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$0. INTRODUCTION 

LET PEC[C=] be a polynomial of degree (n + I). As in [?I, we define P to bc femniscate 

generic if. J, , . . . y, being the roots of P’. then. setting wi = P(_v,). one has M’~ # 0 for each 

i= I,.... n. and 1 wiI = 1 w.,i 5 i = j. As we shall see in 4 I, P is Icmniscate-generic if and only 

if 1 PI’ has only non degenerate critical points. and has distinct critical values of index I. In 

general, a big fcmniscate of P is a singular level set r, = :=I IP(z)I = c > 0; of IPI, whereas 

a small femniscate of P is a conncctcd singular component of a big fcmniscatc. 

In this context, P is fcmniscatc-gcnoric if and only if f’ has (n + I) distinct roots. n big 

fcmniscatcs. each one of which has only one small Icmniscatc. having only one singularity, 

which is an ordinary (rcaf) doubfc point, or noclc (cf. Fig. I). 

In the open set C:, of polynomials of dcgrcc cxuctly (n + I). Icmniscate-generic pofy- 

nomiafs form an open set r/‘” whose compfcmcnt 1; - -r/:, is a union of rcaf hypcrsurfaces. 

To PE Y’,, WC associate the big fcmniscatc configuration, i.c. if l- is the union of the 

singular fcvcl sets f-, of I f’i(c. 2 0). the homcomorphism (or dilTcomorphism) class of the pair 

(f-. C)). 
It is cfcar that the big femniscate configuration does not change if P varies in a connec- 

ted component of Yfl, and one of the main purposes of this articfc is to show that 

convcrscfy, if P,, C; have the same configuration, then they fit in the same connected 

component of Y”. 

The key point is that if E, is the set of isomorphism cfasscs of edge labeffcd trees with 

II edges, there is a natural mapping (cf. Fig. I) from E, to the set of big femniscate 

configurations; moreover, as in [I]. there is a natural action of the braid group d8, on E,, 

and a natural isomorphism of .Z”-’ with a subgroup A. of J,. 

Using these ideas. we can also give a very easy combinatorial description of all the 

connected components of 2’“. 

We can now state the 

MAIN-THEOREX Thrrr t’xists u nuturd hijrcrion hrtween 

(ii) The set c)/ hiy Irmniscate c.onfj~qrrution.s 

(iii) The .W ojA”-whirs on E, 

(iv) The WI E:._* = ((x0,. . _ , x, r)l xi E N, 0 I .Y, I i, no intcpr occurs three times in 

the seyurnce, i.e., Vm E N the aprution x, = m bus ut most two solutions xi). 

Interest for this research stemmed from the second author’s investigations [6] on 

ordinary differential equations integrable by rational functions (after a suitable change of 

coordinates). 
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In fact. the level curves /P(z)! = c are the solutions of the O.D.E. d: df = iz). In this 

other context, the small lemniscates are the singular solutions of the given O.D.E.. and our 

main theorem allows also a combinatorial description of the small lemniscate configura- 

tions. and of how a sequence of numbers (.Y,,. . , xn _ , )E X, _ 1 determines a small config- 

uration. 

In particular we see that all the a priori possible big and small configurations do in fact 

occur, and moreover (b+t) that this can be achieved by using a polynomial with real 

coefficients. 

The appendix is devoted to a counting problem: namely, if u(n) is the number of big 

lemniscate configurations, and b(n) is the number of small lemniscate configurations, we 

describe the generating functions 

showing in particular that the latter function equals (1 - sin t)- ‘, whereas for the former we 

can give a sequence rapidly convergent to its radius of convergence, thereby at least 

estimating the asymptotic growth of the coefficients h(n). 

$1. TIiE BRANCtl-POINTS FIBRATI<)N 

LFMMA I. I. P E 2’” ++ 1 PI’ is a local hlorsc jitnction (is>.. ir htrs only non rlcycncvxrte 

criticul points) with distinct c’ritid ~c~lucs o/ inr1c.v I. 

f’roc$ 11’1’ = PI’. Since ?(Pjs) = (?I’)!‘. J(f’f’) = f)(G), the critical poinls arc exactly 

the points where cithcr I’ or SP = P’ vanishes. Clearly, when I’ = 0, the critical point : is 

non degenerate iffwe have a simple root of P. i.c. f’(z) = 0 a I”(-_) # 0. On the other hand. if 

P’(c) = 0, since the Hessian matrix of Spat : is given by 
( 

p.(“p 
-!-- o 

P(PP) > 
, WC have a non 

degenerate critical point (of signature (+ I, - I)) if and only if ?‘P(c) # 0. 

Hence, if Pf5 is a local Morse function, then I” has 11 distinct roots y,, . . . , y,. while 

P has (n + I) distinct roots z,,, . . . , znr with zi # yj. 

Finally. the critical values of index 1, if we set P(J,) = bv,. are the II real numbers 

lw*12,. . .h,12. and, since wi # 0 (yi is not a root of P), requiring moreover that they must 

be dilferent is equivalent to require that PEY’,. Q. E.D. 

Remd 1.2. If PE 2’“. we can choose an ordering J,, . . . , yn of the roots of P’ such that 

0 < lw,l < IK21 <. . . I w,I. Then Lemma I. I tells us that r. the big lemniscate configuration 

of P, equals the union of the finite set P-‘(O) with the big lcmniscatcs l-IN,I,. . . , rIw,Ir 

where, as in the introduction, I-, = {zI(P(:)i = cl. 
dcf 

We notice that yi is the unique singular point of I-,,,, = ri, and the singularity is a node 

(locally analytically isomorphic to .Y’ - 1” = 0. i.e. two smooth branches meeting transver- 

sally, cf. Fig. I). We denote by A, the connected component of ri containing yi. 

