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Introduction 

The purpose of this article is to show how often the moduli spaces of surfaces of 
general type can be everywhere non reduced in the case when the canonical bundle 
K s is not ample. On the other hand, by giving a simple criterion which implies that 
this must happen, we are in fact able to subsume almost all the previously known 
examples of obstructed deformations in dimension 2 as particular issues of a very 
general situation; we produce also infinite series of examples, showing in particular 
that all non Cartier divisors of rigid 3-dimensional weighted projective spaces give 
rise to this pathology. 

To be more precise, let V be an algebraic variety with a finite group Aut(V) of 
automorphisms (e.g., cf. [-Ma], if V is of general type); then, if V admits a space of 
moduli 93l (V) (cf. [Mu 2]), locally (i.e. in an analytic neighbourhood of the point of 
~J~(V) corresponding to V) ~IJI(V) is the quotient of the base Def(V) of the 
Kuranishi family of deformations of V by the group Aut(V) (cf. [Wa]). It is clear 
that in this case 9J~(V) is (locally) everywhere non reduced, e.n.r, for short (i.e., 
everywhere singular) if and only if Def(V) is e.n.r.. 

We recall the classical terminology: V is said to have obstructed deformations if 
the germ Def(V) is singular. The stronger condition that Def(V) be e.n.r., i.e. 
everywhere singular, can thus be referred to as V having "everywhere obstructed 
deformations", and has been regarded up to now as a very pathological 
phenomenon. 

The first example of algebraic varieties V with Def(V) e.n.r, is due to Kodaira 
and Mumford ([Ko],  [Mu 1]): here, though, V and its deformations are blow-ups 
of p3, hence there are no birational moduli. 

After several examples of obstructed deformations were exhibited, e.g. by Kas 
([Ka 1], [Ka 2]), by Burns and Wahl ( [B-W]) ,  by Horikawa ( [Hor  1]), then 
Horikawa [Hor 2] and, later, Miranda ([Mi]) gave examples of surfaces of general 
type S (respectively with pg = 4, 7, K 2 = 6, 14) for which Def(S) is e.n.r.. 

Their approach was through the classification of all the surfaces with those 
invariants (Miranda uses Castelnuovo's classification [Cas] of surfaces with 
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K 2 = 3pg - 7 and [Ks[ birational). In both cases the outcome is that the canonical 
bundle Ks is not ample for all the surfaces corresponding to the points of a 
component  of the moduli space. This research started when I tried to find a direct 
proof that Def(S) was e.n.r., and I noticed that for both examples the singular 
canonical models were hypersurfaces in a 3 dimensional projective space (respect- 
ively X 9 c P(1, 1, 2, 3), X 7 c P(1, 1, 1, 2)) admitting a double cover ramified on the 
singular point and a (disjoint) canonical divisor. 

It became clear that the essential point had nothing to do with the fact that 
these two surfaces lie on extremal lines of surface geography, it was instead the 
common feature of X being the quotient of a smooth surface Z by 2/2  in such a 
way that all deformations of X remain singular. 

In fact, already Burns and Wahl ( [ B - W ] )  had introduced the philosophy that 
one may have obstructed deformations if K s is not ample, i.e. the canonical model 
X is singular. I would like parenthetically to point out that in their examples of 
obstructed deformations X is a surface with many nodes so that, by Beauville's 
beautiful remark in [Be], X has many double covers ramified only at the nodes, 
and thus one falls again in our general picture, which is as follows. 

Main Theorem. Let  Z be a smooth surface with Def(Z)  smooth, and let G be a finite 
group acting on Z in such a way that X = Z / G  has only R.D.P's (Rational Double 
Points) as singularities and is indeed singular. Let p: Z ~ X be the quotient map, and 
assume that the following inclusion of  sheaves 

" O 1 ' ~ |  (0.1) s174 COx ~ tP.  z) cox 

induces an injective map between the first cohomology groups. Assume also that 
H 1 (0z)G surjects onto H 1 (0 x): then, i fS  is the minimal resolution of  singularities o f  X,  
then 

Def(S) is a product Def(Z)  G x R, where (0.2) 

Def(Z)  ~ is a smooth scheme and R is a non reduced, connected, O-dimensional scheme 
whose length n can in fac t  be arbitrarily large. [] 

It is important to observe that the two cohomological conditions are quite 
reasonable, since the first is verified if co x is sufficiently ample, and the second one is 
automatically verified if p is unramified in codimension 1. 

Roughly speaking, the first condition guarantees that all the deformations of X 
are equisingular, the second one that all the equisingular deformations of X come 
from deformations of Z which preserve the action of G. 

This is the simple idea, and the technique uses, beyond other tools, a useful 
criterion by Pinkham ([Pi]), which clarifies and extends previous results of Kas 
[Ka 2] and Burns-Wahl [B -W] .  

As we already mentioned, our criterion implies that K s is not ample for all the 
surfaces corresponding to the points of a component  of the moduli space, and so we 
regard our criterion as a sort of explanation of this pathology. 

In fact it makes us still confident about the validity of the following conjecture 
[Cat]: if S is a surface of general type with q = 0 and K s ample, then the moduli 
space g)i(S) is smooth on an open dense set. 
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As to the further contents of the paper, w contains the proof  and a more general 
version of the basic criterion above. w is devoted to examples where p: Z ~ X is 
unramified in codimension 1, and we show in particular that if G acts on a 3-fold W, 
then for all the hypersurfaces Z of large degree we obtain e.n.r, moduli  spaces. We 
also use a slight generalization of Kas '  surfaces [Ka  2], to show that the ratio 
between tangent dimension and dimension of  Def(S)  can be arbitrarily large. 
Finally, most  of our  effort is spent in w to analyze the somehow "most  simple" 
example, the one of hypersurfaces X in a weighted projective space P: for the sake 
of brevity, though, we omit most  of the proofs which are of computa t ional  
character. 

We have in fact that  the examples of Hor ikawa and Miranda belong to the huge 
class of  non-Cart ier  hypersurfaces X in a weighted projective space P = P(1, 1, p, 
q) with p, q relatively prime. 

