ON A PROBLEM OF CHISINI

F. CATANESE

§0. Introduction. The objects of this note are generic multiple planes, defined according to the following

Definition 1. A multiple plane is a pair (S, f) where S is a compact smooth connected complex surface and f is a finite holomorphic map $f: S \rightarrow \mathrm{P}^{2}=\mathrm{P}_{\mathbf{C}}^{2}$. (S, f) is said to be generic if the following properties are satisfied:
(1i) the ramification divisor R of f is smooth and reduced
(lii) $f(R)=B$ has only nodes and ordinary cusps as singularities
(liii)* $f_{\mid R}: R \rightarrow B$ has degree 1 .

Moreover, two multiple planes (S, f), (S^{\prime}, f^{\prime}), are said to be isomorphic if there is an isomorphism $\phi: S \rightarrow S^{\prime}$, and a projectivity $g: \mathrm{P}^{2} \rightarrow \mathrm{P}^{2}$ such that $f^{\prime} \circ \phi=g \circ f$, and strictly isomorphic if furthermore $g=$ identity.

Obviously, a necessary condition in order that two multiple planes be isomorphic is then that the two branch curves B, B^{\prime} be projectively equivalent. Without loss of generality, therefore, we shall consider pairs of generic multiple planes $(S, f),\left(S^{\prime}, f^{\prime}\right)$ such that $B=B^{\prime}$, and we will investigate the problem of deciding whether they are strictly isomorphic. i.e., there does exist an isomorphism $\phi: S \rightarrow S^{\prime}$ such that $f^{\prime} \circ \phi=f$. Such a problem was considered by Chisini (cf. [C]) who conjectured that two generic multiple planes with the same branch curve would be strictly isomorphic "under some suitable conditions of generality."

The problem has a negative answer in general (contrary to the statement of the main theorem of [L]), as it is shown by a very nice example of Chisini himself in [C] (a previous example given by B. Segre in [S] yields a nongeneric triple plane).

Our result consists in giving a necessary and sufficient condition for strict isomorphism: at the end of the paper we shall discuss Chisini's example to illustrate our theorem. To explain our condition, we need a technical definition.

Definition 2. A marked curve ($C, p_{1}, \ldots, p_{\gamma}$) consists of a (compact connected complex) curve C, together with an ordered set of γ points of C.

A marked line bundle $\mathscr{L}=\left(L, h_{1}, \ldots, h_{\gamma}\right)$ on $\left(C, p_{1}, \ldots, p_{\gamma}\right)$ consists of the datum of a holomorphic line bundle L on C, and of isomorphisms h_{i} $(i=1, \ldots, \gamma)$ of the fibre $L_{p_{i}}$ of L over p_{i} with C.

[^0]It is easy to guess how all the standard notions (isomorphism, tensor products, . . .) extend from the case of line bundles to the case of marked line bundles.

Let's go back and consider two generic multiple planes $(S, f),\left(S^{\prime}, f^{\prime}\right)$ with the same branch curve \bar{B}. Since $f_{\mid R}: R \rightarrow B, f_{\mid R^{\prime}}^{\prime}: R^{\prime} \rightarrow B$ give the desingularization of B, there is a natural isomorphism $\phi^{\prime}: R \rightarrow R^{\prime}$, thus to the invertible sheaves $\mathscr{O}_{R}(R), \mathscr{O}_{R^{\prime}}\left(R^{\prime}\right)$ are naturally associated two line bundles L, \hat{L}, on R (the normal bundles). One easily sees that $L^{\otimes 2}$ is isomorphic to $(\hat{L})^{\otimes 2}$; moreover, if $p_{1}, \ldots, p_{\gamma}$ are the points of R mapping to the cuspidal points of B, we show that the datum of f and f^{\prime} determines (non canonically) a pair of marked line bundles \mathscr{L} and $\hat{\mathscr{L}}$ on the marked curve $\left(R, p_{1}, \ldots, p_{\gamma}\right)$ in such a way that $\eta=\eta\left(S, S^{\prime}\right)=\mathscr{L}^{-1} \otimes \hat{\mathscr{L}}$ is a marked line bundle with $\eta^{\otimes 2}$ trivial (η is now canonically associated to f, f^{\prime}). We can now formulate our main theorem.

Theorem. The multiple planes (S, f), (S^{\prime}, f^{\prime}) admit a strict isomorphism $\phi: S \rightarrow S^{\prime}$ (i.e., with $f^{\prime} \circ \phi=f$) if and only if the marked line bundle $\eta\left(S, S^{\prime}\right)$ is trivial.

It seems necessary to digress on results stated about the problem in the existing literature.

Our interest about the problem was aroused by the paper [L], where appears the nice idea* that, R, R^{\prime} being ample divisors, the complements $X=S-R$, $X^{\prime}=S^{\prime}-R^{\prime}$, are affine varieties: therefore, once one has an isomorphism $\tilde{\phi}: U \rightarrow U^{\prime}$ of some tubular neighbourhoods U (resp.: U^{\prime}) of R (resp.: R^{\prime}), this isomorphism can be extended to a global isomorphism $\phi: S \rightarrow S^{\prime}$.