Remark 1.3. Standard Morse theory (cf. [5]) shows that rC and I-,, are diffeomorphic by 

the gradient flow if [c, c’] contains no I wil. that Ai is an eight figure, and that TC has exactly 
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fl + 1 - i connected components if (setting /WoI = 0. IW.n+I( = + X) ]H.il 5 C < IWi+ll- 

Let’s briefly recall the method used in [2] to study polynomial maps, and mention, 

without proof. some of the results stated. 

One defines L’, to be (P E CC:] / deg P = n + 1, P has n distinct branch points 

H 1 I,..., W”j. 

Then. to PE L., one can associate the branch set BP = {wi, . . . , w.} E Lb; = C” - A/Y”, 

whereA= ((w,,. . . . t(;,)ln, = t~j for some i. j with i # j) and Y, is the permutation group 

on n letters. H; may also be viewed as the space of all manic polynomials Q(z) of degree 

n with n distinct roots 

Q(:) = ~ (: - pi). (1.4) 
i=l 

P - B, defines a holomorphic map U, - 11: (1.5) 

which factors as U,, - ‘O” z L n - Ii,. and (cf. Prop. 5 of [Z]) cp,, is a principal bundle with 

fibre the group A( I. C:) of coordinate transformations in the source C. andf,:Z, -+ Ct;, is 

a (connected) covering space. 

Ihfiniticvr 1.6. Lxt I:, bc the set of &morphism classes of edge labcllcd trees with 

n cdgcs (cf. Fig. I). 

Keni& I .7. I:, coincides with the cquivalcnce classes of homomorphisms 11: [F, ---, .Y,+ , 

such that 

(i) f, is ;I lixcd free group wifh gcnerafors 7,. . *I ., In 
(ii) :I,+ , is the symmetric group in (11 + I) lcttcrs and p(yi) = ri is a transposition 

(iii) /c([F,) is 3 transitive subgroup 

(iv) 1~ and 1” are said to be equivalent (we shall write [/i] = [p’]) ilf there exists 

?tE.‘/‘,+, such that 

I(‘(;‘) = n(fi(;))n_’ V;,EF,. 

Indeed, such homomorphisms p are in bijective correspondence with the set VE, of edge 

and vertex labelled trees with n edges, in such a way that the transposition r1 exchanges the 

2 vertices joined by the ilh-edge of the tree. 

In [2]. Proposition 6, it is shown that, fixing in W, the base point { 1,. . . , n], then one 

can choose a fixed geometrical basis ‘I,,. . . ,y. of IF, = n,(@ - { 1,. . . , n)), and the mono- 

dromy of a polynomial PO with branch set (I,. . . , n) is represented by an element of E,. 

The reason why the vertices are not labelled is that, even if P,, is fixed as a base point in 

U, (resp: Y”). the vertices of the tree correspond to the (unordered) set of roots of PO. 
Moreover, the monodromy ofj;, is given by the following action of the braid group 

.“8, = n,(M’,) on E,. 

Since 3A, acts as a group of automorphisms 6: ff, -+ F,(cf. [ 11. $1, where. though, unlike 

in [2], the action is on the left), one can define, for VE.&~. [I~]E E, 

cp([/l]) = [~~~cp-‘], and then (1.8) 

(1.8) is the monodromy of the covering Z, + W< (1.9) 

(cf. [2], Prop. 7). 
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Definirion 1.10. Let 1, c R; be the subset 

r rH 
t , ,,. . ., wn;10 < In.,/ < /w21 <. . . < IW”I), 

andletA,betheima_eeofn,(Y,.~l,.... n;)dn,(lC;,[l,.... n)). 

Rem& 1.11. Writing wi = Jw~/.H.~,/H.~I, and r, = IM.~). r2 = Iwzl/ln,l.. . .,r, = 

lw.I/(w,-II. we see that Y,, is homeomorphic to (S’)“x(W’)“, hence n,(Y”) z Z”. The 

generators of nl(Ym) give the braids c, which keep fixed the branch points 1,. . . , n 

different fromj. and movej in a circle around the origin (j --* ez”i’.j). The basic observation 

is that 

9” = $I.‘( I,) (1.12) 

and the standard theory of covering spaces gives 

PROPOSITKX I. 13. There is a bijection between the set n,,( Y’“) of‘connected compcm~nts of 

L!‘,,. und the set oj‘A,-orbits in E,. Moreover. ifu component 2” of 2’” corresponds to un orbit 

of curdintrlity r. then r eqirtrls the tleggree of the cowring Y/A (I, @) -+ I,. 

It remains thcreforc to study the action of A. on E,. It is easy to see that, in terms of the 

standard generators nl.. . . , cr,_, of 3,. the pcncrators T;, . . . , T,’ of E,( Y.) map to the 

following braids T,. . . . , T,. 

7; = I, 7;=a;‘,..., ~=~,_,~j_2...~2~f~2...~j_,. (1.14) 

Remurk I.15 A,, is a subgroup of the pure braid group .Y’~, and one can in fact write 

7; = A,,J/~.~J. . . A, t.j. 

It is also easy to sec. by induction, that A, z L!“-‘. 

Rrmurk 1.16. The abovc formulae (1.14) hold for a given choice of a base point and of 

abasisofn,(43-(I...., n)) which is dilrcrent from the one we shall adopt in $2. 

52. TllE MAIN TIIEOWE~I ANI) ITS PROOF 

In order to prove the main theorem. we need to make its statement stronger. We have 

defined in the introduction and in $1 the big Iemniscate configuration of a polynomial 

PEY”. 

