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Introduction 

The present paper follows rather closely the text of the talk given at 

the Conference, and is therefore rather problem-oriented and of a mostly 

expository nature. 

In the first part we give a very brief survey of the history of the 

problem of moduli for surfaces and at the very beginning we discuss with 

some detail a very elementary though important example, namely the defor 

mations of rational ruled surfaces. 

Later on we expose some recent results of ours (cfr. [5]) which shed some 

light on basic questions concerning moduli of surfaces of general type: 

these results are based on the theory of "bidouble" covers (i.e. Abelian 

covers with group (~ /(2)) 2 ) and their deformations, and on the application 

of M. Freedman's recent result on homeomorphisms of 4- manifolds ([7]). 

We give then a list of some problems, and in the formulaticn of one of themwe are 

indebted to a private communication of A. Beauville ([I]). 

While in [5] the examples we had considered were only bidouble covers of 

1 I 
x ~ , we enlarge hare in the second part our consideration to bi- 

double covers of the rational ruled surfaces F 2m: on the one hand we 

can thus explain better the meaning of a certain exact sequence (2.7., 

2.18 of [5]), on the other we show how the deformations of the bidouble 

covers fit together smoothly when the base ~I x ~I deforms to F2m . 

Our notation is as follows: 

i 
For a complex space X, ~X is the sheaf of holomorphic i-forms, O X is 

the sheaf of holomorphic functions. 

If X is compact, and F is a coherent sheaf of 0 -modules we denote by 
.X 

Hi(F) the finite dimensional ~ -vector space HI(X,F), by hi(F) its dimen 

sion, by x(F) =di~ X(_1)ihi(F). 

i=0 

* A member of G.N.S.A.G.A. of C.N.R.. 
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For Cartier divisors D,C on X, Ox(D) is the invertible sheaf of sections 

of the associated line bundle; - will denote linear equivalence of divisors, 

algebraic equivalence, and IDI will be the linear system of effective 

divisors linearly equivalent to D; D'C denotes the intersection product. 

If X is smooth T will denote the sheaf of holomorphic vector fields, 
X 

and KX, when it exists, will denote a canonical divisor, i.e. a divisor 

~x'n where n = dim~ X such that Ox(Kx) o 

If X is an algebraic (compact, smooth) surface the geometric genus of 

X, pg,iS h°(~2)=h2(Ox ) , the irregularity q is h°(~xl)=h1(Ox). 

If M is a topological manifold of dimension 4, with a given orientation, 

T is the signature of the quadratic form q:H2(M,ZZ )+ZZ given by Poincar4 

duality. As usual bi=dim~Hi(M,]9) is the i th Betti number and e = 

= dimzM (-1)lb. is the topological Euler-Poincar4 characteristic of M. 
1 

i=0 

§ 1. Moduli of surfaces: history and problems. 

Let S be an algebraic compact smooth surface, which we assume to be 

minimal (i.e. S does not contain curves E ~ ~I such that E 2 = -I). 

genus of a curve, the holomorphic invariants K 2 X(O S) Like the S' = x(S) 

depend only on the topology and the orientation of S (this last being 

induced by the complex structure). 

In fact 

(1.0) ~ K2 = 3 T + 2 e 

[ 12 X = 3 T + 3 e , as a consequence of 

the Hirzebruch - Riemann - Roch theorem (cf. [10]). 

Assume that S P ~ B is a connected family of smooth surfaces, i.e. 

a) B is a connected complex space 

-I 
b) p is proper and Sb= p ({b}) is smooth for each beB. 

It is then a classical result that all the Sb'S are diffeomorphic to 

each other. 

According to Mumford ([17]) one has the following definition: 

Definition 1.1. The complex space M is said to be a coarse moduli space 

for S if there exists a bijection g from the set of isomorphism classes 

{IS' ] I S' is homeomorphic to S by an orientation preserving homeomorphism} 
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to M such that for each family S P ~ B the induced mapping f: B ~ M 

(such that f(b) = g([ Sb])) is holomorphic. 

A moduli space does not necessarily exist, as shows the following example, 

of rational ruled surfaces. 

Example 1.2. Consider the rational ruled surfaces 

for n> 2. 

Direct computations, which are well known, (cf. e.g. 

the result that for n>2 

n=~ (0 1 8 0 1 (n)), 

[12] pag. 42) give 

(I .3) h°(T]? ) = n + 5, h1(T~ ) = n-1. 

n n 

In particular, these surfaces are not biholomorphic to each other, but • and 
n 

are d i f f e o m o r p h i c  i f f  n ~ m ( m o d  2 ) .  I n  f a c t ,  c o n s i d e r  t h e  r a n k  
m 

2 - vector bundles V on ~I which are extensions 

(1.4) 0 ~ 0~i ~ V + 0~i (n) ~ 0 

These are classified by the (n-l) - dimensional vector space B=HI(o~I(-n)), 

-I 
and we get thus a family F P * B of ruled surfaces where p (b)= 

(Vb), V b being the vector bundle corresponding to b e B. By (1.4) any 

homomorphism ~:0~i (m) ~ V is trivial if m>n, and, if m=n, a non 

zero ~ gives a splitting of the exact sequence (1.4). 