The error in [L] lies in the fact that it is not always possible to construct such a local isomorphism $\tilde{\phi}$: as a matter of fact, Lanteri refers to the first part of [C], where it is wrongly asserted that such a local isomorphism $\tilde{\phi}$ always exists.

However, in the second part of [C], Chisini proves the unicity of the multiple plane (i.e., the existence of ϕ) under a very strong assumption about the possibility of having a good degeneration of the multiple plane (and, furthermore, if the degree of f is at least 5).

These assumptions boil down to a nice van Kampen presentation of $\pi_{1}\left(P^{2}-B\right)$.

These global methods have been recently taken up again in a series of papers by Moishezon, who e.g. (cf. [M] cor. 3), proves unicity in the special case when $f: S \rightarrow \mathrm{P}^{2}$ is a generic projection of a smooth surface in P^{3} (in this case f can degenerate in a slightly worse way than the one allowed by Chisini).

In this special case unicity seems to depend upon the well-known result that the alternating group \mathfrak{N}_{n} is simple for $n \geqslant 5$. In fact Moishezon proves that $\pi_{1}\left(\mathrm{P}^{2}-B\right)=\mathscr{B}_{n}^{\prime}$, the quotient of the braid group \mathscr{B}_{n} by its cyclic centre; therefore, in this case, the global monodromy homomorphism μ associated to a generic multiple plane must factor through the canonical surjection of \mathscr{B}_{n}^{\prime} onto the symmetric group \mathbb{S}_{n}.

[^1]Chisini's problem deserves to be better understood: in particular the connection between the local condition of triviality of $\eta\left(S, S^{\prime}\right)$ and the global structure of $\pi_{1}\left(\mathrm{P}^{2}-B\right)$ should be investigated.

A final remark is that everything holds verbatim for generic finite morphisms $f: S \rightarrow Y$ where Y is any algebraic surface other than P^{2}, provided the ramification divisor R of f is ample.
§1. Auxiliary results ("Locally around the cusps"). Let B be a plane curve and let q be an ordinary cusp: then there are local holomorphic coordinates around q, say (x, y), such that, if $W_{\epsilon}=W$ is a ball in C^{2} with centre the origin (i.e., q) and radius ϵ,

$$
\begin{equation*}
W_{\epsilon} \cap B=\left\{(x, y) \in W_{\epsilon} \mid y^{2}-x^{3}=0\right\} . \tag{1.1}
\end{equation*}
$$

It is well known that the fundamental group $\pi_{1}\left(W_{\epsilon}-B\right)$ is isomorphic to the abstract group

$$
\begin{equation*}
\Pi=\langle\xi, \eta ; \xi \eta \xi=\eta \xi \eta\rangle, \quad \text { (cf. e.g., }[\text { La }] \text { p. 76) } \tag{1.2}
\end{equation*}
$$

i.e., Π is the group with generators ξ, η (corresponding to the two generators of $\left.\pi_{1}\left(\left(W_{\epsilon}-B\right) \cap\left\{x=\epsilon^{2}\right\}\right)\right)$ with relation $\xi \eta \xi=\eta \xi \eta$.

A normal irreducible finite covering $f: Y \rightarrow W$, unramified outside B, is determined by a monodromy homomorphism $\mu: \Pi \rightarrow \mathbb{S}_{d}$, where $\mu(\Pi)$ is a transitive subgroup of \widetilde{S}_{d}.

It is easy to see that above the origin q there lies only one point p of Y (in fact, if $\epsilon^{\prime}<\epsilon, \pi_{1}\left(W_{\epsilon^{\prime}}-B\right) \cong \pi_{1}\left(W_{\epsilon}-B\right)$) and that p is the only possible singular point of Y.

We let $\bar{f}: \bar{Y} \rightarrow W$ be the standard covering of W given by the normalized equation of third degree:

$$
\left\{\begin{array}{l}
\bar{Y}=\left\{(x, y, z) \mid(x, y) \in W, z^{3}-3 x z+2 y=0\right\} \tag{1.3}\\
\bar{f}(x, y, z)=(x, y)
\end{array}\right.
$$

\bar{Y} is smooth, x and z being coordinates, the ramification divisor R is smooth, $R=\left\{(x, z) \in \bar{Y} \mid x-z^{2}=0\right\}$, and if Γ is the curve in \bar{Y} with $\Gamma=\{(x, z)$ $\left.\in \bar{Y} \mid 4 x-z^{2}=0\right\}, f^{*}(B)=2 R+\Gamma . \bar{Y}$ corresponds to the homomorphism $\mu: \Pi \rightarrow \mathbb{S}_{3}$ such that, setting

$$
\begin{equation*}
\alpha=\mu(\xi), \quad \beta=\mu(\eta) \tag{1.4}
\end{equation*}
$$

one has $\alpha=(1,2), \beta=(2,3)$.
Remark 1.5. There are plenty of transitive homomorphisms $\mu: \Pi \rightarrow \mathbb{S}_{d}$, e.g., one can take in $\mathbb{S}_{6} \alpha=(1,2,3,4), \beta=(2,5,4,6)$, which satisfy $\alpha \beta \alpha=\beta \alpha \beta$. However, with some restrictions upon α and β, one is left only with the previous homomorphism μ onto \mathbb{S}_{3}, and the related one into $\mathbb{S}_{6}=\mathbb{S}_{\left(\mathbb{S}_{3}\right)}$, μ^{\prime} (such that, for $\left.g \in \Pi, h \in \mathbb{S}_{3}, \mu^{\prime}(g)(h)=\mu(g) \cdot h\right)$.

