POLYNOMIAL - LEMNISCATES, TREES AND BRAIDS

Fabrizio Catavese and Marco Palleszny

(Received in retised form 25 July 1990)

§0. INTRODLCTION

Let $P \in \mathbb{C}[z]$ be a polynomial of degree ($n+1$). As in [2], we define P to be lemniscate generic if, $y_{1}, \ldots, y_{n}^{\prime}$ being the roots of P^{\prime}, then. setting $w_{i}=P\left(y_{i}\right)$, one has $w_{i} \neq 0$ for each $i=1, \ldots, n$. and $\left|w_{i}\right|=|w,| \Rightarrow i=j$. As we shall see in $\S(1 . P$ is lemniscate-generic if and only if $|P|^{2}$ has only non degenerate critical points. and has distinct critical values of index 1 . In general, a big lemniscate of P is a singular level set $\Gamma_{c}=\{=\| P(=) \mid=c>0 ;$ of $|P|$, whereas a small lemniscate of P is a connected singular component of a big lemniscate.

In this context, P is lemniscate-generic if and only if P has $(n+1)$ distinct roots, n big lemniscates, each one of which has only one small lemniscate, having only one singularity, which is an ordinary (real) double point, or node (cf. Fig. 1).

In the open set V_{n} of polynomials of degree exactly $(n+1)$. lemniscate-generic polynomials form an open set \mathscr{S}_{n}^{\prime} whose complement $V_{n}-\mathscr{Y}_{n}$ is a union of real hypersurfaces.

To $P \in \mathscr{Y}_{n}$ we associate the big lemniscate configuration, i.e. if Γ is the union of the singular level sets Γ_{c} of $|P|(c \geq 0)$, the homeomorphism (or diffeomorphism) class of the pair ($\Gamma, \mathbb{C})$).

It is clear that the big lemniscate configuration does not change if P varies in a connected component of \mathscr{L}_{n}, and one of the main purposes of this article is to show that conversely, if P_{1}, P_{2} have the same configuration, then they lie in the same connected component of \mathscr{Z}_{n}.

The key point is that if E_{n} is the set of isomorphism classes of edge labelled trees with n edges, there is a natural mapping (cf. Fig. 1) from E_{n} to the set of big lemniscate configurations; moreover, as in [2], there is a natural action of the braid group tb_{n} on E_{n}, and a natural isomorphism of \mathbb{Z}^{n-1} with a subgroup Λ_{n} of $: \mathbb{Z}_{n}$.

Using these ideas, we can also give a very easy combinatorial description of all the connected components of \mathscr{U}_{n}.

We can now state the

Main-Theorem. There exists a natural bijection between

(i) $\pi_{0}\left(\mathscr{P}_{n}\right)$
(ii) The set of hig lemniscate configurations
(iii) The set of Λ_{n}-orbits on E_{n}
(iv) The set $\Sigma_{n-2}=\left\{\left(x_{0} \ldots, x_{n-2}\right) \mid x_{i} \in \mathbb{N}, 0 \leq x_{i} \leq i\right.$, no integer occurs three times in the sequence, i.e., $\forall m \in \mathbb{N}$ the equation $x_{i}=m$ has at most two solutions x_{i} \}.

Interest for this research stemmed from the second author's investigations [6] on ordinary differential equations integrable by rational functions (after a suitable change of coordinates).

In fact, the level curves $\mid P(z)!=c$ are the solutions of the O.D.E. $d z d t=i \frac{P(z)}{P^{\prime}(z)}$. In this other context, the small lemniscates are the singular solutions of the given O.D.E., and our main theorem allows also a combinatorial description of the small lemniscate configurations. and of how a sequence of numbers $\left(x_{0} \ldots, x_{n-1}\right) \in \Sigma_{n-2}$ determines a small configuration.

In particular we see that all the a priori possible big and small configurations do in fact occur, and moreover ($\$ 4)$ that this can be achieved by using a polynomial with real coefficients.

The appendix is devoted to a counting problem: namely, if $a(n)$ is the number of big lemniscate configurations, and $b(n)$ is the number of small lemniscate configurations, we describe the generating functions

$$
\sum b(n) t^{n} \quad \text { and } \quad \sum \frac{a(n)}{n!} t^{n}
$$

showing in particular that the latter function equals $(1-\sin t)^{-1}$, whereas for the former we can give a sequence rapidly convergent to its radius of convergence, thereby at least estimating the asymptotic growth of the coefficients $b(n)$.

§I. THF BRANCH-POINTS FIBRATION

Lemma 1.1. $P \in \mathscr{P}_{n} \leftrightarrow|P|^{2}$ is a local Morse function (i.e., it has only non degenerate critical points) with distinct critical calues of index 1.

Proof. $|P|^{2}=P \bar{P}$. Since $\bar{r}(P \bar{P})=(\hat{P} P) \bar{P} . \gamma^{5}(P \bar{P})=P(\overline{C P})$, the critical points are exactly the points where either P or $\partial P=P^{\prime}$ vanishes. Clearly, when $P=0$, the critical point z is non degenerate iff we have a simple root of P, i.c. $P(z)=0 \Rightarrow P^{\prime}(z) \neq 0$. On the other hand, if $P^{\prime}(z)=0$, since the Hessian matrix of $P \bar{P}$ at z is given by $\left(\begin{array}{cc}\bar{P} \cdot \hat{r}^{2} P & 0 \\ 0 & P\left(\overline{r^{2} P}\right)\end{array}\right)$, we have a non degenerate critical point (of signature $(+1,-1)$) if and only if $\lambda^{2} P(z) \neq 0$.

Hence, if $P \bar{P}$ is a local Morse function, then P^{\prime} has n distinct roots y_{1}, \ldots, y_{n}, while P has $(n+1)$ distinct roots z_{0}, \ldots, z_{n}, with $z_{i} \neq y_{j}$.

Finally, the critical values of index 1 , if we set $P\left(y_{i}\right)=w_{i}$, are the n real numbers $\left|w_{1}\right|^{2}, \ldots,\left|w_{n}\right|^{2}$, and, since $w_{i} \neq 0\left(y_{i}\right.$ is not a root of P), requiring moreover that they must be different is equivalent to require that $P \in \mathscr{X}_{n}$.
Q.E.D.

Remark 1.2. If $P \in \mathscr{L}_{n}$, we can choose an ordering y_{1}, \ldots, y_{n} of the roots of P ' such that $0<\left|w_{1}\right|<\left|w_{2}\right|<\ldots .\left|w_{n}\right|$. Then Lemma 1.1 tells us that Γ, the big lemniscate configuration of P, equals the union of the finite set $P^{-1}(0)$ with the big lemniscates $\Gamma_{\left|w_{1}\right|} \ldots, \Gamma_{\left|w_{a}\right|}$, where, as in the introduction, $\Gamma_{c}=\left\{z \mid\left(P(z) \mid=c_{j}^{\prime}\right.\right.$.

We notice that y_{i} is the unique singular point of $\Gamma_{|x,|} \stackrel{\text { def }}{=} \Gamma_{i}$, and the singularity is a node (locally analytically isomorphic to $x^{2}-y^{2}=0$, i.e. two smooth branches meeting transversally, cf. Fig. 1). We denote by Δ_{i} the connected component of Γ_{i} containing y_{i}.

Remark 1.3. Standard Morse theory (cf. [5]) shows that Γ_{c} and $\Gamma_{c^{\prime}}$ are diffeomorphic by the gradient flow if $\left[c, c^{\prime}\right]$ contains no $\left|w_{i}\right|$, that Δ_{i} is an eight figure, and that Γ_{c} has exactly
$n+1-i$ connected components if (setting $\left.\left|w_{0}\right|=0,\left|w_{n+1}\right|=+x\right)\left|w_{i}\right| \leq c<\left|w_{i+1}\right|$.
Let's briefly recall the method used in [2] to study polynomial maps, and mention, without proof, some of the results stated.

One defines U_{n} to be $\{P \in \mathbb{C}[z] \mid \operatorname{deg} P=n+1, P$ has n distinct branch points $\left.w_{1}, \ldots w_{n}\right\}$.

Then. to $P \in L_{n}$ one can associate the branch set $B_{P}=\left\{w_{1}, \ldots, w_{n}\right\} \in W_{n}=\mathbb{C}^{n}-\Delta / \mathscr{S}_{n}$, where $\Delta=\left\{\left(w_{1}, \ldots, w_{n}\right) \mid w_{i}=w_{j}\right.$ for some i, j with $\left.i \neq j\right\}$ and \mathscr{S}_{n} is the permutation group on n letters. W_{n} may also be viewed as the space of all monic polynomials $Q(\approx)$ of degree n with n distinct roots

$$
\begin{gather*}
Q(z)=\prod_{i=1}^{n}\left(z-w_{i}\right) . \tag{1.4}\\
P \rightarrow B_{p} \text { defines a holomorphic map } U_{n} \xrightarrow{\psi_{n}} W_{n} \tag{1.5}
\end{gather*}
$$

which factors as $U_{n} \xrightarrow{\varphi_{n}} Z_{n} \xrightarrow{f_{n}} W_{n}$. and (cf. Prop. 5 of [2]) φ_{n} is a principal bundle with fibre the group $A(1, \mathbb{C})$ of coordinate transformations in the source \mathbb{C}, and $f_{n}: Z_{n} \rightarrow W_{n}$ is a (connected) covering space.