For b e B, let m(b) the maximum m for which there exists a non trivial 

homomorphism ~ : O~i (m) ~ Vb: by the maximality of m(b) such 

determines a subline bundle of Vb, moreover 2 m(b) ~ n by the Riemann- 

Roch theorem, hence V b ~ 0 1 (m(b)) 8 0~i (n-m(b)), and ~(Vb)~ ~2m(b)-~ 

Since n<2 m(b) < 2n, we get a decreasing filtration B of B, for n/2<m<n 
-- -- m 

such that B = {b I exists a non trivial homomorphism f:O~1 (m)---+ V b} 
m 

Clearly Bm - Bm+l = {bl ~ (Vb) ~ F2 m-n}' and we have seen that Bn 

consists of the origin only. 

proposition 1.5. B 
m 

min (n-l, 2(n - m)). 

is an algebraic cone of dimension equal to 

Proof. Bm = {bl H°(Vb(-m))~ 0} 

By virtue of the exact sequence 



93 

0 ~ H °(v b(-m)) , H ( ~ l o  0 (n-m)) 8(b) .... , H I (O~i (-m)) 

where 8(b) is given by  c u p  p r o d u c t  w i t h  beB=H 1 (0~1:~ 1 ( - n ) ) ,  

B ={ b I 8(b) is not injective} . 
m 

Fixing two points, 0 and ~, in ~1 and choosing an affine coordinate 

z on ]p1 _ {~} such that 0 corresponds to the origin, a basis for 

H I(0~I (-n)) is given by the C~ch cocycles 

-I -n+1 
z .... z e H°(~ 1- {0} -{~}, 0~I ), 

n-m 
whereas a basis for H°(O~pI (n-m)) is given by 1,z,... z 

Since (z-i)v z j = { zj-i or 
0 if j>i or j-i_<-m 

n-1 
b = [ b. z -i belongs to B 

1 m 
i=I 

i) if 2 m < n+1, or, for 2 m > n+2, 

ii) if the following matrix A (b) has rank strictly less than (n-m+1), 
m 

where 

Am(b) = b I b 2 bn_m+ I 

b 2 b 3 bn_m+ 2 

• • • • . • • , • i o • , 

bm-1 bm " " bn-1 

It is immediate now that B is an algebraic cone, and we shall prove the 
m 

assertion on its dimension by considering V. = {b I the first i columns 
l 

of A (b) are linearly dependent} and proving, by increasing induction 
m 

on i, that cod V. = m-i, the case i=I being immediate. 
l 

Now Vi-Vi_lis covered by open sets where it is a complete intersection 

of (m-i) hypersurfaces, hence cod V. < m-i. 
i -- 

But if it were cod V. < m-i, V. would intersect the subspace 
l l 

Pi = {bl b.=O for j < i - I and j~ m} in a locus of dimension at 
3 

least 1 ,  w h i l e  i t  i s  e a s i l y  s e e n  t h a t  V. n p .  i s  j u s t  t h e  o r i g i n .  
1 1 

Q.E.D. 
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The preceding example shows that the family F P ~ B contains as fibres 

all the F k's with n>k>0 and kHn (mod 2), and on a Zariski open set of B 

the fibre is ~ Fo (~ I x ~I) for n even, and ~ ~I for n odd. 

Now it is easy to see that a moduli space (according to definition 1.1.) 

cannot exist for these surfaces, because we would have a non costant 

holomorphic map f: B --÷ M which should be constant on a dense open set, 

a contradiction since a complex space is a Haussdorff topological space. 

The case when S is a surface of general type is a rather lucky one: in 

this case not only M exists but it is a quasi-projective variety by the 

theorem of Gieseker (1977, [8]). 

The key feature here is given by the properties of the canonical divisor 

KS: by the theorem of Bombieri ([2]) , when m~5 the complete linear system 

Im KSI yields a birational morphism ~ : S , ~ Pm-1 m , where 

(1.6) p _ m (m-l) K 2 
m 2 S + x(S), and such that 

the image X of # is a normal surface enjoying the following properties 
m m 

a) X ~ X for n,m> 5 
m n 

b) the singularities of X = X are R.D.P.'s (Rational Double Points) i.e. 
m 

biholomorphic (locally) to the hypersurface singularities: 

2 2 n+1 
A = { z + x + y = 0} 
n 

D { z 2 + x(y2 n-2) = +x =0} 
n 

4 
E 6 = { Z 2 + x 3 + y = 0 }  

= 2 
E 7 { Z + x (y3+ x 2) = 0} 

2 3 5 
E 8 = { Z + x + y = 0} 

(n>4) 

c) ~ = ~ is a minimal resolution of singularities of X, i.e. # is 
m 

biholomorphic outside the singular points of X and the inverse image 

of a singular point is a (connected) union of curves E ~ ~I with 

E 2 = -2 intersecting transversally, whose structure is described by 

the Dynkin diagrams 
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A 
n 

D 
n 

E 6 

E 7 

E 8 

: 0 O O ..... O 

: / O ..... O 

O r  

: O O ~ O O 

o 
J 

: o o ~ o o 

o 
l 

: o o ~ o o 

o 

o o 

whose vertices correspond to curves, and whose edges correspond to points 

of intersection of the two curves corresponding to the vertices of the 

edge. The index (e.g. n in A ) denoter the number of vertices in the 
n 

diagram. 

The importance of the pluri-canonical model X lies in the fact that any 
m 

morphism f: S ~ S' induces a projectivity between Xm and Xm,' therefore 

M appears as a quotient of a locally closed subscheme H of the Hilbert 

2 2 ~-I 
scheme parametrizing surfaces of degree m K S in ~ by the projective 

group PGL (P). In particular one has: 
m 

(1.7) Surfaces of general type with fixed K2,X belong to a finite 

number of families (cf. [3], p. 395). 

