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INTRODUCTION 

Let M be the coarse moduli space for complete smooth curves of genus g, 
g 

let R be the "Prym moduli space" of unramified (connected) double covers of 
g 

curves of genus g; a general problem is: what can be said about the birational 

structure of Mg, Rg? 

From the point of view of birational geometry we can also talk about M g,n' 
the moduli space of curves of genus g together with an ordered n-tuple of points, 

though this moduli functor is not representable in general (cf. [!0]). 

Our main results are: 

Theorem A: R 4 is a rational variety. 

Theorem B: M4, I is a rational variety. 

Theorem C: M 4 admits a covering of degree 24 by a rational variety. 

To put these results into perspective, we notice that, while the rationality of M|, 

R| is classical and well-known, the rationality of M 2 has been proved by Igusa 

(cf. [8], also [17]). 

For higher values of the genus g, the situation is as follows: 

i) M is known to be unirational for g ~ |0, ([|6], [I]), g = 12 ([|4J), 
g 

uniruled for g = I! ([9]), whereas, for godd ~ 25 M is variety of gen- 
g 

eral type ([7]), and D. Mumford and J. Harris announced a similar result also 

for g even e 40 

ii) the unirationality of R for g = 5,6 has been proven only recently ([4], 
g 

[6]).  

If the base field is of characteristic ~2, R is a covering of M of 
g g 

degree 22g - I, so that theorems A and C produce two rational coverings of 

*) Part of this research was done when the author was at the Institute for Ad- 
vanced Study, partially supported by NSF grant MCS 81-033 65. 

The author is a member of G.N.S.A.G.A. of C.N.R° 
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M 4 of degrees, respectively, 255 and 24. 

I should finally remark that it is conjectured that 

eties, but, to my knowledge, this is still unsolved. 

M3, M 4 are rational vari- 

Our method of proof does not use classical invariant theory: our strategy con- 

sists in constructing, using the geometry of curves of genus 4, some rational 

Galois covers by some rational variety, and then computing explicitly the subfield 

of invariants. 

These covers are constructed with elementary arguments in the case of theorems B),C) 

For theorem A) I use a classical result of Wirtinger ([]8]), which can also be 

found in [5], and about which I was told by S. Recillas, (cf. []3]), to whom I am 

indebted for noticing a mistake in an earlier proof of Theorem 1.5. 

Our notation is as follows: 

k is an algebraically closed field of char. #2 

X is a complete smooth curve of genus g defined over k 

Pic(X) is the group of divisors on X modulo linear equivalence, here denoted 

by m. 

n is a divisor in Pic2(X) - {0}, i.e. 2n m0, n ~ 0. 

K is a canonical divisor on any Gorenstein variety Y, i.e. 0y(Ky) ~ ~y. 

If D is a divisor, IDI is the linear system of effective divisors D' m D. 

S is the symmetric group in n letters, and 
--n 

V is the standard (permutation) representation on k n. 

n hi(F ) Given any coherent sheaf F on a complete variety Y, we denote by the 

dimension of HI(Y,F) as a k-vector space. 

If U is a k-vector space, we denote by U * its dual space. 

R.R. is an abbreviation for the Riemann-Roch theorem 
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§I. GEOMETRY OF CURVES OF GENUS 4. 

Let X be a non-hyperelliptic curve of genus 4. Then the linear system 

[KxI gives an embedding of X in ~3 such that the image of X is the complete 

intersection of a quadric Q and of a cubic G. 

The quadric Q is uniquely determined, and, since it is normal, as well as G, 

there are only two possibilities: 

i) Q is smooth 

ii) Q is a quadric cone. 

Case ii) occurs if and only if there exists a half canonical divisor 
o 

(i.e. 2~ m KX) such that h (0X(~)) = 2: we say then that X has a vanishing 

thetanull. 

It is well-known that M 4 is an irreducible variety of dimension 9 and that 

curves with a vanishing thetanull form an 8-dimensional subvariety, hyperelliptic 

curves form a 7-dimensional subvariety. 

Definition I.I. Let n ~ Pic2(X) - {0}. We shall say that the pair (X,~) is hi- 

elliptic if there exist an elliptic curve E, a double covering f:X ÷ E, and a 

divisor ~' ~ Pic2(E) - {0} such that ~ m f*(q'). 

Definition 1.2. A normal cubic surface G in ~3 is said to be symmetric if its 

equation can be written as the determinant of a symmetric 3x3 matrix of linear 

forms (cf. [2]). A symmetrization of G is the datum of such a matrix 

(aij(Y)) = (a), where y = (y0,y|,y2,Y3) are coordinates in ~3 , up to the ac- 

tion of PGL(3) (such that, for g ~ GL(3), (a) ~-+ tg(a)g). 

How many symmetric cubics with a symmetrization are there in ]p3 , up to the action 

of PGL(4) ? 

The answer is: as many as there are pencils of conics in ~2 , up to the action 

of PGL(3). 

In fact, let U be the space Sym2(k 3) of symmetric 3x3 matrices; then 

]P(U) is the space of conics in ]p2 , and ~(U) contains the cubic determinantal 

hypersurface A = {det(aij ) = 0}: A is the dual variety of the Veronese surface 

W ~ in IP(U~), and its singular locus is the Veronese surface W in ~(U). 

Now, the datum of a symmetrization amounts to giving a ~3 c ~(U) such that 

~3 n A is a normal cubic. But giving a ~3 c ]P(U) is equivalent to giving a 

~I in ]P(U*), i.e. a pencil of conics. 

