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ON THE MODULI SPACES OF SURFACES
OF GENERAL TYPE

F. CATANESE

0. Introduction

It is nowadays well known that there exists a coarse moduli space Wl for
complete smooth curves of genus g, and that Wlg is a quasiprojective normal
irreducible variety of dimension 3g — 3.

Recently D. Gieseker [11] proved the existence of a quasiprojective coarse
moduli space Wl for surfaces of general type modulo birational equivalence.

Whereas, through recent work of J. Harris & D. Mumford [12], much is
known about the geometry of Wlg, very little is known about Wl, except for
particular classes of surfaces.

By the results of E. Bombieri [2] (cf. also [3]), the surfaces of general type
with given numerical invariants χ (= χ((Ps)) and K2 (= self intersection of a
canonical divisor of the minimal model S) belong to a finite number of
families.

Therefore, fixing K2 and χ, which are invariants (under orientation preserv-
ing homeomorphisms) of the oriented topological 4-manifold underlying the
minimal model 5, isomorphism classes of surfaces S with those invariants are
parametrized by a quasiprojective variety Wlκi χ with a finite number of
irreducible components Wlλ, -,Wlk and such that, if you take two points
belonging to the same connected component of Wlκi χ, they represent isomor-
phism classes [S]9 [S'] of two minimal models S and S' diffeomorphic to each
other.

In analogy with the case of curves, we shall say that Wl is a moduli space for
a surface So of general type with given K2, χ if Wl is the union of all
components of Wlκiχ whose points correspond to all the S's which are
(orientedly) homeomorphic to So.
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The basic questions are:
Is Wl irreducible?
If Wl is reducible, is it pure dimensional?
E. Horikawa [14] showed that surfaces with ϋ: 2 = 5,/?g = 4, q = 0 give rise

to only one moduli space, connected but with two irreducible components of
dimension equal to 40.

The first purpose of this paper is to show that the basic questions have a
negative answer "in general", i.e., for surfaces which are quite spread in the
geography of surfaces of general type and, as we shall see in the sequel, cannot
be considered to be by any means pathological.

To give a more precise statement let us introduce the number M = M(S)
which is called the number of moduli of S: by definition, it is the dimension of
Tt at the point [S] representing the isomorphism class of S. By what we have
said, for given K2 and χ, M can take only a finite number of values.

Our main result is the following
Theorem A. For each natural number n there exist positive integers Mx < M2

< < Mn and orientedly homeomorphic simply connected minimal models

Sl9 - , Sn of surfaces of general type such that M(St) = Mt.

One of the main ideas, which was suggested to us by B. Moishezon, is to use
M. Freedman's recent result (cf. [10], [31]) by which if Sv S2 are compact
oriented differentiable simply connected 4-manifolds with the same intersec-
tion form, then they are (orientedly) homeomorphic. The surfaces we construct
are "bidouble" covers (i.e., Galois covers with group (Z/2)2) of P 1 X P 1 and
their canonical map is a biregular embedding.

The new technique we use is a theory of "natural deformations" of bidouble
covers: to keep the paper self contained we will pursue elsewhere the general
theory of "natural deformations" of abelian covers. This technique allows us to
construct irreducible components of the moduli spaces and compute their
dimension.

We show then that these components are all different and then, using simple
connectivity and Freedman's result, the proof of Theorem A is reduced to a
lemma in number theory, which was proved by E. Bombieri and is contained in
the appendix.

The second part of the paper (§§5, 6) is devoted to the problem of giving
bounds for M in terms of the (topological) invariants K2, χ.

By the well-known results of Kuranishi [20] and Wavrik [34], a neighbor-
hood of [S] in Wl is a quotient of the Kuranishi family B by the finite group
Aut(S'); hence, if 7^ is the tangent sheaf to S,

dim Hι(S, TS)>M> dim H\S, Ts)-dim H2(S, Ts) = lOχ - 2K2.
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We prove the following results.

Theorem B. M ^ lOχ + 3K2 + 108.

Theorem C. If S contains a smooth canonical curve then M < lOχ + q + \.
Finally we consider the case of irregular surfaces.
G. Castelnuovo [4], using incorrect results of F. Severi [30], stated that if S is

an irregular surface without irrational pencils, then M ^ pg + 2q.
We show that this is false by producing bidouble covers for which, keeping q

fixed, M grows asymptotically like 4pg.
However, with different techniques we prove a Castelnuovo-like bound:

Theorem D. Assume q > 3 and that there do exist η 1 ,η 2

 G H°(S,UL

S) such
that div(η1 Λ η2) is a reduced irreducible curve (this hypothesis is verified if in
particular H°(S, Ώ,ι

s) generates il\ outside a finite number of points).
Then K2 > 6χ andM < pg + 3q - 3.
Of course, two major open problems remain:
(i) Is Tt connected?

(ii) If Ttάiΐί(S) is the union of the connected components of Tt(S) corre-
sponding to surfaces diffeomorphic to S, is 2)ϊdlff "in general" irreducible, or
pure dimensional?

In a sequel to this paper we hope, by studying deformations "in the large"
of our surfaces, to be able to prove that question (i) also has a negative answer
in general. Question (ii), on the other hand, is intimately related to the problem
whether Freedman's result can be made stronger as to give diffeomorphism of
the two given differentiable manifolds.

It is a pleasure here to thank E. Bombieri and B. Moishezon for their
precious help and warm encouragement.

Conventions. Throughout the paper we shall work over the ground field C
of the complex numbers.

S shall usually denote a minimal model of a surface of general type, Ts will
be its tangent sheaf, Ω̂  will be the sheaf of holomorphic 1-forms (resp. Ω| for
the 2-forms).

Divisors will always be Cartier divisors, and = will denote linear equiva-
lence, ~ algebraic equivalence.

Ks will be a canonical divisor, so that 0s(Ks) = Ω|.
For a vector space V, Vv will denote its dual.
Given a coherent sheaf ϊFon a complex space X we shall denote H\ϊF) =

As usual pg = Λ°(Ω|), q = Λ°(Ω^), and πλ will denote here the topological

fundamental group.
If a, b, c G Z, a = b (mod c) will mean "a is congruent to b modulo c".
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If/, g are functions from N to R, / x g means

limf(n)/g(n) = l.
n-* oo

When D is a divisor, we shall say that x is an equation of D if x is a section
of ΘX(D) whose associated divisor of zeros is D.

If A and B are divisors on a smooth surface S, A - B denotes their
intersection number.

If G, H are two groups G* His their free product.
The arrow -» denotes a surjective homomorphism, and the arrow >̂ an

injective one.

If A, B, C are sets, A - B - C is the set of elements of A not belonging to
B U C.

Remark added in proof. Recently J. Carlsson proved that the image of Wl
under the period map ψ, attached to the integrals of the holomorphic 2-forms,
has dimension at most A1'1 - 1. Therefore, if a generic local Torelli theorem
would be true for Wl (i.e. if the general fibre of ψ had dimension 0), then one
would get the inequality M < 1 0 - J f 2 - l , which is considerably better than
the one given by Theorem C.

1. Smooth abelian covers and their fundamental group

In this section we shall establish a result (Proposition 1.8) which shall be
used in the sequel (Proposition 2.7) in order to show that certain surfaces that
we shall construct as bidouble covers are simply connected. In the course of
doing this we shall consider a more general situation: S and X are smooth
(compact) manifolds and π: S -> X is a finite Galois cover with Galois group
G abelian, and we shall consider the problem of determining πτ(S).

By the theorem of purity of branch locus [36] the critical set of π is a divisor
R, the ramification divisor, whose image π(R) is called the branch divisor and
will here be denoted by D\ assuming that X is simply connected and that the
components of D are flexible (cf. Definition 1.4) we prove (1.6) that ττλ{X — D)
is abelian and compute (1.8) π^S) in terms of the cohomology classes of the
components of D.

We then conclude the section with a result (Corollary 1.9) of independent
interest.

Proposition 1.1. R and D are divisors with smooth components and with
normal crossings. Moreover, if x e S, the stabilizer of x, Gx, is the direct sum of
the stabilizers of the components of R passing through x. These last subgroups are
cyclic.
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Proof. For g e G, let Fix(g) be the set {x\g(x) = x). If Γ c S X S is the
graph of g, and Δ is the diagonal, then Fix(g) is the intersection of Γ with Δ.

Notice that, in general, the stabilizer of a point x, Gx, has, via the differen-
tial, a representation px on Tx s.

Now the eigenvalues of ρx(g) for x e Fix(g) are roots of unity and depend
continuously on x9 therefore they are constant on the connected components of
Fix(g), and, by the rank theorem, Fix(g) is a union of smooth sub varieties of
dimension equal to the number of (+1) eigenvalues. It follows, in particular,
the well-known fact that px is a faithful representation.

Assume that Λz is a component of R and let Gz be the stabilizer of Rt (i.e.

