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Introduction 

It is well known that  if C is a smooth  curve of genus g > 3 ,  and (b K is the 
canonical  m a p  of  C, two possibilities occur:  either 

i) q~  is an embedding  in IP g- 1 or 

ii) q~K is of degree 2 and q~K(C) is a ra t ional  normal  curve in IP ~- 1 

Suppose now S is a surface with p~(S)>3, and that  (O K is a rat ional  m a p  of 
degree 2 onto a surface F:  in [-2] Babbage  asserted, in analogy with ii), that  
under these assumpt ions  pg(F) = O. 

It was later realized that  his a rgument  contained a gap, and that  under  these 
hypotheses  one could predict  one of the following two different behaviours  (see 
[26] for a discussion of  this): 

a) p g ( F ) = 0  

b) F is canonical ly embedded.  

It was however  dubious  whether  an example  of case b) would actually occur. 
The first mot iva t ion  for this research was to find an example  for case b), and 

D. M u m f o r d  suggested to look at quintic surfaces admit t ing a double cover  
ramified only on the singular points, hence everywhere tangent  to some surface 
of even degree, and  D. Gal lara t i  pointed  out his construct ion of quint ic  surfaces 
with 20 nodes and  tangent  to quar t ic  surfaces with 10 nodes ([13]). 

We then proved  that  these quintics were canonical  images of  some surfaces S 
with K 2 = 1 0 ,  q = 0 ,  pg--4,  which formed a 20-dimensional  subvar ie ty  in their 
local modul i  space (of d imension  30). 

Soon after this, a pape r  [34] by Van der Geer  and Zagier  appeared  in which 
it was shown that  the min imal  model  S of a Hi lber t  modu la r  surface for the field 

Q ( ] f ~ )  is such that  K 2 =10,  p~(S)=4, and ~bK(S)=F is a quintic surface with 20 
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The author is a member of G.N.S.A.G.A. of C.N.R. 
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nodes: later we heard from Mumford that A. Beauville had independently 
discovered the Gallarati  quintics as the locus of singular quadrics in a generic 
web (a 3-dim. linear system) of quadrics in 1p4.1 

In [13], Gallarati  studies the situation of contact of surfaces in IP 3, and 
constructs his quintics by an inductive procedure: he starts from a quadric cone 
tangent to a cubic with 4 nodes, constructs a quartic with 10 nodes tangent to 
the cubic, and then a quintic tangent to the quartic: in this paper we show that 
contact is the geometrical counterpart  of algebraic identities between products 
of determinants of minors of symmetric matrices, and that Gallarati 's  con- 
struction can be easily understood and generalized by taking determinants of 
symmetric matrices with homogeneous forms as entries (this also generalizes 
other known constructions, as in [31]). 

As shown in [13], [14], contact between surfaces F, G, imposes some singulari- 
ties of the two surfaces along the curve of contact, but a subset of these singular 
points is "even". 

To explain what this means, we concentrate on the simplest case, when the 
singularities of F along the curve of contact are at most nodes (ordinary 
quadratic singularities): if ff is the blow-up of F at these nodes and N is the set 
of nodes where G has odd multiplicity, then the sum of the exceptional curves 
corresponding to the nodes in N gives a divisor which is either divisible by 2 in 
Pic(F) or divisible by 2 after adding the pull back on t e of the hyperplane section 
o fF .  

In the former case we shall say that the set N is "strictly even", in the latter 
that it is "weakly even". 

Conversely, if N is an even set of nodes on F, there exists a surface G which 
is everywhere tangent to F and has the property that N is precisely the set of 
nodes of F through which G passes with odd multiplicity. The order of N is 
defined to be the minimal degree of a surface G satisfying this property. 

We define a surface F to be a "symmetr ic  surface" if its equation can be 
written as the determinant of a symmetric matrix of homogeneous forms (we 
exclude of course the matrices of order one). A general symmetric surface has, as 
its only singularities, nodes whose equation is given by the vanishing of the 
determinants of the minors of order one less than the order of the matrix. 
Moreover, they form an even set and their number  depends only on the degrees 
of the homogeneous forms which are the entries of the matrix. If these forms are 
linear, and F has degree n, we define F to be a linearly symmetric surface of 
degree n: these surfaces can be characterized as the surfaces of degree n having 

an even set N of ( n31 )  nodes and with order (n-1). 

We then want to give, in general, a characterization of the even sets of nodes 
N which arise, as explained above, from symmetric matrices (for the sake of 
simplicity we shall call them "symmetr ic"  sets of nodes). To do this, we remark 
that the existence of a strictly even set N of nodes allows one to construct a 
double cover S of F which is a finite cover ramified only at the nodes of N (when 
N is weakly even one must take the cover S to be ramified also at a plane 
section o,f F). 

l This and some other results similar to ours are to be found in [4] 
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Let R be the full ring of sections on S of multiples of the pull-back on S of 
the hyperplane bundle. Then R splits naturally into an invariant part  (which is 
nothing else but the coordinate ring of F) plus an antiinvariant part  R - .  

R -  is completely determined by N and if one views it as a module over the 
ring of homogeneous polynomials in 4 variables, gives the following infor- 
mation: N is symmetric if and only if R is a Cohen-Macaulay module. In down 
to earth language, the sought for matrix is the one given by a minimal free 
resolution of R - :  in this way one also has a complete description of the ring R. 
The condition that R be Cohen-Macaulay is equivalent to the vanishing of 
certain first cohomology groups. These conditions are of a topological nature for 
n smaller than 5 (they just mean that S has to be a regular surface) and in this 
way we can see that, up to quintics, all even sets of nodes are symmetric, 
whith the exception of the set of 16 nodes on a quartic Kummer  surface. This 
however is the union of two symmetric sets (in several ways): in this way we 
rediscover Gallarati 's classification of contact in degree smaller than 5 ([13]). 

We then show how the case of surfaces differs substantially from the case of 
curves in the plane, where all the situations of contact are given by symmetric 
matrices of homogeneous forms: in particular we extend to all thetacharacteris- 
tics the connection with symmetric determinants, known classically for the case 
of ineffective thetacharacteristics (F10]). 

An extension of these results to higher dimension and further applications to 
the case of curves will appear in future papers. A first application of our 
analysis concerns the reducibility of the family of surfaces of a fixed degree with 
a given number of nodes, in particular of quintics with 20 nodes. 

Then we focus our attention on the linearly symmetric quintics and their 
double covers S: we prove the above quoted results regarding Babbage's 
conjecture, rephrase our preceding results in terms of generators and relations 
for the canonical ring of S, show that these surfaces are simply connected. Then, 
by taking the 4-dimensional subfamily of quintics admitting a free action of 
7//57/we construct numerical Campedelli surfaces X (i.e. surfaces with K 2 =2 ,  q 
=pg=0)  which have 2g/5Z as fundamental group: they again form a proper 
subvariety in their local moduli space. 

As mentioned at the beginning, one of our purposes was to show that, as a 
particular case of Beauville's and our equivalent constructions, one obtains the 
surface exhibited by Van der Geer  and Zagier. This is done by showing that the 
20 nodes of the canonical image of this surface (a quintic) form an even set of 
order 4. 

Actually we can do more: it is well known that there is an action of the 
symmetric group 6 5 on the Van der Geer-Zagier surface, so R + and R- ,  and 
their graded pieces, are representations of ~.~. By using the explicit description 
by Young diagrams of the irreducible representations of 6 5 , we determine 
which representations occur in the canonical ring, compute the numerical 
coefficients for the relations of R, and thus for the symmetric matrix of which 
�9 K(S) is the determinant. This on one side gives new identities for the symmetric 
functions, on the other can be used to describe the ring of modular  forms for the 

modular  group of Q ( ] / ~ ) .  
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Conventions 

Throughout the paper we will be working over the ground field • of the 
complex numbers, though many of our results are valid over any algebraically 
closed field K. 

For  any scheme F,  P i c ( F ) = H ~ ( F ,  (9*) is the group of Cartier divisors/linear 
equivalence (see [25, 17], for details on this and the subsequent points). If F is a 
divisor in a smooth 3-fold, the dualizing sheaf co v is invertible: when consisider- 
ing it as the class of a Cartier divisor, we will use the symbol K v, and call it the 
canonical divisor class. 

Let  s be a section of a line bundle L: we shall denote by div(s) the Weil 
divisor of the zeros of s. 

The symbol - will denote linear equivalence of (Cartier) divisors and also, 
when used with numbers, congruence modulo some integer. 

The abbreviation R.R. will stand for the Riemann-Roch theorem, expressing 
the Euler-Poincar6 characteristic z ( X , L )  of a coherent sheaf L on a smooth 
variety X ([-17]). 

w 1. Identities for the Products of Minors 
of a Symmetric Matrix and Contact of Hypersurfaces 

Let A =(a/)  ( i , j =  1 . . . .  , m +  1) be a square (m+ 1) matrix. 
We denote by A ( i  k . . . . .  i11jl . . . . .  Jk) ( l  <ih  < = m + l ,  l < . j t < m + l )  the deter- 

minant of the (kxk)  matrix (bh3 (h, /=  l, ..., k) such that bh~=ai,,j  ,. The 
A( i  k . . . . .  il[j 1 . . . . .  jk)'S can be viewed as the Pliicker coordinates of the rect- 
angular ( m + l ) x ( 2 m + 2 )  matrix C=(AIm+ 0' where 1,,+1 is the identity (m 
+ 1) x (m + 1) matrix, and the quadratic relations between these coordinates give 
some identities which can be obtained in a systematic way by the "straightening 
formula" of Doubillet-Rota-Stein ([12], cf. also [8] for the interpretation via 
Plticker coordinates). 

In particular, for n < m one has the basic identity (+ , ) :  

(+0) A( i  . . . . . .  i~[.jt . . . . .  j o ) . A ( i , + x , i , _  1 . . . . .  i~[j~ . . . . . .  ] n - l , J n + l )  

- A ( i  . . . . . .  i~ [ J l , ' " , J ,  1 , J , + a ) ' A ( i o + t , i , - a  . . . . .  i l l j l  . . . . .  J ,)  

+ A ( i , + l  . . . . .  ialJl . . . . .  J o + l ) ' A ( i ,  t . . . . .  i l l ja  . . . . .  J ,  1) =0. 

Denote further by B=(B~) the adjoint matrix of A=(a / ) ,  by F the de- 
terminant of  A: so 

e i j = ( -  1) i+J A ( m +  1 . . . . .  f . . . .  111 . . . . .  f, .... m+ 1), 

A B = B A = F I m +  1 , det (B) = Fm. 
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Remark 1.1. From now on we will suppose that A is symmetric: then if i h =Jh in 
(+ , )  the second term becomes a square. Moreover, if we set 

Di~=(-1)'+k+J+t A (m+ l . . . . .  ~. . .  [... 111 . . . f . . .  [ ,m+ l ) ( i < k , j < l )  

we have the following identity 

F D~ = Bk jBit - Bkl Bi. i. (1.2) 

and in particular 

(1.3) F D~ = Bkk Bll -- B2l 

(where now DI~ is defined for all indexes to be alternating both in the lower and 
upper indexes). 

Remark 1.4. Suppose that the aijs are elements of a graded ring R = R m 
m = O  

without zero divisors. Then all the A(i~ . . . . .  il I J1 . . . . .  jk)'S are homogeneous 
elements of R iff there are integers d i such that d i - d j ( m o d 2  ) and aij(=aji) is a 
homogeneous element of degree (d~ + d j)~2. 