Definition 1.6. Let E_{n} be the set of isomorphism classes of edge labelled trees with n edges (cf. Fig. 1).

Remark 1.7. E_{n} coincides with the equivalence classes of homomorphisms $\mu: \mathbb{F}_{n} \rightarrow \mathscr{F}_{n+1}$ such that
(i) F_{n} is a fixed free group with generators $\gamma_{1}, \ldots, \gamma_{n}$
(ii) \mathscr{F}_{n+1} is the symmetric group in $(n+1)$ letters and $\mu\left(\gamma_{i}\right)=\tau_{i}$ is a transposition
(iii) $\mu\left(\mathbb{F}_{n}\right)$ is a transitive subgroup
(iv) μ and μ^{\prime} are said to be equivalent (we shall write $[\mu]=\left[\mu^{\prime}\right]$) iff there exists $\pi \in: Y_{n+1}$ such that

$$
\mu^{\prime}(;)=\pi\left(\mu\left(i^{\prime}\right)\right) \pi^{-1} \quad \forall \gamma \in \mathbb{F}_{n} .
$$

Indeed, such homomorphisms μ are in bijective correspondence with the set $V E_{n}$ of edge and vertex labelled trees with n edges, in such a way that the transposition τ_{i} exchanges the 2 vertices joined by the $i^{i^{\text {h }} \text {-edge of the tree. }}$

In [2], Proposition 6, it is shown that, fixing in W_{n} the base point $\{1, \ldots, n\}$, then one can choose a fixed geometrical basis $\gamma_{1}, \ldots, \gamma_{n}$ of $\mathbb{F}_{n}=\pi_{1}(\mathbb{C}-\{1, \ldots, n\})$, and the monodromy of a polynomial P_{0} with branch set $\{1, \ldots, n\}$ is represented by an element of E_{n}.

The reason why the vertices are not labelled is that, even if P_{0} is fixed as a base point in U_{n} (resp: \mathscr{L}_{n}), the vertices of the tree correspond to the (unordered) set of roots of P_{0}.

Moreover, the monodromy of f_{n} is given by the following action of the braid group $B_{n}=\pi_{1}\left(W_{n}\right)$ on E_{n}.

Since \mathscr{O}_{n} acts as a group of automorphisms $\sigma: \mathbb{F}_{n} \rightarrow \mathbb{F}_{n}(\mathrm{cf}$. [1], \$1, where, though, unlike in [2], the action is on the left), one can define, for $\varphi \in \mathscr{*}_{n},[\mu] \in E_{n}$

$$
\begin{equation*}
\varphi([\mu])=\left[\mu \varphi^{-1}\right], \text { and then } \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\text { (1.8) is the monodromy of the covering } Z_{n} \rightarrow W_{n} \tag{1.9}
\end{equation*}
$$

(cf. [2]. Prop. 7).

Definition 1.10. Let $Y_{n} \subset W_{n}$ be the subset

$$
\left\{\left\{w_{1} \ldots \ldots w_{n}\right\}\left|0<\left|w_{1}\right|<\left|w_{2}\right|<\ldots<\left|w_{n}\right|\right\},\right.
$$

and let Λ_{n} be the image of $\pi_{1}\left(Y_{n},\left\{1, \ldots, n^{\prime}\right) \rightarrow \pi_{1}\left(W_{n},\left\{1, \ldots, n_{j}^{\prime}\right)\right.\right.$.
Remark 1.11. Writing $w_{i}=\left|w_{i}\right| \cdot w_{i}^{\prime}\left|w_{i}\right|$, and $r_{1}=\left|w_{1}\right| . \quad r_{2}=\left|w_{2}\right| /\left|w_{1}\right| \ldots, r_{n}=$ $\left|w_{n}\right| /\left|w_{n-1}\right|$, we see that Y_{n} is homeomorphic to $\left(S^{1}\right)^{n} \times\left(\mathbb{R}^{+}\right)^{n}$. hence $\pi_{1}\left(Y_{n}\right) \cong \mathbb{Z}^{n}$. The generators of $\pi_{1}\left(Y_{n}\right)$ give the braids T_{j}^{\prime}. which keep fixed the branch points $1, \ldots, n$ different from j, and move j in a circle around the origin ($j \rightarrow e^{2 \pi i t} \cdot j$). The basic observation is that

$$
\begin{equation*}
\mathscr{L}_{n}=\psi_{n}^{-1}\left(Y_{n}\right) \tag{1.12}
\end{equation*}
$$

and the standard theory of covering spaces gives
Proposition 1.13. There is a bijection between the set $\pi_{0}\left(\mathscr{F}_{n}\right)$ of connected components of \mathscr{L}_{n}, and the set of Λ_{n}-orbits in E_{n}. Moreover, if a component \mathscr{L}^{\prime} of \mathscr{P}_{n} corresponds to an orbit of cardinality r, then r equals the degree of the covering $\mathscr{L}^{\prime} / A(1, \mathbb{C}) \rightarrow Y_{n}$.

It remains therefore to study the action of A_{n} on E_{n}. It is casy to see that, in terms of the standard generators $\sigma_{1}, \ldots, \sigma_{n-1}$ of $: x_{n}$. the generators $T_{1}^{\prime}, \ldots, T_{n}^{\prime}$ of $\pi_{1}\left(Y_{n}\right)$ map to the following braids $T_{1} \ldots \ldots, T_{n}$.

$$
\begin{equation*}
T_{1}=1, \quad T_{2}=\sigma_{1}^{2}, \ldots, \quad T_{j}=\sigma_{j-1} \sigma_{j-2} \ldots \sigma_{2} \sigma_{1}^{2} \sigma_{2} \ldots \sigma_{j-1} . \tag{1.14}
\end{equation*}
$$

Remark 1.15. Λ_{n} is a subgroup of the pure braid group.$_{n}$. and one can in fact write

$$
T_{j}=A_{1, j} A_{2, j} \ldots A_{j-1, j}
$$

It is also easy to sec, by induction, that $\Lambda_{n} \cong \mathbb{Z}^{n-1}$.
Remark 1.16. The above formulae (1.14) hold for a given choice of a base point and of a basis of $\pi_{1}\left(\mathbb{C}-\left\{1, \ldots, n_{\}}\right)\right.$which is different from the one we shall adopt in $\$ 2$.

§2. THE MAIN THEOREM AND ITS PROOF

In order to prove the main theorem, we need to make its statement stronger. We have defined in the introduction and in $\$ 1$ the big lemniscate configuration of a polynomial $P \in \mathscr{L}_{n}$.

What in particular we are going to show is that any such figure occurs, up to isotopy, as the big lemniscate configuration of some polynomial.

To be more precise, we need to introduce the more general concept of a possible big lemniscate n-configuration: that is, as we shall more amply discuss in the proof of the theorem, an embedding ε in the complex plane \mathbb{C} of the space X given by the disjoint union of $(n+1)$ points, n figure eights, and ($n-1) n, 2$ circumferences, satisfying the same properties as the ones enjoyed by big lemniscate configurations of polynomials $P \in \mathscr{I}_{n}$.

Main Theorem. There exist natural bijections between the following sets
(a) The set $\pi_{0}\left(\mathscr{Z}_{n}\right)$ of connected components of \mathscr{P}_{n}.
(b) The set of homeomorphism (isotopy) classes of hig lemniscate configurations.
(b') The set of homeomorphism (isotopy) classes of possihle big lemniscate configurations.
(c) The set Σ_{n-2}.
(d) The set of Λ_{n}-orhits in E_{n}.

Plun of the proof. (a) \Leftrightarrow (d) is Proposition 1.13. The first step of proof shall consist in proving the equivalence $\left(b^{\prime}\right) \Leftrightarrow(c)$. One may observe that (b) is a subset of (b^{\prime}). Afterwards, the plan of proof proceeds as follows: show, as a second step, that the natural map from E_{n} to (possible big lemniscate configurations) is surjective (thereby proving the equality of (b). and (b')l. While showing this, it will be very convenient at the same time to prove that two edge labelled trees give homeomorphic big lemniscate configurations if and only if they lie in the same λ_{n}-orbit. With this, the equivalence (b^{\prime}) \Leftrightarrow (d) shall be shown, and the proof of the theorem shall finally be through.

