desired equations. 

THEOREM 3. The special sur£aces are exactly those £or which 

is a Galois covering, and they £orm a 12-dimensional f~ 

mily. 

Proo£. I£ ~ : S ___>~2 is Galois, let G be the Galois 

group (a priori it can be ~/4 or ~/2 + ~/2' but our 

proo£ will imply that the £irst case does not occur). Consi- 

der that i£ C= ~ + Z is, as usual, the canonical curve, 

makes P a double cover 09 a line; hence the image o£ G in 

AU t(~) has order two, so exists an involution o ~ G (i.e. 
t 

o2=Identity) leaving Q poin~vise £ixed, and o is biregu- 

lar, S being o£ general type. 

We will £irst give a proo£ in the case when K is ample 

(so F =C). The proo£ o£ the £ollowing lemma is elementary 

and well known. 

LEMMA 11. Let V be an n-dimensional mani£old, ~ a bire- 

gular involution, F the set o£ £ixed points o£ ~. 

n-1 
Then F = U F r' where each F r is a closed submani£old 

r=o 

(possibly empty or disconnected) o£ dimension r, and i9 

P e F r one can choose local coordinates (z I .... Zr,Zr+ I ..... z n) 

such that o(z I .... z n) = (z I .... z r, -zr+ 1 .... -z n). 
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In case K is ample CcFI, but we have equality because i£ 

DcFI, C.D [ I, contradicting the smoothness o£ F 1 . 

There£ore S/~ = X is a, possibly singular, K3 sur£ace and 
p 

:S ---k~ 2 £actor$ as S ~ X ~2. Because therami£ica- 

tion divisor R o£ ~ is ~ 7K, by Porteous'£ormula or an 

explicit computation that we will see in prop. 12, X is a 

double cover o£ ~2 rami£ied over a sextic curve B': now 

in ~ the divisor ~(C)+ ~ Ej , the E 'sj being the rational 

(-2) curves coming £rom the resolution o£ the isolated £ixed 

points o£ ~ , is divisible by 2 in Pic(~) i££ B' is re 

ducible in components o£ odd degree, and by remark 8 one con 

cludes that B' consists o£ two cubics. 

When K is not ample this proo£ becomes more cumbersome, so 

we use a di££erent idea in the general case, using the repre 

sentation o£ d on the vector spaces H°(O(mK)), hence on 

m(1 ,2,2,3,3). 
O 

Clearly d(Xo)=±xo, ~ is the identity on H (O (2K)), and 

one can choose z3,z 4 so that they are eigenvectors £or ~: 

there£ore one can assume that d acts on ~ by one o£ the 

two tras£ormations (Xo,YI,Y2,Z3,Z4) --) (-Xo,YI,Y2,Z3,Z 4) or 

(-X° 'YI 'Y2'-Z3'Z4) " 

In the second case the £ixed locus o£ ~ on S is contai- 

ned in {xo=z3=O}O~xo=z4=Ol, i.e. a £inite set o£ points 

([3K~ has no base points): but the whole curve ~ is poin~ 

wise £ixed, so this case cannot occur. 

I6cR 6 being d invariant, one can assume that £,g are 

eigenvectors £or g themselves: but the monomials in R 6 
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are eigenvectors o£ eigenvalue (-I) i£ X o appears with 

an odd power, and (+I) iF X o appears with even power. 

£,g not being divisible by Xo, the corresponding eigenva- 

lues are both +I, and £,g are sum o£ monomials where X o 

appears only with even power: proceeding as in proposition 6 

one can £ind coordinates where £,g have the £orm 

1~ 2 ,r2)=O Z32- F3(X°'YI The last statement £ollows 

PROPOSITION 12. I£ B is the branch locus oF ~ : S --91 °2, 

and the canonical model oF S has equations as in prop. 6 

2 2 2 
F=Z3+X°Z4 ~ I (X°'YI 'Y2)+F3 (X° 'YI 'Y2) Ic(1 ,~i being) 

2 2 
2 ~1 (X°'YI 'Y2)+G3(X°'YI 'Y2 ) \linear £orms / g=Z 4 +X o Z 3 

2 2 2 ~o- 4 4 4 the equation o£ B is Yo(F G + 4 2 Yo G3+F3~ -- 2~6~I ~I "Y°+ 

9 2~2 + ~ Yo ~2FG) . I£ S is not special ~I ~p2-B) is not abe 

lien. 