What in particular we are going to show is that any such figure occurs, up to isotopy, as 

the big lemniscate configuration of some polynomial. 

To be more precise. WC need to introduce the more general concept of a possible big 

lemniscute n-confiyurution: that is. as we shall more amply discuss in the proof of the 

theorem, an embedding I: in the complex plane 43 of the space X given by the disjoint union 

of (n + 1) points, n figure tights, and (n - I)n;? circumferences. satisfying the same proper- 

ties as the ones enjoyed by big lemniscatr configurations of polynomials PEY~. 

MAIN TWOREU. 71wre exist nuturul hijections between the fidlowiny sets 

(a) The set n,(Y’“) of connrctrd components oj’ 2’“. 

(b) Thr set oj’hor,teo,,lorp/ri.srlt (isotopy) c1u.s.sc.s of big lemniscute confiyttrutions. 

(b’) The set ~~/‘ht)rnpc)trtorphi.srrl (isotop!) cl~~s.ses of possible hi0 lemniscc~te conjiytrrations. 

(c) The set 1:. _ ?. 

(d) Thr scpt of A,-orbits in E,. 
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P/M (!/‘fhti proc$ (a) o (d) is Proposition 1.13. The first step of proof shall consist in 

proving the equivalence (b’) o (c). One may observe that (b) is a subset of (b’). Afterwards, 

the plan of proof proceeds as follows: show, as a second step. that the natural map from E, 

to (possible big Icmniscate configurations) is surjective (thereby proving the equality of(b), 

and (b’)). \Vhilc showing this. it will be very convenient at the same time to prove that two 

edge lubcllcd trees give homeomorphic big lemniscate configurations if and only if they lie in 

the same ,I,-orbit. With this. the equivalence (b’) o (d) shall be shown, and the proof of the 

theorem shall finally be through. 

Srcp I: Proof’oj‘(b’) o (c) ofthe Theorem. Let P be a lemniscate generic polynomial. As 

in 1.2. we consider the big lemniscate configuration associated to P. i.e., if H’,. . . . , w, are the 

branch points of P. I- = To u r,,,, u. . . u ~‘,,~,. where r, = {zI IP( = c). We assume as 

in 1.2. that 0 < I)v,l < I\vzI < . . < Iwv,I. 

We attach to T a tree Y, whose vertices represent connected components of T, and 

where an edge connects two vertices L‘. D if there exists an i such that c c T veJ, u’ c rlVj+ ,I 

(WC set here M’” = 0) and L’ is “inside” t,‘, i.e.. if you start from a smooth point .x E u following 

the gradient of Pl’ you pet a curve meeting a point of u’. The tree 3 thus obtained has some 

remarkable propcrtics To state them. we recall and state some combinatorial definitions. 

WC apologize if some of the following definitions should not be standard. 

(i) A ~rcc 7‘ is a conncctcd and simply conncctcd graph. 

(ii) An ctrtl of 7‘ is a point (ncccssarily a vertex) 11 such that T - (t’) is connected. 

(iii) Ciivcn vcrticcs 1%. L” of I‘thcrc is a unique path from u to c’. i.e. a minimal subtree 

7” c I‘having 17 and r’ as ends: the length of T’ (i.e., the number of edges of T’) is called the 

qc~odcsic~d di.stcuicx* 04‘ 11 id 11’. 

(iv) The h&/ht h(r) of :I vcrtcx (9 is the minimum of the geodesical distances from the 

cncls of the tree. 

(v) The rotrl rtrtlius /l(r) of CI vcrtcx u is the maximum of the geodesical distances of 

I‘ from the ends of the tree. 

(vi) A NYC~~; c~lrc~ of the tree 7‘ is a vertex u for which the root radius p(u) attains 

:I minimum. 

(vii) A tree is called ccwrrtrl if it has a unique weak centre uO. 

With the terminology introduced above, WC can define a class of trees which are deeply 

rclatcd lo big lcmniscatc conligurations. 

D~$~tirio~r 2.2. A tree T is called a cenrrul holunced tree of length n if 

(1) T has (n + I) ends. 

(II T is central and the height h(c,), and the root radius p(c,) of the centre uO, both 

equal II. 

Dc$~tiriorr 2.3. The weight w of a vcrtcx c is the number of edges containing u. Hence 

ends arc vertices of weight one, whereas vertices of weight three are called nodes. 

Dcjirliriorl 7.4. A si~plr crrrrrd rree ojkngrh n is a central balanced tree of length n such 

that 

(i) the ccntrc has weight 2 

(ii) there arc no vertices with weight strictly bigger than 3 

(iii) thcrc is. for each i = 1.. . . (n - l), exactly one node at distance i from the centre. 
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Remarks 2.5. (i), (ii), (iii) of 2.4 imply 

(iv) there are exactly (i + I) vertices at distance i from rO. In particular, 2.2.(l), follows 

from 2.2.Q) and 2.4.(i). (ii), (iii). 

be 

(v) There are exactly (n + l)(n + 2) ‘2 vertices. One can notice moreover that (iii) could 

replaced by 

(iii’) there is at most one node at distance i from the centre. 

PROPOSITION 2.6. The tree J associuted to the biy lemniscate confiyurution I- of a poly- 
nomial PE 9” is a simple central tree of lrnyth n. Moreover, lettiny X be the topoloyical space 
which is the disjoint union of (n + I) points, nfiyure eights. and n(n - l)/2 circumferences, any 
simple central tree F of lenyth n uniquely determines an isotopy class of embedding 
ET : X 4 C, in such a way that (r, C) is isotopic to (&.F(X). C) if .T is the tree associated to I-. 