Step I: Proof of (b') \Leftrightarrow (c) of the Theorem. Let P be a lemniscate generic polynomial. As in 1.2, we consider the big lemniscate configuration associated to P. i.e., if $w_{1} \ldots \ldots, w_{n}$ are the branch points of $P, \Gamma=\Gamma_{0} \cup \Gamma_{\left|w_{1}\right|} \cup \ldots \cup \Gamma_{\left|w_{0}\right|}$, where $\Gamma_{c}=\{z| | P(z) \mid=c\}$. We assume as in 1.2. that $0<\left|w_{1}\right|<\left|w_{2}\right|<\ldots<\left|w_{n}\right|$.

We attach to Γ a tree \mathscr{J}, whose vertices represent connected components of Γ, and where an edge connects two vertices v, v^{\prime} if there exists an i such that $r \subset \Gamma_{w_{i} \mid}, v^{\prime} \subset \Gamma_{\left|w_{i+1}\right|}$ (we set here $w_{0}=0$) and c is "inside" v ', i.e., if you start from a smooth point $x \in v$ following the gradient of $P \bar{P}$ you get a curve meeting a point of v^{\prime}. The tree \mathscr{T} thus obtained has some remarkable properties To state them, we recall and state some combinatorial definitions. We apologize if some of the following definitions should not be standard.

Definition 2.1.

(i) A tree T is a connected and simply connected graph.
(ii) An end of T is a point (necessarily a vertex) v such that $T-\{c\}$ is connected.
(iii) (iiven vertices c, v^{\prime} of T there is a unique path from v to ε^{\prime}, i.e. a minimal subtree $T^{\prime \prime} \subset T$ having c and r^{\prime} as ends: the length of T^{\prime} (i.e., the number of edges of T^{\prime}) is called the geodesical distance of v and v.
(iv) The height $h(1)$ of a vertex r is the minimum of the geodesical distances from the ends of the tree.
(v) The root rudius $p(c)$ of a vertex v is the maximum of the geodesical distances of r from the ends of the tree.
(vi) A weak centre of the tree T is a vertex v for which the root radius $\rho(v)$ attains a minimum.
(vii) A tree is called central if it has a unique weak centre v_{0}.

With the terminology introduced above, we can define a class of trees which are deeply related to big lemniscate configurations.

Definition 2.2. A tree T is called a central balanced tree of length n if
(1) T has $(n+1)$ ends.
(2) T is central and the height $h\left(v_{0}\right)$, and the root radius $\rho\left(v_{0}\right)$ of the centre v_{0}, both cqual n.

Definition 2.3. The weight w of a vertex v is the number of edges containing v. Hence ends are vertices of weight one, whereas vertices of weight three are called nodes.

Definition 2.4. A simple central tree of lenyth n is a central balanced tree of length n such that
(i) the centre has weight 2
(ii) there are no vertices with weight strictly bigger than 3
(iii) there is, for each $i=1 \ldots \ldots(n-1)$, exactly one node at distance i from the centre.

Remarks 2.5. (i), (ii), (iii) of 2.4 imply
(iv) there are exactly $(i+1)$ vertices at distance i from v_{0}. In particular, 2.2.(1), follows from 2.2.(2) and 2.4.(i). (ii), (iii).
(v) There are exactly $(n+1)(n+2) 2$ vertices. One can notice moreover that (iii) could be replaced by
(iii') there is at most one node at distance i from the centre.

Proposition 2.6. The tree,π associated to the biy lemniscate configuration Γ of a polynomial $P \in \mathscr{L}_{n}$ is a simple central tree of length n. Moreoter, letting X be the topological space which is the disjoint union of $(n+1)$ points, n figure eights, and $n(n-1) / 2$ circumferences, any simple central tree \mathscr{T} of length n uniquely determines an isotopy class of embedding $\varepsilon_{5}: X \subset \mathbb{C}$, in such a way that (Γ, \mathbb{C}) is isotopic to $\left(\varepsilon_{5}(X) . \mathbb{C}\right)$ if J is the tree associated to Γ.

Finally, \mathscr{T} and \mathscr{T}^{\prime} are isomorphic if and only if the associated isotopy classes are the same.

Proof. First of all we may set up a bijective correspondence between vertices of \mathcal{T} and connected components of X, in such a way that ends correspond to isolated points, nodes to figure eights, and the centre to the remaining figure eight. We define the embedding $\varepsilon_{g} g$ by an def
inductive procedure, assuming that ε_{y} has been defined on $X^{(i)}=$ the union of the components of X corresponding to vertices v at distance at most i from the centre. The inductive procedure is based on the following definitions:

Definition 2.7. Given vertices v, v^{\prime} of a simple central tree, or more generally, of a "rooted" tree (where a given vertex has been chosen as root), v is said to be a direct successor of v^{\prime} if v^{\prime} belongs to the path joining v and the centre v_{0}, and moreover $\operatorname{dist}\left(v, v_{0}\right)=\operatorname{dist}\left(v^{\prime}, v_{0}\right)+1$.

Remark that a node and the centre have exactly two direct successors, ends have no successors, and all other vertices have exactly one direct successor. One can then inductively define the notion of successor.

Definition 2.8. A differentiable embedding of a figure eight E in $\mathbb{C}, \varepsilon: E \rightarrow \mathbb{C}$ is said to be unreversed if, B_{1} and B_{2} being the bounded connected components of $\mathbb{C}-\varepsilon(E), 0$ being the singular point of E, then $\overline{B_{1} \cup B_{2}}-\varepsilon(0)$ is disconnected.

Remark 2.9. There are only two isotopy classes of embeddings $\varepsilon: E \rightarrow \mathbb{C}$, the reversed and the unreversed one. In the reversed one, one can distinguish between B_{1} and B_{2} by imposing the condition $\hat{c} B_{1} \nsubseteq \partial B_{2}$, whereas in the unreversed case there is an orientation preserving diffeomorphism of $(\mathbb{C}, \varepsilon(E))$ exchanging B_{1} and B_{2}. Moreover, both B_{1} and B_{2} are diffeomorphic to disks.

Remark 2.10. Any two embeddings of a circumference (resp.: of a point) in a disk are isotopic.

The initial part of the procedure consists in constructing an unreversed embedding in \mathbb{C} of the figure eight E corresponding to the centre of the tree.

Assume now that one has constructed (inductively) an embedding $e^{(i)}: X^{(i)} \rightarrow \mathbb{C}$. For each vertex $v \in \mathscr{J}$ at distance $(i+1)$ from the centre, there is a unique vertex v^{\prime} such that v is
a direct successor of t^{\prime}. If $X_{r^{\prime}}$ is the corresponding connected component of X, there are two possibilities:
(a) X_{r} is a simple closed curve and v is the only successor of v^{\prime}
(b) X_{r} is a figure eight and v^{\prime} has exactly two successors $v=v_{1}$, and v_{2}.

In case (a), $e^{(i)}\left(X_{v^{\prime}}\right)$ bounds only one bounded component B of $\mathbb{C}-e^{(i)}\left(X_{v^{\prime}}\right)$, and we may embed X_{v} in B (in an unreversed embedding if t is a node); in case (b) we choose an ordering of the two bounded components B_{1}, B_{2} of $\mathbb{C}-e^{(i)}\left(X_{i^{\prime}}\right)$: then we may embed $\left(X_{v_{i}}\right)$ in B_{i} for $i=1,2$, and in an unreversed way if c_{i} is a node. By induction we construct $e: X \rightarrow \mathbb{C}$ and the unicity follows from Remarks 2.9, 2.10. We omit to verify the other assertions, which follow immediately from our construction, and from the following

Remark 2.11. If Δ is a figure eight contained in the big lemniscate configuration associated to a polynomial $P \in \mathscr{L}_{n}$, then Δ is given by an unreversed embedding.

Proof. Otherwise. cf. 2.9., $|P|$ would have a local maximum in B_{1}, contradicting the maximum principle.

> Q.E.D. for 2.11. and Prop. 2.6.

The proof of Step I shall be achieved via the following.
Propostrion 2.12. There exists a bijective correspondence between the set of (isomorphism classes of) simple central trees of length n and the set Σ_{n-2}.

Before proceeding to the proof of 2.12 ., we recall the well known (cf. [4]) Cayley-Pruffer correspondence for vertex labelled trees.