Proposition 1.5. Let X be a smooth complete variety (or a compact complex 
manifold), let Y be a line bundle on it. Let d i (i= 1 . . . . .  m + 1) be integers such that 
d i =- d i (mod 2). 

Setting R(Zf l )m=H~174 suppose moreover that we are given elements 

of  R ( ~ ) =  + R(S)m 
m = O  

_ ik (l<_i<k<=m 1, l<=j<l<=m+l) F 4: O, Bij = Bji , D ~ -  Djl _ + 

m + l  

homogeneous of degrees respectively equal to ~ d h = d, d -  (d i + d j)~2, d -  (d i + dj 
h = l  

+ d I + dk)/2 which sati,sfy the following assumptions 

i) identify (1.2) is satisfied; 

ii) the matrix (with entries in the field of rational functions of X )  (BiJF) (i,j 
= 1,..., m + 1) has non zero determinant" 

iii) {F = 0} is a positive irreducible divisor. 

7hen there exist elements a j i = a i ) 6 R ( S  ) ( i , j = l  .... , r e+ l ) ,  homogeneous of 
degree (d~ + dj)/2 such that the previously given F, B's, D's are the determinants of 
the minors of the matrix (ao) of order (m + 1), m, (m-1 )  respectively. 

( O I __ 
Proof. Consider the symplectic form J =  ~0 +~ and the Grassmannian 

G(m+ 1) of maximal isotropic subspaces for the symplectic form d. ~ (m +  1) is 
smooth and the opcn set where a PRicker coordinate coordinate p differs from 
zero is isomorphic to the affine space of symmetric (m+ 1)• (m+ 1) matrices (see 
e.g. [-7]). The determinant of the symmetric matrix one thus obtains can be called 
the "opposite" Plucker coordinate p' of p(p" =p). 
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Setting p '=  1, the symmetric matrix (a'ij) = ( B U F  ) ( i , j=  1 . . . . .  m + 1) defines a 
rational map of X into (~(m+ 1). 

By (ii) p is not identically zero on X, and by the assumptions made on the 
degrees, p- F is a rational function on X. If we prove that p. F is regular, then it 
is a non zero constant, which we can assume to be 1. Hence we can take (a~j) to 
be F times the adjoint matrix of (BijF)=(a' i j ) .  We then thave F = d e t ( a i j  ), and 
the B's, D's are the determinants of the minors of A =(aij ) of order m, (m-1) .  So, 
setting A'=(alj  ) we are going to prove by induction on k that F . A ' ( i  k . . . . .  i l /  
Jl . . . . .  Jk) is a regular section. For  k =  1 this is clear, since the Bifs are regular 
sections, and for k = 2 this follows from assumption i). 

Multiplying both sides of ( + k) by F 2, we  conclude that the divisor of zeros of 
A'(ik_ 1 . . . .  , i l / j l  . . . . .  j k _ O . F  is equal to the divisor of poles of F.A ' ( i k+ 1 . . . .  , i l /  
Jl . . . . .  Jk+ 1) plus a positive (or zero) divisor. 

On the other hand A'=(alj  ) has poles only at {F=0}, so the polar divisor of 
every minor's determinant is a multiple of {F =0}. But A'(i  k 1 . . . . .  il IJl . . . . .  Jk 1) 
has negative degree, so it can't be a regular section, hence it has a pole of order 
exactly one at F =0. By the irreducibility of F, {F 
=0} ca {A'(ik_ 1 . . . . .  il ]Jl . . . . .  Jk- 1)" F =0} has codimension 2 in X and, X being 
smooth, F .  A'( i  k + 1 . . . . .  ill J1 . . . . .  Jk- 1) is regular. 

R e m a r k  1.6. Actually in the proof one only needs the normality of X, and a 
similar result holds for non symmetric matrices. 

Conditions i), ii) are clearly necessary, but also iii) is, as it is shown by the 
easy example of 

where x, y are coprime. 

(aij) = 

Defini t ion 1.7. We will say that two subvarieties Y, Z of X are tangent or have 
contact of order m >  1 if for every component W of Y c~Z the intersection 
multiplicity of Y,Z at W is > m + l  and there is a component of Y c a Z  along 
which this intersection multiplicity is exactly equal to m + 1. 

Proposition 1.8. In the hypotheses  o f  Prop. 1.5 assume fur ther  that {F=0} c~ {B u 
=O}c~{Bkk=O} has codimension 2 in {F=0} (1=<i, k=<m+l).  Then {F=0} and 
{Big=O} have contact. 

Proof. For 1 <=i,j<=m+ 1 let divr(Bij ) be the Weil divisor on F associated to Bij. 
By (1.3) d i v F ( B u ) + d i v e ( B k k ) = 2 d i v v ( B i k  ), so there are divisors W i, W k such that 
divF(Bii ) = 2  W i, diVF(Bik ) = W i + Wk, divF(Bkk ) = 2 W k and the assertion follows. 

For use later on we notice that, outside of the locus 

{ B i j = O l i , j = l  . . . . .  r e+ l}  = { F = B u = O [ i = l  . . . . .  m + l } ,  

one can choose W~ as a Cartier divisor. 
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w 2. Symmetric Surfaces 

In this paragraph we will consider the following special case of the situation 
considered in w 1: X = I P  3, ~ =(9~(1), R ( 2 ~ ) = ~ [ X o , X  1 ,Xz,X3] =IE [X]. Assume 
then that we are given an infinite sequence (d) of positive integers d i such that 
d i - d j  (mod 2) and for every i,j, a homogeneous form air = aji of degree (d i + d j)~2. 
Set 

h h 

ph = ~ d~, th= ~ (d~p,p~_ 1)/2. 
i = I  i - 2  

Consider then the infinite symmetric matrix (aij) and set F/a~ 
= A ( h  . . . . .  111 . . . . .  h): by abuse of notation we will use the same symbol for a 
surface in IP 3 and for the homogeneous form which defines it. 

Definition 2.1. A node is an ordinary quadratic singularity (x 2 + y2 -t- 2 2 = 0 in local 
holomorphic coordinates). 

Theorem 2.2. For general choice o f  the forms aij Fh ~dl is a surface of  degree Ph 
having as singularities exactly  t h nodes, whose equation is given by the de- 
terminants B u ( i , j= l  . . . . .  h) o f  the (h-1)  x ( h - 1 )  minors o f  the matrix 

( a O i ,  j _  1 . . . . .  h .  

Moreover  F~ a) and ~'~dl are tangent along a smooth curve C h (i.e. 2C h * h + l  

= d i v ~ ( F ~  1)) passing through all the nodes of  F~ a) and F ~a~ h + l '  

Before giving the proof, we state some auxiliary results. 

Lemma 2.3. Let  C be a reduced curve in IP 3, F, G sur~hces of  degrees, n,m, 
respectively, such that C is the curve of  contact between them (diva(F)=divF(G) 
=2C). 

Suppose moreover that the only singularities o f F  and G along C are nodes. Let 
Pl . . . . .  Pt be the points o f  C which are singular for F and not for G, Pt+l . . . . .  Pt+~ 
those which are singular for both, Pt+~+l . . . .  ,Pt+~+~ those which are singular for 
G and not for  F. 

Then 
nm = 0 (mod 2) 

nm(n - m) = 2 ( t -  r) 

mn(m + 2 n ) -  2t (mod 8). 

Finally, i f  C is smooth, its genus is 

p = 1 - nm + (mn(m + 2 n ) -  20/8. 

Proof  Blow up IP 3 at the P~'s, denote by/?, (~ the proper transforms of the two 
surfaces, by C the proper transform of C, by n the blowing-up map, set A i 
= n -  1 (P//)c~/~, E j = n -  l(Pj)c~d (i=1 . . . . .  t + s , j = t + l  . . . .  , t + s + r ) .  

The A[s, Ej's are smooth rational curves with self-intersection = - 2 .  Let a~ 
be the multiplicity of G at P~, fl~ the multiplicity of F at P~. 

On i ~ (smooth along 0) 

K f = r c * ( O e ( n - 4 ) ) ,  rc*((~v(m))--(9 P ,2d+~.= ~A~ 
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hence 0 . A  i= 1 2 - ~ i A i  =~i; similarly on 

( ,+,.+s ) 
K~=n*(Cz(m-4) ) ,  n*(C~(n))=Ce, 2 # +  ~ f l jej  , C .E j=f l j .  

j = t + l  

By the adjunction formula (used both on F, G), if p is the arithmetic genus 
of (~ 

8 p - 8 = 2 ( ~ - ( 2 C + 2 K ~ , )  
tWs 

~ A  i = n m ( m + 2 n - 8 ) - 2  ~ c~, 
@C:f ,--i= i=, 

t + r + s  

and by entirely similar computation 8 p - 8 = m n ( n + 2 m - 8 ) - 2  ~ fl}. Our 
assertions easily follow. J='+ 

Remark 2.4. The result of the preceding lemma can be given in a more general 
form (see e.g. [14], pp. 252-253). 

Proof of  Theorem2.2. We are going to prove the result by induction on h, so 
assume it is true for h < m. Considering then the matrix (aij) (i,j = 1 . . . . .  m + 1) and 
using the notations of w 1 (expecially Proposition 1.5), we have F le) =F ,  F~ d~ m + ,  
=Bm+l,m+ ,. Let i be an integer with l<_i<m: by (1.3), 

@ 

SO, on Bm+l,m+,, 

FDi, m+ 1 = _ _ ( B i ,  m + , )2 q _ B m  + ,,m+ , B i ,  i, ~ i , m +  1 

div(F)+ " i ~+ d l v  ( D i : m +  ]) = 2 div (Bi.,,,+ 1). 

As the forms al.m+ 1 ( l = l  . . . . .  m) vary, the surface Bi, m+ 1 moves in a linear 
system whose fixed part is given by nz,,,+l = 0  for l = l ,  .,m. ~ i , m +  1 "" 

By the inductive assumption this fixed part gives on Bin+ ~.,,+, the smooth 
i,m+,, hence, after subtracting curve Cim , of tangency between Bin+ ,,m+, and Di.m+ 1, 

i the fixed part, the only fixed points are the nodes of Bin+ ,,m+, (lying on C,,_ 1), 
where Bi.m+ , is not tangent to B,,,+ ,,,,+~. 

By Bertini's theorem then C,,, being this residual intersection, is smooth and 
irreducible. 

In particular F is smooth at the singular points of Bm+l,,,+~, i.e. when 
i,m+ Di.,, + ~ =0 V i=1  .. . .  ,m; moreover F is smooth outside C m, since, varying the 

form am+~,m+ ,, F moves in a linear system with base locus given by 
C~(B~+ x,,,+ 1 = F  =0). 

i, rn + Finally, at points where F = B m + , , m + l = 0  but Di, m+~#O for some 
i (1 < i < m), equality (~) implies that the singularity is a node if we can prove that 
B~,i, Bm+Lm+~, Bi, m+l have a transversal intersection where they vanish but 

i ,m+ Di, m+ ~ does'nt. 
To this purpose take homogeneous coordinates Xo . . . . .  x 3 on IP 3, set Ni,j+ 1 

((d i +dfl/2 + 3~ (Nit is the dimension of the projective space parametrizing the \ 3 ! 
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forms of degree (d~ + d j)/2), and write 

a tn+l ,m+l  ~ E al  . I  a J . x  J m + l , m + l  "x' ' ai, i = E i,t 
FI=a~+,  IJl=a, 

ai, m+l = E a~m+ 1 xu' 
if11_ d,+d~* l 

2 
where I , J , H  are multiindexes, and if I=( io , i  ~ ,i2,i~), [II=io+i~ + i 2 + i  3. 

