
THE FUNDAMENTAL GROUP OF GENERIC POLYNOMIALS 

FABRIZIO CATANESE and BRONISLAW W.+JSRYB 

$0. lNTRODl_Tl-ION 

IN THIS short note we shall consider complex polynomials P in one variable as maps P: 

Q: --* 43. In this framework a polynomial P of degree exactly (n + I) is said to be yeneric if 

the derivative P’ has distinct roots p,, . . . , y.. and the respective branch points 

w, = P(F,). . . . , I(; = P(y,,), are also all distinct. Generic polynomials of degree (n + 1) 

form an open set V” in an atline space of dimension (n + 2). and one can write down (cf. Q I) 

an equation for the complement of rl,. The main object of this note is to establish the 

following. 

(ii) ( l ) is induced by the rpimorphism which sends (tn. h) E Z x H, to (A”)‘“. h. 

Morr precisely. if’ fs,, . . . , 6,_, ure the stundurd yrnrrators for am, settiny 6,= 

6,_16,_2.. .6,, ~lwn (A.)’ = (b;,,)“, und H, is yenerutrd by (6,)‘+ ’ for s = 2, 3, . . , , n, 

whcrrus G, is gmerutrd by H, und by (A,)‘. 0 

We shall see that the direct product I-, = Z x H, and the extension ( l ) have an easy 

geometrical significance. 

We remark that H, is not only a subgroup or%“, but also (cf. $1 and Theorem 15) admits 

a natural epimorphism onto %., and it is thus somehow a generalization of Artin’s braid 

group. 

In fact to H, is associated the kernel Pb of the canonical epimorphism onto the 

symmetric group 9” and we consider Pk as a generalized pure braid group. 

Using the concept of simple polynomials we also can define further generalizations of the 

pure braid group (cf. $1). but WC postpone the study of those to a future paper. 

From the point of view of combinatorial group theory. our results are not definite, since 

we have not yet found a presentation of H,, G, for each n: we hope to return to this topic in 

another paper. Nevcrthelcss, we believe that, as far as geometry is concerned, our descrip- 

tion is rather complete. and we would like to mention that the geometry oft!, was studied in 

a close fashion by Looijcnga in 141, who proved that U, is a K(n. I) space (he also treated 

other similar spaces). 



642 Fabrizio Catanese and Bronislaw Wajnryb 

Briefly, these are the contents of the paper. In $1 we show that the map assigning to 

PE L’” its ramification locus establishes an isomorphism L’” z A(1, C) x M;, where the 

ramification set is a point in ,%f; and A( I, C) is the group of affinities in one complex 

variable, acting on the target C. Hence r. = Z x n,(M,) (and in $3 we show that 

n,(M;) = H,). 

Instead, still in 9 1, we show that the map associating to P its branch locus factors as a 

A(1, C)-fibre bundle (change of coordinates in the source C) followed by a covering map 

identifying G, = n,(U,/A(l. C)) as a subgroup of Artin’s braid group 3,. G, is explicitly 

determined in 3 1 as the stabilizer of a fixed edge labelled tree, and most of the technical work 

is done in $2 where, by a delicate inductive argument, it is shown that G, and H, are 

generated as indicated before. $3 essentially puts together the constructions in 9 1 and the 

algebraic manipulations in $2. 

51. THE BASIC GEOMETRICAL SET-UP 

Let us consider the space t;, of polynomials of degree exactly (n + 1) in C[z]. If P E V, we 
n+l 

write P = c a,?, where a,+, # 0, hence V. = C”” x C*. We view V, as a space of 
i=O 

holomorphic maps P: C + OZ. hence (we set as usual A( I, C) = Auf(C)) there is a natural 

action of A(I, C) x A(I. C) on r/, given by 

(y’, y)(P) = ‘i’ *I p ‘i’ - ’ 

and corresponding to changing coordinates in the source and in the target. The action of 

A(1. C) x {id) is free since if y’(w) = h’w + c’, flurry (u,,. . . . , (1, + ,) + (h’u, + c’, h’u,, . . . , 

b’u, + , ) and in fact 
v. Z A(I, C) x Jf,, 

where M, is the space of manic polynomials of degree (n + I) with vanishing constant term. 