Notice that the number of base points in the pencil of conics is the cardinality of 

I ~3 n W, the number of degenerate conics in the pencil is the cardinality of 

]pl n A ~. 
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The following is the list of pencils of conics (up to projective equivalence): 

i) pencils of reducible conics: Xx~ +~XlX 2 = 0, or XXlX 2 +~x2x 3 = 0 

ii) pencil with 4 base points: XXlX 2 + ~x3(xl+x2+x3 ) = 0 

iii) pencil with 3 base points: XXlX 2 +~x3(xl-x 2) = 0 
2 

iv) pencil with 2 base points, 2 degenerate conics: %x|x 2 + gx 3 = 0 
2 

v) pencil with 2 base points, one reducible conic: XXlX 2 +~(XlX3-X 2) = 0 
2 

vi) pencil with 1 base point: Xx~+ ~(XlX3-X 2) = 0. 

Correspondingly we get the following symmetrizations: 

i) 

Y0 Y2 , Yl G --- {y0y21 = 0}, 

Yl Y2 Y3 ~Y3 0 y2/ 

respectively 

2 
G --- {y0YlY2-yly 3 = 0}, so G is reducible, and this case must be excluded, 

ii) 
/~ 0 0 y2 ~ 2 

2=O} 
Yl Y3 I G =- {y0y 1(y2+y3 ) +y0y 3+yly 2 

~Y2 Y3 (-Y2-Y3) J 

Here G has 4 singular points, and is also projectively equivalent to the 

3 Y0YlY2Y3 
4-nodal cubic of Cayley of equation o3(y) = Z 0. 

i=0 Yi 

iii) (;0 0 
2 

Yl Y2 G =- {yoYlY 3-y0y22- yly 2 = 0}. 

Y2 Y2 Y3 

G has three singular points, two nodes and a singularity of type 

{Y0 = Yl = Y2 = 0}. 

A 3 at 

iv) (;0 0 
Yl ~3 

~Y2 Y3 

The l ine  Y3 = Y2 = 0 

2 2 
G --- {y0Y3+ylY2 = 0}. 

is singular, so this case must be excluded. 
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v) 0 y) 
Yl Y2 G --- {yoYlY 3-yOy ~-y~ = 0}. 

\Yl Y2 Y3 

G has two singular points, one node at {Yl = Y2 = Y3 = 0}, 

point of type A 5 at [Y0 = Yl = Y2 = 0}. 

and a singular 

vi) 

I O Y0 Yl 1 
Y0 Yl Y2 G m {y3y~+y~- 2YoYlY2} 

Yl Y2 Y3 

The line Y0 = Yl = 0 is singular: moreover the plane {Yo = 0} is in the 

tangent cone at every point of the singular line so that this cubic is not 

projectively equivalent to the one in iv). 

Theorem 1.3. Every symmetric cubic G has only one symmetrization. Moreover, 

has exactly one finite irreducible double cover ramified exactly at the singular 

points of G. 

f~ 
Proof. The first statement follows from the above list. Now, let Y --+ G be a 

double cover, and notice that G has only singularities of type An, n = 1,3,5. 

The fibre product Z' = YXGG , where G is a minimal desingularization of G, is 

an irreducible finite cover of G. 

Therefore, if Z is the normalization of Z', there exists a reduced effective 

divisor E with support in the exceptional divisor of p:G ÷ G, and a divisor L 

on G such that 2L m E, and f:Z ÷ G is the double cover of G in 0~(e) 

branched over E. Hence Z has only nodes as singularities, and 

~Z = f*(-H) + f*(L), where H is an hyperplane section of G. Z is then a ratio- 

nal variety, therefore f~0y is a Cohen-Macaulay sheaf on ~3 , with support on 

G (cf. [2], prop. 2.18). It follows also, by the Riemann-Roch theorem, that 

h°(0~(H-L)) = 3. Applying theorem 2.19 of [2] we prove that a double cover as 

above gives a symmetrization. 

Conversely, consider the sheaf F cokernel of 0 + - 03 (aiJ(Y)>) - )3 ]p3 0 3 (I ÷ F ÷ 0, 

and define Y to be Spec(0GmF) , with algebra structure given as in [2], 

cor. 2. 17. 
Q.E.D. 

We observe now that if we write X = Q n G, where G is symmetric, we are 
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giving, as X is smooth, an unramified double cover X of X, induced from the 

double cover Y ~ G, or, equivalently a divisor ~ c Pic2(X). Now q is not tri- 

vial if h°(X,Ox(K+n)) = 2, and this follows from the exact sequence 

(1.4) 0 ÷ H°(0~(-H+L)) ÷ H°(0~(H+L)) ÷ H°(0x(K+n)) ÷ O. 

We are going now to prove a converse to this statement, 

Theorem 1.5. (Wirtinger-Coble-Recillas). 

Let X be a curve of genus 4, not hyperelliptic and with no vanishing theta 

null. Then giving a divisor ~ e Pic2(X) - {0}, such that (X,n) is not bielllp- 

tic, is equivalent to writing X as the complete intersection of a smooth quadric 

Q and a symmetric cubic G. 

Proof. We have already proven that giving G symmetric containing X determines 

an n ~ Pic2(X) - {0}. 

Conversely, consider the rational mapping ~:X ÷ ~2 given by the linear system 

I K X + HI- We break up the proof in several steps. 

(1.6) IK + HI has no base points if X is not hyperelliptic. 

Proof. Let p ~ X: since H !(0X(K+n)) = 0 p is not a base point if and only 

if H1(0x(K+n-p)) = 0. By Roch's duality, this is equivalent to IP - nl # ~. But 

if q e IP-~I, then 2p m 2q, with q # p, and X is hyperelliptic. 
Q.E.D. 