Finally, F and F ’ are isomorphic if and only ifthe associated isotopy clusses are the same. 

Prooj: First of all we may set up a bijective correspondence between vertices of Y and 

connected components of X. in such a way that ends correspond to isolated points, nodes to 

figure eights, and the centre to the remaining figure eight. We define the embedding E,~ by an 
def 

inductive procedure. assuming that Ed has been defined on X”’ = the union of the 

components of X corresponding to vertices L’ at distance at most i from the centre. The 

inductive procedure is based on the following dctinitions: 

Definition 2.7. Given vertices u. I:’ of a simple central tree, or more generally, of 

a “rooted” tree (where a given vertex has been chosen as root), u is said to be a direct 
successor of ~1’ if c’ belongs to the path joining L’ and the ccntre uO, and moreover 

dist(v, ~1”) = dist(c’. ~1,) + I. 

Remark that a node and the centrc have exactly two direct successors, ends have no 

successors. and all other vcrticcs have exactly one direct successor. One can then inductively 

dcfinc the notion of successor. 

Dejnition 2.8. A diffcrcntiable embedding of a ligurc eight E in 43, C: E -+ C is said to be 

unreversed if, B, and B, being the bounded conncctcd components of C - E(E), 0 being the 

singular point of E, then B, u B, - E(O) is disconnected. 

Remark 2.9. There are only two isotopy classes of embeddings E: E + C, the reversed 

and the unreversed one. In the reversed one, one can distinguish between B, and B, by 

imposing the condition SB, $,Z dB,, whereas in the unreversed case there is an orientation 

preserving diffeomorphism of (C, E(E)) exchanging B, and B,. Moreover, both B, and B, 

are difieomorphic to disks. 

Remark 2.10. Any two embcddings of a circumference (resp.: of a point) in a disk are 

isotopic. 

The initial part of the proccdurc consists in constructing an unreversed embedding in 

43 of the figure eight E corresponding to the ccntrc of the tree. 

Assume now that one has constructed (inductively) an embedding e’“:X”’ -+ C. For 

each vertex CE 3 at distance (i + I) from the centrc. there is a unique vertex L:’ such that u is 
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a direct successor of r’. If X,., is the corresponding connected component of X, there are two 

possibilities: 

(a) X,: is a simple closed curve and L’ is the only successor of c’ 

(b) X,., is a figure eight and L” has exactly two successors c = ct. and rr. 

In case (a), e”‘(.Y,,) bounds only one bounded component B of C - e”‘(X,,), and we may 

embed X, in B (in an unreversed embedding if r is a node); in case(b) we choose an ordering 

of the two bounded components B,. LIZ of C - e(“(X,,): then we may embed (X,) in Bi for 

i = 1.2. and in an unreversed way if L’~ is a node. By induction we construct e: X + C and the 

unicity follows from Remarks 2.9, 2.10. We omit to verify the other assertions, which follow 

immediately from our construction, and from the following 

Remurk 2.1 I. If A is a figure eight contained in the big lemniscate configuration 

associated to a polynomial PE.~‘,. then A is given by an unreversed embedding. 

Proof Otherwise. cf. 2.9.. I PI would have a local maximum in B,, contradicting the 

maximum principle. 

Q.E.D. for 2.11. and Prop. 2.6. 

The proof of Step I shall be achicvcd via the following. 

Bcforc proceeding to the proof of 2.12., we recall the well known (cf. [4]) Caylcy-Priifer 

correspondence for vertex labellcd trees. 

Dc$nition 2.13. Let I ; be the set of isomorphism classes of trees with n vertices and with 

a bijcction of the set of vcrticcs with the set 10, I,. . . , (n - l)}. The Cayley-Priifer corres- 

pondence is a bijcctive map 

‘d’.Y: $ ; + I(),. . . , (n - l);!o.. ..(” - w, 

defined as follows: if SE % ,, identifying {O,. . . , (n - I)} with the set of vertices of S, we 

pick the end with biggest i, and if j is the neighbouring vertex, we set x(n - 2) =j. The 

same can be done provided one has any strict total ordering of the vertices: therefore, 

if S’ is the subtree of S obtained by deleting the vertex i and the edge [i,j]. we can assume 

by induction that %‘.Y(S’) is defined and equal to (x(O), . . . , x(n - 3)), and thus there 

remains only to define KY(S) = (x(O), . . . , x(n - 3). x(n - 2)). We set now Xn_2 = 

10,. . . ,(n _ 1)Ji”*...-(n-2)1, i.e., 

X,-J = {(x0,. . . ,x,_2)1_~iE~,01S~i~n- I). (2.15) 

Then Zn_2 c X,_ 2 corresponds to a subset of I ,, which we shall denote by +-i: recall 

that I,_2 = ((.K,,. _ ., .Y”_ 2)~ X,_21O 5 xi 5 i. the equation x, = N has at most 2 solu- 

tions V N }. 

LEMMA 2.16. Under the Cuyley-Priifir correspondence. IL:. _ 2 corresponds to the set %-i of 

certex Iuhelled trees such (hut: 

(I) tukimq 0 us u root (c$ 2.7.0). fj is a successor of i, then j > i 

(2) the tree hus no vertex ofnciyht 2 4 and 0 is not a node (c/ 2.3.). 
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Proc,f. Let’s first prove that %‘.9( 1-i) c Z, _ ?. In fact. we observe that. by ( I ). (n - 1) is an 

end, and removing it (together with the unique edge containing it). we obtain a tree S’ 

in r-i_,. 