For later use we show another application of the previous result. 

Theorem 1.8. Let G be a finite group and let M G be the subset correspond 

ing to the isomorphism classes of surfaces S for which G acts faithfully 

as a group of automorphisms of S. Then M G is a closed subvariety of M. 

Proof. Let m>5, and set N=P (S)-I. If G acts faithfully on S, G acts 
-- m 

linearly on the vector space H°(S, Os(m KS)), hence on its dual space, 

and we get an (N+1)-dimensional representation ? of G inducing a faithful 

projective representation of G on ~N leaving X invariant. Conversely 
m 

any faithful representation p of G on ~n leaving X invariant, since 
m 

any automorphism of X lifts to an automorphism of S (S being a minimal 
m 

desingularization),gives an injective homomorphism of G into Aut(S)~hence 

in particular lifts to a linear (N+I)-dimensional representation of G. 

Now there is only a finite number of isomorphism classes of such projective 

representations p, and correspondingly M G can be expressed as a finite 
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union of subsets M p. Fix therefore such a (linear) representation p 

inducing a faithful action on ~N , and let H Q be the locally closed sub 

scheme of the Hilbert scheme H parametrizing m-canonical images X of 
m 

surfaces S, such that H p is the locus of fixed points for the actinn of G cn H. 

Clearly M p is the projection to the quotient of the image of H p x PGL(N+I) 

in H. 

To prove that such imaqe is closed we use the valuative criterion of 

properness (cf. e.g. [9 ], theorem 4.7.) : assume that we have a l-parameter 

-1 
family S P ~ B, and that, setting B* = B -{ bo}, S* = p (B*), we have 

a faithful action of G an S*, such that,~or g e G, p o g = p. 

By the m -th canonical mapping we get a family X f , B,with X ---+ B x ~N , 

and it suffices to prove that for every g in G its action extends from 

X* to X and in such a way that g does not act as the identity on 

Xo = f-1(bo): in fact, X* being dense, such extension is then unique, 

hence we get a homomorphism of G into Aut(X o) which is injective by the 

second property. 

Now, for g e G, we get an invertible matrix a(t), for t e B*, which we 

can assume to be given by a regular function on B with a(bo) ~ 0: clearly 

it suffices to prove that a(bo) is invertible and is not a multiple of 

the identity. By continuity, the eigenvalues of a(b o) are limit of the 

eigenvalues of a(t), whose ratios are certain fixed roots of unity, 

therefore, not all the eigenvalues of a(bo) are equal and if 0 were an 

eigenvalue of a(bo), then a(b o) would be zero, a contradiction. 

Q.E.D. 

As we heard from D. Mumford's lecture, much is known about the moduli 

spaces M of curves of genus g, the basic fact being that M is quasi- 
g g 

projective normal irreducible variety of dimension 3g-3 (g~2) ; on the 

other side, not many general results are known about the moduli spaces 

of surfaces of general type, and we shall show here that too optimistic 

expectations have a negative answer: e.g. these moduli spaces are "in 

general" highly reducible, with a lot of components of different dimension. 

But, in order to explain all this more precisely, let's introduce some 

notation and let's make same historical remark. 

Definition 1.9. Let S be a surface of general type: then the number of 
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moduli of S, denoted by M(S), is the dimension of the moduli space M 

at the point [S] corresponding to S. 

M. Noether ([18])in 1888, under very special hypotheses, postulated for 

M a formula which in our terminology reads out as M = 10 X- 2 K 2. 

This formula is verified quite seldom (especially since M is a positive 

integer, whereas the right side can be very negative, even for complete 

intersections), but it is the merit of F. Enriques to understand that 

10 X- 2 K 2 should give a lower bound for M in the case of non ruled 

surfaces. 

In fact Enriques gave two proofs (see e.g. his book [6] ,p.204-215, especia ! 

ly the historical note on page 213) which were both incomplete, and in 

fact relying on some assumptions which did not hold true. In the first 

proof Enriques assumed to have a surface F c 3 with ordinary singula 

rities, of degree n, and with double curve C: he assumed that the chara 

cteristic system (cut on the normalization of F by adjoint surfaces of 

degree n) should be complete, and this is not true in general as was shown 

by Kodaira in 1965 ([11]); similarly in the second proof it was assumed 

that the characteristic system of plane curves with cusps and nodes 

should be complete, an assertion which was disproven by Wahl in 1974 

([22]), relying on the examples of Kodaira (we defer the reader, for a 

more thorough discussion, to the appendix to Chapter V of Zariski's book 

[ 25], written by D. Mumford). 

A proof finally came in 1963, through the theorem of Kuranishi ([13]) 

culminating the theory of deformations of complex structures due to 

Kodaira and Spencer. ! 
I 

Let X P, B be a connected family of smooth manifolds and boeB: then 

-I 
the fibres X b = p ({b}) are said to be deformations of Xo=Xbo. 

Any holomorphic map f of a complex space T into B, with f(to)=bo,induces 

another family of deformations of Xo, namely the fibre product T XBX. 

A family of deformations (X,Xo) P ,(B,b o) is said to be semi-universal 

if, for every other deformation (Y,X o) g ,(T,t o) the restriction to a 

sufficiently small neighbourhood of t o is induced by a holomorphic map 

f : T->B whose differential at t o is uniquely determined; it is said to 

be universal if moreover such a f is always unique. 

