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§0. INTRODUCTION

IN THIs short note we shall consider complex polynomials P in one variable as maps P:
C — C. In this framework a polynomial P of degree exactly (n + 1) is said to be generic if
the derivative P’ has distinct roots y,..... y,, and the respective branch points
w, =Py .., w, = P(y,). are also all distinct. Generic polynomials of degree (n + 1)
form an open sct U, in an affine space of dimension (n + 2), and one can write down (cf. §1)
an cquation for the complement of U,. The main object of this note is to establish the
following.

Maix TueoresM. The fundumental group T, of U, is a direct product Z x H,, and also
occurs as a central extension
(*) |l »Z-T,2G,> 1,
where H, < G, are subgroups of the Artin braid group 4, such that

() H isnormalinG,,G,/H, = Z/(n + 1)is generated by the coset of (A,), the generator
of the centre of 8,
(1) (*) is induced by the epimorphism which sends (m, h)e Z x H, to (A,)*™- h.

More precisely, if o,,..., 6,-, are the standard generators for #,, setting J,=
Gy 1Gy_3...0,, then (A,)? = (8,)", and H, is generated by (6, for s=2,3,..., n,
whereus G, is generated by H, and by (A,)*. 0

We shall see that the direct product I, = Z x H, and the extension (s) have an easy
geometrical significance.

We remark that H, is not only a subgroup ol :#,, but also (cf. §1 and Theorem 15) admits
a natural epimorphism onto #,, and it is thus somehow a generalization of Artin's braid
group.

In fact to H, is associated the kernel P, of the canonical epimorphism onto the
symmetric group ¢, and we consider P, as a generalized pure braid group.

Using the concept of simple polynomials we also can define further generalizations of the
pure braid group (cf. §1), but we postpone the study of those to a future paper.

From the point of view of combinatorial group theory, our results are not definite, since
we have not yet found a presentation of H,,, G, for each n: we hope to return to this topic in
another paper. Nevertheless, we believe that, as far as gecometry is concerned, our descrip-
tion is rather complete, and we would hike to mention that the geometry of U, was studied in
a close fashion by Looijenga in [4], who proved that U, is a K(n. 1) space (he also treated
other similar spaces).
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Briefly, these are the contents of the paper. In §1 we show that the map assigning to
PeU, its ramification locus establishes an isomorphism U, = A(1, C) x M|, where the
ramification set is a point in M, and A(l, C) is the group of affinities in one complex
variable, acting on the target C. Hence I, = Z x n,;(M,) (and in §3 we show that
n,(M,)=H,).

Instead, still in §1, we show that the map associating to P its branch locus factors as a
A(1, C)-fibre bundle (change of coordinates in the source C) followed by a covering map
identifying G, = n,(U,/A(l, C)) as a subgroup of Artin's braid group #,. G, is explicitly
determined in §1 as the stabilizer of a fixed edge labelled tree, and most of the technical work
is done in §2 where, by a delicate inductive argument, it is shown that G, and H, are
generated as indicated before. §3 essentially puts together the constructions in §1 and the
algebraic manipulations in §2.

§1. THE BASIC GEOMETRICAL SET-UP

Let us consider the space V, of polynomials of degree exactly (n + 1)inC[z]. If Pe ¥, we
n+l
write P = ) a,z', where a,, #0, hence ¥, =C"*! x C*. We view ¥, as a space of
i=0
holomorphic maps P: C — C, hence (we set as usual A(l, C) = Aut(C)) there is a natural
action of A(1, C) x A(l, C) on V, given by
G Py =y Pyt
and corresponding to changing coordinatcs in the source and in the target. The action of
A(1,C) x {id} is free, since if y'(w) = b'w + ¢, then (ay, . .., a4, )= (P ag + ¢ bay, ...,
b’a,, ) and in fact
Vn = A(la C) X 1‘1",
where M, is the space of monic polynomials of degree (n + 1) with vanishing constant term.
The second action of A(1, C), via {id} x A(l, C) is not everywhere [ree but there is a big
open set where it is free.

Lemma 1. Let ye A(1,C), Pe V, and assume P>y~ ' = P, for somey # id. Then there is an
affine coordinate { s.t.

(1) y(C) = al, with a a primitive hth root of | with h|(n + 1),
(i) setting (n + 1) = h-m there is a polynomial Q of degree m s.t. P({) = Q({").