Proo£. We £irst w~ite the equation o£ R , given by the 
, X 2 vanishing o£ the jacobian o£ £ g, Yo = o,YIY2, easily comp_u 

ted to be 2XoI ~F . ~g ~F @@ )= 2Xo(4Z3.Z4_X2OL 1 91). 
Z 3 ~ Z 4 ~ Z 4 a Z 3 

It is clear that ~w(Xo=O) gives twice the line Yo=O, while, 

to compute the branch locus when Yo~O we proceed as Follows: 

g~ven X°'Y1 'Y2 i F and g can be considered as two conic 
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equations in the plane o£it~rsectCOordinates (Z3,Z4) and one 

must write when two conicslin less than 4 points. 

Now the pencil of conics hf+Ng has j 3 base points if£ 

there are not 3 distinct degenerate conics in the pencil, i.e. 

when the discriminant o£ the cubic e uation in (l,~), given by 

X 0 

0 

~1 Xq XXo~ 1 ,,, 
2 2 

det 

Xo51/2 

I Xodl/2 = O 

XF+~G 

vanishes: using the 

morphism o9 S). 

One can indeed check that the general 

the line Yo=O. 

B has 6 tacnodes on 

PROPOSITION 13. All the minimal surfaces with K2=pg=l are 

diffeomorphic. In particular they are all simply connected. 

Proof. By proposition 6 there exists a family with con- 

nected smooth base containing all the canonical models. By 

the results o9 [i8J follows that all the nonsingular models 

are deformation o£ each other, hence they are all dif£eomor- 

expression for the discriminant o£ a cubic equation one ob- 

tains the above written equation for B. 

For the second statement, consider that the group o£ covering 

transformations of ~ : S-R ---2~2-B is given by N/~ (S-R)' 
2 I 

where N is the normalizer of KI(S-R) ~ > K10P -B), so that 

if ~I(S-B) is abelian ~ is a Galois covering (because a 

covering transformation can be extended to a biregular auto- 
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phic. 

We have already proven in prop. 10 that a 

S is simply connected. 

general special 

REMARK 14. One can easily compute that the sur£ace constr~ 

cted by Kyne£ in ~4J is a "special" sur£ace corresponding 
3 3 3 

to the £ollowing choice o£ the two cubics: F=2YI-(Y2-Y o) @ 

G 3 3 3 
=2YI+(Y2-Yo) 

F and G have double contact on 3 points lying in the line 

Y1=O, and these contribute 3 points o£ type A 5 on the sin 

gular K3 sur£ace X, 3 points o£ type A 2 on the canoni- 

cal model o£ S , which however are disjoint £rom the canon~ 

cal curve. The (-2) rational curves, the smooth curve C, the 

two elliptic curves with sel£-intersection -I, each covering 

twice via ~ the line YI=O, £orm an interesting con£igur! 

tion on the sur£ace S . 

REMARK 15. I£ S is special, the Galois ~roup being 

/2 + ~/2' it is easy to see that there are two more geo- 

metric constructions £or S: take the double cover o£ ~2 

branched on e + F , then the double cover branched on the i~ 

verse image o£ G plus some rational (-2) curves (and the 

same with G in the place o£ F). 
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§ 3. THE INFINITESIMAL PERIOD MAPPING. 

Consider the Kuranishi £amily o£ de£ormations o£ S: 

its tangent space at the point representing S is naturally 

identified with HI(S,Ts), T s denoting the tangent shea£ o£ 

S. By [7 3 the dif£erential o£ the period mapping 

g:H I(S,TS) --9 Hom(HO(Q~), H I(Q~)) is obtained via the bill- 

near mapping H I(S,TS)xHO(Q~) > H I(T S ~ Q~), and the natu- 

ral isomorphism Q~ T S ~ Q~ . 