Lemma 1.6. Let $\alpha, \beta \in \Im_{d}$ be such that $\alpha \beta \alpha=\beta \alpha \beta$, and let Γ be the subgroup generated by α and β.
(i) Γ is abelian iff $\alpha=\beta$.
(ii) if the cycle decomposition of α, resp. β, consists of a product of transpositions, and Γ is transitive, nonabelian, then $\Gamma \cong \Im_{3}$ and after renumbering, one has either $d=3, \alpha=(1,2), \beta=(2,3)$, or $d=6$, with \mathbb{S}_{3} acting on itself by left translations.

Proof. First of all, $\beta=\alpha \beta \alpha \beta^{-1} \alpha^{-1}=(\alpha \beta) \alpha(\alpha \beta)^{-1}$, hence α and β are conjugate permutations, in particular (i) follows immediately.
We can assume that α permutes 1 with 2: we shall later consider the case when exactly one of them is left fixed by β. Assuming $\beta(1)=1, \beta(2)=2$, we get $\alpha \beta \alpha(1)=1, \beta \alpha \beta(1)=2$, and we have a contradiction. If neither 1 nor 2 are left fixed by β, there are elements $A, B \in\{1, \ldots, d\}$ such that β permutes 2 with B, 1 with A, and, by our assumptions in (ii), the set $\{1,2, A, B\}$ has 4 elements.
If one of the two elements A, B is left fixed by α, say that $\alpha(A)=A$, then we have $\beta \alpha \beta(1)=1, \alpha \beta \alpha(1)=\alpha(B) \neq 1$, a contradiction; on the other hand, if α permutes A with B, we get $\alpha \beta \alpha(1)=A, \beta \alpha \beta(1)=2$, again a contradiction.

If, instead, $\alpha(A)=A^{\prime}, \alpha(B)=B^{\prime}$, where the six elements $1,2, A, A^{\prime}, B, B^{\prime}$ are distinct, one has $\alpha \beta \alpha(1)=B^{\prime}, \beta \alpha \beta(1)=\beta\left(A^{\prime}\right)$, hence $B^{\prime}=\beta\left(A^{\prime}\right)$, and we are in the case where $d=6$ and, as it is easily verified, \mathbb{S}_{3} acts on itself by left translations. Finally, if $\beta(1)=1$, and $\beta(2) \neq 2$, we can assume $\beta(2)=3$ and we conclude since $\alpha(3)=\alpha \beta \alpha(1)=\beta \alpha \beta(1)=3$, hence $\{1,2,3\}$ is a Γ-orbit and $\alpha=(1,2), \beta=(2,3) . \quad$ Q.E.D.

Let \bar{Z} be the smooth cover of $W_{\epsilon}=W$ branched on B given by the ordered triples of roots of the normalized equation of third degree, i.e.,

$$
\begin{array}{r}
\bar{Z}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \mid z_{1}+z_{2}+z_{3}=0, x=-\left(z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}\right) / 3\right. \\
\left.y=-\frac{1}{2} z_{1} z_{2} z_{3}, \text { are such that }(x, y) \in W\right\} \\
\text { with } f\left(z_{1}, z_{2}, z_{3}\right)=(x, y) . \tag{1.7}
\end{array}
$$

We can now rephrase the previous lemma as follows
Lemma 1.8. Let W, B be as above, and let $f: Y \rightarrow W$ be a normal irreducible finite cover with ramification divisor R, and with branch curve B (i.e., $B=f(R)$). Assume R to be reduced: then one of the following holds
(i) $\operatorname{deg} f=2$, and R is isomorphic to B (in particular, R is singular)
(ii) $\operatorname{deg} f=6, Y$ is isomorphic to \bar{Z}, and R is singular
(iii) $\operatorname{deg} f=3, R$ is smooth, and there exists only one biholomorphism $g: Y \rightarrow \bar{Y}$ such that $\bar{f} \circ g=f$.

Proof. If R is reduced, one can easily see that the monodromy of each of the two generators ξ, η of $\Pi \cong \pi_{1}(W-B)$ is given by a product of commuting transpositions, hence lemma 1.6 applies (Γ is transitive by the irreducibility of Y).

Since there are only 3 choices for the monodromy, and moreover Y is normal, Y is either isomorphic to \bar{Z}, or to \bar{Y}, or to the cyclic cover \bar{T} of degree 2, i.e.,

$$
\bar{T}=\left\{(t, x, y) \mid(x, y) \in W, t^{2}=\left(y^{2}-x^{3}\right)\right\} .
$$

To prove the last assertion, it suffices to show that the covering $\bar{f}: \bar{Y} \rightarrow W$ has no automorphism.