Proof. Since P(y(z)) = P(z), Vz the orbit {y™(z)|me Z} has at most (n + 1) points, hence y
is of finite order h.
Taking a coordinate { centred at the fixed point of y, we see that y({) = o with a a

n+l n+1

primitive ™ root of unity. If P({) = Y. b,()', P(;({)) = Y «'b,({), an expression which
i=0 i=0
equals P<>b; = 0 if hti. Since b,,, # 0, we casily get the desired conclusion. O

Lemma 2. Let y,y'€ A(1, C) be such that y' > P~3 "' = P and (7, 7') # (id, id). Then there
do exist integers m, h, t with h > 2, mh+t=n+ 1, a coordinate { on the source C, a
coordinate w in the target C, a primitive h™ root of unity a and a polynomial Q of degree m s.t.,
in the new coordinates,

M) 7(0) =28, y'(w) = a~*w,
(i) PE) = Q)" where Q(0) =0 if t = 0.
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Proof: If yw)=2'w+ B, y7'(z)=4z+ B, then from P=yoPoy~! | get P'(z)
= x'P'(3dz + B)- 1 by the chain rule. Hence the roots of P’ are made of y-orbits, thus y has
finite order.

Hence there is a coordinate { in the source s.t. y~}({) = a{, and a is a primitive h*® root
of unity. Up to a translation in the target, we can assume P(0) = 0. Then if P()=

n+1 n+1

Y b(JY=a") ba'(l) + B, then B’ =0 and, whenever b; # 0, 2’'-a’ = 1, hence all these
i=1 i=1

i's are congruent to a fixed integer ¢t modulo h, whereasif h =1,y =y = id. O

Definition 1. Calling ramification (or critical) points the roots of P’, branch points (or
critical values) their images under P, Pe V, is said to be

(1) simple if two distinct ramification points map to distinct branch points

(2) generic if it has n distinct branch points w,, . .., w,

(3) lemniscate generic if there are n branch points different from zero and with
[wil # |w;]if i # j.

Remark 1. Notions (1), (2) are A(1, C) x A(1, C)-invariant, (3) is only SO(2, R) x A(1, C)-
invariant.

Let §, o U, o L, be the respective subsets of simple, generic, lemniscate generic poly-
nomials.

Prorosimion 3. V, — U, is a (closed) complex hypersurface, V, — L, is a real hypersurfuce.

Proof. Define |28 = z**'/(i + 1). Then the mapy: C x C* x C" — ¥,, such that

'I’(a()v an’-l' yl' MR | yn) =(n + l)anfl(j“l:ll(z —yl)> + aO

is a finite holomorphic map such that V, = C x C* x C"/.¥, (note thus that the polynomial
maps modulo automorphisms in the target give a space A(1, C\V, = M, = C"/¥,, where
the last homeomorphism is given by “ramification locus™). Hence it suffices to show that
¢~ '(V,— U, ... and so on are as in the statement; we can explicitly write their poly-
nomial equations, which involve only the variables (y,, ..., y,) = y. Let

P,=(n+ l),[.lj. (z — i)

Then the equation of ¢ (¥, — U, )} is given by [] P,(y) — P(y,) = F(y,, .. .,y,) =0,and
i<j

the equation of ¢ ~'(U, — L,) can also be given explicitly. We notice that F is a semi-
symmetric (alternating) function of (y,, ..., y.); il 6,(y), ..., o,(y) are the elementary
symmetric functions, we have

n-j+1

- C Y 4
P+ ) 3 (-1 e o)

and thus

F=A-G
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where the “discriminant™ A is the classical semi-symmetric function

A =[] (v — y;) and G is the symmetric function

i<j
. n+1 yrokel ksl
G= -1t )= - . O
.‘l:[j gZo( ) (n -k + ]) 0’,‘()) Yi — yj

Remark 2. We let M, = C" — {F(y) = 0}/%,. Then U, = A(1,C) x M.,

Remark 3. For n =3 we get G = constant [] (y; — y))*(y; + y; — 2».) where {i,j, k}
i<j

={1,2,3}. In general A?|G, but G/A? is not a product of linear forms. Notice finally that &,
is not open.