In 
]pN . . . . . . .  x IpN,,,  x lpN . . . . .  xlp3 

a s aH (with coordinates (a~+ l.m+ 1, ~ i . . . .  ~ ~, Xo,X~,X2,X3) ) consider the subvariety 
given by 

Bii =Bin+ l,m+ 1 = B i ,  m+ 1 = 0 .  

Its singular locus is contained, for each choice of multiindexes l , J ,  H, in the 
locus given by the vanishing of the determinant of the (3 • 3) matrix of partial 
derivatives of the 3 equations B,,  Bm+,,,,+~, B~.,,+, with respect to the 3 
coordinates a I a4 at I m+ l,rn+ l ~ t,i, t , m + l "  

The matrix is 

Oi, m+ 1 
0 X J F)i'm+l 0 

~ i ,m+ 1 
0 0 x n i,.+ Dilm+ 

i ' ' + l=O,  and for general a f s  the hence the singular set of F is contained in Dim+ 
intersection is tranvsersal where re, m+ 1 ~i ,m+ 1 :~zO" 

Since we proved that Cm passes through the nodes of F,,~, a~ and E ~d) by m + l  
Lemma 2.3 it follows that _F--F ~a)-_~+ , has t,,+ 1 nodes. 

Definition 2.5. Let F be a surface, N = { P I  . . . . .  P~} be a set of nodes on F, n: P ~ F  
the blow-up of F along N and A~=n l(p.) (1 <=i<=t). 

Let H be the pull-back on P of a hyperplane section of F. 

The set N is said to be strictly even if the divisor ~ Ai is divisible by 2 in 
I t  

Pic (P). ~-~ 

N is said to be weakly even if H +  ~ A~ is divisible by 2 in Pic(F). 
i - 1  

In either one of the two preceding cases we shall say that N is an even set of 
nodes. 

We remark that an even set of nodes cannot be both weakly an strictly even, 
at least if F has only rational double points as singularities (see the final 
remarks). 

The next proposition explains how the notion of even sets of nodes is 
related to simple contact of surfaces. 

Proposition 2.6. Let  F, G be surfaces in IP 3 such that dive(G)=2C, and assume 
that the singular points o f  F where C is not a Cartier divisor are just  a set N o f  
nodes: then N is an even set o f  nodes, strictly even iff G is a surface oJ'even degree. 

Conversely, if N is an even set o f  nodes on F, there exists a surface G as above. 
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Proof Using the notations of Definition 2.5., let m be the degree of G. Then, on 
F, mH is linearly equivalent to 2 ( ~ + ~ i A  i. where (7 is the proper transform of 

C on P (and is a Cartier divisor), and ~i is the multiplicity of G at the node p~. 
Now, if ~ were even, C would be a Cartier divisor at p,, hence 

A =~A,=-6H+Z([m/2]  H -  C - ~ ,  [c~,/2] A~), 
i i 

6 being 0 or 1 according to whether m is even or odd. 
Conversely, let L be a divisor such that 2 L = A + 6 H  ( 6 = 0  or 1): choose r 

such that r H - L  is linearly equivalent to an effective divisor (~. Then (2r 
- 6 ) H - = 2 ( ~ + A ,  hence there exists a surface G of degree ( 2 r - 6 )  with the 
required property. 

Definition 2.7. Let N be an even set of nodes n F. Its order is defined to be the 
smallest degree of a surface G satisfying the requirements of the last proposition. 
A set of nodes N is said to be a "symmetr ic"  set of nodes, and F a symmetric 
surface, if there exists a symmetric matrix (ao.) of homogeneous forms such that 
F = d e t  (a~j), and the determinants Bij are homogeneous forms which define N as 
a reduced subscheme. (Note that, as a consequence of propositions 1.8 and 2.6, a 
symmetric set of nodes is an even set of nodes.) 

Consider a symmetric set of nodes N on F, so that F=det(a~j)  as in 
Definition 2.7. There exist integers dz (see Remark 1.4) such that deg(aii) 

di+d~: we want to see that some of the d~'s can be negative, but, for reasons 
2 

that will become clear later, we impose the condition that a~ be zero if d~ 
+di_-<0. 

Assume that dl .... ,d h are in increasing order, and consider F 

= det ( a i i ) i  ' j = 1 . . . . .  h "  

Notice that, if there exist i,j such that i+j  > h, d~ + dj < 0, then the first i rows 
of the matrix (air) are linearly dependent and F = 0. 

If, moreover,  there exist i,j such that i+j=h,  d~+dj<0,  then F is divisible by 
(A(i . . . . .  1 ] j+  1 . . . . .  h)) 2. 

Finally, if d 1 +dh _2<0, then F is singular in codimension 1 (where al, h 
=a~.~ =0). 

If we want to generalize the result of Theorem 2.2 it is therefore a reasonable 
assumption on the di's that 

(~) the smallest k such that dk+r+dk+~ ~>0 for every r = l  . . . .  
... k, does not exceed (h/2-1).  

Theorem 2.8. I f  (~) holds, then, for general choice of the aij's (of degree > 0), F has 
only isolated singularities, and the points where Bu=O V i (i.e. where corank 
(ai~)>2) are a set N of t h nodes of F, defined by the Jbrms Bij as a reduced 
subscheme. 

Proof Obviously it is sufficient to prove the result when h = 2 k + 2 ,  since for 
h > 2 k + 2  we can apply the same inductive approach used in the proof  of 
Theorem 2.2 (and to use the same notations as there we set h = m +  1). 
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Moreover  we can prove the result under the stronger assumption that ais = 0 
for i , j < k  or j = k  +r ,  i < = k - r .  

Then, by th. 2.2, the corank of  (aij)i.j=k~ 1 ..... 2k is at most  2 at a finite number  
of  points, where we can assume that the ak+r,k+ 1 ,.'S ( r = l  . . . . .  h) do not  vanish 

notice that ~,.,,.+1 ~ m , m + 1  = ak+r,k+ 1 ,. : therefore, since we also can assume 
r = l  

A ( 2 k  . . . . .  k + l [ k  . . . . .  2,1) not to vanish at the points where the corank of  
(aij)i.a--k+~ ..... 2k is 2, corank (aij)~,j=~ ..... 2k never exceeds 2, and equals 2 on a 
curve. 

To finish the proof  of  theorem 2.8 we need to apply twice the following 
lemma. 

L e m m a  2.9. Le t  C = (c~j) be a symmetr ic  s x s ma t r i x  such that the clj s are general  
Jorms o f  posi t ive  degree,  (cij)~.j .1 ..... ~s 1t has everywhere  rank at least s - 3 ,  and 
rank equal to s -  l at some point. 

I f  F is a subvar ie ty  o f  1t)3 of dimension at most  1 (resp.  equal to 2 )  then 
{x6FIco rank  C > 2 }  is empty  (resp.  is at  most  a f i n i t e  set  o f  poin ts ) .  

P r o o f  o f  the Lemma.  F is covered by affine patchens where 7 = C ( ( s - 1 ) ,  
/~ . . . . .  1 ] 1 ... {,f ... ( s -  1)) does not  vanish and, upon replacing F by a smaller 

subvariety, we can assume C ( s -  1 . . . . .  1 ] 1 . . . . .  s -  1 ) = 0  on F. 
Therefore 

C(s . . . . .  1;[, . . . .  1/1 . . . . .  ~ .... s ) = c k s ~ .  7 +  ... 

C(s  . . . . .  ~ . . . . .  1/1 . . . . .  j, .... S)=Ch~Cis" 7 +  ... 

(where ... stands for "up  to terms not involving Ck. ~, Cj~, Ch~, %") ,  and it follows 
immediately that the locus where these two terms both vanish has codimension 
2 in F. This proves the lemma. 

Returning to the p roof  of Theorem 2.8 we have: 

_ r)e,,,+ 1 = 0  V i ,e  has dimension _<0, 1) the locus given by B,,+ 1.,,+ 1 - ~ i , m +  1 

2) N = { B i i = O ,  i = 1  . . . . .  m + l }  has dimension 0 and for each point  x e N  
there exists i>_k+ 1 such that r)~,m+ l ( x ) # O .  

- -  ~ i , m +  1 
i , m +  l _ _  In fact, in 2), since B , , + I , ~ + ~ = 0  is irreducible, F = { B m + l , , , + l = D ~ i m + t - O  

for i >  k + 1 } has dimension < 1. 
We can now finish our  proof:  varying a . . . .  %+1,m+~ we get (by Bertini's 

theorem) that  B~+I,~+ 1 is smooth  when D ~ I ~ + I # 0 ,  F is smooth  when 

Bm+ l,m+ l #O.  
By (~), at points where F =B, .+  1,,.+ 1 =0 ,  F is smooth  if B,.+ 1,,.+ 1 is smooth  

there and B .  + 0 for some i <  m. 
= D . , , , . +  1 By 1), 2), the locus { F = B , . + I . ~ + I  ~,~+1 =0}  is contained in 

Din.m+ 1 =Bi,  m+ 1 =0}  {Bm+ t,m+ l =~m.m+ 1 

which has dimension <0 ,  since, as the forms a~.,.+ ~ vary, the fixed locus of the 
linear system IBm,,.+ 11 is given by he,,.+ J ~ i , m +  1 " 

Hence F has only a finite number  of  singular points, and if x is a point  of  N 
where n~,,.+ ~-~ 0 (with i >  k + 1) then x is a node and Bii, Bin+ 1,rn+l, B~ .,+~ have 

~ i , m +  i ~ - -  

a transversal intersection at x (since a .  is non zero, the same argument  of 
theorem 2.2 applies). 
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By induction on h, B11 and F are tangent along a curve and have at most 
nodes as singularities on this curve, hence, by lemma 2.3, we deduce that N 
consists of t h nodes. 

Remark  2.10. The minimal degree of F for which some negative d~ can occur is 8, 
when one considers the integers - 1, 3, 3, 3. N consists of 72 nodes, and F has 
one more node where a 1 2 = a 1 3 = 6 / 1 4 = 0 .  

The sequence (0, 2, 2, 2) gives a sextic surface with 33 nodes, 32 forming the 
strictly even set N. 

Proposition 2.11. Let F be a reduced surface o f  degree n in IP 3 with a "strictly 
even" set N o f  t nodes: then there exists a double cover q): S - ~  F where cI) is a 

f inite map ramified only at the nodes PI . . . . .  Pt o f  N and the dualizing sheaf cos is 
the pull-back ~b* (~oj o f  the dualizing sheaf o f  F. 

I f  F is smooth outside N,  S is smooth, and minimal if n > 4 .  One has 
t -=0(mod4),  z(S,  Cs)= 2 z(  F, C J -  t/4. Moreover< if n is even, t~-0(mod 8). 