The injectivity o£ ~("Local To~elli" problem) assumes an 

easy £orm when p =1: it means that i£ x o is the usual non 
o )mult by xo > HI(Q~) zero section o£ H°(Q~) = H (Os(K)), HI(T S -- 

multiplication by x o is injective. 
0 

S being o£ general type H (Ts)=O, the morphism ~ £its into 

the exact sequence o£ cohomology 

o Q I o(Q~ ~OC)--9 HI(Ts ) ~ >HI(Q~) ' H S) )H 

and here g is injective i££ h (Q ~c)=O- 

In the rest o£ the paragraph we will assume that the canoni- 

cal model o£ S is smooth, hence isomorphic to S . 

PROPOSITION 16. I£ S is special ker N is 2 dimensional. 

Proo£. There is an involution ~ on S leaving C 
1 pointwise fixed and C is smooth, so QS ~C splits into 

the (+1) and (-1) eigenspaces £or G; then Q~ ~(�C~Oc(-C)~ C, 
o 1 o 

and C being o£ genus 2 h (Qs ~ (9 c)=h (~C)=2. 
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THEOREM 4. Suppose S is a smooth w.c.i, of type (6,6) 

in ~, with canonical equations (where Yo=X~): 

£:Z3+XoZ4(i~=oaiY i) + ~ fijkYiYjYk =0 
= Ojij j ~ k 

2 

O<i< j<k  zJ z J 

Then the Kuranishi Family of S is smooth of dimension 18. 

Moreover there exists a non zero polynomial 

A (a1,a2,b1,b2,f111,£112,f122,f222 , g111,g112,g122,g222 ) 

such that ~ is injective i££ ~ ~ 0 for S . 

ProoF. One has the Following exact sequences, where 

is the tangent sheaf to ~ , eo=1 ,el= e2=2, e3=e4=3 

the weights of ]P: 

4 
i) 0 --)% ----2~) ~s(ei) ~-~ ®~ 0 

i=o 

are 

ii) 0 ~ T s - - ~ . ~ ®  s 4>bs(6) eOS (6) ~ 0  

Here ~S(6) ~)~S(6) is the normal bundle to 

is given by the transpose of (Xo,2Y 1,2Y2,3Z 3, 

= fo ~ +...f 4 ~Z 4 

We know from [15] prop. 23 that h I (S, ~s(n))=O ~ n, and 

H°(S, Os(n))=Rn , where R'--R/I (I the ideal of S). 

ThereFore From the exact sequence of cohomology of i) we infer 

S in ~ , o¢ 

3Z4), ~ (t(Fo,.-F4))= 
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4 
that HI(S,~Os)=O, p~ovided H2(~9S) 7 ~9 Hi(~2s(ei)) 

i=O 
is injective: this is equivalent to the surjectivity o£ the 

4 o to( 2H°( C9 S )) This dual mapping i~__ 0 H (OS(1-ei)) (I . last 

, mult by x o . 
can be written as R o > R 1 , hence ~ is an isomor 

I 

phism (R'--~, RI--~Xo): thus we also obtain that 

H2(S,~ @ ~9S)=0 , which, together with the exact cohomology 

sequence o£ ii), and the above cited vanishing o£ HI(S,~s(6)), 

gives H2(S,Ts)=O. 