G,= nxeRβx).
If x E: R^ then Gi has a faithful representation through ρx which is trivial on

Tx R since a finite subgroup of C* is cyclic, G, is cyclic.
Assume now that y is a point with nontrivial stabilizer Gy\ py splits as a

direct sum of characters χl9- ,χn of Gy. Now Fix(Gy) is the intersection of
the components of R passing throughy9 say Rl9— -9Rk.By what we have seen
if we put G; = ker(X l, ,χ l V ,χ J , G/ is cyclic and, if G,' # 0, then Fix(G/)
= R\ is a component of Λ passing through y. Moreover, all such components
are obtained in this way.

Since py is faithful, the G/'s give a direct sum G' = Θ"= 1 G/.
Consider Z = S/G' and π': 5 -> Z; set z = T7r( j ) .
Then z is a smooth point of Z and TΓ": Z -> A" is unramified in codimension

1, hence, by purity of the branch locus, π" is unramified and G' = Gy.
Therefore we can assume R] = Rt for / = 1, •,/:, R] = 0 for / > &, and

our assertions are proven if we show that D also has normal crossings, but this
follows because, if x e D and π(y) = x, a neighborhood of x in I is
isomorphic to a neighborhood of z in Z = S/G r q.e.d.

We remark at this point that 7r factors canonically as

where X' is maximal such that p' is unramified. In fact one must take X' as
S/G\ where G' is the subgroup of G generated by the stabilizers Gx of points
of 5.

Definition 1.2. We shall say that π is totally ramified if /?' is an isomor-
phism (i.e., if G' = G).

Remark 1.3. If πλ(X) = 0, then π is totally ramified (actually it suffices
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In what follows we shall make the (not too restrictive) hypothesis that

iΓι(X) = 0; then, with some mild conditions on the components £>,, we can

ensure that πx(X — D) is an abelian group by generalizing, with the same

method, a result of R. Mandelbaum & B. Moishezon [21, p. 218].

We borrow from them the following definition.

Definition 1.4. A smooth divisor D is said to be flexible if there exists a

divisor D' = D such that Όf Π D Φ 0 , and Df intersects D transversally in

codimension 2.

Remark 1.5. Notice that if D is flexible, then it is connected.

In fact, by taking sections of X with a general linear subspace of the P ^

where X is embedded, we can reduce to the case where X is a surface. Then

D2 > 0, and if D = A + B, with A B = 0, we can assume A2 > 0. By the

Index Theorem, B2 < 0 unless B = 0, but then B contains a fixed component

C oί\D\. Hence D' contains C, and the intersection is not transversal.

To see that the hypothesis of flexibility is essential in the following theorem,

consider the following example:

Let D = DιU D2U D3, where Dl9 D2, D3 are three skew lines in X = P 1 X

P 1 . Then X - D = P 1 X (C - {0,1}) a n d V * " D) = z * z

Theorem 1.6. Let X be a simply connected algebraic variety and D = DιΌ

• U Dk a divisor smooth in codimension 1 and with normal crossings in

codimension 2. If the D^s are flexible, then πλ( X — D) is abelian.

Proof. We can clearly assume, by virtue of Lefschetz's first theorem, and

considering again a sufficiently general linear section, that X is a surface.

Let 7] be a tubular neighborhood of Di9 and let p,: T( -> Dt be a retraction

preserving the Dj's for which 7] is a disc bundle over Dt.

Let γ/? for i' = 1, ,/c, be a simple loop around Dt\ i.e., if p0 is a basepoint

in X - D, γ7 is conjugate by a path starting fromp0 to a fibre of Pi\dτ.-D.

The proof consists of two steps:

(i) Each element is a product of conjugates of the γ/s.

(ii) Each yi is in the center of the group.

For the first assertion let δ e πχ(X ~ D)\ since Xis simply connected, 8 can

be represented as the boundary of an immersed 2-disc Δ which is transversal to

the Df.'s, and such that Δ Π 7] is a union of fibres of Pi\{T.-D) y D..

Our claim follows then immediately.

To prove (ii), it suffices to show that ^(7) - D) surjects onto πx(X - D). In

fact then one can notice that 7] - D is homotopically equivalent to an

S^-bundle W over Dt - (\JjΦiDj): if λ e π^W), λ can be represented by a

loop which does not project onto Di9 and then, since an S^-bundle over a

1-complex is trivial, λ commutes with γf..
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Finally, let us prove e. g. that 7 (̂7^ - D) surjects onto πx(X - D).
Since Dλ is flexible, we can choose D[ = Dλ transversal to Dλ and contained

in 7\: in fact this last property can be ensured by possibly replacing D[ by a
suitable member of the pencil spanned by Dλ and D[. This pencil defines a
rational map /': X—HP1; with a blow-up m\ X -» X of the basepoints of the
pencil, we obtain a morphism /: X -» P 1 which admits as sections the excep-
tional curves E!v ,Er (r = D2) of the blow-up.

Let Dj be the proper transform of Dj9 D" the proper transform of D[. Define
t e P 1 to be a critical value if either /"HO is singular, or if f'\t) c Z) =
U JLi £/> O Γ if ί is a critical value for f\g. We can also assume D" to meet
transversally the Dj's outside of E = U r

h=ιEh\ moreover we know that if
bj Π Ek is not empty, then it is a transversal intersection.

Let B = P 1 - {critical values}, Y = f~\B) - ττ~\D). Then/ = f\γ: Y -> B
is a differentiable fibre bundle with fibre F = D" — D — E.

Since Eλ is a section of/, we can find a tubular neighborhood Γ of Ex and a
section Γ of/: 7 -* ̂  such that Γ c Γ , hence, a fortiori, Γ c ^"HΓ!): in fact
T — Eλ is homotopically equivalent to an S^-bundle over P1, therefore its
restriction to B is a trivial bundle, moreover, by our choice of B, Dj is
transversal to the fibres of f\f-\By Therefore ^ ( 7 ) , by the homotopy exact
sequence of a bundle, is a semidirect product of πλ(F) and ^(Γ).

Hence, if Y' = τr(7), πx(Tx Π Y) -» ̂ ( F ) . But clearly, ^ ( F ) -• πλ(X -
D), ^(Γx Π F ) -» ^(Γi - X>), hence also ^ ( ^ - Z)) -• τrλ{X - D).

Corollary 1.7. Let π: S -* X be a finite morphism of smooth varieties of the

same dimension, with X simply connected. Then π is an abelian Galois cover if the

branching divisor Dofπ has normal crossing and consists of flexible divisors.

Proof. By Theorem 1.6, irx(X - D) is abelian; hence π\s_R has a group of
cover transformations G = πx(X - D)/^(S - R), and by the normality of S,
G extends to a group of automorphisms of S such that S/G = X. q.e.d.

In the hypotheses of Theorem 1.6, we know that πx(X — D) =
HX(X - D,Z). To compute this last group, which we already know to be
generated by k elements (the images of γ l 5 -9yk)9 we denote by V an open
tubular neighborhood of D and by 3Fits boundary.

By Lefschetz's duality

HX(X - D) = Hλ{X-V) = H2nl(X- V9 W) = H2nl(X, V ),

where the last isomorphism is by excision and n is the complex dimension of X.

The exact sequence of the pair, considering that V is homotopically equiva-

lent to Z), gives us

H2"-2(X) ^H2n-2(D) -> H2n-\X,V) -» H2nl(X).
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But H2n'ι(X) is zero by Poincare duality; hence irx(X - D) = coker(r).
By Poincare duality, and the formula relating homology to cohomology,

H 2n~2(X) is a free Z module and also, since V is orientable, H2n2{D) =
®Z[/),], where [DJ is the fundamental class of Dt. By elementary results on
abelian groups, considering the transpose of r, α: Zk = H0(D) -> H2(X, Z) =
H2(X,Z)we obtain the following result.

Proposition 1.8. In the hypotheses of Theorem 1.6, let M be the sublattice of
H2(X, Z) generated by the Z>,Λy, and h its rank. Then πλ(X - D) = Zk~h Θ H,
where H is the torsion part ofH2( X, Z)/M.

If moreover π: S -> X is an abelian cover with D = UZ),- as branching
divisors, Rt is such that 7r(Rj) = Di and Gi is the cyclic group of order mi which
stabilizes R,, then πλ(S) is the quotient o/ker: ( θ G,-» G) by Im f where f is the
composition of r with the surjection ofZkto θ ; Gt.

Proof. We are left only to prove the second part of the statement.
By arguing for (S, R) as we did for the pair (X, D) we know that Hn~2(R)

goes onto the kernel of the surjection πx(S -/?)-» ^ ( 5 ) . Also πλ(S - R) is
the kernel of the homomorphism Z Vim r ~* G.

Under this homomorphism the generators γz are mapped to generators of the
cyclic group G, and the relations given by Hn2(R) are that m^γ,) is
nullhomotopic in S.