Then ~ is a morphism. Denote by C = ~(X), so that degC " deg@ = 6 

(1.7) degC ~ 3 if X is not hyperelliptic. 

Proof. If C is a smooth conic, then, let D be the inverse image of a general 

point in C: we have h°(0x(D)) e 2, and D has degree 3. Let D' = K-D: by 
o v 

R.R. h (0x(D)) = 2, and D' ~ D, since 2D m K+~, ~ ~ O. Since IDI has no 

base points, by the "base point free pencil trick" (cf. [l|]), H°(0x(K)) 

o , o HO(0x(K))®2 o H (0x(D)) ~ H (0x(D)). Since X is not hyperelliptic ÷ H (0x(2K)) 

is surjective. Since 2D' ~ 2D, it follows that then H°(0x(2D)) e2 + H°(0x(2K)) 

is surjective: this is anyhow absurd since 12KI gives a birational morphism. 
Q.E.D. 

(1.8) If C is a singular cubic, then its normalization C is ]pl , and, 
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since ¢ factors through C, X is hyperelliptic. 

(1.9) C is a smooth cubic if and only if (X,~) is bielliptic. 

Proof. If C is a smooth cubic, then ¢.0 X = O C@0C(-E), K X = ¢*(E), where 

E is an effective divisor on C of degree 3. Let H be a hyperplane divisor 

on C. Then n m ¢*(H-E), but ¢*:Pic(C) ÷ Pic(X) is injective ([12], pag. 332), 

hence (X,~) is bielliptic, with n' m H-E. 

Conversely, KX+n m f*(E+n'), where f. O X ~ 0 C @ 0c(-E). But, by the Leray spec- 

o (Ho(C,0c tral sequence for the map f, H (X,Ox(Kx+~)) ~ f* (E+~')), therefore 

factors through f and an embedding of C as a plane cubic. 
Q.E.D. 

Remark ].I0. An easy computation shows that bielliptic pairs form a six-dimension- 

al subvariety of R 4. 

We are at the last step of the proof: ¢:X ÷ C is a birational morphism, therefore 

can be factored through a finite sequence of blow-ups. 

We are therefore in the following situation: we are given a surface S obtained 

from ~2(¢:S÷~2) by a finite sequence of blow ups of the (possibly infinitely 

near) singular points of C, of multiplicities r I ~ r 2 ~ ... r k. 

Let El, ... E k be the total transforms of the exceptional curves of each blow up, 

H the total transform of a line in ~2 

Then, on S, we have 

l.]]) H 2 = ], H'E. = 0, E 2 = -I, E..E. = 0 for i % j, 
l l i ] 

k k 

1.12) K S ~ -3H + ~ Ei, X -= 6H - ~ riE i- 
i=1 i=l 

k 

].13) Let A be ~ (ri-l)Ei; by the adjunction formula 0x(Kx) = 0x(3H-A), 
i=I 

and, on X, A --- 3H-K X --- 2H+n. 

Therefore i) o H (0x(2H-A) 

ii) A'K X = 12 = 

= 0 , hence H°(0s(2H-A)) = 0 

k 

ri(ri-l)- 
i=I 

HI(s,~) = HI(S,0s ) = 0, we have an isomorphism Since of 

given by restriction. 

H°(0s(3H-A)) + H°(0x(Kx )) 
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Let H' be the inverse image of a line not passing through the singular points 

of C. Since H'(3H-4) = 3, the exact sequence 

(1.14) 0 = H°(0s(2H-4)) ÷ H°(0s(3H-4)) ÷ H°(0H,(3H-4)) 

says that the rational map ~:S ÷ ~3 given by the linear system 13H - 41 embeds 

H' as a twisted cubic. 

Therefore, if G = ~(]p2), G contains a 2-parameter family of twisted cubics,two 

of which intersect in only one point, so that G is not a smooth quadric. 

If X has no vanishing thetanull, G must be a cubic surface. 

Let F be the fixed part of the linear system [3H - AI, so that 

13H-AI = F+ IMI, M 2 = deg(G), M-F -> O. Since ~ embeds a general line in ]p2, 

F is a sum of exceptional curves, each of which can be written either in the form 

Ei, or in the form E i - Ej, i > j. 

Then M 2 = (F+M) 2- (F+M)~F-FM < (3H-4) 2- (3H-£)'F. 

Now (3H-A)'F = -4F = - ~ (ri-l)Ei.F, and for each component of F, -A.F = 0 or 
i=] 

] (-A'E i = r.1- 1 -> 1, -A(Ei-Ej) = r I. - rj e0 since i > j). 

k k k k 

Hence M 2 -> (3H-A) 2 = 9 - [ (ri-1)2 = 9 - [ ri(ri-l) - [ (ri-l) = -3 + [ (ri-l). 
i=l i=l i=l i=l 

If deg(G) = M 2 = 3, then r I = 2; if deg(G) = 2, then the only other possibili- 

ty is r I = 3, r 2 = 2. 

We can assume from now on r] = 2. By the exact sequence 

(1.15) 0 ÷ 0s(4H-24-X ) + 0s(4H-2A ) + 0 x ÷ 0 

HI(0s(4H-24-X)) = HI(0s(-2H)) = O, we conclude that since 

(I.]6) 14H - 2A I has dimension 0. 

Let D be the unique divisor in [4H-241: since Do X = ~, D is mapped to the 

singular points of G, and, since D m 2(2H-A), 12H - A[ = 9, S admits a double 

covering ramified exactly on D; hence G admits a double covering ramified at 

most on the singular points, so that G is a symmetric cubic. 