The theorem of Kuranishi asserts that a semiuniversal deformation exists 
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(it is then unique by its defining property), and moreover that its 

base B is a germ of analytic subset of (HI(Xo ),0) defined by h2(Xo ,TXo 

TXo) equations vanishing of order at least two at the origin. 

Later Wavrik ([23]) proved that, if H°(TXo)=0 , then the deformation is 

universal, what implies that if a moduli space M exists for Xo, then 

the germ of M at [Xo~ is biholomorphic to the quotient B/Aut(X o) (though, 

e.g. in the case of Galois covers whose deformations are all Galois covers, 

the action of Aut(X o) on HI(TXo) need not be effective). 

Now, when S is a surface of general type, Aut(S) is a finite group (this 

is another application of pluricanonical embeddings), hence H°(Ts)=0, 

being the Lie algebra of a finite group. Deformation theory gives a 

solution to Enriques' inequality via the Hirzebruch - Riemann - Roch 

theorem: if a surface X is not ruled, then H°(Tx)=0, and M = dim B, if 

M exists. 

Clearly one has, by the previous remarks on B, 

(1.10) h I (T x) - h2(Tx ) ~ dim B = M ~ h I (T x) 

but, since h°(Tx)=0 , the left hand side is -X(Tx), i.e. 10 X-2 K 2 by the 

Hirzebruch R.-R. theorem, hence (1.10) is exactly Enriques' inequality. 

One drawback of (1.10) is that the upper bound for M does not depend 

only on topological invariants: hovever, since bY Serre duality 

h2(Tx ) = hO(~ ~ ~ ~2 
X )' 

the right hand side is 10x-2K 2 + h°(~ ® ~2X ) ' so it is enough to give 

bound on h °(~ ~ ~), and in the case e.g. of surfaces of general an upper 

type this can be done via exact sequences restricting the sheaf ~I~2 
' S S 

to a smooth curve in IKI or ImKl. 

One gets (theorems B and C of [5]) the upper bounds 

(1.11) M < 10 X + 3 K 2 + 108 (in general) 

(1.12) M < I0 X + q + 1 if S contains a smooth canonical curve C. 

These extimates appear to be too crude and an interesting question is, 

roughly speaking: 

(1.13) what is asymptotically the best upper bound for M? 
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I will return later to better bounds for irregular surfaces, for the 

moment let me remark that, for a surface of general type S ,by Castelnuo- 

vo's theorem,Noether's inequality, and the inequality of Bogomolov - 

Miyaoka - YaH, the topological invariants K2,X are subject to the fol- 

lowing inequalities : 

(1.14) ~} 2 _> I ,X _> I 

K2 > 2 X - 6 

2 ! 9  x. 

It is possible therefore that, as K2,X ~ + ~ one may have different 

best upper bounds according to the limiting value of the ratio K2/X bet- 

ween 2 and 9. 

One may ask however whether the moduli space is pure-dimensional: we 

proved recently that this is not true, and that M can attain arbitrarily 

many different values for orientedly homeomorphic surfaces. 

More precisely, we proved ([5] theorem A) 

(1.15) for each positive integer n there exist integers 0<MI<M2< ... M n 

and homeomorphic simply-connected surfaces of general type 

S I, ... Sn, such that M(S )=M..l i 

An important remark is that the surfaces we consider are such that the 

canonical map is a biregular embedding, and their invariants K2,X are 

quite "spread" in the region defined by (1.14), so that these examples 

should be considered the rule rather than the exception. 

Let me sketch briefly the idea of the proof, which consists of 3 

basic ingredients. 

Step I: If Sl, S 2 are simplyconnected, have equal K2,X, and K 2 # 9, 

they are orientedly homeomorphic if and only if either 

a) K e 2 P (S.) (i=I,2) 
S. ic l 
1 

b) K { 2 P. (S.) (i=I,2) 
S. ic l 
l 

Step II: Find families of surfaces, with the properties stated in step 

I, depending on many integral parameters, and compute in terms 

of those K2,x,M. 



Step III: Show that one can fix K2,X and obtain different values 

MI,... M for M: this is a number theoretic problem, solved 
n 

by E. Bombieri (cf. the appendix to [5]), so that I will not 

talk about this in a Conference on Algebraic Geometry. 

Step I was suggested by B. Moishezon and depends almost entirely on the 

recent deep theorem of M. Freedman (cf. [7]). 

(1.16) If Sl, S 2 are simply-connected compact oriented differentiable 

4-manifolds with the same intersection form on H2(S.,~ ), then 
l 

they are (orientedly) homeomorphic. 

and on the theorem of Yau ([24]) 

(1.17) if K 2= 9 X and K is ample,then the universal cover of S is the unit 

ball in ~ 2 

In fact, by (1.0), K2,X determine the rank and the signature of the 

unimodular quadratic form q:H2(S,~) ~ , and it is known that indefinite 

un~larinteqral quadratic forms are classified only by the rank,signature 

and parity (q being even iff for each x, q(x)~0 (mod 2), being odd other- 

wise). 

Therefore Freedman's result applies provided that q is not negative or 

positive definite. 

But q is negative definite only for surfaces of class VII which have 

bi=I, while it is positive definite if and only if S=~ 2 , as an easy 

corollary of Yau's theorem (1.17) (cf. [14], [21]). 