Hence ^ ( S ) c Zk/\va r + mZk where mZk is the subgroup generated by
mλeV' - ',mkek, ev- -,ek being the canonical basis of Zk. By what we have
seen mZk is contained in the kernel of the surjection of Zk -> G.

Hence irλ(S) = ker(θ Gi/lmr -» G).

Corollary 1.9. Given any simply connected algebraic variety X of dimension
n ^ 2 and any abelian group G, there exists an abelian cover S of X with group
G" such that irλ(S) = G.

Proof. Let G = Φf=1 Z/m,Z be any decomposition of G into cyclic sum-
mands, and let H be a very ample divisor on X. Then we can pick divisors DtJ

(i = 1, •,&, j = 1, ,« + 1) with m{H = Dip and such that D = U . Du is
a divisor with normal crossings. Topologically, the covering of X — D is
obtained by considering the following homomorphism of πλ(X - D) -» Gn: let
ei} (j = 1, ,AZ) be the canonical generator of the addendum Z/mtZ in the
th copy of G in Gn\ then we map yu -> e l7 fory < «, and γ / ( π + 1 ) to Σn

j=ι ei}.
But in this way it is not clear that the cover S - R -> X - D extends to a

smooth cover, not just a normal one. But S can be constructed in the following
way: let S be the abelian cover of X with group Gn+1 obtained by taking, V/,y
in the line bundle H, the m t̂h root of DiΓ By Proposition 1.8, S is simply
connected, and is clearly smooth.
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Embed now G diagonally in G π + 1 : now, since D has normal crossings, it is

easy to verify that the resulting action of G is free.

Hence if S = S/G, πx(S) = G and S -> X is abelian with group G"+ι/G =

G\

2. Bidouble covers and their deformations

In this section we shall concentrate on the case where 5, X are surfaces and

for brevity we shall discuss the case where G = (Z/2Z)2, which is enough for

our present applications.

Our goal is to describe the datum of such a Galois cover π: S -> X in terms

of an algebraic setting which allows us to write down explicitly in many cases

the local deformation space of S. Anyhow, before proceeding to this special

case, let us explain the basic philosophy.

First of all, if G is abelian, π*Θs is the vector bundle on X which splits as a

direct sum Θ χ e G * i^, where G* is the group of characters of G and G operates

on JŜ  by the character χ.

5" is determined by the ^algebra structure of the integral algebra π*Θs, in

turn determined by nonzero homomorphisms of &χ Θ &χ, - > i ^ + χ , satisfying

compatibility conditions. These homomorphisms are determined by the equa-

tions xi of the Z>z's. Deforming the D/s one gets new abelian covers of X: to

obtain a bigger natural way of deforming S, one factors Vz = 1, ,k (R = Rλ

U U Rk) π as iTf. S -> Yi9 Yι -> X where Y, = S/Giy G, being the stabilizer

of R;. S is an m t̂h cyclic cover of Yi9 and there is a natural way of deforming a

cyclic cover since S is given as an hyper surf ace on a line bundle with base YJ;

the bulk of the problem is to put together these independent deformations in a

unique smooth family.

Assume now G = (Z/2Z)2 and let {σ1? σ2, σ3} = G - {0}.

Let Yt = S/θj be as above (notice that it has some ordinary quadratic

singularities at the isolated fixpoints of σ/? given by Rj Π Rk, where (z, j\ k) is

a permutation of (1,2,3)).

Let χz be the character orthogonal to σi9 and nonzero.

It is clear that {Pi)*Oγ. = 0x Θ &χr

The double cover Yt is ramified on Dj + Dk, therefore one can choose an

equation of Di9 xt (i = 1,2,3), such that XjXk is a section giving the homomor-

phism oί S^2 -> Ox which gives the algebra structure to (Pi)*Oγ.. We write

therefore.^ = 0X(-Lt) and we have

(2.1) 2L^Dj + Dk.
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We observe also that one has a homomorphism of

which is given by xk (notice that 2(L, + Lj - Lk) = 2Dk by (2.1) and that if X

has no 2-torsion then (2.1) implies the following linear equivalence (2.2)).

We have therefore also

(2.2) Dt + L^Lt + Lj.

Proposition 2.3. A smooth bidouble cover π: S -» X is uniquely determined by

the data of effective divisors Dv Z)2, Z>3, and divisors Ll9 L 2, L3 such that (2.1)

and (2.2) hold and D = U Di has normal crossings.

Proof. Define S as Spec((9^ Θ ( Θ / ^ β ^ - L , ) ) ) where the algebra structure

is given by the equations xt as described above and you get how to associate to

the given data the bidouble cover.

It is more satisfactory, for later use, to embed S in a vector bundle V over X,

and to write equations for S. Define V to be ®J==1Θx(Li) and denote by

wl9w2,w3 fibre coordinates relative to the three summands (i.e. the w/s are

given by linear functionals on the fibres and are expressed by functions wia

when one fixes a trivializing cover (Ua) for V: anyhow we shall avoid the use of

the index α, to simplify our notations).

Consider now in V the sub variety S given by the following equations:

w} = XjXk9 (/, j 9 k) being a permutation,

xkwk = WjWj of (1,2,3) as usual.

One notices that the surface S given by the first set of three equations, i.e.

w2 = XjXk9 is a Galois (Z/2Z) 3 covering of X.

S is a complete intersection in V9 and splits into two components, S = S+

and S", where S~ is determined by the equations xkwk = -WJWJ.

Though S is singular, S* and S~ are smooth.

Now 5 + Π S' consists of R = Rx U R2 U R3 and Rt - Rj - Rk is a nodal

curve for S, while at the points of Λ , Π Λ7 the singularity of 5 is the one given

by two quadrics in 3-space tangent at one point and with the same pair of

asymptotic lines.

In fact xkwk = -WjWj = w(Wj (k = 1,2,3) implies that at least 2 of the

coordinates wt are zero.

Then S+Π 5 " is the union of the three components defined by the equations

wi = Wjf = xk = 0 and wk = χtχj9 i.e., the Rks.

Clearly S can be singular only over D\ at the points of Rk - Rt - Rj9 xi9 xj

are not zero and S is contained in the smooth threefold wk = xfxj9 xk =

wf/Xj with local coordinates wi9 yk9 Wj (if xk9 yk are local coordinates on X at

the point of projection) and there S is defined by the equation wf/xi = wf/Xj.
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On the other hand, at the points of Rιf n Rj, xi9 χj and the wz's are local

coordinates for V and S is contained in the smooth threefold wf/xk = xi9

w?/xk = Xj with local coordinates wi9 wj9 wk and there S is defined by the single

equation

Hence we have shown that S is smooth; moreover, on S, are defined sections

R;) such that

(2.5) zf = Xi> ZiZj = wk.

We notice that the only ambiguity is that, if (z 1 ? z2, z3) is a choice,

(-z 1 ,-z 2 ,-z 3 ) is the only other allowable one. We remark also that the

formulas (2.5) do not define S (up to the above involution, cf. Corollary 1.9)

unless there exist divisors L\ on S such that

(2.6) 2L;-A, L'j + L'^Lt.

With these sections, we notice that, to have local coordinates on 5, one can

take (zi9 Zj) at the points of Rt Π Rj, while, if (xi9 yt) are local coordinates

around Dt - Dj - Dk (notice that xt is the equation of Dt\ (zi9 y() are local

coordinates around Rt - Rj - Rk.

In the remaining points of S one can lift local coordinates on X to obtain

local coordinates on S.

Now the action of σ, on S is induced by the following action on V:

wf ->wf., Wj^-Wj, wk-+-wk,

which in the local coordinates around Rt - Rj - Rkis expressed by σ^z,, yt)

= (-*,-, Λ )
At the points of Rt Π Rj, fixed by the group G, the action is given as

To finish the proof, we need only to notice that multiplying xt by a nonzero

constant, say c2, we obtain an isomorphic surface S (multiply wy, wk by c).

q.e.d.

We can rephrase Proposition 1.8 as follows.

Proposition 2.7. Let π: S -> X be a smooth bidouble cover with X simply

connected and the D^s flexible. Then πλ(S) = Z/2Z if and only if each Dt is not

empty and is 2-divisible in Pic( X).

In the remaining cases S is simply connected.
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Proof. Since, as we tacitly assumed until now, S is connected, at most one
of the D/s is empty.

In fact, we have, by Proposition 1.8, a surjection (Z/2)' -» (Z/2)2, where
/ = number of nonempty divisors Di9 and by Proposition 1.8, πλ(S) is trivial if
t = 2.

If / = 3, by Proposition 1.8 again, πλ(S) = Z/2Z if and only if Im r c (2Z)3,
i.e., every Di is 2-divisible in homology, hence in Pic(Z).

Definition 2.8. Given a bidouble cover S -> X as in Proposition 2.3 and

expressed as a subvariety of F = Θz

3

==1 0x(Lt) by the equations (2.4), S" c V

is called a natural deformation of S if it is given by equations

for each permutation (/, j , k) of (1,2,3), and where x) e H°(&x(Dj)\ γy e
H°(Θx(Dj - Lj)).