The second action of A (I, C), via {id} x A( 1, C) is not everywhere free but there is a big 

open set where it is free. 

LEMMAS. Lefy~A(I,43),P~V,undussumeP~;t~ ’ = P&r some y # id. Then there is un 

&ine coordinufe 6 s.f. 

(i) y(i) = z[, with a u primifice hth root a/ I wirh hl(n + I), 
(ii) seffiny (n + 1) = h-m there is u polynomial Q ofdeyree m s.t. P(c) = Q(Ch). 

Prooj: Since P(y(z)) = P(z), Vz the orbit {Y”(z)lmE Z} has at most (n + 1) points, hence y 

is of finite order h. 
Taking a coordinate ( centred at the fixed point of y, we see that y(i) = a[ with a a 

II+1 II+1 

primitive hlh root of unity. If P(i) = i& b,(c)‘, P(;.(;)) = izo a’!+(C)‘, an expression which 

equals P-6, = 0 if h,+i. Since b,,, # 0, we easily get the desired conclusion. cl 

LEMMAS. Lefy,y’~A(I,C)besuchthuty’~P~;’ - ’ = P and (7, y’) # (id, id). Then there 

do exist infeyers m, h. t with h 2 2. mh + t = n + I, a coordinate C on the source C, a 
coordinate w in the fur-yet C, a primitive hlh root ofunify cx and a polynomial Q of deyree m s.t., 

in the new coordinutes, 

(i) y(6) = ri, y’(w) = a-‘w, 

(ii) P(i) = Q(ih)-[‘, where Q(0) = 0 i/r = 0. 
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Proof: If y’(w) = Z’H. + fl’. y-‘(r) = 512 + p, then from P = y’oPoy_’ I get P’(r) 

= r’P’(k + fi).S by the chain rule. Hence the roots of P’ are made of y-orbits, thus 7 has 
finite order. 

Hence there is a coordinate i in the source s.t. y-‘(;) = ai, and a is a primitive htb root 
of unity. Up to a translation in the target, we can assume P(0) = 0. Then if P(l)= 
II+1 n+l 

C h,(l)’ = z’ x b,z’(<) + /?‘, then j3’ = 0 and, whenever bi # 0. x’*ai = 1, hence all these 
i=l i= I 

i’s are congruent to a fixed integer c modulo h, whereas if h = 1, y = y’ = id. 0 

Dtfinition 1. Calling ramification (or critical) points the roots of P’, branch points (or 
critical values) their images under P, PE V, is said to be 

(1) simple if two distinct ramification points map to distinct branch points 
(2) generic if it has n distinct branch points w,. . . . , w, 

(3) lemniscate generic if there are n branch points different from zero and with 

1~~~1 # In;1 if i #j. 

Rt~murk I. Notions (1). (2) are A(1, C) x A(1, Q-invariant. (3) is only SO(2, W) x A(1, C)- 
invariant. 

Let S, I> CJ” 2 L, bc the respective subsets of simple, generic, lemniscate generic poly- 
nomials. 

PHOFOSITION 3. V, - Cm is u (clowd) complex hypursurfucr, V, - L, is a real hypersurficr. 

Proo$ Define f z’ = ci + ’ /(i + 1). Then the map+: Q: x C+ x C” -+ V,, such that 

I(~(u~,u,+,.Y,~...~Y~)=(~+~)~,+, 
, 

(~,fil(z-Yi))+uo 
is a finite holomorphic map such that V, 2 C x C+ x C”/.Ym (note thus that the polynomial 
maps modulo automorphisms in the target give a space A( 1, C)\ V, s M, z C”/Y,, where 
the last homeomorphism is given by “ramification locus”). Hence it suffices to show that 
lj-‘(r’. - V”), . . . and so on are as in the statement; we can explicitly write their poly- 
nomial equations, which involve only the variables (yr, . . . , y.) = y. Let 