Since 0x(2H-4) = 0X(n) , we have proven that G induces on X the double cover 

associated to ~. 

Conversely, given X as Q n G, let q be the induced divisor: then ~ is in- 

duced by the linear system IH - L I on G . If H" is a general hyperplane sec- 

tion of G, one has a restriction isomorphism of H°(0%(H-L))~ ÷ H°(0H,(H-L)), 
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therefore, if we denote still by ~ the rational map ~:~ ÷ ~2 given by IH - L I, 

embeds H" as a smooth plane cubic. Since through any two general points x,y 

of G there passes a plane section H" as above, ~ is birational, and the inverse 

map 4:~ 2 -> G is given by a system of plane cubics. Since ~IX is a morphism, 

clearly IK + n[ gives a birational morphism and (X,n), by (1.9), is not bi- 

elliptic. 
Q.E.D. 

Just for completeness, we indicate, for the three types of symmetric cubics, 

which are the systems of plane cubics giving the rational map 4. 

In case ii) we consider the six points of intersection of four independent lines in 
6 

~2 , and we blow then up to get S ~ G, with A = i~iEi, and D £ 14H- 2A I given 

by the of the proper transforms of the four lines (cf. e.g. [3]). 

In case iii): take three lines LI,L2,L 3 in general position in ~2 and blow up 

~2 at the three points L. n L. at a fourth point P4 £ L3' and then at the 
i j' 

2 infinitely near points P4+i lying over L i n L 3 = Pi (i=1,2) in the direction 

of L i. Let P3 = LI nL 2. 

Here you obtain S where D ~ 14H- 2A I is given by the proper transform of 

2L 3 + L 1 + L 2 together with E l - E5, E 2 - E6, and S ~ G. 

The double cover Z of S is smooth, being branched on the proper transforms of 

LI, L2, and (EI-E5) (E2-E6) , i.e. on a smooth divisor consisting of four (-2) 

rational curves, while the finite cover Y has just a node as singularity, lying 

over the A 3 singular point of G. 

Since we believe that case v) is the least known, we explain how to obtain the 

mapping 4. 

Choose w0, Wl, w 2 a basis of H°(0~(H-L)) such that (cf. [2], cor. 2.17) 

the following relations hold: 

(1.17) 

Y0W0 + YlW2 = 0 

YlWl + Y2W2 = 0 

YlW0 + Y2Wl + Y3W2 = 0 

We can solve these as linear equations in Y0' "'" Y3 and express then as homoge- 

neous polynomials in (w0,wl,w2). 
3 2 

We get Y0 = w2' YI = -w0w~' Y2 = WoW]W2' Y3 = w0(w0w2-wl)' and this is an 

expression of 4 in appropriate coordinates on ~2 and ~3 . 

The system of cubics has 2 base points, namely {w 2 = w 0 =0} = P, 

and {w 2 = w I = 0} = P', and a general cubic of the system is smooth at P, P': 
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but to obtain a system free of base points one has to blow up three times over P 

at the points where the line {w 0 = 0} (whose proper transform will be denoted 

by L0) passes and three times over P' at the points where the conic 
2 

{w0w 2-w I = 0} passes through. 

Denote by L 2 the proper transform of the line {w 2 = 0}. 
, , , 2 2 

We get thus El, E2, E3, El, E2, E 3 on S, and we notice that L 2 = L 0 = -2, L 2 

intersects transversally in exactly one point (EI-E 2) ' ' • , (E2-E3) , L 0 intersects 

E 3 transversally in exactly one point. 

The total transform of the quartic {WoW ~ = O} is thus 

| E 2) + 2(E~-E~) L 0 + (EI+E2+E3) + 3(EI+E~+E I) + 3L 2 i.e. 3L 2 + L 0 + 2& + (E'- ' 

+ 2(E|-E 2) + (E2-E3). 

The normal double cover Z of S = G is thus ramified on 

L 2 + L 0 + (E2-E 3) + (EI-E~) , hence Z is smooth, and the finite cover Y of G 

has just a singular point of type A 2 lying over the singular point of G of type 

A 5 • 

The meaning of theorem 1.5 in terms of ~4 is the following 

Theorem I.|8. R 4 is an irreducible variety, birational to the quotient 

• (Sym2(V4))/S4 , where V 4 is the standard representation of 

Proof. Since R 4 is a finite cover of M4, it is pure dimensional. 

Let A be the open set of R 4 corresponding to pairs (X,D) such that: 

i) X is not hyperelliptic 

ii) X has no vanishing thetanull 

iii) (X,n) is not bielliptic. 

By remark I.|0 and the considerations made at the beginning of the paragraph 

A is dense. 

Let Q be a fixed smooth quadric in ~3 , and let B be the open set in the 

space of symmetric 3×3 matrices of linear forms such that, if (aii(y)) e B, 

G = det(aij(Y)) is a normal cubic and X = GnQ is a smooth curve of 

degree 6. 

In view of theorem 1.5, there is a morphism of B onto A which is a quotient 

by the previously described action of GL(3) on B. Hence R 4 is irreducible 

(actually this was known already). 

Moreover, let B' be the open subset of B such that G is a 4-nodal cu- 

bic (case ii)), and A' its image in R4: A' is again dense, being non-empty. 