Proof. Assume for simplicity F to be smooth outside N, and, with the notations 
~.  def, 

of Definition 2.4 let L be a divisor such that 2L-= A i = A. In the line bundle 
i=1 

6~(L) let S ~  P be the double cover one obtains by taking the square root of 
the section of 6~(2L) corresponding to the divisor A. S is smooth, and if /]i 
- p - I ( A  3, J~ is an exceptional curve of the first kind, so after contracting the 
~]~'s one obtains a smooth surface S, and a finite map q~: S-~  F ramified only at 
the P[s. Denote by m the blowing up map m: S-~S.  We have co~=~*cov, co~ 

t ! 

= eb*((ge((n- 4) H)), H being the hyperplane section of F. 
If n > 4 then co s- E > 0 for each curve and S is minimal. 
One clarly has x(-S,(Ys)=x(S,C~) but p , ( (9~ )=(gpO6 'p ( -L)  so by the Leray 

spectral sequence for the map p plus R.R. 

z(S,  Cs) = 2Z(/~, 6'p) +�89 - L)(coi t( _ L)) 

= 2z(F, (gv) + A2/8 = 2)~(F, (gF) - t/4. 

Notice that if n =  3 there exist projective coordinates such that F = x o X  1 x 2 + 
+ X oX~X 3 + X oX 2 x 3 + x ~ x  2 x 3, and F contains 9 lines, 6 of which connect pairs of 
nodes. The remaining 3 lines form a triangle and on them the double cover 
splits: therefore S contains 6 exceptional curves of the first kind. 

To prove the last assertion it suffices to show that x(S, Cs) is even when n is 
even. 

Set ~* Cv((n - 4)/2 = G: then G. G = 0(mod 4), G2 -~ cos, therefore 
g(S, G ) = 0  (mod 2) by virtue of Serre's duality theorem (in fact h~ G)= h2(S, G) 
and Ht(S ,  G) carries a non degenerate alternating bilinear form). By R.R. x(S, G) 
= -- 1/2G 2 + z(S,  Cs). 

Remark  2.12. F is simply connected, hence ff is too; so Cv(L ) is unique (up to 
isomorphism) as well as the double cover S. 

2 This last remark is due to Miles Reid 
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Proposition 2.13. Let F be a reduced surface of  degree n with a weakly even set N 
o f t  nodes; then there exist double covers ~: S--~ F, with �9 a finite map ramified 
only on N and a general hyperplane section H of  F. 

Moreover 

n - 0 ( m o d  2), x(S ,~s )=2z tF .  6 r ) + ( n ( 2 n - 7 ) - 2 t ) / 8 .  

We omit the proof, since it is analogous to the one of Proposition 2.11. 
From now on we shall freely use the notations introduced in 2.4, 2.6. 2.8 and 

2.10. 

Definition 2.14. Let N be an even set of nodes of F, and let R be the graded ring 

~ H ~  cb * ~)F(m)) .  R splits into the (+1)  and ( - 1 )  eigenspaces for the in- 
m--0 
volution determined by q). So R = R + O R  , where R + is nothing else but the 
coordinate ring of F, while R -  (by the Leray spectral sequences) is isomorphic 
to 

+ H~ = + H~  
m - O  rn-O 

R - ,  viewed as a graded module over the graded ring 

def. 
~ [ X 0 , X  I ,X2`X3]  =S~ ' ,  

is called the associated module of the even set of nodes N. 

Remark 2.15. If, as in 2.6, 6 is such that 2 L - A + 6 H ,  and m is the smallest 
integer for which R;,, is not zero then (prop. 2.6.) N has order 2 m - 6 .  

Also, for further use, we notice that 

H~ (/~. e ~ (m H - L)) ~ H ~ (F. f'p ((m - 6) H + L)). 

This isomorphism comes out of the long cohomology sequence of the exact 
sequence 

0--* (f~(mH -L)--~ (('t ((m - 6) H + L) --* + r --~ 0 
i -1  

since L .A  i = - l .  
Given a graded module M = (9 Mm. we will use the standard notation M [r] 

m~2[ 
for the module obtained from M by shifting degrees according to the following 
rule: M[r]m=M,.+m (cf. [29]). 

Theorem 2.16. I f  N is a symmetric set of nodes on the reduced surface F, then the 
associated module is a Cohen-Macaulay ,;d-module. More precisely, using the 
notations of  Th. 2.2 and assuming that the integers di ( i=1 . . . . .  h) are taken in 
increasing order, set r i = 1/2 (n + 6 - di), 12 = 1/2(n + 6 + d2) where n = Ph = degree of  
F, i J=-n-d i (mod2 ). 

Then there exists a minimal set of homogeneous generators w I . . . .  , w h of  R -  of  
degrees r x . . . . .  r h respectively such that 

wiwj= Bij~ R +. 
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Moreover R admits a minimal free resolution 

0--~ (~ d [ - l j ]  (~,~, d [ - r i ]  ~' ,R---~O. 
j = 1  i = l  

where the map y corresponds to the choice o f  generators w 1 . . . .  , w h. 
The order o f  N is n -  d h. 

Proof  Equations 1.2. and 1.3. imply immediately that each Bii vanishes of odd 
order at the nodes of N, so that on /~ we have div (Bii) = A  + 2 C i, and we can 
therefore choose w i in Rr. such that Ci=div(wi) ,  and wiwj=Bi j .  

h 

First of all, we want to prove that ~ aijwj=O in R - .  
j - - I  

Since we are assuming that the ideal generated by the Bij's defines N scheme- 
theoretically, it follows that the curves C k have an empty intersection on F. 
Therefore an element of R is zero iff, for each k = l  . . . . .  h, we get zero after 

h h 

multiplying it by w k. We have ~ aijwjwk = Z aijBjk=Fblk=O in R (here (~ik is 
the Kronecker  symbol), j_ 1 j= 1 

Let's now prove that these h relations generate over d all the relations 
among the w~'s. h 

Suppose in fact that f l  . . . . .  fh are elements of d such that ~ f jw j - -O in R -  : 
h j - l  

after multiplying by w~, we get ~ j iw jwi  = 0  in R +, hence there exist elements gi 
h j - I  

in d such that g i F =  ~ f jBj i ,  or, in matrix notation, F(gi)=(B,j)(Ji  ). We 
j = l  

multiply both sides of the equality by the matrix (aki) on the left to obtain 
F(aki)(gi) =F(Jk): this is an equality in ,~h, SO we can cancel F and our assertion 
is proven. 

Next, we are going to see that R -  is generated by the w~'s. In fact, if w is an 
element of R - ,  WwiER + = d / ( F ) ,  therefore we can choose, for each i, biE~c~ 
representing the class of ww i (mod F). h 

We use again the same trick: multiply the relations ~ aiiw ~ by w to infer the 
j=l 

existence of elements f / i n  d ,  such that, in d h, (ai~)(bj)=F(fj). Then multiply on 
the left by the matrix (Bki) and cancel F, in order to get (bk)=(Bki)(Jl). This 

h 

means that (WkW)=(WkWi)(Jl.), and again this implies that w = ~ f i w  i. 
i = l  

We have therefore proven that the above sequence is exact, and thus R is a 
Cohen-Macaulay ~r having a free resolution of length 1 =dim,~r 

- dim R -  (see [30]). 

Corollary 2.17. I f  N is a symmetric set o f  nodes, the ring R is generated by 
x o . . . .  , x 3, w~, . . . ,  w h subject to the only relations: 

h 

ai~(x)wj=O ( i=1  . . . . .  h) 
j = l  

wiw ~ = Bij(x ) (i,j = 1 . . . .  , h) 

h h 
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Proposition 2.18. Suppose F is reduced. I f  we do not assume that Nis a symmetric 
set of nodes, the module R has projective dimension at most two. 

R is a Cohen-Macaulay ~-module if and only if 

H1(P,6;~(mH+L))=O 
n - 4  

for O < m < _ - -  
2 

Proof. In terms of the Ext functor, the condition for R to be Cohen-Macaulay 
is given by Exti(R ~ , ~ 4 [ - 4 ] ) = 0  for i > 2  ( i>3  for R to have projective 
dimension < 2). 

Since R -  is the full module of sections of the associated sheaf on IP 3, twisted 
by (('H,,,(m), these groups automatically vanish when i>3 ,  by virtue of th. 1 of 
[29], pag. 265: this theorem also gives the isomorphism 

ExtZ(R , s ~ ' [ -  43) = H1 (R-). 

Therefore one must have H~(P, m H - L ) = O  'r meTl, or, equivalently by Serre 
duality on F, H1(P, mH + L)=O V meZ .  

Let H be a general hyperplane section of F, notice that L is not trivial when 
restricted to H and consider the exact cohomology sequence of 

(:~,,) 0 ~  (c ~ ((m - 1) H + L)--~ ep(mH + L)-+ Cu(mH + L ) ~  O. 

We have H ~ ((!ldmH + L))= 0 when the degree is at least 2 p ( H ) - 2 ,  i.e. when 
m > n -  3, and H~ + L))=O when 6+m<O. 

Since h~ then, using Serre duality on F, 
one obtains 

HI (r p (mH + L))= HI ((? ~(mH + L -  A))= HI ((J p ((m + b) H - L ) )  

= H ~ (g,p ((n - 4 -  m - 6) H + L)) 

and the statement of the proposition immediately follows. 

We are now in a position to give several equivalent characterizations of 
symmetric sets of nodes 

Theorem 2.19. Suppose F is reduced and irreducible and that N is an even set of 
nodes ofF. N is symmetric iff one of the Jbllowing three equivalent conditions hold: 

I) let w 1 . . . . .  w h be a minimal set of homogeneous generators ,for the d-module 
R- ,  Bij(x)=wiw j. Then det (Bij) is a (non zero) polynomial of degree n (h -1 )  

II) R is a Cohen-Macaulay ~-module 
n - 4  

III) H~ (F, (_~,'~(m H + L))=O Jbr O <_m < _ - -  
2 

Proof. If I holds we set ~ =0, 1 according to whether N is strictly or weakly even; 
we also set di=n-2ri+i~,  where ri=degw i. 

Since BkjBil--BklBij vanishes identically on F, there exist homogeneous 
forms Di~ such that (1.2) holds: therefore we can apply prop. 1.5 to infer that, 
setting (air) = F.  (Bij)- 1 (aij) is a polynomial matrix with determinant equal to F. 

Since, for m>>O, m H - L  is very ample on F, the equations Bij(x)=O define 
the nodes of the set N, and N is symmetric. 
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In general, by Hilbert's syzigies theorem (see e.g. [35] p. 240. or Eli pp. 575- 
588) R-  has a minimal free resolution of length equal to the projective 
dimension of R -  (which is either 1 or 2, by Proposition 2.15). 

So Ii) ~=~ III) ~- R -  has a minimal free resolution of length one. 
Assuming this, since R-  has dimension 3, the two free modules appearing in 

the resolution must have equal rank, say h. Let 

0---* + (a.) ~ [ -  /j] -----~ ~ ~r [ - r , ] - - , R -  --~0 
j=l  i=1 

be such a minimal resolution, and consider the long cohomology sequence of 
modules ([29] p. 254) 

(~) O - - ~ H Z ( R - ) ~ + H 3 ( , ~ [ - I j ] ) ~ + H 3 ( ~ [ - r i ] ) - * O .  
j = I  i=1 

We apply to this latter the exact contravariant functor *, such that (M*), 
=dual  vector space of M , (ibidem p. 263), to get 

h qu,j~ + d, 
0 ~  @ H 3 ( ~ ' [ - r ~ ] )  * H 3 ( d [ - / j ] ) * - - ~  H2(R - )*--,0. 

i=l j -1  

We notice that Serre duality gives again an isomorphism of H2(R )* with 
R I n - 4 ] * ,  so that we can tensor by J [ - n + 4 - c S ]  to obtain 

0 , + (H3(d)*)[ri-n+4-6] ""'J~ + (H3(d)*)[l j -n+4-6] 
i=1 j = t  

d* 
, H2(R ) * [ - n + 4 - 6 ] - ~ 0 .  