But this is in fact more generally true for the unramified covering $\bar{Y}-R \rightarrow W-B$, since, the monodromy homomorphism $\mu: \Pi \rightarrow \mathbb{S}_{3}$ being given by $\mu(\xi)=\alpha=(1,2), \mu(\eta)=\beta=(2,3)$ the 3 associate subgroups of the covering are all distinct (they map onto the 3 cyclic subgroups of order 2 in \Im_{3}). Q.E.D.
§2. Isomorphism of generic multiple planes. In this section, (S, f) being a generic multiple plane with branch curve B, we shall denote by $q_{1}, \ldots, q_{\gamma}$ the cuspidal points of B, by c_{1}, \ldots, c_{ν} the nodes of B. By assumption (liii), there is exactly one point $p_{i} \in R$ mapping to q_{i} (for $i=1, \ldots, \gamma$), and there are exactly two points $a_{j}, b_{j} \in R$ mapping to $c_{j}(j=1, \ldots, \nu)$.

For each cusp q_{i} we choose, by virtue of lemma 1.8, respective neighbourhoods W_{i} of q_{i}, Y_{i} of p_{i}, such that
there are holomorphic coordinates $\left(x_{i}, y_{i}\right)$ on W_{i} giving an isomorphism τ_{i} of W_{i} onto W mapping $W_{i} \cap B$ to the curve $\left\{(x, y) \mid y^{2}-x^{3}=0\right\} \cap W$
there exists an isomorphism (a unique one, by 1.8) of the covering $f_{\mid Y_{i}}: Y_{i} \rightarrow W_{i}$ with the standard one $\tau_{i}^{-1} \circ \bar{f}: \bar{Y} \rightarrow W_{i}$. Hence on Y_{i} there are coordinates x_{i} and z_{i} such that

$$
\begin{align*}
& -y_{i}^{2}+x_{i}^{3}=\left(x_{i}-z_{i}^{2}\right)^{2}\left(x_{i}-\frac{1}{4} z_{i}^{2}\right) \tag{2.2}\\
& \tag{2.3}\\
& \quad\left(\text { since } y_{i}=\frac{1}{2}\left(3 x_{i} z_{i}-z_{i}^{3}\right)\right) .
\end{align*}
$$

We consider now (cf. def. 2) the marked curve ($R, p_{1}, \ldots, p_{\gamma}$) and remark that the choice of coordinates $\left(x_{i}, y_{i}\right)$ on W_{i} defines a marking \mathscr{N} of the normal bundle N_{R} of R in S, since on Y_{i} there is a unique choice of coordinates (x_{i}, z_{i}) (cf. 2.2,2.3), and then the fibre of N_{R} at p_{i} is naturally identified to the complex line spanned by $\partial / \partial x_{i}$.

Remark 2.4. It is clear that if there exists a strict isomorphism $\phi: S \rightarrow S^{\prime}$ of the generic multiple planes (S, f), $\left(S^{\prime}, f^{\prime}\right)$, then $\phi^{1}=\phi_{\mid R}: R \rightarrow R^{\prime}$ induces an isomorphism of the marked normal bundles $\mathscr{N}, \mathscr{N}^{\prime}$.

Proposition 2.5. Let $(S, f),\left(S^{\prime}, f^{\prime}\right)$ be generic multiple planes with the same branch curve B. Then the marked line bundle $\eta=\mathscr{N}^{-1} \otimes\left(\phi^{\prime}\right) *\left(\mathscr{N}^{\prime}\right)$ is of

2-torsion (i.e., $\eta^{\otimes 2}$ is trivial). Moreover η is trivial if and only if there does exist an isomorphism $\tilde{\phi}: U \rightarrow U^{\prime}$ between respective neighbourhoods of R, R^{\prime} such that $f^{\prime} \circ \tilde{\phi}=f$.

Proof. In order to treat in a uniform way all the multiple planes with branch curve B, we shall consider a suitable "neighbourhood" \tilde{V} of the normalization of B at the nodes. To construct \tilde{V}, we shall take local coordinates (u_{j}, v_{j}) around c_{j} and a neighbourhood T_{j} s.t.

$$
\begin{equation*}
T_{j}=\left\{\left(u_{j}, v_{j}\right)| | u_{j}\left|,\left|v_{j}\right|<\epsilon\right\}, \quad T_{j} \cap B=\left\{\left(u_{j}, v_{j}\right) \in T_{j} \mid u_{j} v_{j}=0\right\} .\right. \tag{2.6}
\end{equation*}
$$

We set \hat{T}_{j} the closed polydisc of radius $\epsilon / 2, \hat{T}_{j}=\left\{\left(u_{j}, v_{j}\right)| | u_{j}\left|,\left|v_{j}\right| \leqslant \epsilon / 2\right\}\right.$, $\hat{W}_{i}=\tau_{i}^{-1}\left(\bar{W}_{\epsilon / 2}\right)$, and $B^{\#}=B-\left(\bigcup_{j=1}^{\nu} \hat{T}_{j}\right)-\left(\bigcup_{i=1}^{\gamma} \hat{W}_{i}\right)$. Furthermore we choose a small tubular neighbourhood $V^{\#}$ of $B^{\#}$, set $V=V^{\#} \cup\left(\bigcup_{j} T_{j}\right) \cup\left(\cup_{i} W_{i}\right)$, and construct a smooth manifold \tilde{V} with an immersion $\rho: \tilde{V} \rightarrow V$ by simply replacing in V each T_{j} by 2 copies of T_{j} (we are obviously assuming all the T_{j} 's, W_{i} 's to be disjoint), labelled by the two branches of B at c_{j}, and glueing them to $V^{\#}$ by the obvious identification of points in $V^{\#} \cap T_{j}$.