Definition 2.13. Let χ_{n} be the set of isomorphism classes of trees with n vertices and with a bijection of the set of vertices with the set $\{0,1, \ldots,(n-1)\}$. The Cayley-Prüfer correspondence is a bijective map

$$
\mathscr{C} \mathscr{P}: \mathscr{Y}_{n} \rightarrow\{0, \ldots,(n-1)\}^{\{0, \ldots,(n-2)\}}
$$

defined as follows: if $S \in \mathscr{Y}_{n}$, identifying $\{0, \ldots,(n-1)\}$ with the set of vertices of S, we pick the end with biggest i, and if j is the neighbouring vertex, we set $x(n-2)=j$. The same can be done provided one has any strict total ordering of the vertices: therefore, if S^{\prime} is the subtree of S obtained by deleting the vertex i and the edge $[i, j]$, we can assume by induction that $6 \mathscr{P}\left(S^{\prime}\right)$ is defined and equal to $(x(0), \ldots, x(n-3)$), and thus there remains only to define $6 \mathscr{f}(S)=(x(0), \ldots, x(n-3), x(n-2))$. We set now $X_{n-2}=$ $\{0, \ldots,(n-1)\}^{\{0 \ldots(n-2)}$, i.e.,

$$
\begin{equation*}
X_{n-2}=\left\{\left(x_{0}, \ldots, x_{n-2}\right) \mid x_{i} \in \mathbb{N}, 0 \leq x_{i} \leq n-1\right\} . \tag{2.15}
\end{equation*}
$$

Then $\Sigma_{n-2} \subset X_{n-2}$ corresponds to a subset of \dot{x}_{n}^{-}, which we shall denote by $\dot{\gamma}_{n}^{-}$: recall that $\Sigma_{n-2}=\left\{\left(x_{0}, \ldots, x_{n-2}\right) \in X_{n-2} \mid 0 \leq x_{i} \leq i\right.$, the equation $x_{i}=N$ has at most 2 solutions $\forall N\}$.

Lemma 2.16. Under the Cayley-Prüfer correspondence, Σ_{n-2} corresponds to the set $\bar{\gamma}_{n}$ of vertex labelled trees such that:
(1) taking 0 as a root (cf. 2.7.0), if j is a successor of i, then $j>i$
(2) the tree has no vertex of weight ≥ 4 and 0 is not a node (cf. 2.3.).

Proof. Let's first prove that $\%: \mathcal{P}\left(\boldsymbol{y}_{n}^{-}\right) \subset \Sigma_{n-2}$. In fact, we observe that, by (1). (n-1) is an end, and removing it (together with the unique edge containing it). we obtain a tree S^{\prime} in \hat{r}_{n-1}.

The first assertion shows that $x_{n-2} \leq n-2$, and the second assertion implies. by induction. that we have $\left(x_{0}, \ldots, x_{n-3}\right) \in \Sigma_{n-3}$. To prove that $\left(x_{1}, \ldots, x_{n-2}\right) \in \Sigma_{n-2}$ it is enough to observe that if the equation $x_{i}=N$ had more than 3 solutions, then N would have at least 3 successors. contradicting (2).

In the other direction, it suffices to show that if $\epsilon \mathcal{P}(S) \in \Sigma_{n-2}$, then $S \in \mathcal{Y}_{n}^{-}$. Firstly. ($n-1$) is an end: in fact. ($n-1$) does not appear in the Cayley-Prüfer sequence, and if a vertex i does not appear in the sequence, then it must be an end. At some step of the Cayley-Prüfer procedure, i has become an end and one marks the neighbouring vertex x_{j} : now. if i were not an end, at some step another neighbouring vertex h would have become the biggest end and would have been deleted. but then i would appear in the sequence.

Secondly, we use again induction (the cases $n=2,3$ being trivial), letting S^{\prime} be the subtrec obtained by cancelling the end $(n-1)$: we may therefore $\left(\left(x_{0}, \ldots, x_{n-3}\right) \in \Sigma_{n-3}\right.$!) assume that $S^{\prime} \in y_{n-1}$. Moreover. S is obtained from S^{\prime} by connecting ($n-1$) (as an end) with the vertex x_{n-2} through an edge. Hence property (1) is clearly satisfied

It remains to prove property (2): if $x_{n-2} \neq 0$, then x_{n-2} is not a node of S^{\prime}, if $x_{n-2}=0$. then 0 is an end of S^{\prime}. But $S^{\prime} \in x_{n-1}^{\prime}$, and it is easy to see then that a vertex with 2 successors appears twice in the Cayley-Prufer sequence $\left(x_{0}, \ldots, x_{n-3}\right)$. But since $\left(x_{0}, \ldots, x_{n-2}\right) \in \Sigma_{n-2}, x_{n-2}$ cannot appear twice in the sequence $\left(x_{0}, \ldots, x_{n-3}\right)$ Q.E.D.

The proof of Proposition 2.12 follows immediately from the following
Lemma 2.17. There is a natural bijection between the set of (isomorphism classes of simple, central trees of length n, and the set x_{n} of certex labelled trees (cf. 2.16.).

Proof. Let \mathscr{J} be a simple central tree of lengh n : to \mathscr{J} we associate a vertex labelled tree $S \in x_{\pi}$.

First of all 0 corresponds to the centre of \mathscr{T}, and i to the unique node v_{i} of $\sqrt{5}$ at distance i from the centre. Moreover. an edge connects i and j if v_{j} is a successior of i_{i}, but v_{j} is not a successor of any v_{h} which is a successor of v_{i}. Notice that S is a tree clearly satisfying (1). and (2) holds since if j, k, l are direct successors of i, then the paths $\left[c_{i}, c_{j}\right],\left[v_{i}, v_{k}\right],\left[v_{i}, v_{t}\right]$ are disjoint, hence r_{i} has 3 distinct direct successors, contradicting 2.4 (ii).

We have just exhibited a map $\varphi: \mathscr{F}^{\prime} \mathscr{G} \mathscr{J}_{n}=\left\{\right.$ Simple central trees of length $n_{\}}^{\prime} \rightarrow \dot{y}_{n}^{\prime}$, and it suffices (the sets being finite) to provide a one side inverse $\psi: \dot{y}_{n} \rightarrow \mathscr{F}^{6} G \mathcal{J}_{n}$. Given $S \in \dot{y}_{n}$, for each edge $[i, j]$ divide it into $(j-i)$ equal parts, thus creating $(j-i-1)$ new edges and vertices. If $i \neq 0$ is neither a node nor an end, or if $i=0$ and 0 is an end, attach to i a string of $(n-i)$ consecutive edges (thus adding ($n-i$) vertices).

Whereas, if i is an end of S. attach to i two such strings having is an endpoint. The tree just obtained is $\psi(S)=\mathscr{T}^{\prime}$. It is clear from the construction that . T^{\prime} has exactly n nodes, which are in such a natural bijection with the vertices of S (except 0), that if the node v_{i} corresponds to i, it has distance i from the vertex corresponding to 0 . It is also clear that 0 has weight 2 and 2.4.(i), (ii), (iii) are verified.

Moreover, by construction, any path from c_{0} to v_{i} continues until an end at distance $=n$. and 2.2.(2) holds. We conclude that $\mathscr{T}^{\prime} \in \mathscr{F}^{\prime} \mathscr{G} \mathscr{F}_{n}$, since, by Remark 2.5, 2.2.(1) holds too. It is immediate now to verify that $\varphi(\dot{\psi}(S))=S$.
Q.E.D.

We are now ready to begin
Step II: E_{n} surjects onto (b'). and is a quotient map for the Λ_{n}-action. Recall that to elements $[\mu]$ of E_{n} there correspond polynomials in \mathscr{L}_{n} with monodromy $[\mu]$, and that by

Prop. 1.13 every connected component of \mathscr{L}_{n} contains one such polynomial, and $[\mu]$ and [μ^{\prime}] belong to the same component if and only if they lie in the same Λ_{n}-orbit. First of all. then, let's describe how a tree in E_{n} determines a configuration of lemniscates. We fixed our base point $B_{0}=\left\{1, \ldots, n_{\}} \in W_{n}\right.$ and we know that each element of E_{n} determines a covering space $P: \tilde{S} \rightarrow \mathbb{C}$, and $\Gamma=P^{-1}\left(\left\{0^{\prime} \cup\left\{|\boldsymbol{w}|=1^{\prime} \cup \cup \ldots\left\{|\boldsymbol{w}|=n_{\}}^{\prime}\right)\right.\right.\right.$. Pictorially, the correspondence is as follows: for any midpoint of edge i draw an eight with centre there and $(n-i)$ circles, as in Fig. I.

Fig. 1. Edge labelled trees \rightarrow Big Lemniscates \rightarrow Simple central trees \rightarrow Vertex labelled trees
In Fig. 1 is also depicted the associated simple central tree \mathscr{T}. It is somehow easier to understand the map $v: E_{n} \rightarrow \mathscr{S}^{6} \mathscr{J}_{n}$, the set of simple central trees of length n constructed via Proposition 2.6. This map can formally be described as follows: ends of $\mathscr{J}=\boldsymbol{v}(\mathcal{A})$ correspond to vertices of A, and vertices of \mathscr{J} at distance k from the centre correspond to connected components of the $(n-k)$ skeleton of A, which is defined as the union of the vertices of A with the first $(n-k)$ edges of A. Edges in \mathscr{J} are defined according to inclusions of components of the ($n-k$) skeleton in components of the ($n-k+1$) skeleton.