Now the last module is isomorphic to R -  under an isomorphism T: 
R - ~ H 2 ( R - ) * [ - n + 4 - 6 ] ,  and since H 3 ( d ) * ~ d [ - 4 ]  we have obtained 
another minimal free resolution of R- .  

Now, two minimal free resolutions are isomorphic ([35], p. 238 or by the 
arguments of [24] lemma 8 p. 136) so, if we assume that we have ordered the r's 
and l's in such a way that r 1 <=r2<=...r h, 11>l 2 ... >t~, first of all we must have I~ 
- - r t - - ( ~ =  - - r  i. 

Moreover, if we s e t  dij = deg (aij), w e  have 

dq=l l - r j=n+f - r l - r j .  

Therefore, if dg =deg(a,) ,  we have 

d i + dj 
diJ = 2 

r~=�89 lj=�89 

Let's now look at the leading term of the Hilbert polynomial of R - : for m ~ 0 

dimR~,=Z(P,(gP( mH-L))= ~ +"" 
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by R.R., while the above resolution gives 

dim R2, = ~ dim,~, ,  ~, - dim,~ '~ z, = 
i = 1  i - -1  

X + . . . .  T + . .  

Since R has support on F = 0 ,  det(a~i) is divisible by F, but its degree is 
exactly n, hence F =det  (a~j) and we only need to show that we can assume that 
(a~) is a symmetric matrix. 

This follows by the functoriality of the above isomorphism with respect to 
Serre duality. 

To be precise, we are going to show that, under the canonical isomorphism 
h h 

of H 3(~  '*) [4] with ,~' ([29], p. 264) a lifting ~: @ d [ - r ~ ] ~ @ s ~ ' [ - r ~ ]  is 
i = 1  i = l  1 

given by the matrix of polynomials ~ = ~  (*a. B), where, for brevity, we have set a 
=(%). ~F 

One this is proven, either we apply part I of the theorem, or simply change 
basic in the first free module so that instead of (au) we take a t ? - ~ = F . B - t ,  
which is a symmetric matrix. 

Here we adopt the notations of [29] pp. 253 and loll., denote by V the vector 
space with free basis d x  o . . . . .  d x  3 and choose k>>0 such that the exact coho- 
mology sequence (~) is induced by the exact sequence of complexes Ck(. . .  ) 

O-- ,A2V| - ~a) , A 2 V @ . ~ h  " 

0 )A3V@,e2 /h- (" )  , A 3 V + , ~ J  h- 

0 , A* V | ~ h  (,I , A* V |  

, A 2 V @ R  -~ ,0  

, A 3 V @ R  ' 0  

-~ A 4 V | R - - '  0 

where the vertical maps are given by exterior product on the left with c~ k 
3 

= ~ x~.dxj,  and we forget about the gradings to simplify the notations. 
j = O  h 

If co is a cocycle in A 3 V @ R  , write co= ~ r h @ w  i. Then do) is given by 
i - I  h 

(a) l(C~kitt) where, if e I . . . . .  e h is standard basis of , , 4 h ( e ~ w s ) ,  rl= ~ r h |  i. 
i - I  

We must verify that, with the above definition of L we have (~(es ) ,dco)  

= (~(w~),  co).  
To do this, notice that r is given by Serre duality on F, and instead of taking 

values of ( , )  in i1~ it is more convenient to take values, under fixed canonical 
isomorphisms, in the one-dimensional vector space H 3 (IP 3, (9~3(-4)) (recall that 
H2(F ,  C v ( ( n - 4 ) H ) )  and H3(Ip3,(f;n,3(-4))  are canonically isomorphic via the 
coboundary operator in the cohomology sequence associated to 

F 
0--'~ (fl~3 ( -- 4) , 6 ~ ( n - - 4 ) ~ C ' t ( n - - 4 ) - - * O .  
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Then 

while 

(r(Ws),~o)= r(w3, qi| 

(~ ) 1 h 
=0 i~=l .i| =~i~= 1 nlsO~kAl~i , 

1 h 

=--Fi=~=l Bis(% /~ ~i). 

Remark 2.20. i) The n u m b e r  t of  nodes  of N can also be compu ted  by equat ing 
the constant  terms in the two expressions for the Hi lber t  po lynomia l  of R - .  In 

if N is symmetr ic  t_< (n + 1 ) par t icular  - ,  3 . '  equali ty holding iff d i =  1 for each i. 

ii) N o  one of the airs can be a non  zero constant,  since w 1 . . . . .  w~ have been 
chosen to be a minimal  set of  generators.  

iii) In Theo rem 2.19 to show that  II, I I I  are equivalent  to N being symmetr ic  
it is actually not  necessary to assume that  F is irreducible. 

Proposit ion 2.21. I f  F is a surface of degree n with an "even" set N of t nodes, 

andt<(n31),then- - - N hasorder < n - 1 .  

Proof It  suffices to show tha t  h~ for 2r>n-1 .  
By Serre dual i ty  h2(C~(rH-L))=h~ but r H - L - ( n - 4  

- r ) H - L > ( 2 r - n + 4 ) H - H - A > = 2 H - A :  now if DclmH+LI, D.Ai= 
- 1  ~ D > A i ,  so h~ (for 2 r > n - 1  !) and it is enough 
to p rove  that  Z(Cp(rH-L))> O. 

This inequali ty follows f rom R.R. and in par t icular  we have that  Z(g)p(rH 

- L ) ) = n i f t = ( n 3  1 ) "  - " a n d 2 r = n - 1  f o r n o d d ,  or 2 r = n  for n even and the set N 

"weak ly  " even . 

Definition 2.22. Let N be a symmet r ic  set of  nodes:  we will call N a l inearly 
symmetr ic  set of  nodes  (and hence F a l inearly symmetr ic  surface) iff the integers 
d i are all equal  to 1. 

Thus  a l inearly symmet r i c  set of  nodes N has , 3 e lements  and order  n 

- 1 (the m a x i m u m  allowed, in view of  Propos i t ion  2.21, and  T h e o r e m  2.16). 

Theorem 2.23. Let N be an even set of nodes on a reduced surface F of degree n: 

then N, is linearly symmetric if and only if N has (n31)  nodes and order (n-1). 
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Proof We clearly need to prove only the "if" part of the statement. 

r =  ]2]:  then, by Proposition 2.21, Z((5~p(rH-L))=n (because, if n is even, Set 

N is "weakly even", its order being (n - t ) ) ,  and Z ( 0 ~ ( ( r - 1 ) H - L ) = 0 .  
Since h 2 ((~,p ((r-- 1) H - L)) = dim R,7 2, and R~ = 0 for m < r, 

hi((~,#((r-1)H-L)=O for i=0 ,  1,2. 

By looking at the exact cohomology sequence of 

O-~6,f((m-1) H -  L)--*6'~(mH + L)-~(9n(mH- L)--*O 

for re=r, r - 1  we deduce that HI((~It((r-1)H-L)=H2(d~p((r-2)H-L)=O, 
hence R 2 ~= H~ where both spaces of sections are dimensional. 

One can now either easily show that condition III  of Theorem 2.19 is 
verified, or, in case F is reduced and irreducible, use the following "elementary" 
argument:  let H'  be another hyperplane section, cutting H transversally in n 

points y~ . . . . .  y,,, and consider the restriction mapping R,_ ~ + C~,. 
i = 1  

Since H~ this map is an isomorphism: hence one can 
choose a basis w 1 . . . . .  w, of R;- such that wi(yj)=cS~j. If Bij(x)=wiw j, then B~i(y~) 
=6ij, Bij(ys)=O for i+j; therefore, for i+-j, Bij(x ) is identically zero on the line 
HnH' ,  since it has degree ( n - 1 )  and n distinct zeros there. Hence det (B~j) is not 
identically zero on the line, and we can apply the arguments of I) of Theorem 
2.19. 

The next proposition shows that the hypothesis on the order of N cannot be 
completely dropped. In fact, taking h = 6, we get a surface of degree n = 16 with a 

strictly even set of (1 ; )  nodes of order at most 14. 

Proposition 2.24. There exist surfaces F h of degree 4 + 2 h  with a strictly even set 

of t = 8  2 + h ( h + 2 ) +  nodes, of order less than or equal to 2+2h .  

Pro@ For h = 0  take a Kummer  surface, a quartic with a strictly even set of 16 
nodes (see [l 3] p. 49). We are going to apply Gallarati 's  inductive procedure in 
this case to construct, given Fh, a surface Fh§ 1, tangent to F h along a smooth 
curve passing through the nodes, and with only nodes as singularities. 

Stepl. On /?h let L be a divisor such that 2 L -  ~ A~=A. We claim that I(h+3)- 
i = l  

H - L [  contains a smooth irreducible curve C. 
For h = 0  see [13]: for h > l  by the inductive hypothesis there exists a 

smooth irreducible curve C' in l(h + t) H -  Lt, and since C ' +  12Hlc l(h + 3) H 
-L[, this last linear system can have at most C' as fixed part, and if C' is not a 
fixed part, then there are no base points which are singular for the system, and 
the assertion follows by Bertini's theorem. 

However  if I (h -  3) H - L[ + ~3 then C' is not a fixed part. If I (h -  3) H - Lt = 0, 
by Serre duality Hz(cgp, h((h+3)H-L))=O; in this case one thus has using R.R. 
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therefore 

dim ](h + 3) H - L] > l((h + 3) H - L)((3 - h) H - L) + Z(6'F,,) -- 1 

=(h + 2 ) ( 9 - h e ) - 4  + ( 2 h ;  3) =9h +15, 

I(h + 3) H -  LJ + C' + 12HI. 

Step II. Let G be a surface of degree 2 h + 6  such that divv,,(G)=2C. We only 
need to prove that if Q is a general quadratic form in the x's, Fa+I= G + QF a has 
as singularities only nodes, lying on C. By Bertini's theorem it follows that Fa+ 1, 
which moves in a linear system with C as base locus, is smooth outside C. 

Moreover, C being smooth, Fh+ 1 has at most double points as singularities 
and is smooth where F h is singular. Let Pc  C be a smooth point of Fa: then there 
exist holomorphic coordinates (x, y, z) around P such that 

Fh={Z=O }, C={z=y=O} ,  a=y2+zg(x , y , z )=O,  Q=q(x,y ,z) .  

In these local coordinates Fh+l=y 2 +z(g+q) .  
We notice that a point p' of C is singular for Fh+ l if (g + q) vanishes at P' and 

is a node if the zero is simple: for general q it is easily seen that all the zeros are 
simple. 

For linearly symmetric surfaces the matrix aij has a nice geometrical 
interpretation. 

Proposition 2.25. I f  F is a general linearly symmetric surface the ( n + l )  3 nodes 
x ~ 

(forming an even set) are independent, i.e. the Bi]s span the subspace of surfaces 
of degree ( n - l )  passing through them. This subspace is thus isomorphic to 
Sym 2 (H~ (gp(rH-L)) (notations as in Theorem 2.23) and via this isomorphism 
the map x ~ai j (x  ) is the first polarity map. 