Py = (n + 1) 
I 

fi (2 - vi)* 
1-1 

Then the equation of I(I-‘(V. - U,) is given by ,Q, P,(yJ - P,,(y,) = F(y,, . . . ,y,) = 0, and 

the equation of I/I- ‘(V, - L,) can also be given explicitly. We notice that F is a semi- 
symmetric (alternating) function of (yr, . . . , y.); if o*(y), . . . , a,(y) are the elementary 
symmetric functions, we have 

P,=(n+ 1) f: (-lYtnz~~!~,, Uj(Y) 

I-0 

and thus 

F = A-G 



644 Fabrizio Catanese and Bronislaw Wajnryb 

where the “discriminant” A is the classical semi-symmetric function 

A = n (yi - yj) and G is the symmetric function 
icj 

G=i~,k$o(-l)k(n~;: I,crk(,,Y’k+l-y~-k+l. 
Yi - Yj 

izl 

Remark 2. We let Mi = C” - {F(y) = 0)/Y,. Then U, z A(1, C) x M;. 

Remark 3. For n = 3 we get G = constant n (yi - Yj)‘(Yi + Yj - 2yk) where {i,j. k} 
i<i 

= { 1,2.3}. In general A* I G, but G/A* is not a product of linear forms. Notice finally that 9’” 

is not open. 

LEMMA 4. { l} x A( 1, C) acts freely on the open set U” of generic polynomials. 

Prooj By Lemma I. since otherwise there is a coordinate z in the source such that 
P(z) = Q(z*). with h 2 2, and then either P = (z’)” or P is not even simple: in fact 
P’(z) = Q’(z”)hz ‘-’ hence P is not simple if Q’ has a non zero root. cl 

Let W, be C” - A/Y’,, where A is the big diagonal ((w,, . . . , w.)I fl (wi - Wj) = 0). i.e. 
i<l 

also W, = manic polynomials of degree n with distinct roots. 
If P is a generic polynomials, let {w,, . . , w.} E CV, be the set of its branch points: it is 

thus defined a polynomial mapI(/,: CJ, -+ Iti. 

PROPOSITION 5. II/,, fuctors as J,t~cp,. where cp.: U, + Z, is an ufline A( I, C)-principul 

bundle and f, is u Jinife (unrumijied) connt~tYetl cowring spuce /.: Z, + W,. 

Proof: Take{wl,..., w.1 = BE W, and consider the closed set I//, ‘( {B).). which is a 
union of A( I, C) orbits (cf. Lemma 4). Each orbit is an isomorphism class of pairs (P’, f: 
P’ -, P’) such that f has degree n + I, f(s) = 00 and f is totally ramified at 00, and where 
(P’, f) 2 (P’, f’) if there exists an isomorphism y of P’ such that the following diagram 
commutes 

Each pair (P”, f) determines a connected covering C -f - l(B) of 43 - B and in particular a 
monodromy homomorphism ~1: n,(C - B. b,) + 9’“+ ,, where the base point b, is chosen to 

be b, = - 2(fl)*max Iw,J and one has chosen a bijection {I,. . . , n + 1) zf-‘(b,). 
we8 

Clearly, if yI, . . . , y. are geometric generators of the free group n,(C - B, b,) (i.e., they are 
represented by simple loops around the respective points w,, . . . , w,). then p(Yi) is a 
transposition TV. Conversely, given p s.t. 

(*) P:~K - B,bo)+.Y,,, maps a set of geometric generators to transpositions, and 
fm(~) is a transitive subgroup, then, by Ricmann’s existence theorem, we have a connected 

compact Riemann surface (S, fi S ’ -P’ branched over B and, possibly, over ~13. By the 
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Riemann-Hurwitz formula. if g is the genus of S, we have, letting e, be the branching index 

at 5, 

2g - 2 = - ?(n + 1) + R + e, = - 2 + ep - n, 

i.e ., 2g = e, - n. 

Since g 2 0. e, I n, we get g = 0 and e, = n. in other words S 2 P’ and f is totally 

ramified at a point which we can assume to be OS; hence we have /(cc) = cc, and {can be 

represented by a polynomial. Notice that / is unique up to an affine (A(1, C) - ) trans- 

formation in the source pointed Riemann surface g P ‘. Clearly, changing the bijection 

{I,..., n + I} =/-‘(h,) alters p only up to composing with an inner automorphism of 

9 n+l* and we can thus define equivalence classes (~1 of such homomorphisms. 