Assume that (X,~) corresponds to giving generators Q, G of the ideal 

of X in ~3 such that G is a symmetric cubic, and analogously (X',n') cor- 

responds to (Q',G'); if f:X ÷ X' is an isomorphism such that f*(~') = ~, then 
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f is induced by a projectivity g:~3 ÷ ]p3 such that Q = g*(Q'), G = g*(G'), 

by theorem 1.5, and, conversely, such a projectivity induces an isomorphism of the 

pair (X,~) with the pair (X',n'). 

Since all 4-nodal cubics are projectively equivalent, we can fix the 4-nodal cubic 

4 ylY2Y3Y 4 
to be GO, the cubic of equation o3(y)= ~ 0. 

i=1 Yi 

Consider now the open set A in ]P(Sym2(V4 )) corresponding to the quadrics 

Q in l~(V4)) = IP 3 such that QnG 0 is a smooth sextic curve X. We get thus a 

morphism f of A into R 4, with f(A) =A', such that Q, Q' map to the same pair (X,q) 

if and only if there exists g • PGL(4) such that g(G0) = GO, g(Q) = Q'. We con- 

clude the proof since it is well-known that _S 4 is the group of projective auto- 

morphisms of G O . 
Q.E.D. 

We want to find out now a dominant rational map of ]pl0 to M4, I. 

To do this, recall that a curve of genus 4 X which is not hyperelliptic and has no 

vanishing thetanull is a smooth divisor of bidegree (3,3) on Q = ip1 × ]pl. 

Fix three points =,0,I in ]pl and let p E Q Le the point (~,~), M be 

the (unordered) set of five points {(~,o~), (~,0), (~,i), (0,~) (I,~)}. 

Given a general [C',p'j c M4, 1 we can assume to have chosen coordinates in 
~,1 ]pl 

x such that p = (~,~), and that the two lines {~} × ~I ~I ×{~} inter- 

sect C' in three distinct points. Let I M be the ideal sheaf of M on Q. 

Therefore if we take the linear system IG[ = IIM(3,3) I we obtain a rational domi- 

nant map of [GI onto M4, I just by sending C • IGI to the pair [C,(oo,~)]. 

Assume now that two pairs C,C' e IGI are isomorphic: then there exists an 

automorphism g of ~I x ]pl which leaves (~,~) fixed and such that g(C) = C', 

since all the automorphisms of ]pl ]pl × are induced, via the Segre embedding, by 

automorphisms of IP 3 . 

But now g leaves the set A = (]pl × {~}) u ({co} × ]pl) invariant, and, since 

M = AnC = AnC', g(M) = M. 

Let us choose affine coordinates (x,y) on ]pl × ]pl _ A: then g belongs to 

the group generated by the involution g3 such that g3(x,y) = (y,x), and by the 

two involutions gl' g2 such that gl(x,y) = (l-x,y), g2(x,y) = (x,l-y). 

2 
4 Let r3= g3gl: then 2r has period 4; if we set s = g3' then s = I, 

r = I, sr = rs = g2' r = g|g2' and our group is the dihedral group D 4. 

We can thus reformulate our discussion with the following 

Theorem 1.19. M4, 1 is the quotient of ~10 by a suitable action of the dihedral 

group D 4 . 
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For the geometrical construction underlying theorem C, consider again a non- 

hyperelliptic curve C c ~I x ~l = Q. In this picture we have in Q a family of 

lines of the form ~l × {a} , a ~ ~I , and another of the form {b} × ~I , b £ ~I, 

which we visualize as being orthogonal to the first. 

Definition 1.20. A rectangle R in Q is the union of four distinct lines in Q, 

of the form R = (~l × {b}) u (~I x {b'}) u ({a} × ~l) u ({a'} x ~I). Its vertices 

are the four points (a,b), (a,b'), (a',b), (a'b') and if they all belong to C 

we shall say that R is inscribed into C. 

Theorem 1.21. A general curve C of genus 4 admits 6 inscribed rectangles 

(lying in the unique quadric Q containing the canonical image of C). 

Proof. Consider C 4 and the four projections fi:C 4 + C (i=I,...4) on the four 

factors of the product. Let moreover p,p,:Q ~ ~l be the two natural projections: 

they define two divisors of degree 3 on C, which we denote, respectively, by D 

and D'. 

Let D i be the divisor on C 4 such that D. = f~(D) (resp. D~ = f~(D')); 
i i I 

let moreover 4ij c C 4 be {(yl,Y2,Y3,Y4) Yi = Yj} 

Consider in C 4 the subvariety W = {(yl,Y2,Y3,Y4 ) I P(Y|) = P(Y2 ), 

p(y3 ) = p(y4 ), P'(Yl ) = p'(y4) , p'(y2 ) = p'(y3)}. 

Given an inscribed rectangle R and a vertex x of R one determines a unique 

point y = (yl,Y2,Y3,Y4) in W with Yl = x, and such that y e W- i~j 4ij" 

Conversely, if y e W- A12- A34- AI4- A23' then also Yl t Y3 since otherwise 

p'(yl ) = p'(y3 ) = p'(y2 ), and, since p(yl ) = p(y2 ), one would have Yl = Y2; 

analogously one has Y2 ~ Y4" 

Therefore the points of W - A12 - 434 - A14 - A23 are in a bijeetion with the 

pairs (R,x) where R is a rectangle inscribed into C, x is a vertex of R. 

Now the above mentioned set is the complete intersection of four divisors. 

In fact, consider in C 2 the divisor B = {(yl,Y2) I P(Yl ) =p(y2)}. B = 4+ F, 

where 4 is the diagonal of C × C, and F is smooth away from A since p is a 

covering of degree equal to three. 