Proof Let aij=a~i ( i , j= l  . . . . .  n) be homogenous coordinates in the projective 
space IP ~, where N +  1 = n ( n +  1)/2. 

Consider the determinantal hypersurface det (a~j)= 0: a general linearly sym- 
metric surface is the section of this hypersurface with a general 3-dimensional 
linear subspace of IP N. 

By ([-9] Theorem 5.7, p. 349) the determinants of ( n - l ) x ( n - 1 )  minors 
generate a prime homogeneous ideal, so the restriction to a general 3-dimen- 
sional linear subspace gives a radical ideal. 

For the second statement observe that if F = d e t  akjxk , (X o, X 1, X 2, X3) 
k_  

being homogeneous coordinates in IP 3, if Y=(Yo . . . . .  Y3) is a point in IP 3, the first 
polar of F with respect to y, F r is given by 

8F 3 

k=O i , j =  l i , j =  l 

Proposition 2.26. The symmetric surfaces of degree n depend on n 2 + 2 n - 1 5  
moduli for n > 5, or n = 3. 
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Proof if  n = 3 actually all the cubics with 4 nodes are projectively equivalent, if 
n > 5  and F=det(aij(x)), F'=det(a'ir(x)) ( i , j = l  . . . . .  n), F,F' have only rational 
double points as singularities and there is an isomorphism g: F--,F' ,  g is induced 
by a projective automorphism of Ip3: in fact g*(Kv,)=K v and the surfaces F, F' 
are simply connected, hence g*(He, ) = H v (H being the hyperplane bundle). 

Moreover the matrix air is determined by F up to a change of basis in the 
vector space H~ (9~(rH-L)). By ([23], Corollary 1) any such F has at most a 
finite set of projective automorphisms for n > 4, so if one takes the quotient of 
IP(Hom(lI? ~, Sym2 (IE"))) by IPGL(4)x IPGL(n) with the obvious action one gets 
a projective variety an open set of which represents the coarse moduli space for 
symmetric surfaces with only nodes. The dimension of this moduli space is then 

(n(n 2 1 ) . 4 _ 1 ) _ 1 5 _ ( n 2  - 1 ) = n 2 + 2 n _ 1 5  

(in fact no projective transformation in IPGL(n) stabilizes four general quadratic 
forms). 

Remark 2.27. For n =4  the above formula gives the number of projective moduli. 

We end this section by showing how, in the case of plane curves, contact is 
always given by symmetric determinants. Suppose C is a reduced curve of 
degree n in 1P 2, and that Y is a non trivial line bundle on C such that 
~ 2 ~ 6 ' C ( 0 ) ,  6~-~-0 or  1. 

As in the surface case we define the associated module R-  of L as the ~4 

= 112 [Xo, xl,  Xz]-module + H~ Y | 6c(m)). 
rn=O 

Proposition 2.28. R- is a Cohen-Macaulay ,fr Moreover, for each choice 
w~ . . . . .  w h of a minimal set of homogeneous generators for R- ,  there exists a 
symmetric (h x h) matrix air(X ), which has rank at least (h -1 )  everywhere on IP 2, 
with the following properties: 

1) det (air(x)) is the equation F of C 
h 

2) the rows of (air) give relations ~ air(X)W r which generate the relations 
among the wi's r= 1 

3) wiwr=Bij(x) ((Bi) being, as usual, the adjoint matrix of (air)). Conversely, 
any matrix (aij) with the above properties determines a line bundle 5f in such a way 
that there exists a minimal set of generators wa . . . . .  w h of R-  with (wiw)=Bir(x), 
(ai)(Bir) = F . Identity. 

Proof By Theorem 1 of [29] p. 265, Exti(R - ,  s J ) = 0  for i>2,  hence R-  has 
projective Dimension 1. 

The rest of the proof is entirely analogous to the one of Theorem 2.19: the 
fact that the Bit s have no common zero on IP 2 is a consequence of the fact that 
R2, has no base points for m ~> 0. 

Remark 2.29. In particular, when 3 - - -n - l (mod2) ,  i.e. the di's are odd, 

~ | 1 6 2  athetacharacterist ic o n t h e  curve C (this means that 
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__n-3) 
0| and any such O, different from 6 J c \ - f f  - when n is odd, 

occurs in this way. Also, h~ iff all the di's are equal to 1; so ineffective 
thetacharacteristics correspond to a way of writing C as the determinant of a 
symmetric matrix of linear forms: K. Hulek pointed out to us that this fact had 
been proven a long time ago by A. Dixon ([10]). 

In this connection the linearly symmetric sets of nodes on a surface in I133 are 
those for which the restriction of 5r to an hyperplane section C not passing 
through the nodes gives rise to an ineffective thetacharacteristic on C. 

Finally we want to mendion that if in Proposition 2.28 one allows the Bifs to 
have some common zero (hence at singular points of C), then one has a 
correspondence with thetacharacteristics or with 2-torsion bundles on a partial 
normalization of C: we are going to discuss this in a future paper, giving appli- 
cations to the theory of curves. 

w 3. Quartic and Quintic Surfaces 
and the Counterexample to Babbage's Conjecture 

Let N be an "even"  set of nodes on a surface F of degree n < 5 :  then, by 
Theorem 2.16, N is symmetric iff HI(F,(gp(L))=0,  i.e. the double cover S of 
Propositions 2.11, 2.13 has q=0 .  

The case of n = 2, 3 being trivial, we want to discuss even sets of nodes when 
n =4, 5, rediscovering Gallarati 's  classification ([13]). 

Theorem 3.1. I f  F is a quartic surface with an even set N of t nodes and only 
rational double points as singularities, F is symmetric, and N is symmetric except 
for the case when t= 16: /f this occurs F is a Kummer surface. 

Proof Let 4~: S--*F be the associated double cover. If N is weakly even S is a 
minimal model of a surface of general type with K 2 = 2 .  Hence H~(S, 2Ks)=O 
([6] p. 185) and therefore, since 

ha(~,2K~)=t=hl(F,  H + A ) + h l ( F , L ) = t  +hI(F,L),  

h t (F, L ) =  0 and Theorem 2.19 applies. 
If N is strictly even, the possible values for t are only 8 or 16 by Proposi- 

tion 2.11 since t <  16 (see [33]). 
When t =  8, then z(F, H - L ) = 2 ,  ~((P, L ) = 0  (they are, respectively, equal to 0, 

- 2 when t = 16). 
Since h ~ ((gu(H - L)) = 2, h 1 (O n (H - L)) = 0, from the exact sequence 

O~ R~ ~ H~ n(H - L)) ~ H ~ ((gp(- L)) 

-~ HX ((gp(H -L ) ) -~  H~((gu(H - L ) )  ~ 0  

we deduce that for t=8 ,  dimR~- =2,  hi(P, (9(L))=hl(P, ( 9 ( - L ) ) = 0 .  
When t =  16 d i m R ?  =0,  h~(P, L ) = 2  so that the double cover S is an abelian 

surfaee and N is not symmetric. 
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In this last case, however, F possesses 16 weakly even sets of 6 nodes, the 16 
complementary ones (with 10 nodes), and 30 strictly even sets of 8 nodes (cf. e.g. 
[16], pp. 762 and loll., exp. p. 787). 

Lemma 3.2. I f  a quintic surface F has an even set N of t nodes, with t > 20, N has 
order >4. 

Proof If H~ there exists a quadric Q tangent to F along a curve 
C, and having odd multiplicity at the nodes/'1 . . . . .  P~ of N: hence Q is smooth at 
them. 

Also, diVQ(F)=2 C implies that Q has to be singular since otherwise divQ(F) 
would not be divisible by 2 in pic(Q) (its bidegree being (5, 5)). Q cannot be a 
plane n counted twice, because Q is smooth at the P~'s, and if Q=/rlw/l:2, I 

=glc~zr 2, 1 does not pass through any node, so F.rci=kil+2C i ( C = C I + C  2 
/ 

kl +k2 1). 
\ 

One can assume that C 1 passes through more than 10 nodes of N, P1 ... . .  P=: 
but 

2p (C1) -2  = - 2 = ( C 1  .(C~ +H))~ 

f ) ( 3 - k ) d e g C l - s  
=I C1 "(3H-kl l -  Ai - 2 

i = l  

As k 1 =ei ther  1 or 3, s = 8  or 4, absurd. Finally if Q were a cone with vertex P, 
since P(~N, by Lemma 2.3 we would get t = 16. 

Theorem 3.3. I f  N is an even set of t nodes on a quintic surface F, N is symmetric 
when t < 2 0  ( t=16  or 20), 

Proof Consider the exact cohomology sequence of 

0 ~ eJp (L) ~ (5~ (H + L) ~ O n (H + L) ~ 0. 

By Proposition 2.28 h~ can only be 0 or 1: by R.R. 
t 

Z( (P~(H+L) )=5-~ ,  and since h2(G'~(H+L))=O, it follows that t >  16. 

If t = 1 6  h~ and h'(G'~(L))=O, if t=20,  h~ by 
Lemma 3.2 and again hl((9~(L))=0, so that Theorem 2.19 applies in both cases. 

Remark 3.4. Quintics with an even set of 16 nodes are thus the zero set of the 
determinant of a symmetric matrix corresponding to the sequence of integers 
(i, 1, 3). They are tangent to a quadric cone along a smooth curve of genus 2. 

These surfaces F have been considered by Togliatti as the branch locus of 
the projection of a cubic hypersurface F in IP 5, with centre a general line l~  F, 
to a skew 1P 3. Togliatti proves that if F has r nodes (where r ~  15 by [32]) and 
the line 1 is general, then the quintic F has exactly 1 6 + r  nodes: for r = 1 5  one 
obtains a quintic surface with 31 nodes. A Beauville ([5]) has proved rigorously 
that 31 is the maximum number of nodes that a quintic surface can have, and in 
the course of proving this he shows also that there do not exist on a quintic even 
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sets with more than 20 nodes (thus confirming a conjecture of Gallarati in 1-13]) 
and that a quintic F with 31 nodes possesses 31 even sets with 16 nodes: it 
follows then that Theorem 3.3 can be stated without the restriction t < 20, and as 
a consequence one gets that a quintic with 31 nodes is a Togliatti quintic. 

We now come to the counterexample to the conjecture of Babbage, by 
simply restating Corollary 2.17 in a particular case: 

Theorem 3.5. I f  F is a quintic surface whose singular set consists of a linearly 
symmetric set N of nodes, F=det(ai3(x)), and q~:S~F is the double cover 
ramified on N, then: 

i) r is the canonical map of S. 
ii) the canonical ring of S is generated by linearly independent elements 

x o, x l ,  x 2, x 3 ~R~(, w I . . . . .  w 5 ~R 2 subject to the following relations." 
3 5 

a) Z ~ aijwjx =O f o r i = l  . . . . .  5 
k - O  j = l  

b) wiw j -  Bij(x)=O for i , j= 1 . . . . .  5. ((Bij) being the adjoint of (ai~) as usual). 

Theorem 3.6. I f  S is as in Theorem 3.5, its local moduli space has dimension bigger 
than 30, and for a general deformation the canonical map is a birational morphism 
on a surface of degree 10. 