Step II consists in considering bidouble covers of ~I ~I x and study- 

ing their small deformations: we will return to this point in the second 

paragraph, where we shall consider, using the results of [5], the more 

general case of bidouble covers of F2n . 

Anyhow 1.15 shows in particular that, fixing the homeomorphism type 

of S, and varying the complex structure (which necessarily gives a 

surface of general type if K 2 > 10), the number of moduli M varies in 

an interval whose size grows to infinity with K2,X . 

(1.18) How many irreducible components does MK2,x,(the union of the 

moduli spaces of surfaces with K2,X fixed),have at most? 
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(1.19) Is it true also that the number of connected components of M is 

2 
unbounded, as K ,X --÷ ~? 

We remark here that connected components of M correspond to connected 

components of the subscheme H of the Hilbert scheme mentioned before 

(1.7), hence two surfaces S,S' are such that their classes IS] , IS' ] 

belong to the same connected component of M if and cnly if they are deformation 

of each other: in particular they must be diffeomorphic. 

One could have therefore made a different choice for the "moduli space", 

considering only Mdiff, i.e. the union of the connected components of 

M corresponding to diffeomorphic surfaces, and ask,regarding Mdiff,similar 

questions to those posed for M, i.e. pure-dimensionality, etc.. 

As a matter of fact, though bidouble covers can be deformed until the 

branch locus is a union of lines (one gets then surfaces with only A l- 

singularities), even in this last case it is not easy to tell directly 

~lether homeomorphic surfaces are diffeomorphic: we have not pursued 

this, also there is some hope that Freedman's result can be m~de stronger 

as to imply that the two given 4-manifolds should be diffeomorphic° 

Let's go back now to the last piece of history: in 1949 G. Castelnuovo 

([4 ]) claimed that 

(1.20) For an irregular surface S without irrational pencils, the number 

M of moduli is ~ pg + 2q. 

To explain what this means, we recall the classical theorem of Castel- 

nuovo- De Franchis 

(1.21) Assume that n1,~ 2 are independent sections of H°(~)such that 

~I ̂  ~2~0: then there exists a morphism f:S ÷ B, where B is a 

smooth curve possessing two l-forms ~i,~2 e H°(~B )such that 

H i = f*(~i ) . 

Now, such a map f: S ÷ B is called a pencil, whose genus is, bydefiniticn, 

the genus of B, and an irrational pencil is just a pencil of genus at 

least one. 

So, if an irregular surface does not have irrational pencils, first of 

all its image under the Albanese map ~: S A H° ~I"V'HsJ + = ( / i(S,~ ) is a 

surface, (hence q~2!). 
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Conversely, it is easy to see that if the Albanese variety A is simple 

and is not the Jacobian of a curve then S does not have irrational pencils. 

Unfortunately Castelnuovo's claim is false, as we showed in [5] , exhibit- 

ing counterexamples where M grows, keeping q fixed, like 4 pg; anyhow 

we want to show here (cf. [5], th. D) that it is possible to rescue in 

some sense his assertion, in view of the Castelnuovo - De Franchis 

theorem. 

Theorem 1.22. If q~3 and there exist ~i,~2 e H°(~I) such that C = div 

(n I ^ q2 ) is a reduced irreducible curve, then M ~ pg + 3q - 3 and K2~6X, 

this last equality holding if and only if the Albanese map is unramified 

into an Abelian 3-fold. 

Proof. n1,~ 2 define an exact sequence 

(1.23) 0 ~ 02 I 
" ~ ~ F > 0  

S ms 

supp (F) = C, and, since h°(~) ~ 3, we have a non zero with section of 

F, hence a sequence 

(1.24) 0 ~ O C ~ F , A , 0 

where the support of A has dimension zero. 

By the multiplicativity of global Chern classes with respect to exact 

sequences, we obtain 

2 
c2(A) = - length(A) = - (c I - c2). 

Hence c21 -- > c2' i.e. K 2 _> 6 X, and if equality holds A=0, F~O c ~q=3 and 

~I is generated by global sections. The assertion about M follows by 
S 

tensoring (1.23) and (1.24) with ~2 bounding h ° of the middle term with 
S' 

the sum of the h°'s of the two other terms, and h°(Oc(K)) with pg+q-1. 
Q.E.D. 

Remark 1.25. The hypotheses of 1.22 are verified e.g. if ~I is generated 
S 

by global sections outside a finite set of points. 

Castelnuovo's error in fact was based on some wrong results of Severi 

([19]): e.g. Severi claimed that for a surface S without irrational 

pencils of genus q the sections of H°(~!) would have no common zeros, 
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what is not true (see [5] for a discussion and counterexamples). 

In the same paper Severi deduced from these incorrect assertions the 

following statement, whose validity we have not checked and we pose then 

as a problem 

(1 .26) Is it true that for an irregular (minimal) 

rational pencils K 2 > 4X? 

surface without ir- 

(I .27) Also, it is an interesting question for us whether, under the 

hypotheses of 1.22, Castelnuovo's inequality M ~ pg+2q holds: 

looking at the proof we see that it would be indeed the case 

if h°(Oc(K)) could be bounded by pg+2. This is not true if S 

has irrational pencils, and this inequality is related to a 

question posed by Enriques ([6] page 354): 

(1.28) whenis the dimension of the paracanonical system {K} less than 

or equal to pg? 