We first classify all the X ' s  as above with R.D.P.'s, then we apply our  criterion. 
The striking result is that  in this case the deformation space of S is always e.n.r. 

The underlying phi losophy is the following: if X ~ p3, then all small deformations 
of  X are still surfaces in p3 (cf. [ K - S ] ) ;  whereas (cf. w X s c P(  !, 1, 2, 2)) this is no 
longer true in general for all weighted P's, it is true if P has isolated singularities 
and is thus rigid, and then one gets an e.n.r, deformation space because of the 
infinitesimal deformations coming from the singularities of P. 

I would like to thank R. Miranda for arousing my interest about the problem of e.n.r, moduli 
spaces and for sending me his preprint [Mi]. 

The paper grew out of a talk I gave at the problems seminar of Columbia University, during 
the special year on Algebraic Geometry; there H. Pinkham pointed out that the infinitesimal 
computation of the obstruction map that I needed was already available in his earlier paper 
([Pi]), and I thank him heartily for this precious help. 

Thanks for the warm hospitality go to Columbia University and to the Max-Planck-Institut, 
where 1 could finish the fastidious computations of w and write the final version. Also, I am 
grateful to a referee for pointing out some minor errors. 

Finally, the results of this paper were announced at two Conferences, where my participation 
was supported by G.N.S.A.G.A. of C.N.R. and the Italian M.P.I. 

Notation 

S a complete smooth  minimal surface of general type over C 

For  any variety X, 

Q~ is the sheaf of K/ihler differentials, 

0 x = Homex(~2 ~, (gx) is the sheaf of  vector fields, and, if B is any subscheme of X 
with ideal sheaf I n, 0x(log B) is the subsheaf of vector fields carrying d(ln) into ln. 

If  B is reduced, N~I x, the equisingular normal  sheaf of B in X, is the quotient 
O x / O x ( -  logB) (cf. [Cat] ,  9.16, 9.17). 

c~ x is the dualizing sheaf (here an invertible sheaf, since X shall be Gorenstein) 

De f (X  ), if X is complete, is the basis of the semi-universal family of  deformations of  
X (el. [Gr]) .  
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For  a vector space V, V* denotes its dual space. 

If G is a finite group acting on a vector space V, V G denotes the subspace of 
invariant vectors. 

If G is a finite group acting on a variety Z, G~ denotes the stabilizer of a point  z. 

If p: Z ~ X  = Z I G  is the quotient map, and F is a G-linearized sheaf, p , ( F )  ~ 
denotes the G-invariant part  of the direct image. 

A 1-point nilpotent scheme R shall be the spectrum of a local Artin C-algebra of 
length > 1. 

w The basic criterion 

Let a finite group G act on a smooth  (complete) variety Z. 
If z ~ Z has non trivial stabilizer Gz, then 

z e  W = U Fix(g), where Fix(g) = {z'lg(z') = z'} . 
g~G 

Moreover,  let W' ~ Wbe  the locus in W-Sing Wwhich  has codimension 1: then 
for z ~ W'  Gz is cyclic and generated by a pseudo-reflection g, where we recall (cf. 
[Ch] )  that  

Definition 1.1. g is a pseudo-reflection if g is an au tomorph ism of Z of  finite order  n 
s.t. for each point  z of Z either a )g i ( z )4 -z  for i <  n, or b) there exist local 
coordinates (t 1 . . . . .  t,,) around z such that  

g(tl . . . . .  t,,) = (tl . . . . .  tin-1, etm) (1.2) 

(where e is a primitive n th root  of  unity) 

Lemma 1.3. l f  g is a pseudo-reflection, let X '  = Z / g ,  let p': Z --* X '  be the quotient 
map and let B '  be the (smooth) branch locus of p'. 

Then there are natural isomorphisms 

jv j 
~21, , 1 )o , p,(I2 z and (p ,  0z) ~ , O x , ( - l o g B ' )  

Proof  Both jv, j are naturally defined and are clearly isomorphisms on the open 
sets where p' is unramified. 

If p'(z) = x, g(z) = z, we take local coordinates  as in (1.2) and then the proof  
follows from a direct computat ion.  [] 

We set now Z "  = Z - ( W -  W' )  = {zJG~ is generated by a pseudo-reflection}, 
so that  c o d i m ( Z - Z " ) >  2, X = Z/G,  let p : Z - - * X  be the quotient map,  and 
finally set X "  = p(Z") .  

L e m m a  1.4. Let  B be the (reduced) branch locus o f  p: Z ~ X = Z / G ,  X ~ = X -  
J 

SingX, i: X ~ ~ X the inclusion map. Then the natural homomorphism (p ,0z )  ~ --~ Ox 
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j v  

( - - l o g B )  is an isomorphism, whereas O h --~ p , ( Y2~ ) G is injective, an isomorphism on 

X ~ and p,(~2~) G equals i ,(Qho). 

Proof By (1.3) the assertion is true on the open set X " c X  ~ Since 
c o d i m ( Z - Z " )  > 2 and 0z, Oz ~ are locally free, if i": X " - - , X  is the inclusion, 
p , (0z)  ~ = ( i") , (Ox, , ( - logB) and p,(s G = ( i , ) (oh . , )  = / , ( O h o ) .  

We have now to show that  O x ( - l o g B ) ~ ( i " ) , ( O x , , ( - l o g B ) )  is an iso- 
morphism.  This follows since Ox( - log  B) is torsion free (being a subsheaf  of Ox), 
hence we have an injective h o m o m o r p h i s m  of which j gives an inverse. 

Finally, the inclusion C x c p ,  C z shows that  j t. is injective Q.E.D. 
We let now n: S - ,  X be a minimal  resolution of singularities of X, and Ybe the 

normal iza t ion of the fibre product  ZxxS.  
We then have a d iagram 

~p 

Y ~ S 

~ ~ ,  (1.5) 
P 

Z , X  

and we set yo  = Y - S i n g ( Y ) ,  S O = S -  ~o(Sing Y), Z ~ = Z - e ( S i n g ( Y ) ) .  