The first assertion show-s that .Y,,_ 2 I n - 2. and the second assertion implies. b> 

induction. that we have (.Y(,.. _._Y~_,)E~~-~. To prove that (Y,,.. .,.Y~_,)E~~_~ it is 

enough to observe that if the equation .‘c, = N had more than 3 solutions. then Iv would 

have al least 3 successors. contradicting (7). 

In the other direction. it suffices to show that if %‘.~(S)EX,_~. then SE .‘-;. Firstly. 

(n - I) is an end: in fact. (n - I) does not appear in the Cayley-Prtifer sequence. and if 

a vertex i does not appear in the sequence. then it must be an end. At some step of the 

Cayley-Priifer procedure, i has become an end and one marks the neighbouring vertex .x,: 

now. if i were not an end. at some step another neighbouring vertex h would have become 

the biggest end and would have been deleted. but then i would appear in the sequence. 

Secondly. we USC again induction (the cast’s n = 2, 3 being trivial). letting S’ bc the 

subtrce obtained by cancelling the end (n - I): we may thercforl: ((.ro,. . . . .Y,_,)EX,_~!) 

assume that S’E Y”,_ ,. Moreover, S is obtained from S’ by connecting (n - I) (as an end) 

with the vertex .Y, -> through an edge. Hence property (I) is clearly satisfcd 

It remains to prove property (2): if ,‘I, _ 2 # 0, then x, _ ? is not a no& of S’. if .Y” 2 = 0. 

then 0 is an end of S’. But S’E I-, _ , , and it is easy to set‘ then that a vcrtcx with 2 successors 

appears twice in the Cuylcy Priifcr scqucncc (.Y(,. . . sn .,I. ht since 

(.X 0’. .,S,_~)E~:,. ?, xn .? cannot appear twice in the scqucnce (.Y,,. . . . , .xn .,I. Q.E.D. 

The proof of Proposition 2.12 follows immediately from the following 

Iho/: Let .Y bc a simple central tree of length n: to .T WC associate ;I vcrtcx lab&d 

tree S E I’. 

First of all 0 corresponds to the ccntrc of .Y, and i to the unique node ui of .P at distance 

i from the ccntrc. hlorcovcr. an cdgc connects i and j if ~7, is a succcbsur of L’,, but I’~ is not 

;L successor of any r,+ which is a successor of 11~. Notice that S is a tree clearly satisfying (I ). 

and (2) holds since if j, k. I arc direct successors of i, then the paths [vi. ~‘~3. [r,, rt], [L.,, r,] 

are disjoint, hence r, has 3 distinct direct successors, contradicting 2.4 (ii). 

We have just exhibited a map cp: .V/%.Y” = {Simple central trees of length nl + I-i, and it 

suffices (the sets being finite) to provide a one side inverse 4: #-A -+ :/‘KY”. Given SE f-i. for 

each edge [i,j] divide it into (j - i) equal parts. thus creating (j - i - 1) new edges and 

vertices. If i # 0 is neither a node nor an end, or if i = 0 and 0 is an end, attach to i a string of 

(n - i) consecutive edges (thus adding (n - i) vcrticcs). 

Whereas, if i is an end of S, attach to i two such strings having i is an endpoint. The tree 

just obtained is I/l(S) = Y’. It is clear from the construction that .F’ has exactly 11 nodes, 

which are in such a natural bijection with the vertices of S (except 0). that if the node ci 

corresponds to i, it has distance i from the vertex corresponding IO 0. It is also ctear that 

0 has weight 2 and 2.4.(i), (ii). (iii) are vcriticd. 

Moreover. by construction. any path from r0 to L’i continues until an end at distance = n. 
and 2.2.(2) holds. We conclude that ~‘E.‘J%‘.Y~. since, by Remark 2.5.2.2.(I) holds too. It is 

immediate now to verify that rp(+(S)) = S. Q.E.D. 

We are now ready to begin 

Src~p II: E, .wrjt~ct.s nt~o [b’). and is a yuoticnt map /or the A,-uction. Recall that to 

elcmcnts [pJ of E, there correspond polynomials in 9’” with monodromy [p], and that by 
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Prop. 1.13 every connected component of 9’” contains one such polynomial, and [p] and 

[p’] belong to the same component if and only if they lie in the same A,-orbit. First of all, 

then, let’s describe how a tree in E, determines a configuration of lemniscates. We fixed our 

basepointB,=(l..... n) E W, and we know that each element of E, determines a covering 

spaceP:~~d=,andr=P-‘(~O:v{Iw(= liu... { (~1 = nj 1. Pictorially, the correspond- 

ence is as follows: for any midpoint of edge i draw an eight with centre there and (n - i) 

circles, as in Fig. 1. 

2 3 I ---* --L 

--A- I, 
h 

0 ---- ---me 

I A 2 

\ 

Fig. 1. Edge labelled ~rrrs -+ Big Lrmniscstrs - Simple central trres - Vrrtcx labelled frws 

In Fig. 1 is also depicted the associated simple central tree .Y. It is somehow easier to 

understand the map v: E, + .Y%‘T”, the set of simple central trees of length n constructed 

via Proposition 2.6. This map can formally be described as follows: ends of Y = v(A) 

correspond to vertices of A, and vertices of Y at distance k from the centre correspond to 

connected components of the (n - k) skeleton of A, which is defined as the union of the 

vertices of A with the first (n - k) edges of A. Edges in J are defined according to inclusions 

of components of the (n - k) skeleton in components of the (n - k + 1) skeleton. 