B is the pull back of the diagonal in ~I × ~l under the morphism 

p xp:C 2 ÷ (~I)2, therefore its class as a divisor on C 2, using our previous nota- 

tions (f':C21 ÷ C, i=1,2, being the two projections), is just D 1 + D 2. Since 

C has genus four A 2 = -6, moreover B'4 = 6, so that F-4 = 12. 
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Consider the monodromy of p:C -~ 71: if C is general, then p has only ordinary 

ramification, i.e. 

a) F and A intersect transversal ly 

b) the monodromy of p is generated by transpositions 

Since C is connected b) implies that the monodromy is the full symmetric group, 

hence, in general, F is smooth, irreducible, transversal to A in the points cor- 

responding to the ramification points of p. 

Considering the projection p' instead of p, we define analogously F' c C 2. 

Let Fij = (fi×fj)*(F), F~k = (fh×fk)*(F'). 

Then we claim that W - AI2 - A34 - Al4 - A23 = FI2 n F34 n F'14 n F'23, and the 

intersection is transversal, for C general. 

In fact, if (yl,Y2) E AI2 nF!2 , then Yl = Y2 and Yl is a ramification point 

of p: since y = (yl,...y4) ~ W it follows that Y3 = Y4' hence Y3 is a second 

ramification point of p, and p'(yl ) = p'(y3). 

It is easy to see that curves C of type (3,3) in Q such that the above situa- 

tion can hold form a proper subvariety in the linear system i0Q(3,3)] 

' n ' gives a transversal intersection for C gen- To show that FI2 n F34 n FI4 F23 

eral, we consider the variety A c [0Q(3,3)] × Q4 defined by 

A = {(C, yl,Y2,Y3,Y4 ) I Yi ~ C, i=l,...4, p(yl) = p(y2) , p(y3) = p(y4) , 

p'(y2 ) = p'(y3) , p'(yl ) = p'(y4)} 
A is of dimension 15 and smooth at the general point, hence our assertion is 

proven if the projection of A on [0Q(3,3)] is surjective: but if this were not 

the case, for C general, FI2 n F34 n Frl4 n F'23 would be empty. 

Finally we compute: FI2-F34.F'14.F~3 = (DI+D2-AI2) • (D3+D4-A34) • (D'I+D¼-AI4) • 

(T~'+D'-A ~ = 2 • 34 33 32 33 --2 3 -23" - 2 • • 4 + 2 • • 6 - 2 • 3 • 4 - 6 = • 2 - 30 = 24; in 

fact AI2 " &34 " AI4 " &23 equals the self-intersection of & in C x C . 
Q.e.D. 

Theorem C is now a straightforward consequence of theorem 1.21. 

Namely, consider in Q = 71 x 7; the following set of six points: 

M' = {(~,®), (0,0), (0,~), (~,0), (I,~), (~,~)}. 

Let ]G' I be the linear system IIM,(3,3)[: we can choose affine coordinates 

(x,y) on ~l × ~l _ {~} × 71 _ 71 x {~}. Then IG'I is the projective space asso- 

ciated.with the vector space U spanned by the monomials 

x, x 2, x2y, x3y(l-y) 

2 2 y 3 x ( l _  x y ,  y , y x ,  ) 

2 2 
xy, xy 
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These monomials are permuted by tNe action on IG'I induced by the automorphism 

s:Q + Q such that s(x,y) = (y,x). It is then obvious that IG'I/s = B(U)/s is 

birational to B 9 . We conclude then this paragraph with 

Theorem C. M 4 has covering of degree 24 by a rational variety. More precisely, 

the rational map of IG'I + M 4 is a covering of degree 48 which factors through 

the action of s on IG'I, and a general point of IG'I/s corresponds to the 

datum of a triple (C,R,p) where C is a curve of genus 4, R is a rectangle in- 

scribed into C, p is a vertex of R. 

Proof. To a curve C ~ IG'I we associate the triple 

(c, (~]×{o,~} u ({0,~}×~]), (~,~)). 

Assume now that C, C' give isomorphic triples: then there exists 

g c Aut(Q) such that g(~,~) = (~,~), g(C) = C', and for the rectangle 

R = (~I x {0,~}) o ({0,~} × ~I) one has g(R) = R. In particular, g(M') = M', 

that necessarily g is either the identity or the involution s. The fact the 

degree of the rational map of IG'I onto M 4 is 48 follows immediately from 

theorem 1.21. 
Q.E.D. 

SO 
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§2. RATIONALITY OF THE INVARIANT SUBFIELDS. 

Before turning to prove the rationality of R4, we first state a more general 

auxiliary result. 

Let V be the standard permutation representation of the symmetric group S 
n -n' 

m 
V n the direct sum of m copies of V . Then the field of rational functions on 

n 

Vmn ' k(Vm)n , can be written as k(Xll,...Xln , .  x21 , . . . .  ..X2n, .,Xml, ..Xmn ~, and a per- 

mutation ~ acts on xij by sending it to xi~(j ). Consider the following invari- 

ant rational functions, where o. denotes the i-th elementary symmetric function, 
i 

and a variable with a cap has to be omitted: 

(2. l) 

o! i l,...n i = °i(Xll''''Xln) = 

(h) n 
o I = Ni I XhjXlj h = 2 .... m 

o(h) n 
• = E "'''Xlj' h = 2,...m i j=l Xhj ~i-l(Xll . . . .  Xln) i = 2, ...m. 

Lemma 2.2. The invariant subfield k(V~)$nm is a rational field: more precisely 

the nm functions given by 2.1 form a basis of the purely transcendental extension 

over k. 