We let Z, = {(B, [P])IF: n,(C - B. b,) + Yp,+I satisfies ( l )} which is a covering space 

of w” since the fibration T c C x U,, T = ((z, B)I; $ S} is locally trivial. We can conclude, 

since VS $;I( (B)) consists then of a finite number of disjoint orbits, which are closed, 

hence Z, = U,/A( 1, C). Q.E.D. 

PROPOSITION 6. Let E, be the set of (isomorphism classes of) edge labellrd trees with n 

edges: then the choice of a yeometric busis for K, (C - B, b,) determines a canonical bijection 

between fl ‘(II) and E,. 

Proof: In the notation of the proof of Prop. 5. let ri = I. Then we draw an edge for 

each T, and a vcrtcx for each maximal subset R of {I,. . . , n) such that for i. je R either 

~~ = rj or ri, ~~ don’t commute. Then thcrc is a bijcction (14 is transitive) bctwcen the set of 

vertices and (1, . . . , n + I ), and an edge ri has R x a vertex ifT ie R. r.3 
We choose now as base point in r+b the set B,, = {I, 2, . . . , n} and b,, = - 2nJ-l as 

base point in 43 - B,,. WC recall (cf. [2]) that Artin’s Braid group #b, can be dcfincd as 

(i) n,(w., B,) and then the monodromy of the (tautological) fibration (defined in the 

proof of Prop. 5) T+ U; defines an isomorphism of 9, with 

(ii) DitT “(C - B,,)/DifT m* + (a3 - B,) where 00 means “equal to identity outside a circle 

of radius 2n around the origin”, + means “isotopic to the identity”. We can canonically fix 

geometrical generators y,, . . . , -y. of n,(C - E,), then, via the action on n,(C - B,) 

induced by the monodromy. and the isomorphism of n,(C - B,) with the free group IF,. we 

have an isomorphism 

(iii) 9” = {qEAut(ff.)l(y, . . . ;t,)cp = y, . . . y. and 3r ~9’~ s.t. (7,)~ is a conjugate 

Also, as an abstract group with generators and relations, a9. is the group with generators 

011 * * . 9 CT,_, and relations 

I 

aid, = d,o, for Ii -jl 2 2 

ot”~+l[T, = citlbibi+l 

and then the action of _#” on IF, is given by: 

(i’ilai = 7, + I (Yi + t Jai = Yi+‘I YlYi + * 

(yj)ai = yj for j # i, i + I. 

PROPOSITION 7. The monodrom~ i.,: 99” -+ .Y(E,) off_ is defined bp [p](i.,(cp)) = [q-‘p] 

(or, in more traditional notution, i.((p)([p]) = (p 0 cp- I]). 
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Prooj: The monodromy of cp gives a diffeomorphism of C - B, bringing the canonical 

basis Yr, . -* to a new geometrical basis Y’ .‘.I” ,, . . . ,y; in terms of which is now expressed p, 

whereas p -- cp - ’ expresses it in terms of the geometrical basis. 3 

52. THE ALGEBRAIC COMPUTATIOS 

Let Yt. Y2. . . . , 7. be a fixed basis of a free group B,. and let 6,. . . . , TV,_, be the 

standard generators of a braid group .43”, which act on IF, by the formulae: 

(Yi)Oi = Yi+t. (i’i+l)Oi =(Yi+l)-‘YiYi+lr (yj)ai = 7j for j # i, i + 1. 

Let I?” be the set of the homomorphisms p: IF, + 9, + 1 into the symmetric group on (n + I) 

letters such that p is onto and ri = (‘ii)p is a transposition for every i. Let E, be the set of the 

equivalence classes on ,!?“, where [p] = [v] if and only if there exists KEY,,+ , such that 

n((y)/l)n-t = (Y)v for all YE 5,. Then $9, acts on I?“.. cf. Proposition 7. by composition: 

(Y)(rlq) = (((Y)cp-‘)p for 11~ &. cp~d,, YE IF,,. This action induces an action on E,. The set 

E, can be idcntihed with a fiber of the covering /.: Z, 4 IV,,. and by Proposition 7 the action 

of II%, on E, is the monodromy action 1,: 8, -+ .Y(E,) of the covering. 