Hence natural deformations are parametrized by a product of projective
spaces over an open set of which one has a smooth family of deformations of
S. We shall see now under which conditions every small deformation of S is a
natural one.

Definition 2.10. Let Dl9- —,Dk be divisors in a smooth manifold X and
xl9 - - -,xk equations for them.

Define Qι

x(logDl9- ,log/\) to be the subsheaf (as Θx module) of
UL

x(Dι + + Dk) generated by Ω^ and by dxjx^ for / = 1, ,k.
Proposition 2.11. Assume that the Dt's of Definition 2.10 are reduced divisors

which form locally a regular sequence. Then one has the following exact sequence:

(2.12) 0 - OV -» ΩVOog D x , ,log Dk) ^ φ ΘD> - 0.
/ = 1

/V00/. Clearly, Ω^ c Ω^(logDv ,log D^) and if we have a form which
is locally written as Σf=1 a{ dxi/xi + TJ, where η G Ω1 ,̂ we define its image by
the residue map R to be the collection of the residue classes at (mod*;).
Clearly the sequence is exact provided the definition is well posed. That is, we
must show that, if Σ α, dxjx^ is regular (i.e., in Ω^), then x\a^ We shall prove
this result by induction on k. For k = 1 we have a form of type η = (a/x) dx,
and, if yv -9yn are local coordinates on X, then η = (a/x)Σf]=ι(dx/dyj) dyj

hence, for each j9 (a/x) dx/dyj is regular. By the Weierstrass preparation
theorem we can assume that x and dx/dyλ have no common factors, hence x
divides a.
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Finally, assume that (xl9 -,xk) is a regular sequence: then xk is not a zero
divisor in 0/{xt) for i < k (here we exploit the fact that Θ is a regular local
ring, hence the condition of being a regular sequence is independent of the
ordering, cf. [23]). We can assume, by the inductive assumption, since
Σf~ι xkaidxi/xi is a regular form, that xt divides xka{ (/ = 1, -,k — 1); by
the above remark x^a^ hence ak dis a regular form and xk\ak. q.e.d.

We remark now that, for any sheaf !F on S, π * IF splits as a direct sum
according to the characters of G.

In particular, we have seen that

(2.13)
j = l

Now, it is well known that

(2.14j Ks = π*{Kx) + K\

hence Ks is not in general a pullback if S is simply connected, but we have in
any case the following

Lemma 2.15.

3

0 OX(KXΛ
1 = \

Proof. Consider again the factorization of π given by

Now 77* = (PjOaieί̂ )*, and ωγ is the σ-invariant part of (τ7;)*ω5. Hence,
since (p{ )*ω y. = ωx θ wx(Lt)9 the invariant summand of 7r#(ωs) is ω^, and
the one corresponding to the character χy is ω x (L z ) . q.e.d.

For use later on in the study of the infinitesimal deformations of S, we
compute 7r#(Ω^ ® Ω|).

Theorem 2.16.

Di, log D2, log D3) Θ Ω^

Moreover, the first summand is the G-inυariant one, the others correspond to
the three nontriυial characters χ7.
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Proof. Let us compute first the G-invariant summand. Locally around

RjΓ n Rk, Ω^ Θ Ωj is spanned over 0^ by

where / = j 9 k.

Now all these eight generators are eigenvectors for the action of G.

If we impose invariance by the action of σ, we remain only with

(dzjAdzk)dzι®zh ( / ,/ ι=j ,/c) .

Invariance also by σj9 σk implies that we are left only with

(dzj A dzk)dzj Θ zk9 (dzj A dzk)dzk ® zj9

i.e., up to constants, (dxj A dxk)dxj/xj9 (dxj A dxk)dxk/xk, the two local

generators of Ω^(log Dl9 log D2, log D3) ® Ω^.

Around Dέ - Dj - Dk we get a sheaf locally isomorphic to Ω^ <8) Ω^(log £>,),

on X — D a sheaf isomorphic to Ω^ ® Ω^ and the proof follows since there is a

canonical inclusion of Ω^(log2>l9 log D2, log D3) ® Ω^in π ^ Ω ^ <8) Ω^)G.

The summand corresponding to the character χy is spanned by σ-invariants,

Oj, σ^-anti-invariants.

Around R Γ\ Rk we get

(dzj A dzk)(dzj)zj9 (dzj A dzk)dzk(zk),

i.e.,

X: Λ dxk dx: Λ dxk dx A dxk

— dxp — — dxk> O Γ ~ dxι (l=J>k)

Whereas around R^ Π Rj anti-invariance by σk leaves us with

Invariance by oi implies that we are left with

{dz^dZj)dzi9 {dZiΛdzJdZjiZtZj),

which can be replaced, since zk is a unit around R{ Π Rj (and G-invariant

locally), by

( d d ) ± ( d d A )
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i.e.,

(dXi Λ dxj) dxi {dxt Λ dxj)
, ax .

w f x t w, •>
By the same argument as above, the desired isomorphism of π*(Ω^ ® Ωf ) χ .

with ΩV(log £>,-) ® ΩA-(L/) follows, q.e.d.
It follows immediately from 2.16 and (2.12) that there is an exact sequence

Θ 0 Q
\

3

(2.17) "
Qι

x*{π*Q2

s)

-> 77,(Ω^ ® Ω|) - ( 0 σDι(κxή e( θ ^ ( ^ + Lf.)) - o.

Its exact cohomology sequence is dual, via Serre duality and since Ω1^ <
(ττ + Ω|) = 7rJ|c(7r*Ω1^ 0 Ω|), to the exact sequence

0 -> fί°(Γ5) -> H°(π*Tx)

(2.18) ( )

As explained in the following theorem, the meaning of (2.18) is: Imθ are the
infinitesimal deformations obtained by means of natural deformations, which
are equivalent modulo the action of Aut(X), and not all the deformations of X
lift to deformations of S (e.g. because the cohomology classes of the Z)/s do
not remain of type (1,1) under the deformation of X).

More precisely, let

p: θ H°{0X( A) © H°(Θx(Di - I,))) - Hι(Ts)
i = \

be the composition of the direct sum of the restriction maps of the /th term to
H°(ΘD(Dι)) θ H°(ΘD(Di - L,)) with 3. Then we have

Theorem 2.19. p((δ,, γ,)), for δ, e J ϊ ° ( ^ ( A ) λ Y, e H\Ox{Dl - L;)), «
ί/ze Kodaira-Spencer class of the l-parameter family given by the natural defor-
mations corresponding to x\ = xt + ίδ/5 tyf (cf. Definition 2.8), wΛere t e C.

PAΌO/. By the linearity of the Kodaira-Spencer map associated to natural
deformations it is enough to prove the result when δ2 = δ3 = γ2 = γ3 = 0 and
either δx Φθ9yx = 0, or 8λ = 0, yλ Φ 0.
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In both cases, consider the factorization

Observe that if ( S , ) / e C is our 1-parameter family, we still have a factori-

zation

St^Yλ^ X\

moreover, if D[ = P^(Dλ%

<MA) Φ <W^i - ^i) s (Λ) (^Dί(^ί))-

Now, though Yλ has singular points, nodes, the map πx: St -» yχ has as

branch locus the nodes of 7X plus a movable divisor /){(*)> hence our result

follows from known facts about double covers (cf. [14], [27]).

An alternate proof can be given as follows: since we have a deformation of S

as a submanifold of V, if NS\V is the normal bundle of S in K, the infinitesimal

deformations determines a section of iV^ and the Kodaira-Spencer class is

given through the coboundary 3': H°(NS^V) -> Hι(Ts) of the long cohomology

sequence associated to the exact sequence

0 -> Γ5 -> Γ κ ® C?5 -> JVS|K -> 0

(cf. [15]).

On the other hand we have a projection Γ κ ® (Ps -» w*(7V) ^y which the

following diagram is commutative (observe that π*(0R (π*/),)) = ΘD(Di) Φ

i
0

Therefore θ' factors as 3 ° H°(β% and we omit the rest of the verification.

Corollary 2.20. If π: S -> X is, as usual, a smooth bidouble cover and

H\π*Tx) = 0 (i.e. H\TX) = H\TX{-Lt)) = 0), then every small deformation

of S is a natural deformation. In particular, the Kuranishi family B of S is smooth

(and its dimension can be computed by (2.18)).

Proof. Natural deformations give a family of deformations with surjective

Kodaira-Spencer map: since natural deformations are parametrized by a

smooth variety, their image in B contains a neighborhood of 0 in Hι(Tx).

q.e.d.
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We conclude this section by computing the numerical invariants of bidouble
covers.