Proposit ion 1.6. For any invertible sheaf 5(' on X, we have 

HO(s | ~ ,  f ) o 1 H ((2 z | p*Zfl) ~ 

Proof By abuse of nota t ion we shall identify 5 ~ with its pull-backs, which we shall 
consider endowed of their natural  linearization (notice that  G acts on Y, with 
quotient  S). 

Since S - S  ~ has c o d i m > 2 ,  H ~ 1 7 4 1 7 6 1 7 4  by (1.4) 
(q~,f2~o)6 = f2s~o, hence H~174 ~ = n~ L,') G and this last clearly 
equals H~ @ ~r since el~, ,iz o) is a modificat ion and Z is smooth.  Q.E.D 

Corollary 1.7. Let Z, G , . . .  be as above and assume X Gorenstein, dim Z = 2. Let 
T* be the cokernel of the sequence 

r 

O--~(2h Q~Ox ~ ( p , a ) ) G  Q~Ox--~ T*---~O . 

Then H ~  *) ~- H ~ (g.~:l l(Y2h, Ox))* and the image of H~ is isomorphic to the 
cokernel of 

H~ | O~x) ~ H~ | 0 2 ) .  

Proof First of all (22 ~- ~o s _~ n*((Ox) since the singularities of X are Gorens te in  
quotient  singularities, hence R.D.P.'s; so that  the second s ta tement  follows directly 
f rom (1.6) letting ~ct~ be co x. 

By (1.4) the above  sequence is obtained by tensoring with ~o x the exact sequence 
of local cohomology  

0 o h  --* i ,  ((2ho) ~ ' ' HslngX(f2x) --* 0 
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and, as in Pinkham's article ([Pi] page 174, (4) of theorem 1), we notice that by 
local duality the last term is isomorphic to 

g~ , l  ((2~, (~x)*. 
Q.E.D. 

Remark. Notice that sometimes Y is necessarily singular, no matter of which 
resolution S of X one takes. 

I.e., there is no blow up of Z on which G acts as a group generated by pseudo- 
reflections. For  instance, take the action of 7//4 such that (u, v) ~ (iu, - iv): on the 
first blow-up there is a point where the action has eigenvalues (i, - 1), hence this 
point has to be blown up, and over it lies a point where the eigenvalues are ( - i ,  
- 1) . . . .  hence the procedure can never end. 

From now on we shall assume dim Z = 2, X Gorenstein (i.e., with R.D.P.'s 
only), and let S be a minimal resolution of singularities of X. 

Also we shall use freely the results of [ B - W ]  and [Pi],  in particular we shall use 
the theorem of Burns and Wahl, asserting that there is a fibre product 

Def(S) , L s 

l ~ ~ (1.8) 
q, 

Def(X) , L x 

where Lx, Ls  are the bases of the versal family of (local) deformations of the 
respective germs (X, Sing X), (S, ~ - 1 (Sing X)). 

def 
We have that L x ~- H ~  (gx)) = T x, Ls is also smooth and fl is a finite 

cover with zero differential at the origin ( fl is a direct product, over the singular 
points of X, of the quotient maps 

Hlx(Os ) ~ ~x'~ 1 (~r (~X,x) '~ H~x ( Os)/ Wx, (1.9) 

where Ex = ~-l(x) ,  and Wx is the Weyl group of the singularity acting on the 
vector space H~x(O s). 

Let us now look at the maps of tangent spaces at the base points induced by 

d i a g r a m ( 1 . 8 . ) : i t f i t s i n t o a l a r g e r d i a g r a m ( w h e r e E =  xsingular ~) E~) 

H 1 (OS) ' 

/ 
0--* H l(Ox)---* Extl (Q~, 

' HI(O s ) ,  ' 0 

0 [1 1 ( g x ) - * n  ( ~  (Qx, (Px)) 

IJ 
r~ 

U2(Os) 
II (1.10) 

ob 
,HZ(Ox) 

Here the inclusion of H~(Os) is induced by the sequence of local cohomology 
( [ B - W ]  1.3), on the other hand Burns and Wahl prove that rc.O s = Ox, so that the 
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Leray spectral sequence for the map 7~ (cf. [Pi] page 176) gives the sequence 

O---oHl(Ox)--+Hl(Os) ~ H]~ 1 7[* OS)---~ 0 

H~ (0 s) 

plus the isomorphism H2(Ox) ~- H2(Os); thus we obtain the splitting 

Hl(Os) "~ HI(Ox) (~ Ul(Os) . (1.11) 

On the other hand, (cf. [Pi]), the lower exact row of (1.10) is given by the Ext 
spectral sequence, and Pinkham proves that 

(1.12) oh: T x ~ H2(Ox)  (cf. 1.10) is dual, via Grothendieck duality, to the map 

~: H~ | f2 2) ~ T~ 

corresponding, using the isomorphisms of corollary 1.7, to the map H~ ibidem. 

Definition 1.13. We let ESDef(X),  the space of equisingular deformations of X, be 
(cf. 1.8) the germ ~-2(0). Clearly its tangent space (1.10) is H l(Ox). 

We can already derive some consequences (the first statement being already in 
[Pi]): 

Proposition 1.14. Def(S) is singular unless ob is the zero map. I f  ESDef(X)  is 
smooth and ob is injective, then Def(X) = ESDef( X)  and Def(S) = ESDef( X)  x R, 
where R is a non reduced connected O-dimensional scheme. 

Proof Since fl is finite, dim Def (S)=  dim Def(X), hence Def(S) is smooth iff 
Def(X) is smooth and ~ has surjective differential (recall that fl has zero differ- 
ential); by (1.10) the last condition means that ob be the zero map. 

For the other assertion, if ob is injective, then the inclusion ESDef(X)  
Def(X) induces an isomorphism of tangent spaces: if thus ES Def(X) is smooth 
this inclusion is an isomorphism. This means that the morphism ~b is constant, thus 
Def(S) = ES Def(X) x fl-1(0), and our claim follows since fl is finite and with 0 
differential, hence R = fl- 1 (0) is a non reduced 0-dimensional scheme consisting of 
one point. Q.E.D. 