We recall that the paracanonical system can be defined as follows: 

consider the subscheme [K] of the Hilbert scheme consisting of curves 

in S algebraically equivalent to a canonical divisor K, and consider 

the irreducible component {K} of [K] which contains the complete linear 

system IKI. 

At the conference we posed the problem whether the hypothesis "S without 

irrational pencils" would imply dim{K} ~ pg, and ideed we asked also 

more, i.e. whether, under those assumptions, for D EPic ° (S)-{0} it 

should be HI(s,n)=0, a fact which implies dim[K] ~ pg. 

This latter has been answered negatively by A. Beauville ([I]) who gave 

an example where [K] has dimension bigger than pg. His example is as 

follows: 

(1.29) Let B, A, be Abelian varieties of respective dimensions g and q, 

an element of A-{0} with 2~=0, and let i be the fixed point 

free involution on B x A such that i(b,a) = (-b, a+~). 

Let X be the quotient manifold B x A/i: the direct image of 0Bx A splits 

as 0 x • 0X(n), where 2qH0 but q is not a trivial divisor. 

It is easily seen that hl(0x ) = q, h1(0X(q))=g, and that A/~ is the 
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Albanese variety of X. 

Taking an embedding of X by a sufficiently very ample linear system, and 

intersecting X with a general linear subspace of codimension (g+q-2), 

one gets a surface S whose Albanese variety is just A/e, and with 

h I (0S (~)) =g. 

But then, if g>q, the dimension of the linear system IK S +nl is pg+(g-q), 

> Pg. 

Clearly, as we remarked before, if A is not isogenous to a Jacobian and 

it is simple, S has no irrational pencils. 

In this example, the system IK] consists of I K + ql and {K} , which has 

dimension pg, in fact HI(0s(e))=0 for e ePic, s), E~ 0,n, since on an 

variety Y the only divisor ~ in Pic°(Y) with H1(0y(6)) ~ 0 Abelian is 

£ 0 (cf. [16]). 

To end with this first part, let mementiontwomore problems whose solution 

I'd like to see. 

(I .30) It is known (cf. e.g. t20 ], page 402 and foll.) that, given any 

finite group G, one can find, for each n>2, a variety X of 

dimension n with ~I(X)=G. In the case where G is abelian I have 

proved (]5], Cor. 1.9) the stronger statement that for any simply- 

connected variety Y of dimension n>2, there exists an abelian 
i 

cover of Y with group G n such that nI(X)=G. I guess that someth 

ing similar could be done for any finite group G, so that, in 

particular, "every finite group is the fundamental group of 

infinitely many surfaces". 

This last question is a recurrent one when one wants to describe explicitly 

some particular classes of surfaces. 

We recall that the pluricanonical model X of a surface S of general 

type is isomorphic to S if and only if the canonical bundle of X is 

ample, i.e. if and only if there are no curves E ~ ]i)I with K-E=0 (<=>E2---2) 

(these are the curves coming from the resolution of R.D.P's). 

It is not clear to me wh~ther these curves can be stable by deformation, 

i.e.. 

(1.31) DO there exist irreducible components Z of some moduli space of 
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surfaces of general type such that for each [S] e Z the canonical 

bundle K S is not ample? 

R. Klotz has announced the result that K2<9X if K is not ample: this 

result in particular says t~t there are no discrete cocompact subgroups 

2 
F of automorphisms of the unit ball D in ~ with D/F not smooth and with 

only R.D.P. as singularities (these subgroups F are rigid, by the theorem 

of Mostow [15]). 

§ 2. Bidouble covers of rational ruled surfaces. 

Def. 2.1. A bidouble cover w: S , X is a Galois finite cover with 

group G=(~ /2) 2 A bidouble cover is said to be smooth if, moreover, S 

X, are smooth varieties. 

Let 7: S , X be a smooth bidouble cover where S,X, are surfaces, and 
2 

let oi, 02, ~3 be the 3 non trivial involutions in the group (2Z /2) 

Let X. = S/ai, and let 7. : X. ~ X be the induced double cover• 
l 1 l 

The locus Fix(o.) of fixed points for ~. consists of a smooth divisor 
1 1 

R., and a finite set N~ : it is clear that R= R I + R 2 + R 3 is the ramifi 
l 1 

cation divisor of 7, that ~(R.) = D. is a smooth divisor, and D=DI+D2+D3 
l 1 

is the branch locus of 7. 

7. 
X i ~ X is branched on D. + D k ({ i,j,k} = {1,2,3} , here and in the 

3 
f o l l o w i n g )  ; t h e r e f o r e  s i n c e  t h e  o n l y  s i n g u l a r i t i e s  o f  X i a r e  A l - p o i n t s  

(nodes), c o r r e s p o n d i n g  t o  t h e  p o i n t s  i n  N~,  we h a v e :  
.1. 

-1  
12.2) the divisor D has normal crossings, N' = ~ (D n D k)_ , and there 

i j 
exist divisors L.1 on X s.t. 2Li -= D-+Dk'3 so that X.z is the double 

cover of X in 0x(L'I ) branched on Dj+D k. 