Since Ks = π*Kx + R, and 2R = ττ*Z>,

(2.21) Kl \

On the other hand,

1
+ -z Σ (-Li)(-Li - Kx) (by the Riemann-Roch theorem)

an equality which can also be expressed as

(2.22) x(φs) = 4χ(Φx) + \κx • D + | (z> 2

We also derive a useful formula in case Hι(π*Tx) is zero; then the
Kuranishi family B of S is smooth of dimension equal to

3

(2.23) Σ {^{Θx{/),.)) - 1 + h°(&χ(Dt - Lξ))) - h°{π*Tx) - h°{Ts).

We just remark that if the Lz's are sufficiently ample, then S is of general
type, hence h°(Ts) = 0, and moreover h°(π*Tx) = h°(Tx) = dimc Aut(JT).

3. Double and bidouble covers of P 1 X P 1

In this section we shall consider covers of Q = P 1 X P 1 and we shall denote
by ΘQ(a, b) the line bundle prf (ΘFι(a)) Θ pr*(^Pi(/?)), pr l9 pr2 being the two
projections on the two factors.

Also, if m G Z we shall denote by [m] + = max(m,0). For later use, we write
down a table for the dimensions of the cohomology groups of line bundles on

β-

a

a ^

bϊ
or α

< 0 , 6

-\,b

ΪO, as

< 0

ί> - 1

ξ-2,
< -2

h°{ΘQ{a

0

(α + l)(ί

0

» + l)

-(α +

0
0

IX* + υ

(α +

β ( β

0

0

,b))

i + l)

TABLE I

Also bear in mind that TQ = 0Q(2,0) Θ (Pβ(0,2).
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The situation for double coverings is quite simple: every small deformation
is still a double covering, if S is of general type.

In fact we have (with almost the same proof of 2.16 and that which follows).

Proposition 3.1. Let X-* Y be a smooth double cover with π*(&x) = Θγ Θ

Θγ(-L). Then, if D is the branch divisor,

Moreover we have the exact sequence

0 - H°(TX) - H°(π*TY) -> H°(ΘD(D)) Λ H\TX)
(3.2)

Assume now Y = Q, L = 0ρ(«, ra) (tf > 0, ra > 0). Then

= ^ ( ^ ( 2 , 0 ) θ (Pβ(0,2) Φ <Pβ(2 - n9-m) Φ (Pβ(-Λ,2 - m))

which, by Table I, can be nonzero, if we assume n > w, only if m < 2, « > 2.
Let us pass now to consider bidouble covers.
Let ΘQ(Di) be the line bundle Og(ni9 m,). Then nt = Πj (mod2), mt = m

(mod 2), and

Since Hι(TQ) = 0, we want ^{^{-L^) = 0; i.e., by the remarks above, it
is sufficient to have ai9 bt > 3, in order that every small deformation of S be a
natural deformation. Also, in this case, by Table I, H°(TQ(-Li)) = 0; more-
over, in this case 0Q(D) = ΘQ(Σ «,, Σm7), hence Kj > 0 and | ^ | # 0, so that
S is of general type, hence H°(TS) = 0, and the dimension of the Kuranishi
family B of S is equal to A 1 ^ ) , and, by (2.18),

AHTi) = Σ K-+ 1)K + 1)
(3.3) ' ^

+ 4 [(2 W/Λ - nk)i2mi ~ mj ~ mk)\ + - 9

Lemma 3.4. S is a minimal model of a surface of general type if Σ at > 5,

Proof. 2KS = 7Γ*(Z> + KQ\ therefore in the above hypotheses \2KS\ has no
fixed part and maps to a surface.

Example 3.5. This is a case when not all the deformations are natural (cf.

[7])
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Consider the case where the three divisors are of type (1,3), (3,1), (1,1)
respectively; Lemma 3.4 applies and we obtain, if the Z>/s are transversal, a
simply connected surface of general type with K2 = 2, pg = 1, by formulas
(2.21) and (2.22).

Ll9 L2, L3 are divisors of type (2,1), (1,2), (2,2), respectively. It is then clear
that Ωρ <8> Ωρ, Ωρ <8) Ωρ(L7) have no nonzero sections. The same is true for the
sheaves ΘDι Θ Ω£, 0Dι(KQ + L, ), i = 1,2, while ΘΌi,KQ + L3) = 0 ^ .

Therefore the cohomology long exact sequence associated to (2.17) reduces
to

(3.6) 0 - 7/°^(log D3)) - H°(ΘD3) Λ H^Q)

and, if 3 is injective, we conclude that if °(Ω^ Θ Ω|) = 0 (i.e., H2(TS) = 0) and
the Kuranishi family 5 of S is smooth of dimension 16, while in this case all
the natural deformations are Galois covers, and give a 11-dimensional sub-
variety of B.

The injectivity of 8 follows from the following lemma.
Lemma 3.7. In the cohomology exact sequence associated to the exact se-

quence

0 -> ΩV -+ Ω^(log D)^ΰD^ 0,

w/zere D = UZ>Z w α disjoint union of connected reduced divisors Di9 θ: H°(&D)
= ®iH°(ΘDj) -> ifx(Ω^) Λα.y α^ /mαge /Λe subspace generated by the first
Chern classes of the Dt

 9s.
Proof. More precisely we shall show that, if 1D is the function which is = 1

on Di and 0 elsewhere, then 3(1D) = cλ(Dt). Let then {/α = 0) be a set of
local equations for Di on a covering (Ua) = U. 1 D lifts to the 0-cochain
έ/(log/β), with values in ΩV(logi)). Let/β = / α ^ on Vα n ί/̂ . Clearly 8(1D/)
is then represented in Hι(U,Ώι

x) by the 1-cocycle given by d(\ogfa) —
d(log fβ) = d(log faβ)9 which is nothing else than c^D^ (cf. [18, p. 64]).
q.e.d.

We are now going to study the behavior of the canonical map of a bidouble
cover of P 1 X P 1 ; as a biproduct of this investigation we shall obtain the fact
that corresponding to different choices of the (ni9 m^'s (up to permutations of
{1,2,3} and the symmetry of P 1 X P 1 exchanging the factors) one gets
different families of surfaces.

Theorem 3.8. Let S be a smooth bidouble covering of P 1 X P 1 corresponding
to three divisors of types (ni9 ra,). Assume that mt + ra7, nt + nj > 8 (V/, j).
Then the natural deformations of S give the unique component of the moduli space
of S containing the point [5], of dimension given by (3.3). S is simply connected
unless all the n/s, m/s are even and (for every i = 1,2,3) mx• + nt> 0.
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Moreover, the canonical system \KS\ is without basepoints and gives a biregular
embedding of S. The singular points of R are characterized by their inflectionary
behavior under the canonical map (hence they are invariant under any automor-
phism of 5), and the n^s, m^s are uniquely determined by S (and not by the
datum π: S -> Q).

Proof. The base space of the natural deformations of S is a Zariski open
set U of a projective space. We have a morphism φ of U into the moduli space
Jί', and we know that φ(U) contains a neighborhood of [S] in Wl; therefore φ
is dominant. Again since a neighborhood of [S] 'm Jί is a quotient of the
Kuranishi family B of S by Aut(»S), φ(U) is the only component of ^passing
through [S].

Remark that this component is unirational.
For the assertions regarding the canonical system, recall that

/ \ / 3

H°(Ks) = zizJzkπ*\H(KQ)\ Θ 0 zi^HQ{φQ{Li + KQ

o

cf. Lemma 2.15. By assumption Lt is of type (ai9 bt) with at, bt ^ 4, hence
\θQ(Li + KQ)\ gives an embedding of Q.

Since the sections zi have no common zeros, |Λ^| has no basepoints and
gives a local embedding at every point. It suffices now to show that the
canonical map separates points. This is obvious now if π(x) Φ π(y), while, if
y = g(x)> choose three sections st e H°(&Q(Li + KQ)) not vanishing at <π(x)
= 7r(y). Then the linear functionals given by evaluation at x, y cannot be
proportional, since ziττ*(si)(gx) = χi(g)(ziπ*(si))(x) and either

(i) Zj(x) = Zj(x) = 0 and then g(x) = x, or
(ii) zt(x) Φ 0 for each /, but then must be χ z(g) = 1 for each /, so that

g = identity, or
(in) z,(x) = 0, Zj(x\ zk(x) Φ 0; then Xj(g) = χk(g) =* g = σi9 and hence

To check which are the points of inflection of the image, it suffices to see for
which/? e S the following homomorphism rp is not surjective:

r_

P'(3.9) 0 - H°(jtlOs(Ks)) - H°{OS{KS)) - ΘP/Jl

Since any very ample linear system on Q of type (aι,a2) with α, > 2 has no
inflectionary behavior, clearly rp is onto if p € R.

Assume nowp e i , . - Rk9 and choose local coordinates zi9 yi9 where zf = xi9

as usual, and xi9 yt are local coordinates at 7r(^). It suffices to remark that any
jet of second order at/? can be written as/(z7

2, yt) + g(zf9 y^z^
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If, instead, p e Rt n Rj9 zi9 Zj are local coordinates, and we only get jets of
the type f(zf9 zj) + ztg(zf9 zj) + Zjh(zf9 zj); therefore rp has a cokernel of
dimension 1. Moreover, rp(H°(Jί2

pΘs(Ks))) consists of jets of the form
azf + βzj, hence there are uniquely determined two tangent directions at the
point /?.