Remark 1.15. By 1.12, 1.7, the conditions "ob injective" (resp.: non zero) are 
equivalent to "H~ surjective" (resp.: non zero). 

Theorem 1.16. Let Z be a smooth algebraic surface, and let G be a finite group acting 
on Z, in such a way that the quotient X = Z/G has only R.D.P.'s as singularities. 
Consider the exact sequence (cf. (1.7)): 

o -~ H ~  | ~x)  ~ H~ | p*O~x) ~ '~~ r~ 

then, if S is a minimal resolution of singularities of X, 
i) Def(S) is singular if the map H~ is non zero 

ii) Def(S) is e.n.r, if the following hypotheses are verified: 
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a) D e f ( Z )  is smooth 
b) HI(Oz)G surjects onto H l(Ox) 
c) H~ is surjective. 

Proof. i) is a res ta tement  of 1.14, in view of remark  1.15. For  the same reason ii) is 
proved if we show that  E S D e f ( X )  is smooth  provided a), b) hold. 

Let D e f ( Z )  a be the subspace of D e f ( Z )  consisting of the deformat ions  preser- 
ving the action of G: it is well known that, under the natura l  inclusion 
D e f ( Z )  c H I ( 0 z ) ,  D e f ( Z )  G = D e f ( Z )  n HI(Oz)G(cf.  e.g. [Cat] ,  Lecture 3). Hence, 
if D e f ( Z )  is smooth,  then D e f ( Z  )G is smooth  with tangent  space equal  to H 1 (0z)G. 
We have a natural  morph i sm D e f ( Z )  G --* E S D e f ( X ) :  by b) it induces a surjective 
m a p  on tangent  spaces, hence E S D e f ( X )  is also smooth,  by Dini 's  theorem on 
implicit functions. Q.E.D. 

Recall that, by l emma  1.4, we have an exact sequence 

0 --* p ,  (0z) ~ ~ 0 x --* N'nl x --+ 0 .  (1.18) 

The  m a p  H~(Oz) ~ ~ H~(Ox) fits thus into the cohomology  exact sequence associ- 
ated to (1.18), hence hypothesis b) is equivalent  to the injectivity of 
H 1 (N~lx) -~  H Z ( O z )  G . 

We record for later use the following 

L e m m a  1.19. Hypothesis b), that Hl (Oz)  G maps onto Hl(Ox),  is implied by the 
vanishing of  H I(N'81x) and is equivalent to the following numerical relation 

hl(N'Bix) = h~ z @ s G _ h~ @ p*e)x) G . 

Proof  The first assertion is trivial, the second follows f rom Serre duality. In fact 
h2(Oz) ~ = h~ | whereas h2(Ox)=h2(Os)  (cf. 1.10), which equals 

0 l h (s s | s = h~ | e)x) ~ by 1.6. Q.E.D. 

Corollary 1.20. Let  Z be a smooth algebraic surface with D e f ( Z )  smooth, let G be a 
finite group acting on Z in such a way that the quotient map p: Z ~ X = Z / G  is 
unramified in codimension l, and X has only R.D.P.'s as singularities (and is indeed 
singular!). 

Then, letting as usual S be a minimal resolution o f  singularities o f  X,  observe that 
p*o) X ~ 2 .  ! f  0 1 2 6 T* = z,  H (f2 z | f2z) surjects onto x ,  we have Def(S)  ~ D e f ( Z )  r x R, 
where R is a 1-point nilpotent scheme o f  length = dim T*.  

Proof  N'~I x = O. Q.E.D. 
We can in fact restate theorem 1.16 with the weaker  assumpt ions  we have in 

fact used 

Theorem 1.21. Notation being as in 1.16, Def(S)  = D e f ( Z )  G x R',  with R '  a 1-point 
nilpotent scheme o f  length >length Tff , provided: 

a) D e f ( Z )  ~ is smooth 
b) HX(0z) ~ ~ H l(0x) is surjective 
c) there is a singular point x s.t. H~ surjects onto T*.  
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w Examples of e.n.r, moduli spaces 

In this paragraph we shall consider basically two types of examples for which cor. 
1.20 applies. 

As mentioned in the introduction, the first example concerns surfaces in 3-folds, 
while the second is a slight generalization of Kas '  surfaces [Ka  2], and deals with 
quotients of products  of curves. 

In the first example we shall consider the following situation 

(2.l) W is a smooth  3-fold, and G is a finite group acting on W with only a finite 
number  of points wa . . . . .  ws having a non trivial stabilizer. There is also a very 
ample divisor H such that (gw(H) has a G-linearization (e.g. if H is a G-invariant 
effective divisor). 

Assume further 

(2.2) There exists an integer r > 0 and Z~IrHI s.t. 

i) Z is G-invariant and smooth  
ii) Z contains some w i 

iii) if Z +w~, then Gw, acts on the tangent plane Tz.w, with determinant  = 1. 

Theorem 2.3. /f(2.1), (2.2) hold and S is a minimal resolution of X = Z/G,  then ]br 
r ~ 0 S has everywhere obstructed deformations. 

Proof Since, by (2.1), p: Z ~ X is unramified in codimension l, cor. 1.20 applies: in 
fact, by (2.2) X has only R.D.P.'s and is singular. We have to verify that 
H~ 1 | COg) ~ maps onto  Ta* = H ~  *) H ~ 1 G 1 = ( (P ,~z)  /~2x) (cf. 1.7). Notice that 
the restriction map (~v | tJJw(rH) -~ (2~ | O3w(rH) is a homomorph i sm of G- 
modules, while c9 z and mz(rH) differ just by a character of  G. 

N o w  T* is a quotient of (p,  w) / w/6, which has finite length, hence there 
s 

exists an integer k > 0 s.t. T* is a quotient of ir = @ ~2w, w,/~OlW.w,1 k " f21W.~', where 
i = 1  

9Jlw,,, is the maximal ideal of the point w~. 
It suffices now to choose r > 0 s.t. H~ | Ogw(rH)) maps onto  ~f. Q.E.D. 
We show now at least that (2.1) (2.2) occur easily. 