In fact, it is clear that passing through the critical value i makes the number ofconnected 

components of F, drop by one. On the other hand, if the edge i connects two vertices u, c’ 

but c. L” are not in the interior parts of the figure eight A, c Fi, then, choosing 0 as base 

point of n,(C - 11,. . ., n}). we see that a loop around i cannot have a monodromy 

exchanging 1’ and V’ (which are roots of P). There remains to prove the following 

PROPOSITION 2.18. v: E, + .Y’%Ym is surjectire ad if v( A) = v( A’) = .F, then A and A’ are 

in the same Am-orbit. 
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Proof Let Ati, be the ith-skeleton of A: the proof will be based upon induction on i. I.e., 

we assume inductively that the following assertions hold true: 

(a,) if v(A) = \?(A’) = 3, then there exists a transformation QE (T,, . . . , T,.) such that 

0(,4’),i, Z A(;, 

(bi) for each .Y E Y%& there exists A s.t. A(i) maps onto the subtree of Y at distance at 

least (n - i) from the centre. 

Let’s prove the inductive step (bi+ 1): we need to add an edge (i + 1) to A,i, in such a way 

that it joins two vertices belonging to the 2 connected components C. D of Afi, which 

correspond to the 2 direct successors of the unique node of 5 at distance (n - i - 1) from 

the centre; then we can add ad libitum (i.e., to our taste) other edges to complete ,&+ 1) to 

a tree A. 

TO prove (ai + 1). we may assume that, by the inductive assumption, A,i, z A;i,. and it 

suffices to show that we can act with a GE( T,. . . . , &+1) to have A,i+ 1) z Ali+,,. As 

before, call C, D the connected components of A(i) containing the two vertices of (i + 1). Let 

Tc=nlj,TD=nq. h w ere the indexes in the products stand of course for edges of A,i,. 
jsC j,D 

For this proof, again we choose 0 as base point in Q: - { 1.. . . , PI} and a geometric basis 

l- ,‘. . . . r, as in Fig. 2. The action of 7;: is given by a full twist around the circle of radius i, 

hence 

(a) <(I-,) = rj if i >i 

(b) 7;:(ri) = ri_lri_2.. . r,Tir;‘. . . r;_:r;_*, 

(c) qr,) = r,- I rLri for i < 11. 

In fact q(ri) is as in Fig. 3, 7;(r,) as in Fig. 4. We remark again that the present action 

dinirs from I. 14 because of the change of base point for the generators r,, . . . , I-,. It is then 

Fig. 2. 

Fig. 3. 

Fig. 4 
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easy to see that. for j E C, Tc(Tj) = Tr . . . &(rj), but we observe that in general (i >j). 

T 1"' qrj) = r;. . . r,(rj) = r,. . . T,(r;‘rjr,) 

= zy.. .7;(r;*rp. ..r,_‘,rjrj-l . . .r,) 
= z.. . r,+,(r;lr;*. . .r,-llrj_l.. .r,Tjr;‘. 

= q. . . ~+l(rj) = rj. 
Hence 

i 

r,(r,) = rj t/j 5 i 

rD(rj) = rj 
But. if we choose Ti + 1, T,( l-i + 1 1. ifj,, . . . , j, are the ordered (j, <jr < 

equals (by the above computation) 

r,;*. . . T/;‘ri+lTj.. . l-j,. 
, 

r,-llrj_l.. . rl) 

. < j,) edges of C, 

Hence the action of T;’ on the transposition p(Ti+ r) is to conjugate it with the product 

l-j, . . . rj,, a cyclical permutation on the vertices of the component C. Similarly for T; I, 

hence, using two appropriate powers of T; ‘, respectively T; *, we can choose at our wish 

the respective points of C, D, which shall be the two vertices of the edge (i + I). Q.E.D. 

$3. SMALL LEMNISCATE CONFIGURATIONS 

As in the introduction, if PE 2’“. the smull lemniscare configurution associated to P is the 

homcomorphism class of the pair (Y,.. C) where Y, = P _ ‘(0) u ArK,, u. . . u A,,,,. whcrc 

A,,,I is the component of r,,,, homcomorphic to a hpurc tight. WC have thus (n + I)-points 

and n figure tights, embedded in Q= by an unreversed cmbcdding. and again WC want to give 

first an casicr combinatorial description of the possible configurations, then to show that ail 

the a priori possible configurations do in fact occur. 

Dejininition 3.1. The rooted tree associated to a small lemniscatc configuration is a rooted 

tree R with n unlabelled vertices corresponding to the components A,&,,,, . . . , At,_,, with 

A,,., as a root vertex, and an edge connecting two vertices corresponding to Alw,l, A,,,, 

if A;,,, lies in the interior of A,,,,, and there is no AI..II lying in the interior of A,,,.,,. and 

having Alw,, in its interior. 

Remurk 3.2. The rooted tree R is simply obtained from the vertex labelled tree SE I-, 

introduced in 2.16, 2.17. simply by forgetting the vertex labelling except for the “root” 0. 

We obtain immediately from the results of $2, and by the previous remark 

THEOREM 3.3. The map which to a connected component U E n,(Y”) associates the small 

lemniscote configuration of a polynomial P. is isomorphic, riu the hijection n,,(Y”) o I-i, to . A 
the forgetful mapping 5: Y-i + ~9~ (where 9” is the set of isomorphism classes of rooted trees 

with n certices, such that eoery vertex has weight I < w 5 3. und the root bus weighr 2 2). 

given by forgerring the labellings I,. . . , (n - 1). 

COROLLARY 3.4. All a priori possible small lemniscate configurations do in fact occur. 