3 
In [5 ] it is proven then that 7, 0 S ~ 0 X ~( • 0x(-Li)),and that on X 

i=I 

(2.3) D k + L k -- L i + L.. 
3 

To describe more explicitly the algebra structure of 7, 0 S we use the 

following notation: x.1 is a section of 0x(D ~) such that div(xi)=Di, z i 
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is a section of 0s(R i) with div (zo)=R.. 
2 i l 

Then (zj Zk) = xj Xk, and, setting w.l = z.3 Zk, w i is a section of 

0 S(~* L i) with 

2 
W.1 = x j x k 

and w. is precisely the square root extracted through the cover ~.. 
1 1 

Conversely, in the rank-3 bundle V = ~ 0 (L.) one can consider the 
X l 

i=I 
bidouble cover described by the equations 

12 .4 )  w = x x k 
i j 

x k w k = W i Wj 

and ([5], prop. 2.3) all smooth bidouble covers arise in this Way from 

divisors D i ,  L i ,  s a t i s f y i n g  ( 2 . 2 ) ,  ( 2 . 3 ) .  

Def. 2.5. A surface S' is called a natural deformation of S if there 

exist sections Yi of 0 x (Di-Li), x'. of 0x(D j) (i,j=I,2,3) such that S' 
3 

is defined in V by the following equations 

(2.6) lw2i : ,yj wj + ' k2 wk ÷ 
j Wk - xi wi + Yi wi" 

Since natural deformations are parametrized by a smooth variety, it is 

to know to which subspace of H 1 (T S) they give rise: the important answer 

is given by the following result (thm. 2.19 of [5]). 

Theorem 2.7. 

0 ÷ H ° (Ts) 

There exists an exact sequence 

3 

H°(~*T x) , @ H°(0D. (D i) S 0D. (D i -Li)( 
i=1 1 l 

) 

÷ H 1 (T S) , H 1 (z* T x) 

and Im ~ = Kodaira Spencer image of the natural deformations. 

Remark 2.6. In [5] it is also proved that S is simply connected if X 

is such and the Di's move in a pencil with transversal base points. 

We are going to apply (2.5), in the case when X = r 2m. We consider then 
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the family F P + B obtained from (1.4) for n=2m. In the exact sequence 

(1.4) the trivial line subbundle of V b determines a relative Cartier 

divisor S c F which is a section of the projection of F onto B x . 

For each b in B,SIF b = SbiS a section of F b with normal bundle ~0 1(2m), 

hence S 2 = 2m. 
b 

The projection g of F onto ~I also induces a relative (w.r. to p)Cartier 

2 = 0 and Pic(F) is a free abelian divisor V= g*(0~1(1)).Clearly Yb ' 

group with basis given by Y, S: moreover Yb-Sb=1. 

Consider now a divisor P H aiS + a 2 Y, with a I, a 2 e ~ : when restrict- 

k <m, since Sb-(m + k)Y b is an effective smooth ing it to F b F2k ' - 

section of F b , if the divisor D b is effective, then either Db-Y b = 

= a I > 0, or ai=0, a2>0 and D is a union of fibres of the ruling of F b 

onto ~I . If a I > 0, also, since Db(S b - (m + k)Yb)= a1((2m) - (m+k))+a2= 

= a1(m - k) + a2, if (S b - (m + k)Yb)is not a fixed part of IDbl then 

D b H a I (S b- (m - k)Y b) + a3 Yb' with a 3 ~ 0. We set for convenience 

S~ = S b - (m - k)Yb: this is a smooth section with (S~) 2 = 2k. 

Lemma 2.7. If D b is an effective divisor on F b ~ F2k (0<k<m), and 

D b H a I S~ + a 3 Yb' then the linear system IDbl has no base points if 

and only if al, a 3 ~ 0. 

! Proof: ISbl has no base points by the following exact sequence (notice 

that S~ ~ ~I) 

(2.8) 0 ~ H°(OFb ) , H°(OFb (S~)) ~ H°(Oml (2 k)) ~ 0. 

Moreover, clearly IYbl has no base points. 

Q.E.D. 

In the previous discussion we have also seen that, given P ~ a I S +a2V, 

H ° (Fb, O F (Db)) ~ I if and only if a I ~ 0, a 2 ~ -a I (m+k (b)), where 

k(b) = m(b~-m (cf. I .4. and foll. , O<k(b) < m (and k(b)=m only for 

b=0). 

Let K be the relative canonical divisor of p:F ~ B: since Kb-Y b = 

= (K b + S b) S b = -2, 

(2.9) K - - 2 S + (2m - 2) Y. 
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By Serre duality then H2(OFb (Db))=0 if D b is an effective divisor. 

Moreover, if D b is effective, by the exact sequence 

O ÷ OFb (-Db) ~ OFb ~ ODb ~ O, 

it follows that HI(o r (-Db))=0 if IDbl has no base points or it has a 
b 

reduced and connected general member (i.e., in view of 2.7, ai=0, a2=I 

or a I > 0, a 2 ~ -a1(m - k(b))- 2 k(b). 

Again by Serre duality HI(OFb (Db))= HI(OFb (-D b - Kb)))= 

= HI(Orb (-((ai+2)S b + (a2+2-2m)Yb) and is therefore = 0 if a I ~ 0, 

a 2 + 2 + a1(m-k(b)) + ~ 2(m-k(b)). 

Corollary 2.10. Let P be the divisor aiS + a2Y , and assume a I >0, 

a 2 _> -2. Then Rip,(OF(P))=0 for i=1,2, p,(OF(P)) is locally free of rank 

equal to ma I (a I + I) + (a I + I)(a 2 + I). 