Example 2.4. We let W =  A, where A is an abelian 3-fold and let H be any 
symmetric polarization. 

G = { +_ l } acts in the standard way, so w I . . . .  w64 are precisely the 64 torsion 

points. 
We choose an even integer r > 4, and since H is symmetric, the invertible sheaf 

(gA(rH) has a G-linearization, and we choose Z to be a generic surface inside I rHI-. 
By proposi t ion 2, page 307 of [ M u  3], if s is a section of  H~ -, a local 

expression for s, a round each of the points wi, is given, up to a unit, by an odd 
function. Hence Z passes through wl . . . .  , w64. We claim that a general such Z is 
smooth.  

This follows from the classical theorem of Lefschetz, asserting that the sections 
of H~ give an embedding of A. 
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In fact, first of all the linear system IrHl- has only the w~'s as base points, by 
virtue of the following remark: H~ + gives a morphism which (see loc. cit.) 
factors through the Kummer  3-fold K = A/G, hence if x is a base point for H ~ 
((~a(rH))-, then x and - x have the same image under the above embedding, so that 

By Bertini's theorem, therefore, it suffices to verify that a general Z is smooth at 
w~. But this follows again from Lefschetz's theorem, since if some sections give a 
local embedding, there are sections of multiplicity 1 at w~, and thus also odd 
sections of multiplicity 1. 

2.2. iii) holds since ( -  1) 2 = 1, so that X has 64 ordinary quadratic singularities. 
It is important to remark that S is a regular surface. In fact if X ~ is the smooth 

part  of X, we have 

H~ --, U~ --+ H~ + . 

But, by standard exact sequences, since H I ( C A ( - r H ) ) = O ,  we have 
H~ = H~ so there are no invariant forms. 

The next examples we consider are a slight generalization of an example due to 
Kas, [Ka 2], and we shall call the corresponding surfaces "generalized Kas 
sur faces" .  

Consider, for i = 1, 2, f~: Ci ---, F~ a simple cyclic cover of degree n between 
complete smooth curves, i.e. 

(2.5) There is an invertible sheaf 5v~ on F~ and a divisor B~ consisting of distinct 
points s.t. (gr,(B~) ~_ &~'~; C~ is the subvariety of L~, the line bundle whose sheaf of 
sections is 5~ obtained by taking the n'h-root of the section defining Bi. 

Clearly the group I~, ~ 2~/n ofn  th roots of unity acts on Ci, and f~: Ci ~ F~ is the 
quotient map. 

Notice further that 

f,(gc, = (9r, @ s -1 G . . .  (~ &a-(n-l) (2.6) 

To adhere to our standard notation, we let Z = C1 x C z and we let Pn act on Z by 
the (twisted) action 

~(X, y) = (~X, ~ - 12) .  (2.7) 

It follows immediately that if X = Z/Ix,,  then the singularities of X are exactly 
R.D.P.'s of type A,_ 1, and p: Z - ,  X is unramified in codimension 1. 

As a preliminary computation, we notice that (f2 = f21, for short) 

f2c, = fi*(Pt~ | LP~'-I) ,  (2.8) 

(f,), ac, = a~ @ (a,~ @ ~,) @ . . .  @ (a~ @ ~eF-1) 

(with ~ ~ | s  being the eigensheaf corresponding to the character of/~,, ~ --* ~ -~). 

(f~), f2~ 2 = 12~ 2 (B,) | . ~ - 1  �9 f2~ 2 (B,) (~ . . . . .  (~ f2~ 2 (B,) | ~ f?-  2 

where ~ 2  (B~) | ~f[ is the (~ ~ ~-~) eigensheaf. 
We apply now the Kfinneth formula to Z = C1 x C2, keeping in mind that the 

action is twisted on the second factor, to compute the G-invariant sections of 
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12z ~ @ f2z 2 (where we denote by the same symbol  a sheaf on C~ and its pull-back to Z )  

0 1 H (f2z| 6 = H ~ 1 7 4 1 7 4 1 7 4  , 

= (H~ 2 (B,) | ~ s  | H~ e ~ - ' ) )  

| 1 7 6 1 7 4 1 7 4 1 7 6 1 7 4 1 7 4  . . . (2.9, 
k J = O \  \ 

(symmetrical  expression interchanging the roles of  F 1, F2). 
It  is well known (e.g. since the Koda i r a -Spence r  m a p  is onto  for the family of 

deformat ions  of Z of the form C~ x C~) that  De f (Z )  is smooth.  
In order to check that  H~ | ~ 2 ) o ~ ,  T*,  we set 

B I = b' 1 + . . . .  b',~ 

r 
B2 = bl + . . . .  b"2 

and we choose local coordinates (x,y) on Z vanishing at (bl, bj'). Then the first 
s u m m a n d  of (2.9), locally at (b~, b j )  contributes expressions of  type 

(a_ 1 x" -  1 d• 2 . o~ n _ 1 dy) + (a o x" -  2 d• 2 ~o Y"- 1 dy) + 

+ . . . ( a j x , - 2 - S d x 2 ~ j y ,  - 1 -Jdy) + . . .  (2.10) 

where an = ah(x"), ak = ~k(Y"), i.e. the ah'S are pull-backs of local functions o n / ' 1 ,  
and similarly for the ~,'s. 

We have the following lemma,  whose proof  is straight-forward.  

~x~--~x , with ( a generator qfl2,, the quotient L e m m a  2.11. By the quotient map ( y~._~(_ l y 

1 1 p ,  f2z/Q x is locally generated by the expressions x iy  i+1 d x - y i x i + l  dy (for 
i = 0 , . . .  , n - 2 ) .  

Theorem 2.12. Let  S be a generalized Kas surface as above of  degree n. Then Def(S)  
= Def(F1) • Def(F2) • R where R is a l-point nilpotent scheme of  length ( n -  l) 
x (rl • r2) /f ri = deg(Bi) < gl = 9enus(Fi) and the branch points are 

general. 