Observe now that if S is general we can assume that Di and Dj are not
tangent to the lines of Q passing through ττ(/?); therefore, if we set

λz = max{ λ|λ is the order of zeros at/? of a section s e H°(KS)

(3.10) such that the image of s in Jΐ*/Jί*+ι has the tangent

line corresponding to zf = 0 as a simple root),

then λ, = -1 + Idfa.
Setting further vt = max{^|for a general tangent direction L, 2v + 1 is the

order of zero at p of a section s e H°(KS) such that the image of s in
Jfp

p+ι/Jΐp

v+2 has the tangent direction of zz = 0 as a simple root, but the
tangent direction to Zj = 0 is not a root, and L is a root of multiplicity v} it
follows that ^ = min(a/9 fef ).

Hence λz, ^ determine the (unordered) pair (ai9 b().
Considering instead sections of H°(KS) vanishing of even order at/? one can

determine in an analogous way the pair (ak9 bk).
In fact a section vanishing at p of even maximal order 2akbk is such that 4

tangent directions are determined, the pullback of the two rulings on P 1 X P1;
2 of these directions, Ll9 L'v appear with multiplicity ak9 2 with multiplicity
bk, L 2 , U2.

Choosing a section of maximal odd order vanishing at /? and with the
tangent direction of zt = 0 as a simple root one determines the ordered pair
(ai9 bt\ at = multiplicity of Ll9 L\, bi = multiplicity of L2, U2.

4. Nonpure dimensionality of the moduli spaces

In this section we shall finally prove Theorem A, tying up together many
results proved so far. We start by recalling some known facts on the topology
of compact complex surfaces.

Let S be a complex compact surface. S is in a natural way an oriented
compact 4-manifold.

Let bt (/ = 1, ,4) be the Betti numbers of S, i.e., bt = d im c H\S 9 C), and
let e = Σ?= 0(-iy be the topological Euler-Poincare characteristic of S.
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Assume in the sequel that S is simply connected. Then H2(S, Z) is a lattice
of rank equal to b2, and Poincare duality gives a unimodular integral quadratic
form?: i / 2 ( S , Z ) ^ Z .

Let b+ (b~) be the number of (+1) ((-1)) eigenvalues of q and let T = b+- b~
be the signature of q (since q is nondegenerate, b2 = b++ b~).

It is well known that the two holomorphic invariants χ, K2 are uniquely
determined by the topological invariants e, τ.

In fact one has K2 = 3τ + 2e and 12χ = (3τ + 3e)
The quadratic form q is said to be even if q(x) = 0 (mod 2) Vx e //2(S, Z).
Remark 4.1. If #(;c) # -1 Vx, then S is necessarily a minimal surface. In

fact an exceptional curve of the first kind has a Chern class x with q(x) = - 1 .
In particular, if q is even, then S is minimal.

We also recall that if S is a minimal model of surface of general type, the
following inequalities hold:

K2 ^ 1, x > 1 (G. Castelnuovo),

# 2 > 2/?g - 4 ^ 2χ - 6 (Noether),

AT2 < 9χ (Bogomolov-Miyaoka-Yau).

S. T. Yau [35] also proved that if K2 = 9χ and AT is ample, then the
universal cover of S is the unit ball in C2.

From the above results also follows (cf. [25], [32]) the corollary:

,. \̂ P 2 is the only simply connected complex surface for which the
quadratic form q is positive definite.

In fact if b2 = b+= T, then S is minimal. Now

K2 < 9χ ~ 4 # 2 < 3(12χ)

<=»3τ<e = 2 + & 2 - 2felβ

Therefore, if Z>2 = T, Z>2 = 1 and bx = 0, then # 2 = 9, x = 1.
Now, if S is minimal and K2 = 9, then either S = P 2 or S is of general type,

and since b2 = 1, Â  is ample; but then ^ ( 5 ) is an infinite group by the
theorem of Yau.

Remark 4.3. The above arguments show that b2 = τ imply that S is
minimal and K2 = 9, x = 1, bγ = 0.

Moreover, we recall that if S is a minimal surface, and K2 ^ 1, then either S
is of general type, or S is a minimal rational surface, i.e. either P 2 or a ruled
surface ¥n (n = 0,2,3, ), for which ϋ: 2 = 8, x = 1.

For the reader's convenience, we also recall the recent result of M. Freedman
([10], [31]) which, together with earlier results of Milnor [24], Novikov [26] and
Wall [33], gives the following theorem.
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Theorem. Let Sl9 S2 be oriented differentiable compact 4-manifolds. Assume
that Sv S2 are simply connected and that they have quadratic forms qv q2,
isometric to each other. Then Sl9 S2 are homeomorphic (by an orientation
preserving homeomorphism).

We immediately deduce the following proposition.
Proposition 4.4. Let Sl9 S2 be complex surfaces with K2 Φ 9. // Sl9 S2 are

simply connected and have the same invariants K2, χ, then they are (orientedly)
homeomorphic if and only if either

(a) Ks e 2 Pic(S ) (i = 1,2), or
( b ) t f ^ ί 2Kc(S,)(/ = l,2).
Proof. Since, by [13, p. 43], for each element D in H2(Si9Z), DK = D2

(mod 2), in case (a) the quadratic forms qt are both even and in case (b) they
are both odd. In particular, in case (a) the S/s are minimal by Remark 4.1.

It is classical, (see e.g. [29, pp. 92-93]) that two integral unimodular
indefinite quadratic forms are completely determined by their rank, their
signature and their parity. In our case K2, χ determine the rank = e - 2 and
the signature τ; we only have to prove that qt is indefinite. qt cannot be positive
definite by 4.3, since K2 is Φ 9, and qt can never be negative definite by the
following lemma, hence we can apply Freedman's theorem.

Lemma 4.5. For no complex surface with bλ Φ 1 the quadratic form q is
negative definite.

Proof. Kodaira proved that b+= 2pg + 1 if bλ is even and b+= 2pg if bλ is
odd, bλ = 2q- 1.

Now, if χ < 0, then S is ruled, hence algebraic; therefore b+> 0 and our
assumption implies q = 1, bλ = l,/?g = 0.

In this last case χ = 0, hence T = -e = -(2 + b2 - 2) = -b2.
Theorem 4.6. Let S be a smooth bidouble cover of P 1 X P 1 branched on two

divisors of types (2a,2b), (2«,2m), respectively, with a9 b, n, m > 3. // a = n
(mod 2), and b = m (mod 2), then S satisfies the hypotheses of Proposition 4.4.

Moreover

K$ = %(n + a- 2)(m + b- 2),

χ(0s) = 2(/ι + a - \){m + b - 1) + 2 - \(m + b)(n + a)

+ \{a-n)(b-m)9

M(S) = hι(Ts) = (2/ι + l)(2m + 1) +(2α + l)(2b + 1) - 8

+ [(2/ι - a)(2m - b)] + + [(2α - /i)(2fc - m)] + .

If a> 2«, m > 26, /Λe« /λe bidouble covers ofP1 X P 1 6>//Λe i βme numerical
type as S form a Zariski open set in the moduli space Jί of S, and M(S) =
(2/i + iχ2/ιi + 1) + (la + iχ2/> + 1) - 8.
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Proof. TT^S) = 0 by Proposition 2.7. Moreover, since πλ(S) = 0, Pic(S)

has no torsion, therefore Ks = π*(KPιxPi) + R = π*(ΘPixPi(n + a — 2,

m + b - 2)) and is therefore divisible by 2 if n + α, m + b are even numbers.

The numerical assertions are restatements of the more general formulas

(2.21), (2.22), (3.3), and the last assertion follows from (2.18) since then

ffo(0D, (A ~ Lt)) = H°(Θpiχpί(Di - Lf)) = 0 for each i.
Theorem A. For each natural number k, there exist positive integers Mλ <

Aί2 < " - < Mk and (orientedly) homeomorphic simply connected minimal
surfaces of general type Sl9 , Sk such that Af (Sf ) = Mt.

Proof. Let Sl9-—,Sk be smooth bidouble covers of P 1 X P 1 of types
(ai9 bt)(ni9 my), as in Theorem 4.6. By Proposition 4.4 they are homeomorphic
if and only if the numerical invariants K2, χ are the same for them, and the
theorem is proved if the numbers Mz = M(Si) are all distinct.

So the problem is reduced to finding, for each /c, k 4-tuples of numbers,
satisfying certain inequalities, for which the two quadratic polynomials K2, χ
take the same values, but the polynomial M takes all different values.

To simplify the numerical problem, we set

u = (n + a — 2), υ = (m + b — 2), w = (a — «), z = (m — b),

where, of course, we want w, t;, w, z to be even numbers, since a = n (mod 2),
b = m (mod 2).