..... .vm ÷ (An)m and to prove that Proof. o', 0 (2) o (m) determine a morphism 4- n 

~O induces a birational map of vm/s onto the affine space (/An) m it is enough 
n -n 

to prove that on a Zariski open set of V m ~(x) = ~(y) if and only if there 
n 

exists T e S such that ~(x) = y. 
-n 

The "if" part being obvious, let's assume that ~(x) = ~(y): then, in particular, 

o'(x) = ~'(y). 

By virtue of the fundamental theorem on symmetric functions, we can assume, act- 

ing on y by a suitable • e S_n, that Xlj = Ylj for j = l,...n. 

Let us set for convenience zj = Xlj (j=l,..,n). Then the variables Xhj, 

Yhj (h=2,...m, j=1,...n) are solutions, by2.1, of the same system of n(m-l) 

linear non-homogeneous equations, hence they are equal if the determinant of the 

system is non-zero. 

The system being given by the matrix 

(2.3) 
n 

I Z1 ~ ... ,Z n ! 
Ol(Z2,-..Zn ) ,Ol(Z 1 .... ,Zn_ l) 

On_l(Z 2 .... z n) ,°n_l(Z I .... ,Zn_ I) 
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it suffices to verify that the determinant of the matrix (2.3) n is not identically 

zero. We prove this by induction on n, since for n = 2 we get 

det(Z 1 z21 2 2 \z2 Zl" = z I - z 2. For bigger n, the determinant of (2.3) n modulo z n, is 

given, up to sign, by the product of Zl...Zn_ 1 = On_l(Zl,...Zn_l) times tile deter- 

minant of (2.3)n_ |. 

Q.E.D. 

Theorem A. R 4 is a rational variety. 

Proof. In view of theorem I.]8 we have to show the rationality of P(Sym2(V4))/S4 . 

We use here the fact that ~4 has a normal subgroup G ~ (~/2) 2 given by the 

double cycles in ~4; the quotient S4/G is isomorphic to ~3 and in this way 

any representation of ~3 induces canonically a representation of ~4 that we 

shall denote by the same symbol. 
2 

Since the action of ~4 on Sym (V 4) is linear, it is clearly sufficient to prove 

the rationality of the quotient Sym2(V4)/S4 . 

We subdivide the proof in four steps, noticing that we have the following chain of 

inclusions 

(2.4) k(Sym2(V4 )) ~ k(Sym2(V4))G = k(Sym2(V4))-S4 = !k(Sym2(V4))G) -$3 . 

Let W 4 be the irreducible S4-submodule of V 4 generated by x I - x2, x 2 - x 3, 

x 3 - x4: V 4 = ~eW4, ~ being the trivial one dimensional representation spanned 

by o](Xl,...x4). 

2 • V3 Step I. Sym2(V4 ) ~ ~eW 4 

Sym2(V4 ) 2 Proof. ~ V¼~V~W¼ where V¼ is spanned by x~, x~, x~, x4, V~ is 

spanned by Yl = XlX2 +x3x4' Y2 = XlX3 +x2x4' Y3 = XlX4 + x2x3' W~ is spanned by 

w I = XlX 2-x3x4, w 2 = x]x 3- x2x4, w 3 = XlX 4-x2x 3. 
v V¼ is clearly isomorphic to V4; also, since G acts trivially on V 3, V~ is 

induced by a representation of ~3" 

V~ has as basis three vectors corresponding to the three non-trivial double cycles 

of ~4' and the action of ~4 on the basis is given by conjugation in ~4 (G acts 

trivially being abelian). 

Observing that the transposition (1,4) permutes Yl with Y2 and leaves Y3 fixed, 

(1,2) leaves Yl fixed and permutes Y2 with Y3' we conclude that V~ is iso- 

morphic to Vq. 
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On W¼ we have the following actions: 

( 1 2 ) ( 3 4 )  a c t s  by  

w I F -+ w 1 

w 2 ~-+-w 2 

w 3 ~-w 3 

, (12) by 

w I ~--+ w I 

w 2 ~-~-w 3 

w 3 ~-+-w 2 

wl ~-+ w 3 

(123) by w 2 ~--+ w I , (1234) by 

w 3 ~-+ -w 2 

Wl ~ -w3 

w 2 ~--*-w 2 

w 3 ~-+ w I 

Let X' be the character of W¼: the character of W 4 equals the character X of 

V 4 minus I, hence we conclude that X-1 = X' by computing explicitly the table 

of characters 

Conjugacy classes (12)(34) 

T 
X 3 - I  1 

x 4 0 2 

(123) (1234) 

0 -I 

1 0 

! 
If the characteristic of k is different from 2,3, this implies that W 4 ~ W4; 

in characteristic 3, this is also true, because both representations are irredu- 

cible: in fact (cf. [15], pag. 155) their modular characters are indecomposable. 

To compute k(Sym2(V4)) G, in view of step I, suffices 

= w' ' are coordinates on W 4 • W 4, Step II. k(W )G L, if Wl' w2' w3' I' w~, w 3 

is generated by 

2 2 
(2.5) w I, w 2, WlW2W3, wiw ~ (i=1,2,3) 

Proof. The six given functions are 

have an extension of degree 4 and 

G-invariant, and k(W~) = L(Wl,W2), so we 

L is the whole subfield of G-invariants. 