We want to find the fundamental group of Z,. We fix a base point [&,J such that 

(‘ii)/‘,, = (i. i + I) E .Y. + , . Then G, = rt,(Z,, [&]) is isomorphic to thr stabilizer of [jr,,] 

in 9,: G, = {‘~~.9,)[ri,~(p] = [/lo]}. 

LetS,=a,,_,a,,_2...6,E~?8,fors=2.3 ,..., n. Then (A”)’ = (S,)” is a generator of 

the ccntcr of ;Y,. 

Let If, = (~E.#~I~~~(P =/lo} c G,,. and Ict K, = ((b,)““. s = 2. 3,. . . , n) c At,. We 

want to prove the following result. 

TtIWRtiM 8. Ii, = K,, while G. is yeneratd by (A”)’ and by (S,)I”, s = 2, 3, . . . , 

n - I. n. 

We shall denote by n, the (n + I)-cycle (n + 1. n, . . . , 2. 1)~9’,+, and by y.+, the 

element (~,)B,E ff,. We shall first establish some simple properties of K,, ff,, G, and .A#.. 

LEMMA 9. 

(a) K, c If,. 

(b) (Yi)6, = Yi+,, i = 1.. . . , II, (y., t)pco = (I, n + I), rhus /iw every yE ff, ($.)p,, 

= no((y)po)n; ’ und 6, E G,. 

(c) (YI Yz . . Y.)(ppO = n, for every ~0 E B,,. 

(d) G, = (ff,. (A,,)‘), hence H, is u normul subyroup of G, of in&x n + I. 

Proof: Notice first of all that ii, only affects y,, . . . , y,. and. setting Y,,, = Y, . . . y.. J,-, 

acts trivially on Y,,,. In particular (ri)8, = yi+t for i s s - 1, whereas (Y,)S, = (Y ,.,, )-‘YIYc,,. 

Hence follows easily (Yi)& = (yt,,)- * Yiytr, for each i = 1, . . . , s. Therefore 

I 

(Yi);5;+’ = (Y,,,)-*yi+,Ycrr for i 5 s - I 

(Y,)d :+’ = (Y,JZY,Y:., 

(Y,)<s:+ ’ = y, forirs+ 1. 

Part (a) follows immediately, bccausc all we have to verify is that (S,)” ’ E H,, i.e., 

yi(S,)J+ ‘pO = (i, i + I). 
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But indeed ~,~,p~ = (s + 1, . . . , 1) and the desired equalities are then verified. In particular 

Ync, = (;;)J” = (i’,Jli’li’,“,. hence (y.+ ,)pO = (I, n + 1) and thus we have checked also 

part (b). (c) follows since. as we noticed, (:I . . 7,) cp = 7 ,“,. and y,.,plo = x,, = (n + 1, . . , 1). 

Let’s prove now part (d). By our previous computations (A, )’ acts on F, by 

y + (y,.,)- ’ yy ,“,, hence (A”)’ E G,. Let cp E G,. There exists (by definition of G,) K E ,Yspll such 

that n((ycp)p,,)n-’ = ypo for all yEiF,. In particular n((y, . . . y.)qpo)n-’ = (y, . . . y.)po. 

Thus XK,,X-’ = x0 and x = (x,p for some k. Therefore (~(P)(&)“~~, = ypo V;, and 

(~(6:) E H,. Hence, (p(A.)-” E H,. We finally observe that (A:)’ E H, if and only if k is a 

multiple of (n + 1). Q.E.D. 

In order to prove Theorem 8 it is enough to prove that H, = K,. We shall prove the 

following stronger statement by induction on n. 

PROPOSITION 10. H, = K,. Ijcp~ A?, and x = (~i)(P und (z)p, = (j. j + l)for some 1 I i, 

j I n then thrrv exists $ E K, such thut (z)$ = yj. 

INDUCTION HYPOTHESIS. Proposition 10 is trwJ)r n - 1. 