So the Kuranishi £amily o£ S is smooth o£ dim=h1(S,Ts)= 

= - - < t h i s  £ o r m u  

la, where C2= the Euler number o£ S , is obtained apply- 

ing Hirzebruch's Riemann-Roch theorem to T s) . 
4 ~ o 

As HI((9S)=0 ~) R' 2H (~(9 s) --90 is exact, as 
i=O ei 

wel l  aS H°(~OS ) -=-~R6 ~ R 6 >HI(Ts ) --~0: it 

is important to notice that 6 o ~ is given by the matrix 

I@° £ "''''''''" ~4£ [ where ~o£ 
~£ 

=~X ° , ...... 
~ . . . . / @  o g • • @4 g 

We can tensor the two above sequences by (~S(1), and multipli 

cation by X o gives a morphism o£ the £ormer to the latter: 

4 R' I5 > H ° ( ~  again ~ e.+l ~ 0S(I ) ) --~0 is exact (because 
i=O : 

HI((9S(1))=0) while H2((0S(I)) is l-dimensional, 
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H2(6s(ei+1))=0, being dual to H°(~s(-ei)), hence 

hl(~ x ~S(1))=1, and one has the £ollowing commutative 

diagram, which is exact in the rows, and where the vertical 

arrows are given by multiplication by X o 

4 , £o~ , , 
(9 R e. ?R 6 (9 R 6 
i=O 1 

> H 1 ( T S ) 

t 

~ H 1 (Ts@O (1)) 

~0 

\ 
2 H1 (T./p ~) (.9S (I) )---~ O 

remark that h1(Q~)=19,1 so Im(~') has dimension 18: We as 

~(HI(Ts))CIm(@'), ~ is injective i££ it is surjective on 

Im(~'). 
! t ! 

This last condition means that R~ I~ R7=(XoR 6 t~ XoR 6 ) +  
4 

t t 

+~o~ (~) R e .+1 )" NOW R m = RJi , and Im=O for m < 5, 
i=O l m 

I7--CXo£+CXog , and we observe that we have the splitting 

Rm=~m+XoRm_ 1 • 

Given an element ~ e R, one can use the splitting R=W ~ XoR 

to write ~ = %+X o oL R in an unique way, and the same can 
4 

be done £or the matrix o£ ~o ~ : ~Rei+l ) R 7 ~) R 7. 
i=O 

, 4 , 

R 7' ~)R 7 = (XoR6' ~) XoR~)+~v o j~ (~)Rei+l) is equivalent to 
i=0 

4 
I£ 7 ~) R 7 = (XoR 6 + XoR6) + (~o~)w(i~__ 0".: Wei+l 1<-< ,~ (go~)w : 

4 
: i?0We= i+ 1 > W 7 • W 7 is an isomorphism. 
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NOW we can write the matrix associated to ( ~ o ~ )w: it is 

I Z4(aIYI+a2Y2), 3£111Y21+2£112YIY2+£122Y~ , 

2 2 
Z3(blYI+b2Y2), 39111YI + 29112YIY2+g 122Y2 , 

g~Y~+2g~1¥~+~g2~2¥~ o ~4 J 
To simpli£y the computations, observe that W7=Z3W 4 ~) Z4W 4 , 

4 
and one can ~n~ite (W 2 ~) W 3 ~) W3) ~) (W 4 ~) W4) = i?oWei+1= , 

W 7 O W 7 = (Z4W 4 ~) Z3W 4) (~ (Z3W 4 ~) Z4W4): ($o ~)w is also a 

direct sum map, and its second summand,being given by (; o) 
2Z4 Z4W 4 ) is obvious isomorphism. (w 4 • w 4) ~ z3w 4 • an 

So we conclude that (S o ~ )w is an isomorphism i~ the £irst 

summand is such: to see this last map we pick bases o£ these 

2 ~-dimensional vector spaces over ~, and write the associ_a 

ted matrix A. 

We choose £or (W 2 ~ W 3 @ W3) the ordered basis 

Ii f°,l , z,w,  , and £or • the or- 
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dered basis 

I I°)I ° ~z3 ~z3 I11 
o) 
Y2 Z3 

a I 
then A is the 

matrix (where an 

empty array means a2 

that the correspon_ b I 

ding entry is zero) 

b 2 

a 2 

a I 

b 2 

£1 22 

2£11 2 

39111 

9"1 22 

g112 

39222 

£112 

3F222 

2£122 

Call ~ the determinant o£ A: then ~ is injective ifF 

(a I .... g222)~O For S, and it remains only to show 

that ~ is not identically zero. But the monomial 

a2619111£22291119222appears in ~ with coefficient-36. 