Proof. By R.R., if T s is the tangent bundle to S, 7 2 5 Z(Ts)=gKs-~C2(S),  and here 
c2(S)=50, hence g(Ts)=-30 ,  and hl(Ts)=30+h2(Ts) (h~ S being of 
general type). By Kuranishi's theorem ([22]) (cf. also [21] p. 165 and fell.) there 
exists an analytic subspace X of a neighbourhood of 0 in Hi(S, Ts), defined by 
hZ(Ts) equations, hence of dimension >30, and a family f: ~ - - , X  which is the 
univeral deformation of S (we set Sx= f -  l(x), so S~So). Let ~.~lx be the relative 
dualizing sheaf (co~l x restricted to S~ is Ks~): h~(S, Ks)=0,  and by base change 
f,(cO~tx) is a trivial bundle of rank 4 (see e.g. [17] Theorem 12, 11, p. 290). 

Fix 4 independent sections of f,(e)~elx): they lift to 4 sections of ~o~1 x which 
span H~ Ks~)Vx, and do not have common zeros on S = S  o. Hence we can 
assume, by shrinking X, that they do not have common zeros on 5P; so there is 
defined a morphism q~x: Y ~ I P a x  X, and <bx[s~. ~ ix~ is the canonical map of S~. 

We want to prove that r x is generally injective. If the contrary holds, we can 
assume it to be a finite map of degree 2, and let ~r be the involution determined 
by r x on 5~: since a has only isolated fixed points on S 0, cr has no divisor of 
fixed points on 5 p, and on S j  has only isolated fixed points, at worse. Then 
Vx F~ is aquintic with an even set of nodes; since H~ ( 9 ~ ( H - L ) ) = 0 ,  by R.R. 
t > 2 0  so t = 2 0 V x  by shrinking X again. 

The result then follows by Proposition 2.26. 

Proposition 3.7. All the double covers S of linearly symmetric quintics are 
diffeomorphic. 

Proof. Let V be the open set of Hom(C4,  Sym2(~5)) of linear maps 
(x o . . . . .  xz)~(ai~(x)) such that det(aij(x)) is a symmetric quintic, and let Y~--~V 
x IP a-be the family of quintics parametrized by V, q: 5 ~ ~ V the family of double 

covers. Then q is a differentiable fibre bundle with connected base. 
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An interesting application of the notion of even sets of nodes concerns the 
family of surfaces in IP 3 of degree n with exactly d nodes as singularities. 

This family is clearly irreducible for n <  3 (for n = 3 one exploits the plane 
representation of the cubic surfaces) but fails to be so for quartic and quintic 
surfaces for certain values of d. 

The reason is the following: first of all, if N, N'  are two even sets of nodes on 
F, their symmetric difference is also an even set. Moreover, if ~ .r , M  is a 
family of surfaces, with d nodes (i.e. f is a topological fibre bundle), where M is 
smooth and connected, if one particular surface Fro= f ~(m) has an even set of t 
nodes, all the other do. In fact all the P~ are then homeomorphic,  and, by 
Lefschetz's (1, 1) theorem, the condition for a set of nodes to be even is merely 
topological. 

We also observe that if the d nodes of F impose independent conditions on 
the surface of degree n, then F is a smooth point of the variety of surfaces of 
degree n with d nodes: in view of Theorem 3.3, Remark 3.4, Proposition 2.25 we 
have for instance (besides other, classically known, cases [183) 

Proposition 3.8. The variety V of  quintic surfaces in IP 3 with 20 nodes is reducible. 

Proof  There exist quintics F with 20 independent nodes and an even set of 16 
nodes by Remark 3.4, and these cannot be linearly symmetric by Theorem 3.3. 

w 4. Some Numerical Campedelli Surfaces with ~ = 77/5 2E. 

In this paragraph, as in the following, we consider the standard representation of 
the symmetric group ~5 on r ~, by permutation of the indexes {0 . . . . .  4}: i.e. if 
~ , ~ ,  Y=(Yi) a(Y)s=Y~ '~.il, or in terms of the canonical basis e o . . . . .  e4, a(ei) 

4 

= e,liv The hyperplane ~ y~ = 0 is an irreducible representation of ~ ,  we call it 
i=0 

V. Identify 77/52~ with the cyclic subgroup of ~5 generated by the cycle 
=(0, 1,2, 3,4). Let W be the regular representation of 77/57Z: W has a basis 
w 0 . . . .  , w 4 where z(wi)=wi+ 1 (i, i+1  are to be understood as elements of ;g/577). 
We want to determine the ~/57Z equivariant linear maps A: V ~ S y m  2 (W). 

and 
4 4 

A(z(y) )=~(A(y) )  <:> ~ k = k aijYk 2 ai+ 1,j+ 1Yk ~, 
k = 0  k = 0  

i.e. ,,k _~,k+t (remember that also one has ai i ~ij--~i+ 1 ,j+ 1 
Therefore Hom~/5~(V| Sym 2 W) has Dimension 15. 

Hom~/5~(l12 , Sym 2 W)=  {(aij)laij =ai+ 1,.i+ ~} 

has dimension 3, so, if U'=Home/~e(V, Sym2(W)), d i m U ' = 1 2 .  For  a e U ' ,  a 

a k k =0:  this gives a symmetric quintic on the =( i j ) ,  let F~, be det aiyk  
k -  
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4 

hyperplane ~ yi=0,  provided that the equation defines a surface with only 
i = 0  

nodes as singularities. 
This requirement, plus the one that F o does not contain the 4 fixed points for 

the action of Z /57 /on  IP 3 =IP(V), determine an open set U in U' (that L? is not 
empty is shown e.g. by the example in the next w 

Proposition4.1. For a~O the action of 7Z/57Z, lifts to the double cover S,, and the 
quotient S,/z/sz is a numerical Campedelli surface X, (i.e. K 2 = 2, q(X)=pg(X)= 0), 
with fundamental group 71/57l. The surfaces X thus obtained form a proper sub- 
variety in their local moduli space. 

Proof. S,, is given in L by the square roots of a section s6H~ such that 
div(s)=A. Since nl(Fa)=0, from r * ( 2 L ) - 2 L ,  it follows that r*(L)~-L; multiply- 
ing by a constant if necessary we can arrange things so that this isomorphism q~: 
L~r* (L )  gives a lifting to L of the action of 7//57/ on F," finally, since 
H~ is 1-dimensional, we can again multiply ~o by a 5th root of unity 
so that q)(s)=s. 

Notice that in this way the action of 7//57/on S, is without fixed points~ thus 
the quotient X is smooth, and has K2=2 .  Z((Sx)=l; the assertion on the 
fundamental group comes from the fact that S, is simply connected (Proposition 
3.5 and Proposition 5.1). 

The local moduli space of X has dimension > - z ( T x ) = - ( 6 z . 2 - ~  �9 10)=6. 
On the other hand if X, X' are obtained from F., F u and are isomorphic, 

there is given an isomorphism qJ of S., S., compatible with the 7//57/ action, 
inducing an isomorphism if*: R(S..) ~ R(S.). 

In particular 

~9*'R + �9 1 ( S a ' ) ~ ' e [ ( s a )  -~V, ~ * : R 2 ( S a ' ) ~ R 2 ( S a ) - ~ W ;  

a,a' being given by the first polarity map, there are automorphisms (of 7//57/ 
representations) g: V ~  V, h =  W ~  W such that (a')=sym2(h)(a)g. 

So, if G=Autg/5g(V ) x Aut~/5;z(W)~(r 4 • 5, G contains the subgroup 
H={(g,h)ig=2I 4, h=pl~ with 2 , p e ~ * ,  and )tp2 =1} which acts trivially on U, 
and if we set d=G/H~-(r  8, every point in ~? has a finite stabilizer in (~ (by 
Theorem 3.3, e.g.). Therefore the quotient U/(~ exists and has dimension 4. 

w 5. A Hilbert Modular Surface for the Field Q ( ] / ~ )  and its Canonical Ring 

We first summarize some results and constructions contained in ([34]). 
Let K be the field Q ( ] / ~ ) ,  C K the ring of algebraic integers of K, 6' K 

= 2 rm~neZm-n(mod2)  , G the Hilbert modular group IPSLa(CK), F 

the 2-congruence subgroup of G, 

F = { ( ~  ~)elPSLz(CI~)( ~ ~)-=(10 ~)(mod2)}.  



B a b b a g e ' s  Con jec tu re ,  C o n t a c t ,  S y m m e t r i c  D e t e r m i n a n t s  459  

(~K/2e,,,-----IF4, (the field with 4 elements), so that G/F=SL2OFj=U 5 (the 
alternating group in five letters), where the last isomorphism is obtained by the 
representation SL2(IF~)--, Aut (IP 1 (lF4)) (see e.g. [11] p. 309). 

The extended modular group (~-~IPGL2(gI,, ) is the subgroup of matrices 
with determinant a totally positive unit, and if Uc(5 K is the group of units, U + 
the subgroup of totally positive units (U+/U2~2g/2;g), we have the following 
exact sequence 1 --, G ~ G ~ U +/U 2 --~ 1. 

Analogously to F, f is the 2-congruence subgroup of 

f = { ( ~  bd) e d  (~ bd)-(10 ~)(mod2)}. 

Denote by a--~a' conjugation in 6 K, by H the Siegel upper half plane. H 
= { z e l r l l m z > 0 } :  F acts freely on H x H via the action 

[az I +b a'z2 +b' ) 
tz,. z2)-, ~ , ~  +3" c '~  + d' " 

Compactifying H x H/F and resolving its singularities one gets a non minimal 
smooth surface Y; after blowing down 20 exceptional curves of the first kind via 
a map f :  Y-* S, one obtains a minimal surface S with 7~(Cs)= 5, Ks z = 10. 

From a theorem of Schvartsman ([27] p. 188-189) one derives the following 

Proposition 5.1. S is simply connected. 

The canonical map q~: S ~ I P  3 is a finite map of degree 2 and F=q~(S) is a 
quintic surface with 20 nodes, coming from the 20 isolated fixed points for the 
involution determined by q~ and induced by the action of ff/F on Y. 

If f" is obtained by first compactifying and then resolving H x H/F, f" has 10 
exceptional curves of the first kind and by a blow down map f: f '--,P one 
obtains the desingularization of F. The situation is perhaps best illustrated by 
the following diagram: 

where p,/3 are double covers ramified on 20 smooth rational curves with self 
intersection - 2 ,  m, rfi are blowing ups of the 20 isolated fixed points of the 
involution. S is acted on by G/F = ~5, and V= H~ has 5 special sections, 
corresponding to the cycles coming from the resolution of the 5 cusp singulari- 

5 

ties; denote them by x 1 . . . . .  xs: one has ~ x i=0  and ~-s acts on V by a(xl) 
i = 1  

=x~m (V is thus the irreducible self dual representation of ~5 considered in 
w 4). in [34] it is also shown that the equation of F in the dual basis is 

) y2 -5 /4  ~ t y  ~ -~1Y3 , 
i = 1  = i 
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and the 20 nodes of F are the ~s-orbi t  of the point 

P o = ( - 2 , - 2 ,  - 2 ,  3 + I f  $7 ,  3 - ] f 7 ) .  

We are going to apply the results of w 3 to this particular surface S, using the 
remark that, R being the canonical ring of S, R +, R2, are representations of ~5- 

Theorem 5.2. R~ is an irreducible representation of 6 5. 