Lemma 4. {1} x A(1, C) acts freely on the open set U, of generic polynomials.

Proof. By Lemma |, since otherwise there is a coordinate z in the source such that
P(z) = Q(z"), with h > 2, and then either P =(")™ or P is not even simple: in fact
P’'(z) = Q'(z")h=""" hence P is not simple if Q" has a non zero root. a

Let W,be C" — A/, where A is the big diagonal {(w,, . .., w,)| [T (w; — w;) = O}, i.e.
{<j

also W, = monic polynomials of degree n with distinct roots.
If P is a generic polynomials, let {w,, ..., w,}e W, be the set of its branch points: it is
thus defined a polynomial mapy,: U, — I¥,.

PROPOSITION 5.y, factors as f,v ¢, where ¢,: U, — Z, is an affine A(1, C)-principal
bundle and f, is a finite (unramified) connected covering space f,: Z, = W,.

Proof. Take {w,, ..., w,} = Be W, and consider the closed set ¢, '({B}), which is a
union of A(1, C) orbits (cf. Lemma 4). Each orbit is an isomorphism class of pairs (P!, f:
P! — P')such that f has degree n + 1, f(xx) = o0 and fis totally ramified at co, and where
(P, f) = (P, f) if there exists an isomorphism g of P! such that the following diagram
commutes

Ipl [pl

NV

P

Each pair (P!, f) determines a connected covering C — f ~!(B) of C — B and in particular a
monodromy homomorphism u: n,(C — B, by) = &, . ,, where the base point b, is chosen to

be by = — 2(,/ —1)-max|w,| and one has chosen a bijection {1,..., n+ 1} =f"1(b,).
weB
Clearly, if y,, . . ., y, are geometric generators of the free group n,(C — B, b,) (i.e., they are

represented by simple loops around the respective points wy, ..., w,), then u(y;) is a
transposition t;. Conversely, given u s.t.

(*) u:a (C — B,by) = .¥,,, maps a sct of geometric generators to transpositions, and
Im(y) is a transitive subgroup, then, by Ricmann's existence theorem, we have a connected

compact Riemann surface (8, f) S—L. P! branched over B and, possibly, over . By the
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Riemann-Hurwitz formula, if g is the genus of S, we have, letting e be the branching index
at «c,
2g-2=—-2n+1)+n+e,=—-2+e,—n,

1e.2g=e, —n

Since g > 0.e, < n, we get g =0 and e_ = n, in other words § = P! and fis totally
ramified at a point which we can assume to be oo; hence we have f(=xc) = «c, and fcan be
represented by a polynomial. Notice that f is unique up to an affine (A(1, C) — ) trans-
formation in the source pointed Riemann surface = P!. Clearly, changing the bijection
{1,...,n+ 1} = f"'(by) alters u only up to composing with an inner automorphism of
&+1, and we can thus define equivalence classes [ 4] of such homomorphisms.

Welet Z, = {(B, [u])lu: n,(C — B, by) = &, satisfies (*)} which is a covering space
of W, since the fibration T < C x W,, T = {(z, B)|z ¢ B} is locally trivial. We can conclude,
since VB ¢, '({B}) consists then of a finite number of disjoint orbits, which are closed,
hence Z, = U,/A(1, C). Q.E.D.

PROPOSITION 6. Let E, be the set of (isomorphism classes of ) edge labelled trees with n
edges: then the choice of a geometric basis for n,(C — B, by) determines a canonical bijection
between f7'(B) and E,,.

Proof. In the notation of the proof of Prop. §, let t; = u(y,). Then we draw an edge for
each 1, and a vertex for each maximal subset R of {1, ..., n} such that for i, jeR either
1, = 1; 0r 1;, 7; don’t commute. Then there is a bijection (u is transitive) between the set of
vertices and {1, ..., n+ 1}, and an edge 7; has R as a vertex iff ie R. ]

We choose now as base pointin B, theset By = {1,2,...,n}and by = — Zn\/—_l— as
base point in C — B,. We recall (cf. [2]) that Artin’s Braid group 4, can be defined as

(i) n,(W,. B,) and then the monodromy of the (tautological) fibration (defined in the
proof of Prop. 5) T — W, defines an isomorphism of #, with