COROLLARY 1 7. The subfamily o£ special surfaces is contai- 

ned in a 14 dimensional Family where Ker ~ is 2 dimensio- 

nal. 

Proof. It is evident that the rank o9 ~ drops by 2 

iF£ the rank o9 A drops by 2: but 2 columns of A vanish 

in the 3 Following cases: 
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t ' a  = a 2 = b I = b 2 = 0 

9"111 9"112 = g122 = g222 = 0 

£111 £112 = £1 22 = £222 = 0 

We have only to recall to our mind that S 

ao=a I =a2=bo=b I =b2=O. 

is special i99 

REMARK 18. When the w.c.i. Y has rational double points, 

one considers as usual Ty = Hom(~, Oy), and by ~] prop. 

I .2. one has, i£ S ~ >Y is the desingularization, 

~.(Ts)=T Y, h2(Ts)=h2(Ty). 

The analogous o£ the exact sequence ii) is now 

Ny M 

where M is supported only at the singular points. 

I£ N~=ker ~ , we have 2 short exact sequences 

0 >Ty ---9~ @0y >N~ #0 

o 

As in the proo£ o£ theorem 4 hi(~ @~y)=O £or i=1,2 , 

! 

hence H2(Ty)--~H I (Ny), and (as H I (Ny)=O), one has 

o r o , 

H (Ny) >H (M) >H l(NY) ---~ 0 . 

So the Kuranishi £amily o£ S is obstructed i££ r is not 

sumjective: we have however not yet £ound Y's £or which r 

is not onto. 
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§ 4. THE RESTRICTION OF THE LOCAL PERIOD MAPPING TO SPECIAL SURFACES. 

We begin by £ixin G a rather general situation: X a 

smooth compact manifold o£ dimension k , L a line bundle on 

X p:L ---~X the projection map, s,~ two independent sections 

in H°(X,L@n), S t the n th cyclic covering o£ X in L 

branched over Dt= div(s+t~), which we assume smooth £or itl< £. 

Let moreover M be another line bundle on X,m a non zero se 
o 

ction o£ H (S,p M) (where S=So),I~Stl H I ' k~--~-It=O = @ e (S,Ts) the 

in£initesimal de£ormation o£ S (see e.g. ~ 2] pag. 36 and 

£ollowing ). 

THEOREM 5 @.m ~ H I • (T s ~ M) is non zero iF T x does not 

split on D=D ° as T D • N D. 

Proo£. Take an acyclic covering IVo~ ,VI~, V2~ A o£ 

X satisfying the £ollowing properties (here we consider the 

Haussdor££ topology o£ X) 

i) v2~nVo :~ ~ 

ii) X - ~UA{V15 ' V2~I= F is a closed neighbourhood o£ D 

iii) DnVo" X~ Vo~V1~ I 

iv) v o,~qv o~nD ~<-~ v l~nv 1~% 

V) {Vo~ U V 1 V 2 }~ is a trivializing cover £or 
' =4 ~A 

L,M,T X • 
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This can be achieved by taking a Stein covering (V'=) o£ D, 

trivializing L , local coordinates (z~ .... z k-1 ,s~ ) near 

the points of V~ , and choosing conveniently $i < D~< ~2= so 

that Vo4 =~ (z4,s4)zi~V' ~ , ,s~,< D~, V1~ =~(z~,s~ )z~eV~ 

21, < Is~l< ~2~ I satisfy iii), iv). 

On L iVo~ u V1 < S t is defined by y~ (t)n= s~ +t~ . 

If U i ~ p-1 = (Vi~ (), on Uo~ take as local coordinates 

(z I ..... z~ 1 , y~ (t)) , on UI~ (z I ,.. .,y~ (0)) (because we 

assume ~ so small that For ~t I < ~ D t is contained in the inte 

rior o£ F), on U24 the lifting o£ any coordinates on X. 