Definition 2.7. We shall say that the datum of $\rho: \tilde{V} \rightarrow V$, of the W_{i} 's and of isomorphisms $\tau_{i}: W_{i} \rightarrow W$ for $i=1, \ldots, \gamma$ is a monk's belt for the generic multiple plane (S, f) if, d being the degree of f,
(1) $f^{-1}\left(W_{i}\right)$ has $(d-2)$ connected components (one of them being Y_{i}, the remaining ones mapping isomorphically onto W_{i})
(2) $f^{-1}\left(V-\left(\bigcup_{i} W_{i}\right)\right.$), has $(d-1)$ connected components of which only one, denoted here by \hat{U}, intersects R.

We shall moreover say that $U=\hat{U} \cup\left(\bigcup_{i=1}^{\gamma} Y_{i}\right)$ is the balanced neighbourhood of R associated to the monk's belt.

Now, let us choose a common monk's belt for $(S, f),\left(S^{\prime}, f^{\prime}\right)$, for which we shall use the notations introduced before, denoting by U, (resp. U^{\prime}) the associated balanced neighbourhood of R (resp. R^{\prime}).

Notice that $f: U \rightarrow V$ factors through $g: U \rightarrow \tilde{V}$ and $\rho: \tilde{V} \rightarrow V$ (respectively: $f^{\prime}=\rho \circ g^{\prime}$).

Before proceeding to an explicit computation with covers and 1-cocycles, let's explain geometrically why the normal bundles of R and R^{\prime} differ only by a 2-torsion bundle. We have in fact

$$
\begin{equation*}
f^{*}(B)=2 R+\Gamma, \tag{2.8}
\end{equation*}
$$

where Γ is reduced, intersects R transversally at the points a_{j}, b_{j}, intersects R at the points p_{i} with intersection multiplicity equal to 2 (being smooth there).

Let b be the degree of B, and H be the divisor on R which is the pull-back of a line in P^{2}.

We have then, by (2.8), a linear equivalence of divisors on R, namely

$$
\begin{equation*}
2 N \equiv b H-\sum_{i=1}^{\nu}\left(a_{j}+b_{j}\right)-2 \sum_{i=1}^{\gamma} p_{i} \tag{2.9}
\end{equation*}
$$

where N is a divisor associated to the normal bundle of R in S : the upshot is that the right hand side depends only on $f_{\mid R}$, the normalization map for B.

We choose open covers $\left\{U_{\alpha}\right\}$ of U, (resp.: $\left\{U_{\alpha}^{\prime}\right\}$ for U^{\prime}), V_{α} for \tilde{V}, such that:

$$
\begin{align*}
& \text { for } \alpha=i \leqslant \gamma V_{\alpha}=W_{i}, U_{\alpha}=Y_{i},\left(U_{\alpha}^{\prime}=Y_{i}^{\prime}\right) \text {, for } \alpha>\gamma \\
& g\left(U_{\alpha}\right)=V_{\alpha} \text { and there are coordinates }\left(u_{\alpha}, w_{\alpha}\right) \text { on } U_{\alpha} \text {, } \\
& \left(v_{\alpha}, w_{\alpha}\right) \text { on } V_{\alpha} \text {, such that } g\left(u_{\alpha}, w_{\alpha}\right)=\left(u_{\alpha}^{2}, w_{\alpha}\right) \text { (hence } \\
& \left.u_{\alpha}=0 \text { is the local equation for } R \text { on } U_{\alpha}\right) . \tag{2.10}
\end{align*}
$$

Similarly there are coordinates $\left(u_{\alpha}^{\prime}, w_{\alpha}\right)$ on U_{α}^{\prime}, and we have

$$
\begin{equation*}
\left(u_{\alpha}^{\prime}\right)^{2}=v_{\alpha}=u_{\alpha}^{2} . \tag{2.11}
\end{equation*}
$$