(i) Diff *(C — B,)/Diff © *(C — B,) where oo means “equal to identity outside a circle
of radius 2n around the origin™, + means “isotopic to the identity™. We can canonically fix
geometrical generators 7,,..., 7, of n,(C — B,), then, via the action on n,(C — By)
induced by the monodromy, and the isomorphism of n,(C — B,) with the free group F,, we
have an isomorphism

(i) B, = {@eAut(F)|(7, ... 7.)9 =79 -..7. and 1€ &, st. ()¢ is a conjugate
of 7. }-

Also, as an abstract group with generators and relations, 4, is the group with generators
o,,...,0,.,and relations

{oiaj =00, for |i—j|2>2
0,0;4+10; = 0;4,00;4,
and then the action of 4, on F, is given by:

(7)o =71 (Gisr)oi =23 Yiti+n

(7jJai=7v for j#i i+ L

Proposition 7. The monodromy i,: 4, — S (E,) of [, is defined by [u](A.(¢)) = [¢ ™' 1]
(or, in more traditional notation, 7, (@)([u]) = (e~ '])
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Proof. The monodromy of ¢ gives a diffeomorphism of C — B, bringing the canonical

basis 7,. . . ., 7, to a new geometrical basis y{, . . ., v, in terms of which is now expressed yu.
whereas u ¢ ™! expresses it in terms of the geometrical basis. .

§2. THE ALGEBRAIC COMPUTATION

Let 7., 75.. ... ¥. be a fixed basis of a free group F,. and let o,. ..., g,-, be the
standard generators of a braid group #,. which act on F, by the formulae:

e =71 (e = (7i+l)-l}’i7i+lv (vj)o: = 7 for j#ii+ L

Let E, be the set of the homomorphisms u: F, = &, ., into the symmetric group on (n + 1)
letters such that u is onto and t; = (y;)u is a transposition for every i. Let E, be the set of the
equivalence classes on E,, where [u] = [v] if and only if there exists e &, such that
n((Pwn~' = (y)v for all yeF,. Then #, acts on E,, cf. Proposition 7, by composition:
@) = (7)o Yy for ueE,, e B,, yeF,. This action induces an action on E,. The sct
E, can be identified with a fiber of the covering f,: Z, - W,, and by Proposition 7 the action
of B, on E, is the monodromy action 4,: 4, — ¥ (E,) of the covering.

We want to find the fundamental group of Z,. We fix a base point [,] such that
o= i+ e . Then G, = n (£, [Ky]) is isomorphic to the stabilizer of [y, ]
in 4,: G, = {pe A, [1o0] = (1,1}

Letd,=0,_,0,_,...0,€8,lors=2,3,...,n Then (A,)? = (J,)" is a generator of
the center of A4,,.

Let H,={ped, g = o} < G, and let K, = (8, ,s=2,3,...,n)c 4, We
want to prove the following result.

Tueorem 8. H, = K,, while G, is generated by (A,)? and by (8,0, s=2, 3,...,
n—1,n

We shall denote by n, the (n + l)-cycle (n+ L, n, ..., 2 Ne¥,,, and by y,,, the
element (y,)3,€ F,. We shall first establish some simple properties of K, H,, G, and A4,.

Lemma 9.

(a) K, < H,.

®) G =7ivrs i=1L...o n (ar o=, n+ 1), thus for every yeF, (y,)uo
= nol(Yp)ng b and 6,€G,.

(€) (7172 - - - Va)pHo = mo for every p€ B,

d) G, = (Il,,.‘(A,,)2 >, hence H, is a normal subgroup of G, of index n + 1.

Proof. Notice first of all that 5, only affects y,, . . ., y,,and, setting y,, = 71 - - . Y5 Bs—
acts trivially on y,,, In particular (7,)d, = y;,, for i <'s — 1, whereas (7,)9, = (7)™ ' 7170
Hence follows easily (7,)03 = (74) ' 7:7 for each i = 1, . .., s. Therefore

GO = () ieriy fori<s—1
(7,003 = ()™ 2717(2=)

(G33t=y, fori>s+ L

Part (a) follows immediately, because all we have to verify is that (3,)'* ‘e H,, i.e,,

70 g = (i, i + 1).
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But indeed y,uo=(s+1,..., 1) and the desired equalities are then verified. In particular
Tne1 = (72)0n = (3m) ' 717 hENCE (7o 1o = (1. n + 1) and thus we have checked also
part (b). {c) follows since, as we noticed, (7, ... 7,) @ =7 and ypo=me=(n+1,..., 1)