In fact, it is clear that passing through the critical value i makes the number of connected components of Γ_{c} drop by one. On the other hand, if the edge i connects two vertices v, v^{\prime} but v, v^{\prime} are not in the interior parts of the figure eight $\Delta_{i} \subset \Gamma_{i}$, then, choosing 0 as base point of $\pi_{1}(\mathbb{C}-\{1, \ldots, n\})$, we see that a loop around i cannot have a monodromy exchanging v and v^{\prime} (which are roots of P). There remains to prove the following

Proposition 2.18. v: $E_{n} \rightarrow \mathscr{P}\left(6, \mathscr{J}_{n}\right.$ is surjectice and if $v(A)=v\left(A^{\prime}\right)=\mathscr{J}$, then A and A^{\prime} are in the same Λ_{n}-orbit.

Proof. Let $A_{(i)}$ be the ith-skeleton of A : the proof will be based upon induction on i. I.e., we assume inductively that the following assertions hold true:
$\left(a_{i}\right)$ if $v(A)=v\left(A^{\prime}\right)=\mathscr{J}$, then there exists a transformation $\sigma \in\left\langle T_{1}, \ldots, T_{i}\right\rangle$ such that $\sigma\left(A^{\prime}\right)_{(i)} \cong A_{(i)}$
$\left(b_{i}\right)$ for each $\mathscr{T} \in \mathscr{S} \mathscr{G} \mathscr{J}_{n}$ there exists A s.t. $A_{(i)}$ maps onto the subtree of \mathscr{J} at distance at least ($n-i$) from the centre.

Let's prove the inductive step $\left(b_{i+1}\right)$: we need to add an edge $(i+1)$ to $A_{i i}$ in such a way that it joins two vertices belonging to the 2 connected components C, D of $A_{(i)}$ which correspond to the 2 direct successors of the unique node of \mathscr{J} at distance ($n-i-1$) from the centre; then we can add ad libitum (i.e., to our taste) other edges to complete $A_{(i+1)}$ to a tree A.

To prove (a_{i+1}), we may assume that. by the inductive assumption, $A_{(i)} \cong A_{(i)}^{\prime}$. and it suffices to show that we can act with a $\sigma \in\left\langle T_{1} \ldots, T_{i+1}\right\rangle$ to have $A_{(i+1)} \cong A_{(i+1)}^{\prime}$. As before, call C, D the connected components of $A_{(i)}$ containing the two vertices of $(i+1)$. Let $T_{C}=\prod_{j \in C} T_{j}, T_{D}=\prod_{j \in D} T_{j}$, where the indexes in the products stand of course for edges of $A_{(i)}$. For this proof, again we choose 0 as base point in $\mathbb{C}-\{1, \ldots, n\}$ and a geometric basis $\Gamma_{1}, \ldots, \Gamma_{n}$ as in Fig. 2. The action of T_{i} is given by a full twist around the circle of radius i, hence
(a) $T_{i}\left(\Gamma_{j}\right)=\Gamma_{j}$ if $i>j$
(b) $T_{i}\left(\Gamma_{i}\right)=\Gamma_{i} \quad \Gamma_{i} \quad \ldots \Gamma_{1} \Gamma_{i} \Gamma_{i}^{-1} \ldots \Gamma_{i-2}^{-1} \Gamma_{i-1}^{-1}$
(c) $T_{i}\left(\Gamma_{h}\right)=\Gamma_{i}^{-1} \Gamma_{h} \Gamma_{i}$ for $i<h$.

In fact $T_{i}\left(\Gamma_{i}\right)$ is as in Fig. 3, $T_{i}\left(\Gamma_{h}\right)$ as in Fig. 4. We remark again that the present action differs from 1.14 because of the change of base point for the generators $\Gamma_{1}, \ldots, \Gamma_{n}$. It is then

Fig. 2.

Fig. 3.

Fig. 4.
easy to see that, for $j \in C, T_{c}\left(\Gamma_{j}\right)=T_{1} \ldots T_{i}\left(\Gamma_{j}\right)$, but we observe that in general $(i \geq j)$.

$$
\begin{aligned}
T_{1} \ldots T_{i}\left(\Gamma_{j}\right) & =T_{i} \ldots T_{1}\left(\Gamma_{j}\right)=T_{i} \ldots T_{2}\left(\Gamma_{1}^{-1} \Gamma_{j} \Gamma_{1}\right) \\
& =T_{i} \ldots T_{j}\left(\Gamma_{1}^{-1} \Gamma_{2}^{-1} \ldots \Gamma_{j-1}^{-1} \Gamma_{j} \Gamma_{j-1} \ldots \Gamma_{1}\right) \\
& =T_{i} \ldots T_{j+1}\left(\Gamma_{1}^{-1} \Gamma_{2}^{-1} \ldots \Gamma_{j-1}^{-1} \Gamma_{j-1} \ldots \Gamma_{1} \Gamma_{j} \Gamma_{1}^{-1} \ldots \Gamma_{j-1}^{-1} \Gamma_{j-1} \ldots \Gamma_{1}\right) \\
& =T_{i} \ldots T_{j+1}\left(\Gamma_{j}\right)=\Gamma_{j} .
\end{aligned}
$$

Hence

$$
\left\{\begin{array}{l}
T_{C}\left(\Gamma_{j}\right)=\Gamma_{j} \quad \forall j \leq i \\
T_{D}\left(\Gamma_{j}\right)=\Gamma_{j}
\end{array}\right.
$$

But, if we choose $\Gamma_{i+1}, T_{c}\left(\Gamma_{i+1}\right)$, if j_{1}, \ldots, j_{r} are the ordered ($j_{1}<j_{2}<\ldots<j_{r}$) edges of C, equals (by the above computation)

$$
\Gamma_{j_{1}}^{-1} \ldots \Gamma_{j, 1}^{-1} \Gamma_{i+1} \Gamma_{j,} \ldots \Gamma_{j_{1}} .
$$

Hence the action of T_{c}^{-1} on the transposition $\mu\left(\Gamma_{i+1}\right)$ is to conjugate it with the product $\Gamma_{j_{2}} \ldots \Gamma_{j_{1}}$, a cyclical permutation on the vertices of the component C. Similarly for T_{D}^{-1}, hence, using two appropriate powers of T_{C}^{-1}, respectively T_{D}^{-1}, we can choose at our wish the respective points of C, D, which shall be the two vertices of the edge $(i+1)$. Q.E.D.

§3. SMALL LEMNISCATE CONFIGURATIONS

As in the introduction, if $P \in \mathscr{I}_{n}$, the small lemniscate configuration associated to P is the homeomorphism class of the pair $\left(Y_{P}, \mathbb{C}\right)$ where $Y_{P}=P^{-1}(0) \cup \Delta_{\left|w_{1}\right|} \cup \ldots \cup \Delta_{\left|w_{a}\right|}$, where $\Delta_{|n,|}$ is the component of $\Gamma_{|w| \mid}$ homeomorphic to a figure eight. We have thus ($\left.n+1\right)$-points and n figure eights, embedded in \mathbb{C} by an unreversed embedding, and again we want to give first an easier combinatorial description of the possible configurations, then to show that all the a priori possible configurations do in fact occur.

Definition 3.1. The rooted tree associated to a small lemniscate configuration is a rooted tree R with n unlabelled vertices corresponding to the components $\Delta_{\left|w_{i}\right|} \ldots, \Delta_{\left|w_{1}\right|}$, with $\Delta_{\left|w_{1}\right|}$ as a root vertex, and an edge connecting two vertices corresponding to $\Delta_{|w,|}, \Delta_{\mid w, j}$ if $\Delta_{w_{i} \mid}$ lies in the interior of $\Delta_{\left|w_{i}\right|}$, and there is no $\Delta_{\left|w_{n}\right|}$ lying in the interior of $\Delta_{\left|w_{i}\right|}$, and having $\Delta_{\left|m^{*}\right|}$ in its interior.

Remark 3.2. The rooted tree R is simply obtained from the vertex labelled tree $S \in \dot{x}_{n}^{*}$ introduced in $2.16,2.17$, simply by forgetting the vertex labelling except for the "root" 0 .

We obtain immediately from the results of $\S 2$, and by the previous remark
Theorem 3.3. The map which to a connected component $U \in \pi_{0}\left(\mathscr{P}_{n}\right)$ associates the small lemniscate configuration of a polynomial P, is isomorphic, via the bijection $\pi_{0}\left(\mathscr{P}_{n}\right) \Leftrightarrow \dot{x}_{n}^{\prime}$, to the forgetful mapping $\bar{\xi}: \dot{x}_{n} \rightarrow \dot{\mathscr{A}}_{n}$ (where $\dot{\mathscr{A}}_{n}$ is the set of isomorphism classes of rooted trees with n vertices, such that every vertex has weight $1 \leq w \leq 3$, and the root has weight ≤ 2). given by forgetting the labellings $1, \ldots,(n-1)$.