We can now prove the first assertion: in fact, via the isomorphism $\phi_{i}: Y_{i} \rightarrow Y_{i}^{\prime}$ such that $x_{i}^{\prime}=x_{i}, z_{i}^{\prime}=z_{i}$, we have that the chosen trivializations of N_{R} on the cover $\left\{U_{\alpha}\right\}$, and of N_{R}^{\prime} on the cover $\left\{U_{\alpha}^{\prime}\right\}$ induce the same markings. Therefore the triviality of $\eta^{\otimes 2}$ follows directly from (2.11). If $\tilde{\phi}: U \rightarrow U^{\prime}$ exists, then η is trivial (cf. 2.6). Conversely, since we have the exact sequence

$$
1 \longrightarrow H^{1}(R,\{ \pm 1\}) \longrightarrow \operatorname{Pic}^{0}(R) \xrightarrow{\otimes 2} \operatorname{Pic}^{0}(R) \longrightarrow 1
$$

the marked line bundle η is trivial if and only if there do exists numbers $\epsilon_{\alpha} \in\{ \pm 1\}$, with $\epsilon_{\alpha}=1$ for $\alpha \leqslant \gamma$, such that on R, after identifying R^{\prime} with R, we have

$$
\begin{align*}
& u_{\beta}^{\prime} / u_{\alpha}^{\prime}=\epsilon_{\beta} / \epsilon_{\alpha} \cdot u_{\beta} / u_{\alpha} \\
& \quad\left(\text { where we set, for } \alpha \leqslant \gamma, u_{\alpha}=x_{\alpha}-z_{\alpha}^{2}\right) . \tag{2.12}
\end{align*}
$$

We have now that if η is trivial the isomorphisms $\phi_{\alpha}: U_{\alpha} \rightarrow U_{\alpha}^{\prime}$ given by

$$
\begin{cases}x_{i}^{\prime}=x_{i}, & z_{i}^{\prime}=z_{i} \tag{2.13}\\ u_{\alpha}^{\prime}=\epsilon_{\alpha} u_{\alpha} & \text { for } \quad \alpha=i \leqslant \gamma \\ \text { for } \quad \alpha>\gamma\end{cases}
$$

patch together, by (2.12), to give the desired isomorphism $\tilde{\phi}: U \rightarrow U^{\prime}$. Q.E.D.
Theorem. Two generic multiple planes $(S, f),\left(S^{\prime}, f^{\prime}\right)$ with the same branch curve B are strictly isomorphic if and only if $\eta\left(S, S^{\prime}\right)$ is a trivial marked line bundle.

Proof. In view of proposition 2.7η is trivial iff there exists $\tilde{\phi}: U_{\tilde{\sim}} \rightarrow U^{\prime}$ which is an isomorphism of respective neighbourhoods of R, R^{\prime}, with $f^{\prime} \circ \tilde{\phi}=f$ (on U).

Set $X=S-R, K=S-U$, and define similarly X^{\prime}, K^{\prime}. Now R, R^{\prime} are ample divisors (e.g., by [L] thm. 3.1 in the case of surfaces, and, more generally, for every finite morphism to P^{n} by $[\mathrm{E}]$ thm. 1) therefore X is an affine variety in C^{n} (resp. $X^{\prime} \subset \mathrm{C}^{n^{\prime}}$). $\tilde{\phi}$ determines n^{\prime} holomorphic functions on the complement in X of the compact set K : since X is Stein, these functions extend to the whole of X by Hartogs' theorem (cf. [Hö]), and patch with $\tilde{\phi}$ to give a holomorphic map of S to S^{\prime} (in fact X maps into X^{\prime} by analytic continuation since X^{\prime} is the locus of
zeros of polynomials on $\mathrm{C}^{n^{\prime}}$). Similarly we can extend ($\left.\tilde{\phi}\right)^{-1}$ to a holomorphic map $\hat{\phi}: S^{\prime} \rightarrow S$, and the equalities $\phi \circ \hat{\phi}=i d_{S^{\prime}}, \hat{\phi} \circ \phi=i d_{S}, f^{\prime} \circ \phi=f$ hold again by analytic continuation. Q.E.D.

In the next section we shall show Chisini's example producing several multiple planes with the same branch curve, and will compute explicitly that η is a 2-torsion bundle which is nontrivial even as an unmarked bundle. Unfortunately we don't have yet an example where the nontriviality of η depends only upon the marking.
§3. Chisini's example. In this section S will be P^{2} and S^{\prime} a certain ruled surface Σ : we shall show that η is nontrivial also as an unmarked bundle.

Let $f: \mathbf{P}^{2} \rightarrow \mathbf{P}^{2}$ correspond to a generic projection of the Veronese surface, i.e., taking homogeneous coordinates $\left(x_{0}, x_{1}, x_{2}\right)$ on the domain of f, and $\left(y_{0}, y_{1}, y_{2}\right)$ on the range, we assume that

$$
\begin{gather*}
f\left(x_{0}, x_{1}, x_{2}\right)=\left(Q^{0}(x), Q^{1}(x), Q^{2}(x)\right), \quad \text { with } \\
y_{k}=Q^{k}(x)=\sum_{i, j} Q_{i, j}^{k} x_{i} x_{j} \quad\left(Q_{i, j}^{k}=Q_{j, i}^{k}\right) . \tag{3.1}
\end{gather*}
$$

The ramification divisor is given by the cubic curve (that we can assume to be smooth)

$$
\begin{align*}
& R=\left\{\left(x_{0}, x_{1}, x_{2}\right) \mid \operatorname{det}_{j, k}\left(\sum_{i} Q_{i, j}^{k} x_{i}\right)=0\right\} \text { and the normal } \\
& \text { bundle of } R \text { corresponds to the sheaf } \mathscr{O}_{R}(3) . \tag{3.2}
\end{align*}
$$

To determine $f(R)=B$ it is easier to consider the projective plane $\left(\mathrm{P}^{2}\right)^{*}$ dual to the P^{2} with y-coordinates, and to consider on it homogeneous coordinates $\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right)$ (dual to $\left(y_{0}, y_{1}, y_{2}\right)$).