Let's prove now part (d). By our previous computations (A, )* acts on F, by
¥ = (Ym) 77wy hence (A,)? € G,. Let @ € G,. There exists (by definition of G,) ne &, such
that n{(y¢)ue)n ™! = yu, for all yeF,. In particular n((7, . .. y.)@mo)T " =(¥1 - - - 7a)Ho-
Thus nnen™!' =n, and n = (ny)* for some k. Therefore (yo)d,) ™ uo = 7o Vy and
o(82) e H,. Hence. ¢(A,)” *e H,. We finally observe that (A?)*e H,, if and only if k is a
multiple of (n + 1). Q.E.D.

In order to prove Theorem 8 it is enough to prove that H, = K,. We shall prove the
following stronger statement by induction on n.

ProrosiTion 10. H, = K,. If e B, and x = (7,)¢ and (Dpg = (j, j + 1) for some 1 <,
J < n then there exists Y € K, such that (x)¢ = y;.

InpucTioN HypotHEsts. Proposition 10 is true for n — 1.

For s < n we can identify H; and K, with subgroups of G,. Indeed we can restrict
elements of E, to F, = (3,, .... 7> < F,. Also 4, is naturally isomorphic to {a, . . .,0,- )
<« 4, and the action of #, on [, is completely determined by its restriction to F,, since it
acts trivially on y,,,...., 7.- Then H, = {pe . B.|(;0)py = (})uo for yeF,} < H,, and
K,={,¥*' j=2....,s). By the induction hypothesis H,_, = K, _,.

Lemma L1 If pe B, and (y,)p = v, then @ € B, _,. If ulso pe H, then peK,. If pe H,
and (7)o =y, then pela,, ..., 0, ).

Proof. The first and the last part follow from the description of #, as Diff *(C — By).
The second part follows from the induction hypothesis. O

By a yeometric basis of F, we shall mean (as in § 1) a basis of the form (y,)e, . . . . (7.) ¢ for
some @ € 4,. An element « of [, is simple if it belongs to some geometric basis (i.e., recalling
characterization (iii) above of 4, a is simple ifl it is represented by a simple loop around a
branch point (the conjugate by a path of a small circle around the branch point): hence if
aef,_, is simple in F,, it is also simple in F, _,).

Lemma 12, Let x and y; belong to the same geometric basis and let (x)pg = (y;)1to. Then
there exists p € K, such that (x)p = y,;.

Proof. Let a =(y,)t, v,=()t, 1<p, q<n, Il g<p let s= —i+] and let ¢y =
Oy... 6,18, If p<gqlet s=n—iand let Yy =(0,... 0,-y)"'2(8,)". If p<yq
then (y,)¢ =y, so y€B,_,, by Lemma 11, and therefore (y,)¢ = (0)(3,)eF,-,. If g < p
then (y,)¥d, =7, so ¢d,e{a,, ..., 0,-,> and thus (y,)¥5,€<{y,...., y.» hence
(7,)¥ = (x)(3,)€F,_., by Lemma9(b). In both cases, by Lemma 9(b) there exists an
integer k, 1 Sk <n— 1, such that (7,¥)u = (7)o and either y, = (7;)(d,) or y, =
(O, In fact, (7,¥)ue = (0)(0,) o = my(ape)ng*. Thus, by the remark
made previously about simple elements, we can apply the induction hypothesis and there
exists therefore @ e K, such that (x)(5,)'¢ = y,. Since (J,)" is in the center of B, and
b, *'eK,, 3, normalizes K,,, therefore (4, @(8,) "*€ K,,. It follows that there exists ¢, € K,
such that (x)¢, = y; as required. Q.E.D.

For te 4, the length of t is the length of the shortest word in the letters o; and (o;) ™!
representing t. For a simple element x the index (x) of 2 is the length of the shortest element
te A, such that a = (y;)t forsome i, 1 i< n
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Lemwva 13, Let x be a simple element such that (2)uy = (3,) g for some p. Then there exists
©e K, such that (x)p = 7,.