Corollary 3.4. All a priori possible small lemniscate configurations do in fact occur.
Proof. Given a rooted tree $R \in \mathscr{F}_{n}$, it suffices to choose a labelling of the other vertices such that if j is a successor of i, then $j>i$. That this is possible can easily be shown by induction, in fact it suffices to label $(n-1)$ any vertex without successor.
Q.E.D.

Remark 3.5. Notice that the number of allowed labellings for a tree $R \in \hat{\mathscr{X}}_{n}$ tells the number of connected components of \mathscr{L}_{n} which realize the small lemniscate configuration associated to R. This number is 1 only if R is a string, otherwise it can be very big, as it will follow from the results in the appendix.

§4. REAL POLYNOMIALS

The main purpose of this section is to show that every big lemniscate configuration occurs as the lemniscate configuration associated to a suitable real polynomial $P \in \mathbb{R}[x]$ of degree $(n+1)$ with $(n+1)$ distinct roots. To this purpose, we give the following.

Definition 4.1. An edge labelled tree $A \in E_{n}$ is said to be linear if it does not have nodes (i.e., it is homeomorphic to $[0,1]$).

Proposition 4.2. Ecery Λ_{n}-orbit in E_{n} contains a linear tree A.
Proof. By Proposition 2.18, every orbit corresponds uniquely to a simple central tree \mathscr{T} of length n. First we shall establish a bijection between the set of ends of \mathscr{T} and a subset of $[0,1]$ of the form $\left\{a_{0}, \ldots, a_{n}\right\}$, where $a_{0}=0<a_{1}<\ldots<a_{n}=1$. Then we construct A simply by considering $\left\{a_{0}, \ldots, a_{n}\right\}$ as the set of vertices of A, and letting the intervals $\left[a_{i}, a_{i+1}\right]$ be the edges of A. There remains to give a labelling to cach edge $\left[a_{i}, a_{i+1}\right]$. We can do this in a unique fashion by giving to $\left[a_{i}, a_{i+1}\right]$ the label k iff $2 k$ equals the geodesic distance of the two ends corresponding to a_{i}, a_{i+1}. It is easy to verify that $A \in E_{n}$, and that $v(A)=\mathscr{F}$.
Q.E.D.
(4.3) Given a monic lemniscate generic polynomial $P(x)=\prod_{i=1}^{n}\left(x-x_{i}\right)$ of degree $n+1$ with real roots $x_{0}<x_{1}<\ldots<x_{n}$, we consider the following linear tree A^{\prime} such that
(i) the vertices of A^{\prime} are the points x_{0}, \ldots, x_{n}
(ii) the edges of A^{\prime} are the intervals $\left[x_{i}, x_{i+1}\right]$
(iii) $\left[x_{i}, x_{i+1}\right]$ has the label j if and only if, letting y_{j} be the only root of $P^{\prime}(x)$ in the interval $\left(x_{i}, x_{i+1}\right)$ then, setting as usual $w_{j}=P\left(y_{j}\right)$, we have $\left|w_{1}\right|<\left|w_{2}\right|<\ldots<\left|w_{n}\right|$.

The following lemma is a particular case of a theorem of C. Davis ([3]).
Lemma 4.4. Giten a linear tree A, there do exist real numbers $x_{0}<x_{1}<\ldots<x_{n}$ such that A is isomorphic to the tree A^{\prime} obtained as in (4.3).

Proof. Notice that $\left|P\left(y_{i}\right)\right|=\max \left\{|P(y)| \mid y \in\left[x_{i}, x_{i+1}\right]\right\}$ and that if $\left|x_{i}-x_{i+1}\right| \rightarrow 0$, this maximum also tends to 0 . Thus, fixing i, we can achieve that $\left|P\left(y_{i}\right)\right|$ be minimum. The rest of the proof follows easily.
Q.E.D.

Theorem 4.5. For each big lemniscate configuration, there exists a (real) monic lemniscate generic polynomial with $n+1$ (distinct) real roots $P(x)=\prod_{i=1}^{n}\left(x-x_{i}\right)$, whose big lemniscate configuration Γ is isotopic to the given one.

Proof. By the main theorem, Prop. 2.18, Prop. 4.2 and Lemma 4.4 we can take a polynomial $P(x)$ as above whose associated linear tree A^{\prime} (cf. 4.3) represents the Λ_{n}-orbit associated to the given lemniscate configuration. To finish the proof it suffices to verify that the tree A^{\prime} gives the monodromy of P. But the n paths connecting x_{i} with x_{i+1} and obtained
by replacing, in the segment $\left[x_{i}, x_{i+1}\right]$, a small segment with center y_{j} with the lower semicircumference with same center and ends, are such that their images under P form a geometric basis of $\pi_{1}\left(\mathbb{C}-\left\{w_{1}, \ldots, w_{n}\right\}^{\prime}\right)$. Q.E.D.
tiknowleduements Both authors are grateful to the University of California. San Diego. for providing, in the spring of $19 x 6$. hospitality and neighbouring offices. In this way. the methods developed by the first author for different purposes. found a heautiful and interesting (at least so we believel application. The first author would also like to thank the Institute Mittag-Letfler in Djursholm for providing. in September 1986. excellent environment for research, and to express his deep gratitude to Torsten Ekedahl for trying to convince him that there should be a bijection between the set of big lemniscate configurations and the set of Z^{n-1}-orbits in E_{n}. The hospitality of the S.F.B. of Gëttingen in June 1989 allowed the first author to write down the final version.

REFERENCES

1. J. Birmin: Braids, links, and mapping class groups, Ann. Math. Stud. 82. Princeton U'niv. Press (1974).
2. F. CATINFSF and B. W UNRYR: The fundamental group of generic polynomials. Topology 30 (1990), 641-651.
3. C. Dwts: Extrema of a polynomial. Am. Math. Monthly, 64 (1957), 679-680.
4. F. Hartary and E. Puvar: Graphical enumuration. Academic Press, New York, London (1973).
5. J. Mit vor: Morse theory, Ann. Math. Stud. Princeton University Press (1963).
6. M. Patcovy: On periodic solutions of polynomial ODE's in the plane, J. Diff. Equar. 53 (1984). 24 - 29.
7. R. Tuos: Lequivalence dune fonction differentiable et dun polynome. Topologu, 3(1965), 297-. 307.

Unitersita di Pisa
L'ia Buonarroti 2
56100 Pisa
Italy

Universitat Central de Venezucla
Caracas
l'enezucla

APPENDIX

COUNTING ILMNISCATE CONFIGURATIONS

By labrifio Catanise (with the cooperation of Rick Miranda, Don Zagile, Enrico Bombieri).

§AI. BIG CONFIGURATIONS

Our first purpose is to give a formula for the number of big lemniscate configurations of lemniscate generic polynomials of degree ($n+1$). By the main theorem, this number equals the cardinality of Σ_{n} 2, where

$$
\begin{equation*}
\Sigma_{n}=\left\{\left(x_{0}, \ldots, x_{n}\right)\right\} 0 \leq x_{i} \leq i, \quad \text { and, } \forall m \in \mathbb{N} \tag{0}
\end{equation*}
$$

$$
\text { there are at most } 2 \text { integers } 0 \leq i \leq n \text { such that } x_{i}=m_{j}^{\prime} \text {. }
$$

Theortal 1. $S_{\prime^{\prime} t} a_{0}=0, a_{n}=$ curdinality of Σ_{n-1}. Then $\sum_{n=0}^{x} \frac{a_{n}}{n!} t^{n}=(1-\sin t)^{-1}$.
We shall give the proof of Theorem 1 by a sequence of steps. The first one, suggested by Rick Miranda, is to study the generating function corresponding to the a_{n} 's through a generating function in two variables, for whose coefficients it is possible to write a recursion relation. So we define

$$
\underline{\Sigma}_{n, k}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \Sigma_{n} \mid \operatorname{card}\left\{x_{0} \ldots, x_{n}\right\}=n+1-k_{i}^{\prime}\right.
$$

In other words, $\Sigma_{n, 4}$ consists of the sequences where k integers occur twice.
Limmi 3. If $A_{n, i}=$ card $\Sigma_{n, 1}$, then

$$
A_{n, i}=(i+1) A_{n-1, i}+(n+2-2 i) A_{n-1, i-1}
$$

Proof. Let $\pi: \Sigma_{n} \rightarrow \Sigma_{n-1}$ be the map such that $\pi\left(x_{0}, \ldots, x_{n}\right)=\left(x_{0}, \ldots, x_{n-1}\right)$. Then $\pi\left(\Sigma_{n, i}\right) \subset \Sigma_{n-1, i} \cup \Sigma_{n-1, i-1}$. Moreover if $y=\left(y_{0} \ldots \ldots y_{n-1}\right)$ belongs to $\Sigma_{n-1, i,} \pi^{-1}\left(\left\{y_{\}}\right) \cap \Sigma_{n, i}\right.$ has cardinality $(i+1)$, since x_{n} must be different from all the y_{j} s. Whereas if $y \in \Sigma_{n-1, i-1}, x_{n}$ has to be chosen among the $n-2(i-1)$ numbers which occur exactly once in the Prüfer sequence y. Q.E.D.