Now the pull-back of the line $\sum_{k} \lambda_{k} y_{k}=0$ is singular if and only if on the one hand the line is tangent to B, on the other hand if the conic $\sum_{k} \lambda_{k} Q^{k}(x)$ is singular. Therefore, by biduality, B is the dual curve of the (smooth) cubic curve

$$
\begin{equation*}
B^{*}=\left\{\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \mid \operatorname{det}_{i, j}\left(\sum_{k} \lambda_{k} Q_{i, j}^{k}\right)=0\right\} \tag{3.3}
\end{equation*}
$$

In general, given a curve B, with nodes and cusps only, which is the dual curve of a smooth curve B^{*}, there is a natural multiple plane (Σ, ψ) attached to it, as follows: $\Sigma \subset\left(\mathrm{P}^{2}\right)^{*} \times \mathrm{P}^{2}, \psi$ being given by projection on the second factor

$$
\begin{equation*}
\Sigma=\left\{\left(\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right),\left(y_{0}, y_{1}, y_{2}\right)\right) \mid \sum_{k} \lambda_{k} y_{k}=0,\left(\lambda_{0}, \lambda_{1}, \lambda_{2}\right) \in B^{*}\right\} \tag{3.4}
\end{equation*}
$$

If $p: B^{*} \times \mathrm{P}^{2} \rightarrow B^{*}$ is given by projection on the first factor, Σ is the divisor in $B^{*} \times \mathrm{P}^{2}$ of a section of $p^{*}\left(\mathscr{O}_{B^{*}}(1) \otimes \psi^{*}\left(\mathscr{C}_{\mathrm{P}}(1)\right)\right.$. It is clear that $\left(y_{0}, y_{1}, y_{2}\right) \notin B$ iff $\sum_{k} y_{k} \lambda_{k}=0$ is not tangent to B^{*}, i.e., iff $\psi^{-1}\left(\left(y_{0}, y_{1}, y_{2}\right)\right)$ has exactly $\operatorname{deg}\left(B^{*}\right)$ points, hence B is the branch curve of $\psi:$ it is easy to see that ψ is generic.

Furthermore if B^{*} has degree d, and $g(\lambda)$ is a homogeneous equation for B^{*}, the ramification curve of ψ is the graph of the morphism $\left(\partial g / \partial \lambda_{0}, \partial g / \partial \lambda_{1}\right.$, $\left.\partial g / \partial \lambda_{2}\right): B^{*} \rightarrow B \subset \mathrm{P}^{2}$, which we shall identify thus with the plane curve B^{*}, and in particular

$$
\begin{equation*}
\psi^{*}\left(\mathscr{O}_{P^{2}}(1)\right) \otimes \mathscr{O}_{B^{*}}=\mathscr{O}_{B^{*}}(d-1) \tag{3.5}
\end{equation*}
$$

Given a smooth variety X, let's denote by Θ_{X} its tangent sheaf: if Y is a smooth subvariety of X let's denote by $N_{Y / X}$ the normal sheaf to Y in X. We claim that

$$
\begin{equation*}
N_{B^{*} \mid \Sigma} \cong \mathscr{O}_{B^{*}}(2 d-3) . \tag{3.6}
\end{equation*}
$$

In fact, by (3.5), $\Theta_{B^{*}}(3(d-1))=\operatorname{det}\left(\left(\Theta_{B^{*} \times P^{2}}\right) \otimes \mathscr{O}_{B^{*}}\right)=\operatorname{det}\left(\Theta_{\Sigma} \otimes \mathscr{O}_{B^{*}}\right) \otimes$ $\left(N_{\Sigma \mid B^{*} \times P^{2}} \otimes \mathscr{O}_{B^{*}}\right)=\left(\Theta_{B^{*}} \otimes N_{B^{*} \mid \Sigma}\right) \otimes \mathscr{O}_{B^{*}}(d)$.

Let's return to our specific case. The symmetric matrix $Q=\sum_{k} \lambda_{k} Q_{i, j}^{k}$ determines a nontrivial line bundle of 2-torsion on B^{*}, such that the associated invertible sheaf η is the cokernel of the following exact sequence on P^{2}

$$
\begin{equation*}
0 \longrightarrow \mathcal{O}_{\mathrm{P}^{2}(-2)^{3}} \xrightarrow{(Q)} \mathcal{O}_{\mathrm{P}^{2}}(-1)^{3} \longrightarrow \eta \longrightarrow 0 \tag{3.7}
\end{equation*}
$$

and (cf. [Tu], [Ca]) there are 3 natural sections of $\eta(1),\left(\xi_{0}, \xi_{1}, \xi_{2}\right)$, without common zeros, such that

$$
\left\{\begin{array}{l}
\left(\xi_{i} \xi_{j}\right) \text { gives, for } \lambda \in B^{*}, \text { the adjoint matrix of }\left(\sum_{k} \lambda_{k} Q_{i, j}^{k}\right) \tag{3.8}\\
\sum_{j} \sum_{k} \lambda_{k} Q_{i, j}^{k} \xi_{j}=0 \quad\left(\text { for } \lambda \in B^{*}\right)
\end{array}\right.
$$