Proof: By the Riemann - Roch theorem and the previous considerations, 

hi(O]~ b (Db))=0 for i=1,2, hence for i=0 one obtains h ° = 

1 I 
= x(OFb (Db)) = I + ~ (Db-(Db-Kb)) = I+ ~ (aiS + a2V) ((ai+2)S + 

I +2)-2m + a2(a1+2) + a I (a2+2-2m)] = + (a 2 +2-2m) V) = I+ ~ [ a I (a I 

= m a I (a I+I) + (a 1+I) (a2+1) . 

The result follows then from the Base change theorems (cf. e.g. [9], 

chap. IIT, 12.11, page 290). 

Q.E.D. 

Let g: X=F ~ p I be the canonical projection: then the tangent 
n 

bundle T x can be written as an extension of two line bundles, where 

T is the subbundle of vectors tangent to the fibres of g 
v 

(2.11) O ~ T , T , g* (T~I) , 0. 
v X 

In the case of X = ~ b' an easy computation gives 

T v ~ O F (2 S b- 2 m Yb ) , hence, if L --- d I S+ d 2 Y, 
b 
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then 

hi(Tv(-Lb)) = hi(OF ((2-dl)S b -(d 2 +2m) Yb )) 
b 

is 0, for i=0,I, as soon as d I ~ 3, d 2 ~ -2m. 

As a consequence we obtain: 

(2.12) Hi(T x (-Lb))=0 if d I ~ 3, d 2 ~ 0, i=0,I. 

Proposition 2.13• The family F P , B induces the germ of the semi- 

universal deformation of F 
n 

Proof. It suffices to show that the Kodaira - Spencer map p: TB, 0 , 

HI(Fo , T F ) is an isomorphism. Let V be the vector bundle on 
I ° 

B x ~ such that F = • (V) (cf. (1.4)). The relative tangent bundle 

of p, TFI B fits into an exact sequence 

T F IB " ~ g* O + T u (T i ) ~ O 

I 
g being the projection on 

Now, in concrete terms, choose an affine coordinate z on - {~}, 

and then on FI~ I_{~} we have coordinates 

(Y0' YI' bl ..... bn_1, z), whereas on FI~ I_{0 } we have 

! ! 
coordinates (y',Yl,bl,... bn_1,z ), with z' = I/z 

n-1 
n-i v+ v hence Yo = Yo Yl E b.1 z 

i=I 

Since 

to the two given coordinate patches, we obtain 

3 
P(-J-C--~ ) is the difference of the two liftings of 

I n-1 -i 
Y" = Yo + Yl Z b.z 

i=I z 

! -n 

Yl = Yl .z 

according 
b i 

(2 14) P( ---~ ) = (Y4 " zn-i) ~ - z-l)' 
• ~ b, ~Yo (Yl ~yo 

1 

These are (n-l) elements in H I (U, T ),U being the cover given by the 
U 

two open sets above• 

An easy computation shows that, for b=0, these elements are a basis of 

HllFo , TFo )- 

Q.E.D. 
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Let now X be a smooth bidouble cover of F = F2m corresponding to the 

divisors L1,L2,L 3 and branched on the divisors DI, D2,D 3. 

If L i is H a.l S + b.Y,1 we shall say that X is of type (al,b I) (a2,b2), 

(a3,b 3 ) • 

Now, if a > 3 b. > 0 for each i by (2.12) Hl(n * T ) ~ H1(w,w * T F ) 
i -- ' 1 -- ' 

is ~ H I (T) . 

Moreover, consider then the family F P ~B of deformations of F , and, 

on it, the divisor ii ~ ai S + bi Y' Di ~ ~(I (aj+ak)S + (bj+bk)Y) : then 

the direct images of the associated invertible sheaves in F are locally 

free (and R i p, = 0 for i ~ 1,2). 

On the other hand p, OF(? i -i )l is locally free if 

(2.15.i) ~aj+a k - 2a i ~ 0 

bj+b k 2 b i ~ 2, but also (it is then equalto zero)if 

(2.15.ii) aj + a k - 2a i < 0. 

If, for each i=I,2,3, either (2.15.i) or (2.15.ii) holds, then one can 

choose a trivialization of p, OF(Di) , p, OF(Di-ii) on B. 

Then one has a vector space U and, for each b E B, u £ U, sections Yi of 

OF(Di-ii), x~ of O (D) : according to (2.6) one defines a family of 
] fF j 

deformations X ;Bx U which, restricted to {O} x U, gives the natural 

deformations of X. In view of theorem 2.7 and of proposition 2.13, the 

associated Kodaira - Spencer map is surjective. 

Thus we get the following. 

Theorem (2.16) Let X be a smooth bidouble cover of F = F2m of type 

(ai,b i) (i=I,2,3) with (2.15) i) or ii) holding for each i. Then the 

moduli space of X contains only one (unirational) irreducible component 

passing through X, and its dimension equals ~ h°(O~ (D.))+h°(O F (D.-L.))-6. 
1 1 1 

i 
f 

Proof. In view of the preceding discussion the family X ~ B x U, 

by a morphism h of B x U , HI(Tx) from the which is induced semi- 

universal deformation,is such that h is of maximal rank at the origin of 

the vector space B x U. Therefore the semi-universal deformation has 

as basis an open neighbourhood of the origin in HI(Tx) , moreover then 
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B x U dominates an affine neighbourhood of IX] in its moduli space M. 

The assertion regarding the dimension follows from theorem 2.7, since, 

by (2.12) , h I (~* T )- h °(~*T F ) = h I (T F ) - h °(TI~ ) = - 6. 

Q.E.D. 
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