We set, for convenience (cf. Thm. 1).

$$
\begin{align*}
& a(n, i)=\text { cardinality of } \Sigma_{n-1 . i}, \text { so that by Lemma } 3 \tag{4}\\
& a(n, i)=(i+1) a(n-1, i)+(n+1-2 i) a(n-1, i-1) . \tag{4'}
\end{align*}
$$

Remark 5. $a(n . i)=0$ for $2 i>n$. The first values of $a(n . i)$ are given by the following table

	$i=$	0	1	2	3
$n=$	0	1			
	1	1			
	2	1	1		
	3	1	4	4	
	4	1	11	44	
	5	1	26	57	180
	6	1	34		
	7	1	120	568	496

It is obvious that $a_{n}<n!$, on the other hand, by (4^{\prime}), since

$$
\begin{aligned}
& a_{n}=\sum_{i-0}^{n / 2} a(n, i), \\
& a_{n}=\sum_{i=0}^{(n-1) / 2} a(n-1, i)[(i+1)+(n-1-2 i)] \\
&=\sum_{i \leq i n} a(n-1, i)(n-i) \geq\left(\frac{n+1}{2}\right) a_{n} \cdot 1,
\end{aligned}
$$

hence $a_{n} \geq(n+1)!2^{-n}$. Hence, in order to avoid to have a diverging series as gencrating function, we follow Zagier's advice and we set

$$
A(x, t)=\sum_{n, i=0}^{\infty} \frac{a(n, i)}{n!} x^{i} t^{n}=1+t+\frac{1+x}{2} t^{2}+\frac{1+4 x}{6} t^{3}+\frac{1+11 x+4 x^{2}}{24} t^{+}+\ldots
$$

where $a(n, i)=0$ for $n<2 i$. Then the recursion formula (4^{\prime}) translates into the following P.D.E.

In fact, we have:

$$
\begin{equation*}
(1-x t) \frac{\partial A}{\partial t}+\left(2 x^{2}-x\right) \frac{\partial A}{i x}=A \tag{8}
\end{equation*}
$$

$$
\begin{aligned}
\frac{\partial A}{\partial t} & =\sum_{m, 1 \geq 0} \frac{a(m, j)}{(m-1)!} x^{j} t^{m-1}=\sum_{\substack{1 \geq 0 \\
n \geq 0}} x^{i} t^{n} \frac{a(n+1, i)}{n!} \\
x t \frac{\partial A}{\partial t} & =\sum_{m, 1 \geq 0} \frac{a(m, j)}{(m-1)!} x^{j+1} t^{m}=\sum_{\substack{i=1 \\
n \geq 0}} x^{i} t^{n} \frac{a(n, i-1)}{(n-1)!} \\
x^{2} \frac{\partial A}{\partial x} & =\sum_{m, 1 \geq 0} \frac{a(m, j)}{m!} j x^{j+1} t^{m}=\sum_{\substack{1, c o \\
n \geq 0}} x^{i} t^{n}(i-1) \frac{a(n, i-1)}{n!} \\
x \frac{\partial A}{\partial x} & =\sum_{n, 1 \geq 0} \frac{a(n, i) i}{n!} x^{i} t^{n} .
\end{aligned}
$$

Looking at the coefficient of $x^{i} t^{n}$, multiplied by $n!$, we have for $i \geq 1$

$$
a(n+1, i)-n a(n, i-1)+2(i-1) a(n, i-1)-i a(n, i)=a(n, i)
$$

since

$$
a(n+1, i)=(i+1) a(n, i)+[n-2(i-1)] a(n, i-1) \text { by }\left(4^{\prime}\right) .
$$

Moreover, clearly $A(x, t)$ satisfies the Boundary values

$$
\left\{\begin{array}{l}
A(0, t)=e^{t} \tag{9}\\
A(x, 0)=1
\end{array}\right.
$$

We seek for a change of coordinates

$$
\begin{equation*}
(x, c) \rightarrow(x, f(x, c))=(x, t) \tag{10}
\end{equation*}
$$

where the P.D.E. reduces to an O.D.E. in the x variable. Since $\frac{d}{d x} \cdot A(x, f(x, c))=\frac{\hat{c} A}{\hat{c} x}+f, \frac{\hat{c} A}{\partial t}$, we want to find $f(x)$ such that $\frac{\hat{c} A}{\hat{c} x}+f^{\prime \cdot} \frac{\hat{c} A}{\hat{c} t}=\left(2 x^{2}-x\right)^{-1} A$, i.e., in view of (8), and since $f^{\prime}=\frac{d t}{d x}$, we need to solve the O.D.E.

$$
\begin{equation*}
d t\left(2 x^{2}-x\right)=(1-x t) d x \tag{11}
\end{equation*}
$$

Dividing by $-x(1-2 x)^{1 / 2}$, we get

$$
d t(1-2 x)^{1 / 2}-t(1-2 x)^{-1 / 2} d x=\frac{-d x}{x(1-2 x)^{1 / 2}}
$$

which yields, by integration,

$$
\begin{equation*}
t(1-2 x)^{1 / 2}=\int \frac{d x}{x(1-2 x)^{1 / 2}}=-\log \frac{1-(1-2 x)^{1 / 2}}{1+(1-2 x)^{1 / 2}}+c \tag{12}
\end{equation*}
$$

(the last equality holds up to a constant of integration which can be set equal to c). In the (x, c) variables the P.D.E. for A becomes

$$
\begin{equation*}
\frac{d \log A}{d x}=\frac{1}{2 x^{2}-x} \Rightarrow \tag{13}
\end{equation*}
$$

there is a function $F(c)$ such that

$$
\begin{equation*}
A(x, c)=\left(\frac{1-2 x}{x}\right) \cdot F(c) \tag{14}
\end{equation*}
$$

We set for convenience

$$
\begin{equation*}
u=\log \frac{1-\sqrt{1-2 x}}{1+\sqrt{1-2 x}} \tag{15}
\end{equation*}
$$

Thus

$$
\left\{\begin{array}{l}
c=t(1-2 x)^{1 / 2}+u \\
A(x, t)=\left(\frac{-2 x+1}{x}\right) F(t \sqrt{1-2 x}+u)
\end{array}\right.
$$

The boundary condition (cf. (9)) $A(x, 0) \equiv 1$ implies

$$
\begin{equation*}
F(u)=\frac{x}{1-2 x} \text { which equals, by (15), and an easy calculation, } \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
F(u)=\frac{2}{e^{u}+e^{-u}-2} \tag{17}
\end{equation*}
$$

Whence

$$
\begin{gathered}
A(x, t)=2 \frac{(1-2 x)}{x}\left[e^{\prime \sqrt{1-2 x}} \cdot \frac{1-\sqrt{1-2 x}}{1+\sqrt{1-2 x}}+e^{-1 \sqrt{1-2 x}} \frac{1+\sqrt{1-2 x}}{1-\sqrt{1-2 x}}-2\right]^{-1} \\
=\left[\cosh \left(\frac{t}{2} \sqrt{1-2 x}\right)-\frac{\sinh \left(\frac{t}{2} \sqrt{1-2 x}\right)}{\sqrt{1-2 x}}\right]^{-2}
\end{gathered}
$$

The last formula clearly shows that $A(0, t)=e^{\prime}$. Plugging in $x=1$, we get

$$
\begin{aligned}
A(1, t) & =-4\left[e^{i t}(1-i)^{2}+e^{-i t}(1+i)^{2}-4\right]^{-1} \\
& =\left[1+\frac{i}{2}\left(e^{i t}-e^{-i t}\right)\right]^{-1}=(1-\sin t)^{-1} .
\end{aligned}
$$

Q.E.D. for Theorem 1.