Proof: Given a rooted tree R ES”, it suffices to choose a labelling of the other vertices 

such that if j is a successor of i, then j > i. That this is possible can easily be shown by 

induction, in fact it suffices to label (n - I) any vertex without successor. Q.E.D. 
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Remark 3.5. Kotice that the number of allowed labellings for a tree R E& tells the 

number of connected components of Y” which realize the small lemniscate configuration 

associated to R. This number is 1 only if R is a string, otherwise it can be very big. as it will 

follow from the results in the appendix. 

$4. REAL POLYNOMLUS 

The main purpose of this section is to show that every big lemniscate configuration 

occurs as the lemniscate configuration associated to a suitable real polynomial PE iw[x] of 

degree (n + 1) with (n + 1) distinct roots. To this purpose, we give the following. 

Definition 4.1. An edge labelled tree A E E, is said to be linear if it does not have nodes 

(i.e., it is homeomorphic to [0, I]). 

PROPOSITION 4.2. Every &-orbit in E, contains u lineur tree A. 

Prooj: By Proposition 2.18. every orbit corresponds uniquely to a simple central tree 

Y of length n. First we shall establish a bijection between the set of ends of .F and a subset 

of [O. l] of the form (LJ(,, . . . . a,), where a, = 0 < u1 < . . . < u, = I. Then we construct 

A simply by considering {(I,), . . . , (I.} as the set of vertices of A. and letting the intervals 

[ai, Ui + ,] be the edges of A. There remains to give a labclling to each edge [ai, ai+ r 1. We 

can do this in a unique fashion by giving to [(I,, cli + , ] the lahcl k itf 21i equals the geodesic 

distance of the two ends corresponding to CJ,, (li + , . It is easy to verify that A E E,. and that 

v(A) = .T. Q.E.D. 

(4.3) Given a manic Icmniscatc gcncric polynomial P(x) = fl (x - xi) of dcgrce n + 1 

i=l 

with real roots .rO < .x1 < . . . c .xn, we consider the following linear tree A’ such that 

(i) the vertices of A’ arc the points .Y~, . . . , x, 

(ii) the edges of A’ are the intervals [s,. xi+ ,] 

(iii) [xi, xi+ ,] has the label j if and only if, letting yj be the only root of P’(x) in the 

interval (x~, Xi+ r) then, setting as usual ‘2; = P(yj), we have Iw, 1 < 1 w2( < . . . < Iw,I. 

The following lemma is a particular case of a theorem of C. Davis ([3]). 

LEMMA 4.4. Giren u lineur tree A, there do exist red numbers x0 < x, < . . . < x, such 

thut A is isomorphic to the tree A’ ohtuincd us in (4.3). 

Prooj: Notice that I P(yi)l = max (I P(y)1 IYE [.Xiv _Yi+ I]} and that if Ixi - xi+ r I + 0, this 

maximum also tends to 0. Thus, fixing i, WC can achieve that I P(yi)l be minimum. The rest of 

the proof follows easily. Q.E.D. 

THEOREM 4.5. For euch hiy lemniscute conjiyurution, there exists a (red) manic lemniscute 

yeneric polynomial with n + I (distinct) red roots P(x) = i (x - xi), whose big lemniscate 
i=l 

confiyuration r is isotopic to the yicen one. 

Prooj: By the main theorem, Prop. 2.18. Prop. 4.2 and Lemma 4.4 we can take 

a polynomial P(x) as above whose associated linear tree A’ (cf. 4.3) represents the &-orbit 

associated to the given lemniscate configuration. To finish the proof it suffices to verify that 

the tree A’ gives the monodromy of P. But the n paths connecting xi with xi+, and obtained 
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by replacing. in the segment [.v,, .‘I,+ ,I, a small segment with center y, with the lower 

semicircumference Nith same center and ends, are such that their images under P form 

a geometric basis of n, (,C - iw,, . . . . H‘, i ). Q.E.D. 

.-I~.~r~~,~Ir,‘l,,~‘,,~l’nt.\ B<,th Juthors dre grateful to the University of Cahfornia. San D~ego. for pro\ldmp. in the 

sprins of I’M. ho\pltJht) and nel~hbounng otfices. In this way. the methods developd b) the first author for 

dltTercnt purposes. found .I beautiful .md lnterestmg (at least so we belleve) apphcntlon. The first author would also 

hhe to thdnh the Institute SIlttag-LetiIer in Djursholm for pro~ldmp. in September 1986. excellent enrironment for 

research. and to express his deep gratitude to Torsten Ekedahl for trvmg IO convince him that there should be 

a hljechun between the wt of big lemniscute configurations and the set of L”-’ -orbits in E,. The hospitality of the 

S.F.B. of Gtittingcn in June lY89 allcwed the first author IO Hrlte do&n the final verswn. 
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APP)‘YI)IX ,a 

C’OI’NTIN<; LEMNISCATE (‘ONE‘I(;I’R~\TIONS 

liy I~‘AHWI/IO C’A.I‘ANI SE: (with the cooperation of RICK MIRANDA, DON %AGIL-R. ENRICO BOMIWRI). 

Our lirst purpose ih IO give a formula for the number of big lemniscate configurations of lemniscate 

gcncric polynomials of degree 01 + I). By the main theorem, this number equrtls the cardinality of 

r. ?, where 

X” = [(.r,,. . ,x,)10 5 x, 5 i. and. Vrne N (0) 
there are at most $ integers 0 5 i 5 n such that ?I, = m). 

WC shall give the proof of Theorem I by ;L sequence of steps. The first one. suppestcd by Rick 

htirantla. is to study the gcncrating function corresponding to the u,‘s through a generating function 

in two \ari;thlcs, for uhosc cocfiicicnts it is possible to write a recursion relation. So we deline 

V -n., = I(x x )EX:,lcard;r,,. ..r_; = n + I -k;. 0.‘. . ..” 