For s < n we can identify H, and K, with subgroups of G,. Indeed we can restrict 

elements of & to IF, = (y,, . . . , 7,) c IF,. Also .ig, is naturally isomorphic to (a,, . . . ,a,_ ,> 

c am and the action of d5 on IF, is completely dctermincd by its restriction to IF,, since it 

acts trivially on y,+, , . . . , 7.. Then H, = ((~~.#.l(~cp)/~,~ = (7)~~ for ye[F,} c H,. and 

K,=((~Sjy‘+‘, j = 2.. . . , s). By the induction hypothesis If,_, = K,_ ,. 

1’rooJ: The lirst and the last part follow from the description of g8, as DifY(C - So). 

The second part follows from the induction hypothesis. cl 

By a yconwtric busis of ff, we shall mean (as in 4 I) a basis of the form (y, )cp, . . . , (y,)cp for 

some cp E d”. An elcmcnt a of D, is simple if it belongs to some geometric basis (i.e., recalling 

characterization (iii) above of J,. 2 is simple iff it is represented by a simple loop around a 

branch point (the conjugate by a path of a small circle around the branch point): hence if 

a E iF, _ , is simple in F., it is also simple in 1F, _ , ). 

LEMMA 12. Let I und yi brlony to the sunw yeonwtric husk und let (z)po = (yj)po. Then 

there r.rist.s VE K, such thul (r)cp = yj. 

Proo/: Let a = (yp)5, yi=(;‘*)r, 1 Ip, q<n, If y<p let s= -i+l and let $ = 

a, . . . a9_,T(5,)‘. If p<q let s=n-i and let +=(a,... a,_,)-‘r(S,)“. If p<y 

then (y.)$ = yn so lj/~B,_~. by Lemma 11, and therefore (yp)$ = (z)(d,)‘~[F,_,. If y <p 

then (y,)$S. = 7, so I//&E (al, . . . , a,_ ,) and thus (‘i,)t++S.~(y~, . . . , y.) hence 

(y,,)l(/ = (z)(&)‘~lF,_, by Lemma 9(b). In both cases, by Lemma 9(b) there exists an 

integer k. 1 5 k 5 n - 1. such that (y,ll/)po = (~~)/i,, and either yk = c,‘j)(S,)l or yk = 

(~j)(5,)‘(3,) * ‘” + 1). In fact, (yp~)llo = (z)(5,)‘po = ~;(zp~)n;‘. Thus, by the remark 

made previously about simple elements, we can apply the induction hypothesis and there 

exists therefore VEK, such that (z)(S,)‘cp = yk. Since (6,)” is in the center of B, and 

(6,)” + I E K,, S, normalizes K,, therefore (S.PV(~,)-‘E K,. It follows that there exists cpl E K, 

such that (z)cp, = ‘ii as required. Q.E.D. 

For TE.#, the Icngrh of T is the length of the shortest word in the letters ai and (ai)-’ 

representing T. For a simple clement z the index I(x) of z is the length of the shortest element 

TE.~,, such that a = (Y~)T for some i, 1 I; i 5 n. 
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LEVMA 13. Let z be u simple element such that (z)pO = (jlp)~,,for some p. Then there esisrs 

VE K, such rhur (x)cp = yp. 

PrnqrY (By induction on l(z)). If l(r) = 0 then z = yP. Let f(x) = k and let T be an 

element of length k such that (Y~)T = II. where 1 I q I n. We want to find a geometric basis 

which contains z and an element a such that f(b) < k and @)/co = (yj)~,, for some j. Let 

51 = ~*(~*b,)(~3~2U1). . . (gq-2cq-3.. . QJfJq+l(~q+2~q+l) 

(a,- IOn-2.. . ~q+l))- 
1 

. . . 