§A2. SMALL CONFIGURATIONS

By Theorem 3.3, and Corollary 3.4. we know that there is a natural bijection between the set of isotopy classes of small lemniscate configurations and the set $\hat{\lambda}_{n}$ of isomorphism classes of rooted trees with n vertices such that each vertex has weight $w \leq 3$, and the root has weight $w \leq 2$. We set

$$
\left\{\begin{array}{l}
b_{n}=\#\left(\hat{X}_{n}\right) \tag{19}\\
f(t)=\sum_{n=0}^{\infty} b_{n} t^{n}, \text { where we have set } b_{0}\left(=b_{1}=b_{2}\right)=1 .
\end{array}\right.
$$

It is convenient to have set $b_{0}=1$, since we get thus the following recursion formulae.
Proposition 20. $b_{2 n}=b_{2 n-1} b_{0}+\ldots+b_{n} b_{n-1}, b_{2 n+1}=b_{2 n} b_{0}+b_{2 n-1} b_{1}+\ldots+\left(b_{n}^{2}+b_{n}\right) / 2$.
Proof. Erasing the root of a tree in $\hat{\lambda}_{m}$, one obtains a pair of trees (one of them is possibly empty), in. $\hat{\mathscr{n}}_{\boldsymbol{i}} \cup \hat{\boldsymbol{x}}_{m-1-i}$, with $2 i \leq m-1$. Conversely, two trees as above combine to yield a tree in \hat{h}_{m} : one has to take special care of the case when $i=m-1-i$, that is, $m=2 i+1$, where the (unordered) pair may consist of equal trees.
Q.E.D.

To simplify the recursion we set

$$
\begin{equation*}
b_{j}=0 \text { for } j \in 1 / 2 \mathbb{Z}-\mathbb{Z} \tag{21}
\end{equation*}
$$

thus we have, for $j \geq 1$

$$
\begin{equation*}
b_{j}=\frac{1}{2} \sum_{1=0}^{j-1} b_{1} b_{j-i-1}+\frac{1}{2} b_{1 j} \tag{22}
\end{equation*}
$$

Multiplying by t^{\prime} and summing over j we get

$$
f(t)=1+\sum_{j=1} b_{j} t^{j}=1+\frac{1}{2} t\left[\sum_{j}\left(\sum_{i=1}^{j} b_{i} t^{i} h_{j-1-i} t^{i-1-i}\right)+b_{j-1 / / 2}\left(t^{2}\right)^{i-1 / 2}\right] .
$$

that is,

$$
\begin{equation*}
f(t)=t+\frac{1}{2} t\left(f^{2}(t)+f\left(t^{2}\right)\right) . \tag{23}
\end{equation*}
$$

Before proceeding to discuss the functional equation (23) for the generating function f, we would like to give some lower and upper bounds for the b_{n} 's, which in particular imply that the power series $f(t)$ has a strictly positive radius of convergence $t_{0}\left(t_{0}\right.$ is also the first singular point of f on the positive half-axis, since f has positive coefficients).

For this purpose, we define functions $\gamma(t), \psi(t)$ by the following recursions

$$
\left\{\begin{array}{l}
c_{0}=1 \quad c_{n+1}=\frac{1}{2}\left(\sum_{i=0}^{n} c_{1} c_{n-i}\right) \tag{24}\\
d_{0}=1 \quad d_{n+1}=\left(\sum_{i=0}^{n} d_{i} d_{n-i}\right) \\
\gamma(t)=1=\sum_{n \geq 0} c_{n} t^{n} \\
\psi(t)=1=\sum_{n \geq 0} d_{n} t^{n}
\end{array}\right.
$$

By virtue of the recursion formulae (22), (24) we obtain

$$
\begin{equation*}
\gamma(t) \leq f(t) \leq \psi(t) \tag{25}
\end{equation*}
$$

The auxiliary functions $;, \psi$ are algebraic, since they clearly satisfy

$$
\left\{\begin{array}{l}
\eta=1+\frac{1}{2} t^{2} \Leftrightarrow ;=\frac{1-\sqrt{1-2 t}}{1} \tag{26}\\
\psi=1+t \psi^{2} \Leftrightarrow \psi=\frac{1-\sqrt{1-4 t}}{2 t}
\end{array}\right.
$$

Expanding the power series;

$$
\gamma(t)=-t^{-1}\left[\sum_{i=1}^{x}\left(-2 t^{\prime}\binom{1,2}{i}\right]=\sum_{i=1}^{x}\left(\prod_{j=2}^{i} \frac{2 j-3}{j}\right) t^{i-1}\right.
$$

we get the rather crude estimates

$$
\begin{equation*}
c_{n}=\prod_{j=2}^{n+1}(2-3 j j) \leq b_{n} \leq 2^{n} c_{n}=d_{n} \tag{27}
\end{equation*}
$$

implying that $\log b_{n}$ grows linearly with n. We follow now Bombieri's beautiful idea to relate the function $f(t)$ to the iteration of complex quadratic polynomials studied by Douady and Hubbard (cf. [1A]). We set

$$
\left\{\begin{array}{l}
g(t)=1-t f(t)=1-\sum_{i=0}^{\infty} h_{i} t^{i+1} \tag{28}\\
r(z)=g\left(z^{2}\right) / z=\frac{1}{z}-\sum_{i=0}^{x} h_{i} z^{2 i+1}
\end{array}\right.
$$

Multiply the functional equation by $2 t$ and replace $t f(t)$ by $(1-g(t))$: then $g(t)$ satisfies

$$
g\left(t^{2}\right)=g^{2}(t)+2 t
$$

Letting $t=z^{2}$, and using $g\left(z^{2}\right)=z r(z)$. finally we characterize r as the solution of the following problem

$$
\left\{\begin{array}{l}
r\left(z^{2}\right)=r(z)^{2}+2 \tag{29}\\
\left.u(z)=\frac{1}{z}+\ldots \text { (power series in } z\right)
\end{array}\right.
$$

Onc can rephrase (29) as follows, setting

$$
\begin{equation*}
w=1 / 2 \tag{30}
\end{equation*}
$$

Then $\xi(w)=v(1 / w)$ is a local biholomorphism sending x on the Riemann sphere to itelf and with differential equal to 1 at \propto : we denote by $\varphi_{2}=\varphi$ the local inverse to this biholomorphism, so that setting

$$
\begin{align*}
& F_{\mathrm{c}}(x)=x^{2}+c \text { for } c \in \mathbb{C} \text {, we have } \tag{31}\\
& \left\{\begin{array}{l}
F_{2} \xi=\xi=F_{0} \text { or, equivalently, } \\
\varphi_{2} F_{2} \varphi_{2}^{1}=F_{0}
\end{array}\right. \tag{32}
\end{align*}
$$

We refer to [1A] for the following properties of $\varphi_{2}=\varphi$. If Σ denotes the Riemann sphere, $\varphi=\varphi_{2}$ extends to an analytic homeomorphism of

$$
\Sigma-L_{2} \rightarrow \Sigma-B(0, R) \text {, where } R=\left(t_{0}\right)^{-1 / 2}
$$

(t_{0} being the radius of convergence of $\left.f(t), g(t)\right), B(0, R)$ is the ball with centre 0 and radius R, whereas, if, F_{2}^{n} stands for the nth iterate of F_{2}, and

$$
\begin{gather*}
\eta=\eta_{2}=\log \left|\varphi_{2}(z)\right|=\lim 2^{-n} \log \left|F_{2}^{n}(z)\right|, \tag{33}\\
L_{2} \text { is the figure eight } L_{2}=\left\{=\mid \eta_{2}(z) \leq \eta_{2}(0)\right\}, \\
\text { and its interior contains the Cantor set } \tag{34}\\
K_{2}=\left\{z \mid F_{2}^{n}(z) \text { does not tend to } x\right\} .
\end{gather*}
$$

We can now draw the following conclusions: since R^{-1} is the radius of convergence of

$$
\frac{1}{v(z)}=z\left(1-\sum_{i=0}^{\infty} b_{i} z^{2 i+2}\right)^{-1}
$$

which is a series with positive coefficients, we get that

$$
\begin{equation*}
R=0:(0)=\exp \left(\lim _{n \rightarrow 1} 2^{-n} \log F_{2}^{n}(0)\right) . \tag{35}
\end{equation*}
$$

Setting

$$
\begin{equation*}
z_{1}=2 . \quad z_{n}=F_{2}\left(z_{n-1}\right)=F_{2}^{n}(0) . \tag{36}
\end{equation*}
$$

and observing that

$$
\begin{equation*}
\log \left(z_{n-1}\right)=2 \log \left(z_{n}\right)+\log \left(1+\frac{2}{z_{n}^{2}}\right) \tag{37}
\end{equation*}
$$

we obtain
$R=\exp \left(\frac{1}{2} \log 2+\sum_{n=1}^{x} 2^{-n-1} \log \left(1-\frac{2}{z_{n}^{2}}\right)\right)=2^{1}:\left(1+\frac{1}{2}\right)^{14}\left(1+\frac{1}{18}\right)^{18}\left(1+\frac{2}{z \frac{2}{3}}\right)^{116} \cdots$
Since $R=\left(t_{0}\right)^{-1 / 2}$, we get
THEOREM 2. $\lim \sup _{n}-\times \frac{1}{n} \log b_{n}=-2 \log R$. where R is gicen by (38).
I would like to thank also Adrien Douady for reminding me about (35).

REFERENCES

IA. A. Doliady and J. H. Hebbard: Iterationes des polynomes quadratiques complexes, Comptes Rendues A.S. Paris, 294 (1982), 123-126.