The inequalities a > In, m > 2b, n > 3, b > 3 read out now as

(*) u - 4 > w > w/3 + 2/3, ί; - 4 > z > ϋ/3 + 2/3.

In terms of the new variables we have now

K2 = 8w, x = (3/2)HI; +(w + ι;) + 2 - iwz,

M = 2uv + 6(w + f) + 10 - 2wz.

We remark now, simply, that

M = 2(uυ) + 10 + 4[(w + ϋ) - ^wz] + 2(w + ϋ)

= 4χ + 2 - K 2 + 2(w + t;).

Therefore, we want to solve the equations

uυ = constant, (u + v) — \wz = constant

with M, υ, H>, z even and satisfying the inequalities (*), and moreover have at
least k distinct values for (u + v). Upon dividing all the four numbers by 2,
the proof is reduced to the following lemma.

Lemma 4,7 (E. Bombieri). For any given number k, one can solve the
equations

(*) uv = M, wz —(u + v) = N
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together with

(**) 3 <w < u - 2, — — < z < υ - 2

in integer w, υ9 w, z, and have at least k distinct values for (u + v), for suitable

M, N -» oo.

Proof. The proof given in the letter of E. Bombieri, reproduced in the

appendix, applies mutatis mutandis in this case.

Remark 4.8. By Freedman's result it follows that all homotopy K3 surfaces

(see [17]) are homeomorphic to a smooth quartic in P 3 ; therefore we get thus a

countable number of homeomorphic surfaces which are not deformations of

each other.

5. Bounds for the number of moduli in terms
of topological invariants

As mentioned in the Introduction, by the Kodaira-Spencer-Kuranishi theory

of deformations, and the result of Wavrik ([18]-[20]) a neighborhood of [S] in

Jt is isomorphic to 2?/Aut(S), where B is the base of the Kuranishi family of

deformations.

Hence M = dim B > lOχ - 2K2, and M < h\Ts).

In fact, since e.g. Aut(S) is a finite group [22], S being of general type,

h°(Ts) = 0; moreover, by Serre duality, h2(Ts) = h°(tiι

s ® Ω|), therefore also

(5.1) M < lOχ - 2K2 + A°(Ω^ ® Ω | ) ,

and one wants to give an upper bound for Λ°(Ω^ ® Ω|).

Theorem C. If S contains a smooth canonical curve, then M < lOχ + q + 1.

Proof. Let C be a smooth canonical curve. C is connected by Lemma 1 of

[2] and therefore h°(Θc) = 1.

Consider now the exact sequences

(5.2) 0 - Ω^ -> Ω^ <8> Ω| -> Ω^ Θ Ω| ® Θc -> 0,

(5.3) 0 -* Θc -> Ω^ Θ β | ® Θc -> Θd'iC) -* 0.

By the associated cohomology sequences we get

h°(Qι

s ® β | ) < q + 1 + A°(0C(3C)) = ςr + 1 + 2K2. q.e.d.

In the general case, we are going to apply the following theorem of Bombieri

[2, Theorem 2, p. 184].

Theorem. The linear system \(m + l)K\ is free from basepoints if:

(i) m > 3,
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(ή)m = 29K
2> 2,pg> lorK2> 3,

(iii) m = 1, K2 ^ 5,pg > 3 orpg > 3, q = 0.
Theorem B. M < lOχ + 3K2 + 108.
iVw/. We follow the same method used for Theorem C.
Let Γ be a smooth curve in \(m + 1)AΊ Again Γ is connected and we can

consider the two exact sequences

(5.4) 0 -> Ω̂

(5.5) 0 -> 0Γ(-mJr) -> Ω^(#) ® ̂ r "* M i ™ + 3 ) ^ ) "> °

Clearly,

h°(Θτ((m + 3)ΛΓ)) = (m + 3)(m + \)K2 - ("* + ! ) ( " * + 2 )

moreover, if w > 1, /f°(Ω^(-m^)) = 0 by Bogomolov's lemma (see e.g. [1],
[25], [32]).

Therefore A°(Ω^ <8> Ω|) ^ (K2/2)(m + l)(m + 4) if |(m + 1)AΊ is free from
basepoints, by Bertini's theorem.

Hence, in case (iii), M ^ lOχ + 3K2.
Now, ifpg < 2, then χ < 3; hence K2 ^21.
So, if (iii) does not apply, but (ii) does, K2 < 27 and M < lOχ + 7# 2 ^

lOχ + 3K2 + 108.
Finally, if (ii) does not apply, then either K2 < 2, /?g = 0, or K2 = pg = 1. In

the second case ([5], [6]) the number of moduli M equals lOχ - 2K2, in the
first we apply (i) with m = 3 to get M < lOχ + 12# 2 < lOχ + 3 # 2 + 18.

It is natural to ask how sharp are these upper bounds, at least asymptotically
as K2, x -» 00.

In this regard the bound given by Theorem C should be considered the more
natural one although surfaces which do not possess a smooth canonical curve
do not belong to a finite number of families. We show now that at least 4χ is
needed.

Proposition 5.6. Given any algebraic surface X, there exist bidouble covers Sj

of X with the following properties:

(i) q(Sj) = q( X), and, if X is simply connected, Sj is simply connected too.

Proof. Let H be a sufficiently very ample divisor on X such that
H\Θx{-rH)) = 0 for any r Φ 0 and also ti(Tx(-rH)) = 0 for any r > 0,
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Let Dl9 D2, D3 be smooth transversal divisors with Dλ e \(2r + ΐ)H\9 D2, D3

We may further assume that H is not divisible by 2 in PicίX); let then
Lλ = H, L2 = L3 = (r + 1)//, and consider the bidouble cover S of X associ-
ated to the L/s, D/s.

By (2.13), h\Os) = h\Θx), and, if πx(X) = 0, S is simply connected by
Proposition 2.7.

By (2.22),

X(0s) = 4χ(0;r) + i(2r + 3)7/ ^ + | # 2 [ ( 2 r + 3)2 + (2r + I) 2 + 2].

Moreover, since S is of general type, by (2.18) the natural deformations of S

give a smooth subvariety of the base B of the Kuranishi family of S of

dimension

h^ΘAD,)) + h»(Θx{Dλ - LJ) - 1 - h°(Tx)

= 2χ{Θx) - 1 + h°(Tx) + i((2r + l ) 2 /ί 2 +(2r) 2 7/ 2 - (4r + l)H • Kx).

Therefore, M(S) > 4r2H2 + (terms of lower order in r), while χ(Θs) =
ΛΓ2r2 + (lower order terms).

6. Irregular surfaces without irrational pencils

In this last section, before proving Theorem D we want, on the one hand, to
discuss the good properties shared by surfaces without irrational pencils, on
the other hand we want to analyze the reasons why Castelnuovo's claim does
not hold true.

Definition 6.1. An irrational pencil on S is a surjective morphism/: S -> B
where B is a curve of genus g > I.

Remark 6.2. If B is a curve of genus > 1, any dominant rational map /:
S -> B is necessarily a morphism.

Let T*(TS) = Wbe the projective bundle of lines in the tangent bundle of S,
so that H°(Qι

s) = H°{ΘW{\)).
Let moreover α: S -» A be the Albanese map of S. We assume, in this

paragraph, that q = dim A > 0.
Remark 6.3. If S is irregular and has no irrational pencils, then q(S) > 2

and dim(α(S)) = 2.
If 4̂ = Alb(5) is simple, then S has no irrational pencils unless a(S) is a

curve. In fact, by the universal property of the Albanese map, if /: S -> B is an
irrational pencil, and / is the Jacobian variety of 2?, / factors through α; hence
J = A md a(S) = B.

We recall some known facts.
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(6.4) (Castelnuovo-De Franchis, cf. [2], [0], [25]). Let ηl9 η2 be two indepen-

dent sections of Ω^, and assume that ηλ A η2 = 0. Then there exists an

irrational pencil/: S -> B of genus > 2 and two holomorphic 1-forms φ 1 ? φ 2

on B such that η/ = /*(φ / ) .

Definition 6.5. Let D be an effective divisor and η a section of Ω^(Z)). A

curve C is said to be an integral curve of η if η is in the kernel of the restriction

map rc: H°(Ώι

s(D)) -> H°(Ώι

c(D)).

(6.6) (Severi-Bogomolov, cf. [30], [0], [9]). If S has no irrational pencils and

η e # ° (Ωs) ~ {0}, η has only finitely many integral curves. If ηf e i/°(Ω^(Z)))

has infinitely many integrals, there exists a rational map f.S^B such that η'

is a pullback of a rational 1-form on B.

(6.7) (Kodaira-Ramanujam-Bombieri). Let a(C) = dimker(r c: H°(Qι

s) ->

Ωx

c). Then [28, Remark, p. 48] a(C) = h\Θs(-C)) - h°(Θc) + 1, and ([28], [2])

α(C) = α(C r e d ). If a(C) > 0, then C 2 < 0 ([2, Corollary p. 178] implies that if

C 2 > 0, \nC\ for « » 0 is a movable linear system noncomposed of an

irrational pencil, hence by Theorem 2 of [2] h\Os(-C)) = 0 and a(C) = 0). If

S has no irrational pencils, a(C) > 0 => dim |«C| = 0 for each n > 0.