Since $\eta^{3}(-3) \otimes \mathscr{O}_{B^{*}}(3) \cong \eta$, we have shown that $\eta=\eta(S, \Sigma)$ if we prove that

$$
\begin{equation*}
\xi=\left(\xi_{0}, \xi_{1}, \xi_{2}\right)=f^{-1} \psi(\lambda), \quad \text { where we consider } \tag{3.9}
\end{equation*}
$$

the following composition of birational maps, $B^{*} \xrightarrow{\psi} B \xrightarrow{f^{-1}} R$.
In fact, then, the sheaf $\mathscr{O}_{R}(3)$ corresponds to the sheaf $\eta^{3}(3)$ on B^{*} under the isomorphism $f^{-1} \psi: B^{*} \rightarrow R$, and we are done. So, let's prove 3.9 and, to this purpose, set $y=\psi(\lambda)$. Since y represents the tangent line to B^{*} at λ, by 3.8, we have

$$
\begin{equation*}
y_{k}=\sum_{i, j} Q_{i, j}^{k} \xi_{i} \xi_{j} \tag{3.10}
\end{equation*}
$$

(3.10) tells us that $y=f(\xi)$, moreover (3.8) tells us that $\sum_{j} Q_{i, j}^{k} \xi_{j}$ is not an invertible matrix, therefore ξ belongs to R, and $f(\xi)=\psi(\lambda)$, Q.E.D.

Our previous considerations allow us to improve upon the Chisini counterexample. Fix in fact the smooth cubic curve B^{*} and thus also the multiple plane (Σ, ψ) : now B^{*} has 3 nontrivial distinct line bundles of 2 -torsion, each one occurring (cf. e.g., [Ca], thm. 2.28) as a cokernel of an exact sequence like (3.7)
and therefore giving rise to another generic multiple plane of degree four. We have therefore (keeping track of translations of order 2 in B^{*})

Proposition 3.11. Given the dual curve B of a smooth cubic curve B^{*}, there do exist 4 generic multiple planes with B as branch curve: three of them have degree 4 and are isomorphic but not strictly isomorphic, the other has degree 3.

We end the paper with a curious remark: a generic multiple plane determines $f_{\mid \Gamma}: \Gamma \rightarrow B$, hence an unramified $(d-2)$ covering $\tilde{\Gamma} \rightarrow R$, where $\tilde{\Gamma}$ is the normalization of Γ. In turn this corresponds to a (nontrivial) line bundle of $(d-2)$ torsion \mathscr{P} on R : given $(S, f),\left(S^{\prime}, f^{\prime}\right)$ with the same B how are $\mathscr{P}, \mathscr{P}^{\prime}$ related? By our result $\mathscr{P}^{-1} \otimes \mathscr{P}^{\prime}$ is determined by $\eta\left(S, S^{\prime}\right)$.

References

[Ca] F. Catanese, Babbage's conjecture, contact of surfaces, symmetric determinantal varieties and applications, Inv. Math 63 (1981), 433-465.
[C] O. Chisini, Sulla identità birazionale delle funzioni algebriche di due variabili dotate di una medesima curva di diramazione, Rend. Ist. Lombardo 77 (1944), 339-356.
[E] L. Ein, The ramification divisors for branched coverings of P^{n}, Math. Ann. 261 (1982), 483-485.
[Hö] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1973.
[L] A. Lanteri, Su un teorema di Chisini, Rend. Atti Acc. Lincei, LXVI (1979), 523-532.
[La] F. Lazzeri, "Analytic singularities," in Singularities of Analytic Spaces, C.I.M.E., Cremonese, Roma, 1975.
[M] B. Moishezon, Stable branch curves and braid monodromies, Springer L.N.M. 862 (1981), 107-192.
[Se] B. Segre, Sulla caratterizzazione delle curve di diramazione dei piani multipli generali, Mem. R. Acc. d'Italia, I, 4 (1930), 5-31.
[Tu] A. Tyurin, On intersection of quadrics, Russian Math. Surveys 30:6 (1975), 51-105.
Dipartimento di Matematica, Via Buonarroti, 2, Universita di Pisa, 56100, Pisa, Italy

[^0]: Partly supported by M.P.I. and C.N.R. (contract no. 82.00170 .01).
 *As pointed out by the referee, if $f: S \rightarrow \mathrm{P}^{2}$ is generic, and $h: S^{\prime} \rightarrow S$ is finite and etâle, $f \circ h: S^{\prime} \rightarrow \mathrm{P}^{2}$ satisfies (1i), (1ii), but not (1iii).

 Received February 26, 1985. Revision received September 16, 1985.

[^1]: * Pointed out by A. Andreotti many years ago, according to the referee.