Proof. (By induction on I(x)). If I(x) =0 then 2 =7y,. Let I(x) =k and let t be an
element of length & such that (7,)t = 2. where | < ¢ < n. We want to find a geometric basis
which contains x and an element § such that I(8) < k and (B)iy = (7)o for some j. Let

1, =0,(0,0)(630,6,)...(04-20,-3...0,00,41(044204.,)
N (* SO MRS A |

Let ¢ = r, 7. Consider the basis ()¢, s =1, ..., n Then ()¢ = x. Among the letters I,
2.....n+ 1 there is at least one, say j, which appears only in one transposition (;,¢)u,
and does not appear in (y,¥)u,. since a tree with n edges, n > 2, has at least one vertex
not lying on a given edge. We may assume by symmetry that s <g. Consider
Y, =0, W=lo,_y0,_5...0)""¢. We have ()¢, = (3, )¢ for 2<i<s, (7, =
(7 fors + 1 <i < n,and one can verify that ()¢, = (,-,)t. Clearly the letter j does not
appear in (7Y, )uy for i #£ 1 so it appears only in (y,¢)uo. Since ((7, ... 7 )¢ o =
ny ', and j does not appear in (3, )y, for i > 2, we must have (7, ), = (7 4. Since
x = (y,)t has index k, the first factor of t is g, or (g,)” ' It follows that I(y,¢,) <k
(so y,¢, is the sought for fi!). By the induction hypothesis there exists ¢ € K, such that
Gi¥)e = (). Then (7,0 )¢ = (2)¢ and (x@)pe = (y,) o, because e K, and there-
fore, by Lemma 12, there exists ¢, € K, such that (x@)e, =y, as required. Q.E.D.

Proof of Proposition 10. The proof follows by induction. In fact, Lemma 13 provides the
proof for the sccond assertion. Let now ¢ e H,. Then (y, @)1 = (7,)4, and by Lemma 13
there exists ¢, € K, such that (y,@)¢, = 7,. Now ¢, € H, and by Lemma 11l ¢, ek, It
follows that e K, QED.

§3. PROOF OF THE MAIN THEOREM
We summarize the geometric set up of §1 in the following diagram:

AL C)x M, = U, ~* U JA(1,C) = Z, - W, (3.1)

Thus, setting H, = n,(M}), since [, = n,(U,), G, = n,(Z,), and ¢, is an affine A(l, C)-
bundle, we have the following diagram of group homomorphisms

1 — z - T, %, G —I

i i

%ﬁ | \"\ (3.2)
Z — ZxH, — H,

THEOREM 14.

(a) p,ciis given by multiplication by (n + 1).

(b) @, (i;(1)) = (A,)?

(c) @, i, gires an isomorphism of H, with H,.

(d) using the isomorphism @, «i, to identify H, and H,, i(Z) = ker ¢, is generated by
in+ 1) i (A] 2 1),

Proof. A path representing i(1) is given by an orbit of the l-parameter subgroup
(P, t) = P(¢*™"z). On the other hand, p, is associated to the map carrying a polynomial P to
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2nit lx(n*ln)

its leading coefficient a, , |, hence, since the leading coefficient of P(e**“z)is a,. (e
we have shown (a).

(b): @, (i; (1)) is represented by the braid moving B, to e*™ B, and it is well-known that
this braid is (A,)? (cf. [5]).

(c) Let’s first show that ¢ (i;(H,)) = H,. In fact ¢(i;(H,)) counsists of the braids
coming from paths § in the subspace M, of monic polynomials with vanishing constant
term. We have seen algebraically in Lemmma 9 that H,, is the kernel of the epimorphism of G,
to the cyclic group of order (n + 1) generated by n, in &,. Geometrically, this homomor-
phism is easily seen to be given as follows: you take a path g in U,. and you choose the base
point in C — B, in a sufficiently big circle such that all polynomials in § are uniformly well
approximated by the map z' = [1/(a,,,)](=)**", where =" is a local coordinate in the
Reimann sphere around the point oc.

The inverse images of the base point are then permuted cyclically, according to how
a,., moves in the path 8. But if fisin M, then q,,, = 1 constantly on f3, hence the inverse
images are not permuted, and the braid is in H,.