Corollary 2.13. I f  v = h a(Os)/dim Def(S)  is the ratio between tangent dimension and 
dimension of  Def(  S) there do exist generalized Kas-surfaces with v arbitrarily large. 

Proof  If S has degree n, deg(Bi) = g i -  1, then v(S) = ( n -  1)(91 - 1)(92 - 1)/ 
3 [ (9 ,  - 1 ) + ( g 2 -  1)]. [] 

Pro| o f  2.12. By lemma 2.11 it suffices to verify that, for each h = 0 . . . . .  n - 2, we 
have 2 surjective maps,  

j = l  . . . .  r l  
j = l  . . . .  r2 

(given by ~ (valb; | Valby)) 
G J  

and its symmetrical .  

C~j (2.14) 
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Since L/llo| 2 �9 , ~or, |  we have a surjection H ~ 1 7 4  

-'> | Cb~, while H~174 L, Ch)-,> | Cb; if and only if Hl(Or2(-B2)  
i = 1  . . . . .  r l  j =  1 , . - Q  2 

| A ph) injects into H~(f2r~ | 5fh). 
By duality there must be a surjection H~176 and this holds 

r  ~ for i < n  
for i =  n. 

This condition and the symmetrical one hold if deg(B~) < genus(F~) and the 
branch points are general, by an easy argument on the Jacobian of F~. Q.E.D. 

The following is, instead, an example where the moduli space is only singular. 
Its purpose is to illustrate the following feature: though small deformations of 
hypersurfaces in p3 are still hypersurfaces in p3 (cf. [K-S] ,  [Se]), the same is not 
true for hypersurfaces of a weighted projective space P if ]z has not isolated 
singularities. 

In fact (as it happens in the examples by Horikawa and Miranda cf. w when all 
the deformations are surfaces in P, and the surfaces have to pass through the (rigid) 
singular points of the weighted projective space, then the deformation space 
becomes everywhere not reduced. 

Example 2.15. Let X be a general member of the family of hypersurfaces of degree 
8 in P = P(1, 1, 2, 2). X has 4 quadratic ordinary singular points, hence the tangent 
codimension of this family in the Deformation space is at least 4. 

But co x = 6.x(2 ), so that the canonical map of X embeds it as the complete 
intersection G4 c~ Q~ in p4 where G4 is a quartic hypersurface in p4 and Q~ is a 
quadric of rank 3. It is easy to see that the complete intersections G4 c~ Q2 are all 
the deformations of X, and the previous family has thus codimension equal to 3. 

w Weighted hypersurfaces with everywhere non reduced moduli spaces 

This paragraph shows somehow that our situation is not "artificial", in fact the 
examples we shall consider in this section will be hypersurfaces X of degree d in a 
weighted 3-dimensional projective space P(1, 1, p, q): in these examples S shall be 
simply connected, we shall get all the A, singularities and Def (S) will be e.n.r.Jbr all d 
satisfying certain congruences which guarantee that X is generically singular; the 
examples of Horikawa and Miranda will be two issues of a double infinite series of 
examples. 

Here p 3 =  Proj(C[yo,y~,yz,  y3]), p < q  are relatively prime integers, 
P = P(1, l ,p ,q)  = Proj (C[x o, Xl, Xz, X3]) where degx o = degx 1 = l , degx  2 = p, 
deg x3 = q. 

We let G = Z/pqZ and let ( e  C* be a primitive (pq)th root of unity; G acts on p3 
by 

(Yo, Yl, Y2, Y3)~-~(Yo, Yl, f, qY2, (PY3) �9 (3.1) 

(3.2) ~: p 3 ~  p, given by ~(Yo, Yl, Y2, Y3)= (Yo, Y~, YP, Yg) is such that 
q, 

p3/G ~_ p. 
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(3.3) Let f e C [ x o ,  xa, x 2, X3]d define a hypersurface X = { f =  0} of degree d in 
d e f  

P, and let Z = ~p - ~(X) (thus Z is the locus of zeros o f F ( y )  = f ( Y o ,  Y l , y2 ,  y 3 ' P  'q)). 

Proposition 3.4. Assume d > (p - 1)(q - 1), so that we can write d as d = bp + aq 
with a, b >= O. Then, for a general choice o f f  Z is smooth, X is singular but has only 
R.D.P.'s as singularities if[" p, q, d are according to the following table, where 
P2 =(0, 0, 1, 0), P3 =(0, 0, 0, 1) are the singular points o f  P. 

Table 3.5. 

d Singularity at Pz Singularity at P3 

P (1, 1, 2, 3) d = 1 +6k A~ A 2 
P(1, 1, p , p + l )  d = p ( k ( p + l ) - l )  / A v 
P(1, 1, p, rp -1 )  d = ( k p - 1 ) ( r p - 1 )  A v , / 

Theorem 3.6. Let X c P(1, 1, p, q )=  P be a general hypersurface as in table 3.5 of  
degree d s.t. X is o f  general type, i.e. d>  2 + p +q, and r > p - 2 .  I f  S is a minimal 
resolution of  X ,  then every small deformation of  S is the resolution of  a hypersurface o f  
degree d in P, and Def(S) = ES Def  ( X ) • R, where ES Def  ( X ) is smooth and R is a 
1-point nilpotent scheme of  length equal to the sum of  the Milnor numbers of  the 
singularities. 

Idea of  the proof Of course one has to use theorem 1.16, part  ii). It is well known 
that Def (Z)  is smooth  (cf. [K S] [Se]), and one has to verify the surjections 

HI(Oz)G ~ ,  HI(Ox)  

H o (f2zl | p*~Ox)G~>HO((p, f2~)G/f21| = T*  . 

To verify the first, we consider the exact sequence 1.18. Here B = B 2 w B3, where Bi 
is defined by the equat ion x i = 0; B 2, B 3 are smooth and intersect transversally in d 
points. (The only exception being the I!  case with p = 1, where B = B 3). One can 
verify through elementary computa t ions  the following two Lemmas. 