Let li/ = r, r. Consider the basis (;,)I+J?, s = 1. . . . , n. Then (yq)l(l = z. Among the letters 1, 
1 _. . . . , n + 1 there is at least one, say j, which appears only in one transposition (;‘IC)pco 

and does not appear in (;;1(1)~“. since a tree with n edges, n 2 2, has at least one vertex 

not lying on a given edge. We may assume by symmetry that s < q. Consider 

I+//, = ;j;‘1(/=((5,_luJ_2.. . a,)-’ $. We have (yi)$, = (vi_,)+ for 2 5 i I s, (y,)$, = 

(yi)l(l for s + 1 I i I n, and one can verify that (~,)I(I, = (y,_,)r. Clearly the letter j does not 

appear in (i’itJl)jiO for i # I so it appears only in (~,$,)l(~. Since ((7”. . . y,)t+bl)jrO = 

“0 -I. and j does not appear in (;‘iIl/l)jCO for i 2 2. we must have (7, $I, )/lo = (yj)po. Since 

z = (7,)~ has index k, the first factor of r is crq_, or (a,,)-‘. It follows that f(y,ll/,) < k 

(so ;‘,I), is the sought for /I!). By the induction hypothesis there exists APE K:, such that 
(;,IJ,)(~ = (yj). Then (;‘,,$,)q = (r)u, and (zcp)jc, = (yP)jco. because ~EK,. and there- 

fore, by Lemma 12, thcrc exists cp, E K,, such that (rcp)cp, = y, as required. QED. 

Proc!l’c?/Propo.sific~,l IO. The proof follows by induction. In fact. Lemma 13 provides the 

proof for the second assertion. Let now cp E H,. Then (~~q~)jl~ = (‘J~)/(,~ and by Lemma 13 

thcrc exists q, E K, such that (~.‘p)(p, = 7.. Now (p(p, EM, and by Lemma I I (pep, E K,. It 

follows that cp E K:.. Q.E.D. 

43. PROOF OF THE MAIN TIIEOREM 

WC summarize the gcomctric set up of 9: I in the following diagram: 

Thus, setting HA = nt(MA). since r, = n,(U,). G, = nt(Z,), and cp. is an affine ~(1. C)- 

bundle, we have the following diagram of group homomorphisms 

(3.2) 

THEOREM 14. 

(a) pI 0 i is gilen hy mulriplicurion by (n + 1). 

(b) cp,(i,(f)) = (A”)* 

(c) ‘p+ = i, gives an isomorphism of Hi with H,. 

(d) using the isomorphism cp, I’ i, to idmti/y Hi and H,, i(Z) = kcr cp+ is generated by 

i,(n + I)*i2(AhZ’“+“). 

Proof: A path rcprcsenting i(I) is given by an orbit of the l-parameter subgroup 

(P, I) + P(+= _). On the other hand, p, is associated to the map carrying a polynomial P to 
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its leading coefficient u, + , , hence, since the leading coefficient of P(e’““z) is a, *, .(ezX’“+ “‘). 

we have shown (a). 

(b): 9,(i,( I)) is represented by the braid moving B, to e ZnirBo, and it is well-known that 

this braid is (A”)’ (cf. [S]). 

(c) Let’s first show that cp,(i,(H:)) c H,. In fact cp,(i,(H,)) consists of the braids 

coming from paths /3 in the subspace M; of manic polynomials with vanishing constant 

term. We have seen algebraically in Lemma 9 that H, is the kernel of the epimorphism of G, 

to the cyclic group of order (n + 1) generated by rrO in Y,. Geometrically, this homomor- 

phism is easily seen to be given as follows: you take a path p in U,, and you choose the base 

point in C - B, in a sufficiently big circle such that all polynomials in /I are uniformly well 

approximated by the map z’ + [l/(0,+ ,)I(=‘)“+ ‘, where :’ is a local coordinate in the 

Reimann sphere around the point cc. 

The inverse images of the base point are then permuted cyclically. according to how 

a,, I moves in the path /I But if b is in M:, then a,, , = 1 constantly on /I, hence the inverse 

images are not permuted, and the braid is in H,. 

E;ow, i(1) is a generator of the kernel of 9* and, by (a). i( 1)E E x HL is a pair (n + 1, h’) 

with 9*i,(h’) = (A:)-(“+ I’, and also in particular i2(H;) has trivial intersection with 

ker (9,). hence Hk is isomorphic to a subgroup of H,. which contains (AZ)“’ ‘. Since 9* is 

surjective, the index of HA in G, is at most n + I: hence Hk is isomorphic to H, via 9+ 9 i,. 

and (d) follows immediately. Q.E.D. 