Now, i(1) is a generator of the kernel of ¢, and, by (a). i(1)eZ x H,isa pair(n + 1, h')
with @, i,(h') = (A2)""*", and also in particular i,(H,) has trivial intersection with
ker (¢, ). hence H, is isomorphic to a subgroup of H,, which contains (A2)"**. Since ¢, is
surjective, the index of H, in G, is at most n + 1: hence H, is isomorphic to H, via ¢, °i,.
and (d) follows immediately. Q.E.D.

As the reader will have noticed, Theorem 14 is a more precise formulation of the main
theorem.

We consider now the epimorphism H, = 4, induced by the inclusion M, < M,
(cf. Remark 2, §1).

First of all take now in M, as base point Py =:z"*' —(n+ )z =(n + l)j'(:" — 1), and
constder the path in M, based on P,

'y(t) — e2nil(n +1)n PO(Z . e—Zm’l,’n). (33)

Clearly ¢, (7) is an element of H,(y(t)e M,) and indeed, since ¢ is not affected by the action
of A(1,C) in the source C, ¢,(y) is the braid given by the l-parameter group
(w, 1) = e2™r* Viny, This 1-parameter group gives a diffecomorphism of C — Bj,, where By is
the branch set of Py, i.e. By = {Po(D)|L" = 1} = {—nl|{" = 1}. [t follows then that

@, (7) is the braid (5,)" " (3.49)

On the other hand, if we only look at the ramification points of P, the effect of y(t) on the
roots y,, ..., y, of P’ is given by the action of the 1-parameter group (y, t) = ye>™"" on
them. We have therefore

wn" ') = a (3.5)

Tueorem 15. Under the isomorphism H, = n,(M) (cf. Theorem 14), the epimorphism
. Hy=n,(M,)— n(M,) = %, induced by the inclusion M, = M, is such that

{PAR R

Proof. We shall prove the result by induction on n. Recall that H,_, ¢ #,_, < 4,. In
view of (3.5) it will suffice to show that there is a homomorphism j,: n,(M,_,) = n,(M,)
such that

(1) the composition of j,: H,_y, == (M,_,)—n (M,) = H, with ¢,°i; coincides
with the previously described isomorphism of H,, ., with the given subgroup H,_, of &, _,
composed with a fixed embedding of #,_, into 4,.



650 Fabrizio Catanese and Bronislaw Wajnryb
(it} under the natural epimorphism of H,—+4,, j,(H,_,) lands into #,_,, by a
homomorphism equal to the natural epimorphism H,_, - 4#,_,.

To define j,. notice that n, (M, _,) is generated by a finite number of loops in M, _,

’

which therefore lie on a compact set K of M, _,.
Now, if Qe K, there do exist (y,. ..., ¥,-,) such that

Let ue R be a negative number with [u| > 0: then we define

n-1

W@ =P=(n+ D | []c=y)G-u (3.6)
i=1
Clearly j, sends K < M, _, into M, if

u} > max max|y;
Ju) > max max |,

On the other hand, integration by parts gives

P = (": l)[Q'(:—u)—fQ]. (3.7)

P(“) = — fli'_l (JQ)(u) _ _l un#l + 0l|u|")v (38)
n n

hence

where, if Q€ K, the remainder is in absolute value < Cost|u|". Whereas,
) n+ 1
P(y) = = "2 uQ(y) + O(), (39)

(again, the remainder is bounded by a constant on K). Since there is € > 0 such that
1Q(y;) — Q(y ) > € (for i # j) uniformly on K, it follows that for |u| > cost, then Pe M.

Let us consider the paths y;(t) (t € [0, 1]) which induce generators of n, (M, _,). Then the
Q.(y,()) describe a finite number of braids and it is rather clear that there is a constant § > 0
such that, if | f;(1)| < 8, then the braids given by the roots Q,(y;(t)) and by the perturbed
roots Q,(y,(t)) + f;(¢t) are isotopic. By (3.9), choosing u such that |uf > [O(1)n]/[(n + 1],
we see that the braid associated to the roots P,(y;(t)) is the same as the one we started with.

On the other hand, if we fix u with ju} > 0, the P,(y,(¢)) move in a circle with center
the origin and of radius cost |ul, while P{u) moves in a disjoint circle (with center
on — (I/n)u"*'). Hence the braid of P, belongs to a fixed embedding of #,_, and
coincides, in terms of this embedding, with the braid of Q,. Q.E.D.
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