Lemma 3.7. N~ = N~2 @ N~ 
3 

Lemma 3.8. I f  B 3 does not contain P2, then N'~3 .~ CB3(q), otherwise N '  ,% ~ 6/n~(q) 
| ( % ( - ( p  - 1)e2) .  

Analogously we have (assuming p > 2) 

f 
(gn2(p ) if B z ~ P  3 

N ~  equals CB2(P) | (gB~(--pP3) (3.9) 

if B2 ~ P3 (here q -  1 = p). 

To finish the proof, we need to apply lemma 1.19, and to show by explicit 
computa t ions  that 

h~ ~ | g2z2) G - h~ a | p'COx) G = h'(N'n~) + h'(N'B~) 

(hI(N'B3) if p =  1). (3.10) 
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In fact the following holds true: 

(3.11) Claim. The left hand side of  (3.10) equals h~ l , p ) ( d - p - q - 2  ) 
+ h~ - p - q - 2)) i fp  > 2, and equals h~ - 3 - q)) if p = 1. 

We omit the p roof  of the above claim: the main ingredients are just the Koszul  
exact sequence for 1-forms on p3, plus a careful analysis of the G-module structure. 

To deal with the right hand side of (3.10), we use Serre duality and the fact that  
(cf. [Do] ,  3.5.2.) 

~oR2 = (gB2(d -- q -- 2), ~oB3 = Cn3(d - p - 2) . 

Then, setting 62 = 0 if B2~P3,~ 32 = p = q -  1 if P3EB2,  6 3 = 0 if B3~P2 ,  
63 = p -  1 otherwise, we have 

hl(N'B2) = h~  CB2(d-  q - -  2))) 

= h 0 (C82 (d - p - q - 2) (62 P3 )), and similarly 

h 1 ( N ' n 3 ) = h ~  2)(63P2)). (3.12) 

To end the proof, in view of 3.11 and 3.12, it suffices to prove that  for our  
choices of d, p, q, 

h~ - p - q - 2)(62 P3)) = h~ l , q ) (  d - P - q -- 2)) 

if p > 1 and 

h ~  = h ~  (3.13) 

Since B 3 = P(1, l ,q) and symmetrically B 2 ~ P(1,1,p),  we are considering the 
following problem: 

(3.14) B ~ f f ~ ( 1 , 1 , p ) = P h a s d e g r e e d ,  P i s t h e s i n g u l a r p o i n t o f P ,  6 = O i f B f ~ P ,  
6 = ( p -  1) otherwise, i is an integer > 0: is there an equality 

h ~  i)) = h~ i)(6P)? 

(3.15) The answer is positive if 6 = 0, since we have the long exact cohomology  
sequence 

0 ~ n ~  i)) ~ H ~  i)) ~ n ' ( c p ( - i ) )  = O. 

The following lemma follows from a more general result proven in the Appendix. 

Lemma 3.16. Let rt: n: = Uzp ~ P = P(1, 1, p) be the blow up of  the singular point P of  
P, and let E~ be the exceptional divisor. Let  B be a smooth curve o f  P, and identify B 
to its proper transform in the Segre-Hirzebruch surface ~: = g:p. Then if  E o is the 
curve defined by n-1  (x 2 = 0), and F is a f iber of  ~- (proper transform o f  Xo = 0), we 
have: i f  r is a positive integer and r = r ' +  r"p, with r' < p, the CB(r)= (gB(r'F 
+ r"Eo), and H~ = H ~  + r"Eo)  ). 

Moreover (gB(fP) = (gB(fEo~) (recall that E o - E~ o + pF). 

Assume now we are in the case when B ~ P ,  and ( d -  i) (cf. 3.14) equals t 'p (as 
can be checked), while d = tp + 1 (so t > t'). 
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It is then easy to see that  B ==-tE o + F ,  and, in view of 3.16 and since 
H~ = H~ = H~ + ( p -  1)E~), we are looking at the 
surjectivity of the m a p  (res) in the following exact sequence on s 

rcs 
H~ + ( p - 1 ) E ~ ) )  , H~ + ( p - 1 ) g ~ )  

, HI((gF(((p - 1) + t ' - - t ) E o - ( p ( p - 1 )  + 1)F) 

H a ( C p ( ( t ' +  p -  I )E 0 - p ( p -  1 )F ) .  (3.17) 

This is equivalent to requiring the injectivity of j .  
Set b = (p - 1) - (t - t'): i fb  < - 1 the domain  o f j  is a vanishing cohomology  

group  and we are done  (cf., for the vanishing, the table at page 612 of [Kon] ) .  
Assume instead b > 0, and set V = (9pl �9 (9p~(p). Then the m a p j  is the m a p j '  

j ,  
H l ( S y m b V |  > H l ( S y m b + ' v |  (3.18) 

given by the equat ion of B. 

I.e., if f =  ~ -  ,,i , , j , ,p(t-k) ~ijkYOYl Y2 
k=0  

fk(Yo, Y l )Y  p('-k) 
k=O 

deg fk=kp+ 1 
b 

is the equat ion of B, then, since S y m b V =  �9 (9(ip) ((9 stands for (gw!), 
i = 0  

O i e H l ( ( 9 ( i p - p ( p - 1 ) - l )  is mapped  under j '  to ~ f k 0 ~ ,  with fk01e 
,~=0 

H 1 ((9 ((i + k )p  - p(p  - 1)). 
On the other  hand this last group is zero unless i + k = h' < p - 2, and it is 

always better to deal with H ~  rather  than H l's, hence we dualize, and ask for the 
surjectivity of 

p-2 
O) H ~  - 1 -- h ' )p  - 2))-,> 

h'=O 

p - I  
G H ~  2)) ~> 

h = l  

( w h e r e  rph ~-* k= 0 ~ fk(Dh) �9 
T-t'<k+h<_p-1 

b 
(~ H ~  -- 1 -- i') -- 1)) 

/ ' = 0  

p - 1  
�9 H ~  1)) 

i=t-t" 

(3.19) 

This m a p  is not in general surjective, hence we have to check the three cases of 
table 2.5. 