As the reader will have noticed, Theorem 14 is a more precise formulation of the main 

theorem. 

WC consider now the cpimorphism H, A ~49~ induced by the inclusion IV: c M, 

(cf. Remark 2, $ I). 

First of all take now in Mk as base point PO = c”+’ - (II + I): = (n + I)!(:” - I), and 

consider the path in Ml based on P,, 

~0) = e 
Zxitlnt I~/npo~~.e-Z~ir:n)~ (3.3) 

Clearly 9,(y) is an element of H,(y(r)o MA) and indeed. since 9 is not alTccted by the action 

of A(1, C) in the source C, 9,(y) is the braid given by the I-parameter group 

(w,r)--re 2*“‘n+‘)in~. This I-parameter group gives a diffeomorphism of Q= - B;. where f& is 

the branch set of P,. i.e. Bb = {P&))[” = I} = { -n<l(” = 1;. It follows then that 

9,(y) is the braid (Sn)I+‘. (3.4) 

On the other hand, if we only look at the ramification points of P. the effect of y(t) on the 

roots )I,, . . . , yn of P’ is given by the action of the I-parameter group (,; I) -. JV’““‘” on 

them. We have therefore 

T(y;+ ‘) = i’“. (3.5) 

THEoREM 15. Under the ismorphism H, z n,(hfb) (cf. Theorem 14). ~hr epimorphism 

T: H, = ~~(121:) + n,(Af,) = ad, induced by the inclusion icfi c bf, is such thur 

r(‘l:+‘) = j),. 

ProoJ We shall prove the result by induction on n. Recall that H,_, c .53,_, c 24”. In 

view of (3.5) it will suffice to show that there is a homomorphismj,: n,(hf;_ 1) --, n,(M;) 
such that 

(i) the composition of j+: Hb_, = n,(M:_, ) -+ or, = Hi with 9+oiz coincides 

with the previously described isomorphism of Hb_ 1 with the given subgroup H,_ 1 of a,_ 1 

composed with a fixed embedding of g”-, into Bfl. 
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(ii) under the natural epimorphism of H;+l,, j,(H;_,) lands into At--r, by a 

homomorphism equal to the natural epimorphism Hb_ 1 - jb,_ , . 

To define j,, notice that n,(M:_ r) is generated by a finite number of loops in AI b_, 

which therefore lie on a compact set K of XI ;- r . 

Now, if Q E K, there do exist 0.r. . . . , yn_ 1) such that 

n-l 
Q=n io, (’ - Yi) 

Let UE R be a negative number with 

j.(Q) = P = (n + 

Clearly j. sends K c M,_ , into M, if 

0: then we define 

II-1 

On the other hand, integration by parts gives 

p= (~)[Q+--u)-la] (3.7) 

hence 

+ O(lul”). 

(3.6) 

(3.8) 

where, if QE K, the remainder is in absolute value jCost 1~1”. Whereas, 

n+l 
p(yi) = - -. '. -uQ(y,) + O(1). (3.9.) 

?I 

(again, the remainder is bounded by a constant on K). Since there is c > 0 such that 

IQ(y,) - Q(yi)] > E (for i #j) uniformly on K, it follows that for 1~1 > cost, then PEM:. 
Let us consider the paths yi(t)(t E [0, I]) which induce generators of nr(M:_ ,). Then the 

Q,(y,(t)) describe a finite number of braids and it is rather clear that there is a constant 6 > 0 

such that, if IA( c 6, then the braids given by the roots Q,(yi(t)) and by the perturbed 

roots Q,(y,(r)) +/;:(I) are isotopic. By (3.9). choosing u such that 1~1 > [O( I)n],‘[(n + 1)6]. 

we see that the braid associated to the roots P,(y,(t)) is the same as the one we started with. 

On the other hand, if we fix u with lu) ti 0, the P,(yi(t)) move in a circle with center 

the origin and of radius cost IuI, while P,(u) moves in a disjoint circle (with center 

on - (l/n) u”+‘). H ence the braid of P, belongs to a fixed embedding of a”_, and 

coincides, in terms of this embedding, with the braid of Q,. Q.E.D. 
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