Remark 6.8. Ramanujam [28] observes that a(D) = dim(ker(r^: Pic(5) ->

Pic(D))). If a(D) = r̂, then the Albanese map of S contracts the connected

components of D to points, therefore, if S does not have an irrational pencil of

genus q, and Dv— -9Dk are the irreducible (reduced) components of /), the

intersection matrix (DjDj) is negative definite. If, on the other hand, 0 < a(D)

< q, then Albί S) is not simple and, if B is the Abelian variety dual to the

connected component of the identity in ker(r^), B has positive dimension and

there exists a surjective homomorphism /: A -> B, such that f ° a(D) is a

point. Clearly, Y = f ° a(S) is not a point, and if S has no irrational pencils,

then 7 is a surface and again the intersection matrix (D^Dj) is negative

definite.

In particular, if S has no irrational pencils and a(C) Φ 0, then C 2 < 0.

The same arguments of Remark 6.8. can be used to prove

Proposition 6.9. Let η be a nonzero holomorphic \-form, and assume that the

surface S has no irrational pencils. Then the irreducible integral curves of η are

numerically independent, hence their number is strictly less than the Picard

number p of S (p = rankNumίS)).

So, if S is an irregular surface without irrational pencils, there are few curves

which are integrals of some holomorphic 1-form, and, a fortiori, few curves

over which a nonzero η can vanish.

In the paper [30], Severi claimed that the 1-forms on S had no common

zeros if S had no irrational pencil of genus equal to q. This is however almost
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always false, e.g. in the situation described in Proposition 5.6. In fact, if Xis an

irregular surface there without irrational pencils, the Albanese map of S

factors through π: Sj -> X and the Albanese map of X, hence also S has no

irrational pencils; but every 1-form on Sj vanishes at the singular points of the

ramification divisor Roίπ.

To get now a surface S as above where every 1-form vanishes on a curve,

take an X where every 1-form vanishes at a point p, and a double cover ψ':

S' -> X such that Φ"ι(p) is a rational double point of S': then let S be a

minimal desingularization of 5".

We can again easily obtain that S has no irrational pencils, and that every

1-form on S is pullback of a 1-form on X; hence, if Ψ: S -> X is the double

cover and Ψ(C) = /?, every 1-form vanishes on C.

Using these incorrect results of Severi, Castelnuovo in [4] claimed that if S

has no irrational pencils, then M(S) < pg + 2q. Proposition 5.6. shows that

this is indeed false, anyhow we are going to state same results close in spirit to

the one claimed by Castelnuovo.

Theorem 6.10. Let & be the subsheaf of Ω^ generated by global sections, and

assume that supp(Ω^/^) has dimension zero. Then K2 ^ 6χ, equality holding if

and only if@= Ω^ (in which case q = 3); moreover, M *ζ pg + 3q — 3.

Proof. Let/?: W -> S be the natural projection of the projectivized tangent

bundle. By our assumption the linear system |*V(1)| has a base locus con-

tained in a set of the formp' ι (N), where TV is a finite set of points in S.

By Bertini's theorem we can pick up three divisors Dλ, D2, D3 in |<?^(1)|

with the following properties:

(a) D( contains only a finite number of vertical fibres (we can in fact assume

Dt to be irreducible, so that/?: Dt -> S is birational).

(b) Dt is smooth outside p~ι(N) and Dt Π Dj - p~λ(N) is a smooth and

irreducible curve which projects to a curve via/?.

(c) Dλ Π D2 Π D3 c p'ι(N), in particular, if one can take N = 0 , then

DιΠ D2Π D3= 0 .

In terms of the three corresponding holomorphic 1-forms ηl9 η2, η3 the

above conditions mean:

(a) ηi has only isolated zeros.

(b) Tj, Λ τ)(. = 0 is an irreducible reduced canonical curve C.

(c) ϊh> ̂ 2* Ή3 generate Ω^ outside N, and if ^ = Ω ,̂ ηλ, η2, τj3 generate Q\.

Consider now the two exact sequences

(6.11) O-^-Ω^JF-O,

(6.12) 0-* 0 c ^ ^ - > Δ ̂  0.
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Here η is given by (ηu η2) and the cokernel, J*", is supported on C =
Λ η2).
a rank 1 torsion-free Θc sheaf, and the section τj3: 0S -> Ω̂  induces on

the quotient the homomorphism (6.12), whose cokernel Δ has support con-
tained in N (Δ = OiίN = 0).

To prove the first assertion, which is equivalent to cf(ίlι

s) = c\ > c2 =
c2(ti1

s% we consider the total Chern classes of the sheaves in question, which
are multiplicative for exact sequences.

Since Δ has O-dimensional support, c(Δ) = 1 - length(Δ), but c(Δ) can also
be expressed as

c(&) c{Φcy
ι = c(Qι

s) c(Θs(-C))

= (1 +K+c2)(l -K) = l -(K2 - c2).

Therefore c\ — c2 = K2 — c2 = length(Δ) ^ 0, and, if equality holds, Δ = 0.
But then h°(^) = 1 by (6.12) and h°(^) ^ q - 2 by (6.11).

To prove the second assertion, it suffices to tensor the sequences (6.11),
(6.12) by the invertible sheaf Ω| = OS(K).

Therefore

h°(ίiι

s Θ Ω|) < 2pg + h°(^(K)) ^ 2pg + length(Δ) + h°(Θc(K)).

By the exact sequence

h°(Θc(K)) </?g - 1 and, by the above expression for length(Δ) (= 2K2 -
12χ), we obtain

M < hι(Ts) < lOχ - 2K2 + 2pg + 2K2 - 12χ + pg + 1 - 1 = pg + 3q - 3.

q.e.d.

We can sharpen the previous result: if q > 3 and one has a sequence
like (6.11), then Λ°(^") > 1 and J^is a rank-1 torsion free Ĉ c sheaf if C =
div(ηx Λ η2) is a reduced curve. Therefore, if η3 is a nonzero section of J*", one
has also a sequence like (6.12) and supp(Δ) has dimension zero if furthermore
C is irreducible.

The proof then goes on in exactly the same way, and, if equality holds
(K2 = 6χ), then q = 3 and the Albanese map α: S -> Λ is unramified.
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Thus we have

Theorem D. Ifq^3 and there exist two holomorphic l-forms ηx, η2 such

that d i v ^ Λ τj2) is a reduced irreducible curve, then M < pg + 3q — 3; more-

over, K2 ^ 6χ, equality holding if and only if the Albanese map is an unramified

map into an Abelian 3-fold.

In particular, the same conclusions hold if Ω^ is generated by global sections

outside a finite number of points.

Question. If q = 3 and a: S -> A is unramified, then is it also an embed-

ding?

Appendix: Letter of E. Bombieri written to the author on March 2,1982

Here is a solution to your problem. You want to show that one can solve the

equations

(*) uv = M, wz — 2(w + υ) = N

together with

(**) ii+_2<w<H_4, v-±λ<z<v-4

in integers u, v, w, z and have at least k distinct values for u + v, for suitable

M, N -> oo.

Let ε be a small positive number, 0 < ε < 1 — 3~1 / 3. The first step consists

in constructing an integer Mo such that we have k distinct factorizations

uivi = M o , / = 1 , - " , k ,

with

(1 - ε)My2 < ii, < v, < (1 - e)-ιM^.

This is easy to do and we can choose for example M o = 6m for sufficiently

large m.

In the next step we choose a sequence wλ < w2 < < wk of large prime

numbers, with wk/wx < (1 - ε)" 1; by the Prime Number Theorem, we can do

this with k and wx arbitrarily large. Now we can use the Chinese Remainder

Theorem and construct Λ̂ o such that

No = -2(ui + vt) (modw,)

for / = 1, - ,k. Let also Nv = No + wλ wkv be a solution to the above

system of congruences and let us write Nv = wizi — 2( wz + vt) for / = 1, ,k.
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The set (Af0, Nv; ui9 υi9 wi9 zf ) satisfies (*) for / = 1, v -,k but it does not

usually satisfy the inequalities (**). This is done as follows:

Since

ui9

we have

and similarly we have

zι * ιΛ r i N, + 8MQ1/2

ΐ < ( 1 ~ ε )

We deduce that if 3(1 — ε)3 > 1 then we can find two integers Rv, Sv such that

for i = 1, , k and all large v.

Let Tv = RVSV. Then the data

M(v)=Tv

2M0i N(v) = TvNv9 ui99=T9ui9

Vi,v = Tvvt, wit9 = Rvwi9 zitV = Svzt

satisfy both (*) and (**) for / = 1, -,k and all large v, as we wanted.
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