2 2 2 
w.w'o. Then L Step III. Let F be the subfield of L generated by Wl' w2' w3' i i 
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is a quadratic extension of F given by F(t), where t = WlW2W 3. F = k(V~) as 

a representation of ~3 = ~4/G" 

Proof. Clearly t # F, t 2 (w21) 2 2 = (w2)(w3). Also the action of _S 4 on V 3 

from the one of _S 4 on W 3 only up to sign, i.e., as it is easy to verify, 

acts by permuting the basis given by Y]' Y2' Y3' and if T (yi) = yj, then 

2 w~, T = ) • (w i) = +wj, hence T(wi) = (wiw~) w.w..l J 

differs 

~4 

2 v 
Step IV. Let M be the field generated by wi' wiw i' Yi (i=1,2,3). M is a 

purely transcendental extension of k, M ~ k(V~), k(Sym2V4)~4 = M~3(t,(7), where 

= (71(Xl,...x4), t = w|w2w 3. 

(Sym2V4)~4 ~3 Proof. k = (M(t,(7)) , but o is an invariant for ~4 from the very 

beginning, while t is an ~3 invariant by the formulas written in step I. 

That M is isomorphic to k(V~) follows by step III. 

)-$4 MS-3 (t). -$3 End of the proof, k(~(Sym2V4 ) = But, by lemma 2.], M is a ratio- 

nal field with basis of transcendency oi, (7~, o~, o12)(2)~2)13)~3)~3) ' (72 , (7 ) (7 , (7 , o . 

We conclude observing that o~ = - t. 2 w 2 w2~ t 2 l ui<Wl' 2' 3 ~' hence = o~. 
Q.E.D. 

Theorem B. M4, 1 is a rational variety. 

Proof. By theorem 1.19 and the arguments preceding it we have a linear representa- 

tion 0:D 4 ÷ Aut(U) where U is l]-dimensional, and we know that M4, ] isbiratio- 

nal to ~(U)/D4. 2 2 2 2 2 2 
U has a basis given by the polynomials I, x, x , y, y , xy, x y, xy , x y , 

xy3(l-x), x3y(l-y), and, if r, s are the generators of D4, such that 
2 4 3 

s = r = ], sr = rs, 

(2.6) s(x,y) = (y,x), r(x,y) = (y,l-x). 

To decompose U as a direct sum of irreducibles, since D 4 has order 8 and we 

assume char(k) # 2, we compute the character X of O. 

For s we observe that O(s) permutes the elements of the basis, leaving 
22 

I, xy, X y fixed: hence X(S) = 3. 

For sr, sr(x,y) = (l-~,y) and choosing for U the new basis x, (I-x), x(l-x), 

yx, y(l-x), yx(l-x), y2x, y2(l-x), y2x(l-x), y3x(l-x), x3y(l-y), we see that the 
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trace of p(sr) is 3 since sr permutes the first 10 elements of the basis, 

leaving 4 of them fixed, while sr(x3y(l-y)) = (l-x)3(l-y)y = -x3y(l-y) + terms 

of lower degree in x. 

2 2 x2y, 2 3 x3y(1_y) For x(r), x,x , y,y , xy , xy (l-x), are easily seen to give a zero 

contribution (by degree considerations), while 1 is invariant, xy ~ y-xy, 

x2y2 ~_~ y2_ 2xy 2 +x2y2, therefore x(r) = I. 

Since r2(x,y) = (1-x,l-y), the trace of p(r 2) is easily seen (in the first given 

basis) to be equal to 1 - 1 + I - I + 1 + 1 - I - 1 + I - I - 1 = -I. 

We now put together the character 

representations of D 4. 

(2.7) Conjugacy classes 

characters ~1 

~2 

~3 

¢4 

X' 

X 

1 

1 

1 

1 

1 

2 

11 

× of p and the characters of the irreducible 

{r,r 3} {s,sr 2 } sr,sr 3 

1 

1 

- I  

-1 

0 

1 

1 

-1 

1 

-1 

0 

3 

1 

-1 

-1 

1 

0 

3 

r 2 

1 

1 

1 

1 

-2  

-1 

Since X', and the ¢i's are an orthogonal basis for the space of class functions, 

by computing scalar products we obtain that × = 3~I + ~3 +~4 + 3X' Now ~! is the 

trivial representation, hence we conclude: 

Step I. k(~(U)/D4) is a purely transcendental extension of degree 2 
D 4 

variant subfield k(V) , where V is the representation with character 

3X' + ~3 + ~&" 

Step II. The cyclic subgroup generated by 

D 4 
k(V) = (k(V)r) ~/2 . 

r is normal, hence 

of the in- 

Now, if i is a square root of -I, then the representation X corresponding to 

×' is given by 

\0 ' 
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Therefore we can choose coordinates x., yj (j=1,2,3), Zl,Z 2 on V such that 
3 

acts by xj ~ ixj, yj ~-~ iyj, z h ~ -z h while s acts by permuting x.j 

with yj, while S(Zl) = z][, s(z 2) = -z 2. 

Step III. k(V) r is a purely transcendental extension of k, K, generated by 
4 2 2 2 2 

Xl' Xl/x 2' Xl/x 3' XlYl' Yl/y 2' Yl/ ' Zl(Xl+Y;)' z2(xl+Yl )" 
Y3 

Proof. K c k(V) r, and clearly k(V) = K(x]), but x? E K, so we have equality. 

Unfortunately in this way the action of s is not linear any more: to avoid this 

we replace first in the basis x? " by u = x2/ 2 = x4/ 2 2 . 
1 I /Y 1 I / x l Y  1 

Then s(u) = I/u: finally we replace u by (u-l)/u+] = w so that s(w) = -w. 

End of the proof. In this way we have a linear action of Zg/2 on an 8-dimension 

al vector space, and with 4 eigenvalues equal to (+I), 4 equal to (-I). 

The quotient is obviously rational. 
Q.E.D. 
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