Case 1: for p = 2, b = - 2 ;  for p = 3, b = 0 and H~ G (9(4))~>H~ 

Case II:  for p = ! there's nothing to check, for p > 2, there remains to check the 
case for 0:(1, 1, q), q = p +  1, which follows from the following l emma 3.20, since 
b = q - 3  
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C a s e l I l :  b = p - l - r - l , O . K ,  i f r > p - 2 .  

Lemma 3.20. I f  f has fo 4 = O, fo,  f l  rel. prime, then (3.19) is surjective for  t - t' = 2. 

p - 1  p - 1  P r o o f  Since ~h= 1 h~ - 2)) = ~ i=  2 h~ - 1)) + l, it suffices to show that 
the kernel has dimension 1. 

The map is given in matrix equation by 

- ~hp-1 ~ - f o f l  . . . . .  f , - 2  
! 

! "% f -3 
,. . . . . . .  

[ ' f . o f l  f 2  

and it s.uffices to show, by induction on i = 1 . . . . .  p - 2, that if ~p is in the kernel, 
i .  then f(~l~o~, q)2 . . . . .  qh+~ are determined by ~o~, and if ~ol =f({ gr then 

gl. f~- (~-  l)lgoj and ~oi+ 1 - +_ f [  g i ( m o d  fo). 
In fact, if ~o is in the kernel, then O = O i + 2 = f o ( p ~ + 2 + f l q o i + ~ + . . .  + 

f~+ ~ (p~, thus Jol~Or 1, hence fo[g~, g~=fog~+ ~ and the other inductive assertions 
i + i  areclearsincee.g.(0~§ - +_fl g ~ + ~ ( m o d f o ) i s g o t t e n b y d i v i d i n g b y f o t h e a b o v e  

equation. Q.E.D. for  the L e m m a  

The verification of the surjectivity of o 1 )a H (~2 z | p ' e )  x --, T?~ follows easily 
from the explicit description we gave of H ~ 1 7 4  a~- {Zui j (y)r l i j[ui je  
,~e-4-p-q ,  w(uq)+ w(~j) = 0} and from lemma 2.11 (applied with n equal to p, 
resp. q). Q.E.D. 

Appendix: formulas for almost simple cyclic covers and cones P(I, 1, p) 

(Pp-  1 

Yo L _ e ,  

To justify the definition of almost simple cyclic covers, let's consider P = P(1, 1, n), 
the projective cone over the rational normal curve of degree n, and n: ~ ~ P where 
~:, the blow up of the vertex of the cone, is the Segre Hirzebruch surface D:,. We 
have a commutative diagram 

0 
p 2  ) p 

T ~. T, (A1) 
(p 

where O(Yo, Yl, Y2)=(Yo, Yl, Y~), ~ is the blow-up of the point Yo =Yl =0, and ~h, ~0 
are quotient morphisms by G ~ I~, ~ 2_/n. 

Lct E o be ~z-l(x2=0), E ~ = u - l ( 0 , 0 , 1 ) ,  F = r t - l ( X o = 0 ) ,  and set E~, 
E~, F' their set thcoretical inverse imagcs under q). 

An casy computation gives 

(A2) q)*(Eo) = nE'o, ( p * ( E ~ ) =  nE'~, ~o*(F)=  F' ,  and Eo, E~ are the branch 
locus of q), with E o - E~  - nF. 
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We notice that, by definition (cf. [Do] )  

(A3) (gp(r) = ~b.((f/p~(r))~, moreover  6~p~(r) = e.6'L(rE'o), hence Cp(r) = 
~ ,  (cp, (Cg~,(rE~)) ~ �9 

Wri t ing r = q + r " n ,  with q < n  we have (~O.~r 
(r"Eo), hence, in order to demonstra te  lemma 3.31, it suffices to show that 

qo , (5;,(qE'o)) ~ = (~.(qr).  (A4) 

This will be done in greater generality. 

Almost simple cyclic covers 

Let an algebraic variety Yand  a line bundle L of rank 1 be given on Y, such that the 
sheaf of sections of L be isomorphic to (5'y(F) = A r~ for some divisor F. Assume that 
there are given reduced effective divisors Eo, E~ on Y, which are disjoint, and are 

such that E o =- E~ + nF. 

Definition A5. The almost simple cyclic cover associated to (Y, L, Eo, E~,~) is the 
subvariety X ~ P ( L  | Cy) defined by the equat ion z"le~ = eoz~ where eo, e~ are 
sections defining E o, resp. E~,  and z 1, z o are respective linear coordinates on the 
fibers of L, resp. the trivial bundle  Cy. 

The group G =/~,  acts, if ( is a primitive n th root  of 1, by z 1 ~ (z l ,  Zo ~ Zo. 
Take, as customary,  z = z l / z  o as a coordinate  on V o = ( X - E , . ) ,  and 

z ' = z o / Z  1 on V ~ , = X - E  o. 
We have 

n - 1  

Proposition A6. cp.(Y x ~- �9 c ~ - i ( - E ~ ) ,  where ~ - i ( - E ~ )  ~- Y "  i ( - E o )  is the 
i = O  

eigensheaf corresponding to ~ ~ ~i. 

Proof  Write a function on V o as fo + f l  z + . . .  f ,_  lz"-1  with f. a section of ~ - 
on Vo, and as go + - �9 �9 + g , -  ~ (z ' ) ' -  ~ on V~, with g~ a section of c~ j on V~ ; then 

notice that f lz  i = f i eo /e~z  '"-i, hence f /eo/e~ = g, - i .  Q.E.D. 
Similarly one proves: 

Theorem A7. I f  ~o*(Eo) = nE6, and q < n, then 

~P. x(q  o) ~- G �9 L # " + q - i ( - E o )  
i = 0  i = q + l  

where the index i gives the ~ ~__~i eigensheaf 

Corollary A8. ~o.COx(qE'o) a ~- ~q .  
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