Observe that the coordinate changes which depend on t are 

consequences of the coordinate change from Uo~ to UI~ : we get 

~I~ I ~ that ,o~ = - n y~-1 @ y~ 

Now ( Ui~ ) is an acyclic covering, so if @ .m were a cobound_a 

r.y. there would exist vector fields Di~ such that 
~ ~ m~ 

, ( j = 0 , 1 ) .  "Ooa , -  -nl, * = m,~ n-1 @ Y~. "nj~ = m'--~ "qjp 

These equations, plus condition iv) imply that 

n-1 ~---~ = n-----~ @y~ : being (y~)=s~ ,~y~- ny~ ~s~ ,then 
Y~ Y@ 
°a ~ 

This equality says that T x in a neighbourhood of D has a 

1-dimensional subbundle, isomorphic to 6 (D), giving on D a 

direct summand for T D. 
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We can apply this criterion to obtain the £ollowing : 

THEOREM 6. I£ S is a general "special" sur2ace, in the Kuranishi 

£amily 02 S the special sur£aces form a submani2old P and the 

restriction o2 the local period mapping to P is an embedding . 

Proo£. Here we will adopt the notations o£ @ 2, expecially 

p~op. I0 . ~ is a double cover o£ the smooth K3 sur£ace ~ , 

branched on the smooth curve L + X E . 
O 

As the holomorphic 2-£orm on ~ is the pull back o£ the 2-£orm 

on ~ , and the 2-dimensional homology o£ ~ is the direct sum 

o£ the (+1) and (-I) eigenspaces £or the involution, by the 

local Torelli theorem £or K3 surfaces ( [I 9J peg. 202 and £o11. I 

we can only limit ourselves to consider in£initesimal de£ormations 

arising £rom moving L in ]p~( ~2 (I)) I ' and apply theorem 5 

with m = x O £ H°( (9 S (K)) : we have then only to prove that 

on L the exact sequence 
1 

0 - - 9  OL(-L) } QX ® OL ~ (gL(L) ~ 0 

does not split, or that the extension class in H 1((gL(-2L)) is 

not zero . 

To this purpose we 2irst choose the £ollowing covering o2 L : 

V I = {YIFG ~ 0 i ' V 2 = ~ Y2 FG ~ 0 I , V 3 a neighbourhood 

o2 the six points o£ L where FG = O . 

= , x' = Y2 /YI Denote by x Y1/ Y2 , and write F = 

= F' (Y1 'Y2 ) + Yo F" , G = G'(YI 'Y2 ) +Yo G" ; F , G being general 

I 
one may take as a basis o2 QX on V I d ( Yo/ YI ) ' dx' , on V 2 

d ( YO/ Y2 ) ' dx , on V 3 d ( Y o /  Y1 ) ' d ~1 " 
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One easily computes the extension class : ~12 = 0 , ~13 = 

F'G" + F"G' 
= 5 ( T23 is deduced by the cocycle condition ) . 

2 ~1Y I  

By Serre duality we can interpret ( ~ij ) as an element in the 

dual o£ H°( ~L(2L)) : to prove that it is non zero we check 

H ° its value on the form dx G ( eL(2L)) . 

We associate a repartition to ( Tij ) by setting ~I = ~13 ' 

~3 = 0 , T2 = ~13 , and taking in V i the repartition 

corresponding to ~ . 
1 

Then <(Tij) , dx ~ = ~ RaSp ( dx F'G" +F"G' ). 
5 1 PGV1 uV2 91 2 ~1 YI 

NOW on V 2 dx is holomorphic , and 

= G"YI + F"YI is holomorphic t~o~. Y15 
G' F' 

V I dx ( G"Y1 + F"Y1 ) = - dx' ( On 
G' F' x,~ 

F'G" + F"G' 

G"F' + F"G' 
5 

YI 

F'G' 
6 

Y1 

so that the sum o9 the residues is non zero i££ 

G"F' + F"G' has a non zero term o£ order I in x' and 
5 Y1 

this is clearly achieved For F,G general . 
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In fact in prop. 5 is proven that 
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