Lemma 5.3. In IP 3= IP(V) there exists precisely an ~5-invariant qu~rtic B passing 

through the point Po = ( - 2, - 2, - 2, 3 + ] f ~ 7 ,  3 - ] / -  7), and B is smooth. 
5 

Proof. As in [34], set S h = ~ yh, and denote by a h the h-th elementary symmetric 
i = 1  

function. Since S 1 = a j  =0  on IP 3, any ~5-invariant quartic B belongs to the 
pencil 2S4+1~S 2. If we impose the condition Po~B, we obtain 2=4 ,  /~=7. A 
point (Yi)~Ip3 is singular for B iff there is a constant c such that OB/~xi(y ) =c for 
i=  1 . . . . .  5, or, more explicitly, 

(+i)  4y3+7S2(y)y i=c/4  for i=1  . . . . .  5. 
5 

Add the 5 equations (+i), noting that ~ y i=0:  then 4S3(y)=5/4c, and 
( + i) is equivalent to i- t 

('l#i) Y3+�88 1 -~S3(Y ) =0. 

As in [34] we note that the 5 coordinates Yl . . . . .  Y5 of (y) satisfy the same 
equation of third degree, therefore they can take at most 3 distinct values (and at 
least 2)t, 

Let cC/3, 7 be the 3 roots of equation ~: then for the 5 coordinates of (y), up to 
permutation, one has the following possibilities 

1) (~, c~,/L/~, 7) 

2) (c~, c~, e,/~, 7) 

3) (~, ~, ~,~,/~) 

4) (~,~, ~, ~,/3) 

They however can all be excluded as absurd because e,/3, ), are the roots of 
(~) so we must have 

i) : ~ + f l + 7 = O  
ii) c~ + c~y + flT= 7/4Sz(yl , ..., ys) 5 

iii) c~/~ 7 = 1/5S3(Y ) and moreover we must have ~ yi=0.  
i = l  

For example let us show how possibility 1) is excluded: 

5 

Yl = 0  r 2 ~ + 2 / ~ + 7 = 0 ,  
i = 1  

and this, with i), gives/3 = -  ~, and then 7 =0. ii) then cannot hold, because the 
left hand side is _~2, the right hand one is 7e 2, and the solution c~=0 must be 
excluded. 
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Proof of Theorem 5.2. The symmetric group ~5 has two 1-dimensional repre- 
sentations which we label here by 1 and ~, and which correspond to the trivial 
and the signature character, As for the other irreducible representations, they 
are given by the linear spaces freely generated by the standard Young tableaux 
of a given shape (see [19], [20] for the definitions and the proofs of the 

statement). V corresponds to the shape ~ ,  to the shape ~ ]  corre- 

sponds a representation we call W (as it will turn out to be isomorphic to R2), 

to U = A 2 V  corresponds the shape ~ "  in this correspondence tensoring a 

representation with 7, has the effect of exchanging rows with columns in the 
shape. 

W is 5-dimensional, U is 6-dimensional. If R 2 were reducible, it would contain 
a l-dimensional subrepresentation: so there would exist a section w E R  z such 
that a(w)=ei ther  w or ;((cOw (for a ~ 5 ) ,  and in any case w 2 would be an 
invariant section in R,~, corresponding to an invariant quartic passing through 
the 20 nodes and tangent to F. This however is impossible by Lemmas 5.3, 2.3. 

Remark 5.4. Since Z 2 = l, Sym2(W) ~ SymZ(W | Z). 

Given representations W, W' of a finite group it is well known that for the 
corresponding characters the following rules hold: 

Zw| ", Zw| . . . .  Zw+Zw., 

and the characters of irreducible representations are an orthonormal  basis for 
the central functions on the group, 

Using these rules and the character table for the representations of | that 
we reproduce here for the reader's convenience: 

Representations Conjugacy classes 

1 (12)(34) (123) (12345) (1234) (12) (12)(345) 

X 1 1 1 l - t  -1 -1  
v 4 0 1 -1 0 2 -1 
W 5 1 -1 0 1 -1 - I  
U 6 - 2  0 1 0 0 0 

one can then compute (as A 2 V ~ U) and find that 

Sym~(V) = 1 | 1 | (V) 3 �9 W |  (W|  Z) 2 | U. 

By Remark 5.4 and Theorem 5.2, Sym2(R2)~Sym2(W) ,  
Sym4(R~) ~ Sym4(V), and by Corollary 2.25 Sym 2 (W)c--~Sym4(V). 

By computing the character again, we get 

w |  w '~  1 | w |  v |  u | 1 7 4 1 7 4 1 7 4  

moreover 
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diagram ~ ] .  So, 

Since V|  z is not contained in Sym4(V) we have A 2 W~_(V| U (for 
reasons of dimension and because 1 c Sym 2 W), Sym2(W)= 1 | VO W|  (W| Z), 
and this last 15-dimensional subrepresentation of Sym~(V) corresponds to the 
space of quartic surfaces passing through the nodes. 

1 is given by the line generated by the quartic 4 S 4 +7 S  2 (the unique 
invariant quartic passing through the nodes), and V is the image of the first 
polarity map: 

5 ~F 5 

-~S~(x) x , -  S~(x)+ 3 S~tx)). 

Theorem 5.5. The canonical image F of the Hilbert modular surface S is given by 

vanishing of the determinant of the jollowing symmetric matrix twhere 
i 

the 
5 \ 

x a . . . . .  xs, with ~ xi=O, are coordinates in IP(V) such that ~5 acts by (~r(x))i 
X~r - 1 (i))" i - 1 

(-2x~+2x2+2x3+2x4+2Xs) (xl+xz-x3--3x,~--xs)  {--xi-x2+x3+x4+3~cs) ( - - xa+x2-x3+3x4+x  5) (X1--X24,-X3--X4--3XS) 
(x t + x2 - -  X3 - -  3 x 4  - -  x s )  (4xa)  ( 2 x z  - 2x4  - 2x5} ( -  2 x , d  (x i  - x2 - x3  + x4 + x s) 

(--Xl--Xz+X3+xa+3xs) ( 2 x z - 2 x a - 2 x 5 )  (4x5)  ( x i - x2  x a + x 4 + x s )  ( - 2 x  51 

( -- X l 4- x 2 -- X 3 J- 3 x  4 + XS) ( -- 2X4) (x  I -- X2 -- x3  -L X4 + X5 } (4X4 } [2X~ -- 2X 4 -- 2Xs) 
(Xl--Xz+X3--X4--3Xs) (X l --X2--Xa+X4+Xs) ( - - 2 X 5 )  (2X3--2X4--2Xs) (4X~) 

Remark 5.6. Theorems 3.3 and 5.5 combine to give a complete description of the 
canonical ring of S. 

Proof of 5.5. W corresponds to the representation associated to the Young 

in concrete terms, a basis of W is given by: 

Pick as generators of ~ 5 the following transpositions: a 1 = (12), a 2 = (2 3), a 3 
=(34), ~r4=(4 5). Using the straightening formulas of Doubillet-Rota-Stein 1-12] 
we can compute the action of the ~j's on W. 

(4 5) acts by sending wj ~ - w l ,  by permuting 
W 2 with w 3 (W 2 4--'~W3) , W 4 with w 5 (w 4 ~ Ws). 

(3 4) acts by: w3--* - w  3, w 4 ~  - w 4 ,  w I ~-,,w2, 
W 5 ~ W 5 - - W  4 - w  1 - - W  3 -{ - -W 2 

(2 3) acts by: w~---~ - w l ,  Wz~-~w4, w3~--~w s. 

(1 2) ,  acts by: wl ---~ - w l ,  w2-* - w 2 ,  w3--~ -w3 ,  
W 4 - - - - ) ' W 4 - - W 2 J f - W 1 ,  W 5 - - - ' - ~ W 5 - - W 3 - - W 1 .  

w2:  
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Sym2(W) has the monomials w I wj ( i , j= 1 . . . .  ,5 i<=j) as a basis, and we know 
that there exists one and only one ~5-equivariant map a: VO 1---~ SymZ(W), and 
we must then only find its coefficients in the given bases. 

Suppose then that 
5 

�9  a i j w i v i j X  k 
i<=j 
k - 1  

a(tr(x)) = cr(a(x)), V ~ ~ ~5" 

Then, e 1 . . . . .  e 5 being the basis of the coordinates (x 1 . . . . .  xs) we have: 

a ( ~ ) =  y~ ~ o-(~,) 8ij WiWj ,  ~ e,r(i ). 
i<=j 

so the condition of equivariance is that 

(*) 2 a,k tr(wiw~) = Z a~[)k'wiwj" ( k = l  . . . . .  5), V c re~  5. 
i<j i<j 

Of course it is enough to verify (*) when a is one of the four above 
mentioned generators of ~s .  

Taking (e 1 . . . . .  e5) as a basis for V |  (w~, WlW 2, wlw3,  w~w~, w l w  s, w 2, 
2 

NeW 3, W 2 W 4 ,  N e W s ,  W 2, W3W4, W3W5, W4, W4W5, W 2) a s  a n  (ordered!) basis for 
Sym2(W) ,  the only matrix (up to a constant multiple) for which the equations (*) 
are satisfied is found, after a tedious computation, to be equal to the transpose 
of 

- i  1 - 1  - 1  1 1 1 1 - 1  

- 1  1 - 1  1 

3 1 3 - 1  
1 3 1 - 3  

0 0 0 1 0 1 0 0 0 OXx 

0 2 0 - 1  0 - 1  0 0 0 

0 0 0 - 1  0 - 1  0 0 2 

2 - 2  - 2  1 0 1 0 2 - 2  
0 - 2  0 1 2 1 - 2  0 - 2  

Finally we observe that 

and we multiply the matrix 
follows. 

Wi@Wj-~-Wj@W i 
the monomial wiw j corresponds to 

2 
by 2 not to lose integral coefficients: the result then 

Further Remarks 

Our construction has been generalized by W. Barth ([3]) by considering 
discriminant surfaces F of a quadratic form (a) defined on a vector bundle V and 
with values in a line bundle L (the case of symmetric surfaces being the one 
where V is a direct sum of line bundles). Again, the locus where corank (a) = 2 is 
an even set of nodes, if (a) is "general" in the appropriate sense, and it is an 
interesting question whether all even sets of nodes can be obtained in this way. 
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We also wonder  if Theorem 2.23 holds under  the weaker assumpt ion  that  N 
be strictly even for n odd, weakly for n even. 

Moreover,  some bounds  for the n u m b e r  of nodes of an even set on a surface 
F of degree n might be useful to extend the result of [-5] in degree > 6. 

Referring to 2.5, an  even set N can be both  strictly and weakly even iff the 
hyperplane class H of F is divisible by 2 as a Cart ier  divisor. 

The question, posed by the referee, is whether this can happen:  we believe 
that  the answer is no, for any  surface F, and  we give now a short proof  for the 
case when F has only ra t ional  double  points  as singularities. 

If n is the degree of F, there exists a smooth  surface G of degree n in IP 3 and 
con ta in ing  a line: therefore the hyperplane  class of G is not  divisible by 2 in 
cohomology.  By G.N. Tjur ina ' s  result (Funk.  Anal .  i Pril. 4, n. 1 77-83) the 
min ima l  resolut ion F '  of F is a deformat ion  of G, so F'  is diffeomorphic to G 
under  a diffeomorphism which takes the canonical  class into the canonical  class, 
and thus the hyperplane  class of G into the pul l -back to F '  of the hyperplane 
class of F ;  hence this last is not  divisible by 2 in Pic(F). 
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