In other words, Z.,, consists of the scquenccs where I; intepcrs occur twice. 

Li \I\1 \ ?. /j. :I,,, = cwd X”.,. rllzfI 

: “., = (i + I),&_ ,,, + (n + Z - 3i):l,. I.i-I I 
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Prooj Let rt:Z,+Z:,_, be the map such that n(x,, . , x,) = (x,,, . ,x,_ I ). Then 

n&i) c Zn-t.iUZ.-t.r-t. Moreover if y = (ye.. . ..y.-(1 belongs to Z._,,i, n-‘((yj)nZ..i has 
cardinality (i + I), since x, must be different from all the J,‘s. Whereas if JEZ,_ ,.i_ ,, X, has to be 

chosen among the n - 2(i - I) numbers which occur exactly once in the Priifer sequence y. Q.E.D. 

We set, for convenience (cf. Thm. I). 

a(n, i) = cardinahty of Z,.. I.ir so that by Lemma 3 

a(n. i) = (i + l)a(n - 1, i) + (n + 1 - Zi)a(n - 1, i - 1). 

(4) 

(4’) 

Rrmurk 5. u(n. i) = 0 for 2i > n. The first values of a(n. i) are given by the following table 

II= 0 I 

1 I 

2 I 1 
3 1 4 
4 I II 4 

5 I 26 34 
6 I 57 180 34 
7 1 120 568 496 

ft is obvious that 0, < n!. on the other hand, by (4’). since 

a, = C ah i). 
1-o 

@I - I Ii2 
u, = C u(rt - I, i)[(i + I) + (tt - I - Zi)] 

1-O 

hence ‘1 2 (n + I)!2 -I. Ilence, in order to avoid to have a diverging scrics as pcncrating function, we 

follow iagier’s advice and we set 

m u(n, i) 
A(X. I) = c 

I + I 

a.i -0 
TX+‘= I +1+-?+ 

I +4x I + I IX + 4.Y’ 

2 
-13 + 

6 24 
I”+... 

where u(n, i) = 0 for n < 2i. Then the recursion formula (4’) translates into the following P.D.E. 

7 

(1 - xr)($ + (2x2 - .v,c = A. (8) 
In fact, we have: 3.X 

7 

.,g = 1 
uhj) -xJ+lp = z x’p 

u(n. i - 1) 

,,>e(m - l)! ILI (n - I )! 
“;I” 

?A 
x2--= c 

u(m. j) u(n,i - 1) 

sx 
1J.Y 

m./zo m. 
J+‘lm = C .t’r”(i - 1) 

I 2 0 n! 
nZ?O 

1 

xg= c 
u(n, i)i 
- x'r". 

al20 n! 

Looking at the coefficient of x’f”. multiplied by n!. we have for i 2 I 

a(n+ l,i)-no(n,i- l)+Z(i- l)a(n.i- l)-ia(n,i)=u(n,i) 

since 

a(n + 1, i) = (i + l)a(n, i) + [n - 2(i - I)]a(n, i - I) by (4’). 
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Moreover, clearly 4(x, t) satisfies the Boundary values 

{ 

A(0, Cl = e’ 

.4(-K, 0) = I 
(9) 

We seek for a change of coordinates 

(x, c) - (x,f(x, c)) = (I, f) (IO) 

d i-4 ,SA 
where the P.D.E. reduces to an O.D.E. in the .r[ variable. Since z .4(x,j(x, c)) = T.r +f ;;T, we want 

to find/(x) such that g +f’g = (2.~’ 
lit 

- .Y)- ‘A, i.e.. in view of (8). and since /’ = x, we need to 
‘c 

solve the O.D.E. 

dt(‘s’ - x) = (1 - xtjdx (11) 

Dividing by - x(1 - 2~)“~. we get 

dr(l - 2.x)“’ - c( I - 2x)- ‘;*d.r = 
- dx 

x( I - 2x)‘,’ 

which yields, by integration, 

r(l - 2x)“Z = 
ds 

= - log 
I - (I - 2.\.)‘,2 + c 

?((I - 2x)“2 1 + (I - 2.Y)“2 
(12) 

(the last equality holds up to a constant of integration which can be set equal to c). In the (xc) 

variables the P.D.E. for A becomes 

d log A I 
-=-5 

d.x 2-V? - .x 
(13) 

there is a function F(c.) such that 

A ( Y. c) = 

We set for convenicncc 

Thus 

u = log 
I-Ji-ZX 

1+&-X 
(15) 

c = [(I - 2X)‘:’ + u 

A(xJ)=( -2:+ ‘)F(l&-%+.), 

The boundary condition (cf. (9)) A(x, 0) z 1 implies 

F(u) = -L 
1 - 2x 

which equals, by (15). and an easy calculation, 

F(u) = cy + eT” _ 2. 

(16) 

(17) 
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The last formula clearly shows that A(0, I) = e’. Plugging in x = I. we get 

All, rj = - 4[e”(l - i)l + e-“(I + i)’ -43-l 

= 1 + $etl -e-“) 

[ 1 

-1 
= (1 - sintl-‘. Q.E.D. for Theorem I. 

§A2 SMALL CONFlGL’RATl0N.S 

By Theorem 3.3, and Corollary 3.4. we know that there is a natural bijection between the set of 

isotopy classes of small lemniscate configurations and the set 2, of isomorphism classes of rooted 

trees with n vertices such that each vertex has weight w I 3. and the root has weight H’ I 2. We set 

b, = #(Ji,) 

IO) = f b,t”. where we have set h,( = h, = h,) = I. 
I=0 

(19) 

It is convenient to have set h, = 1. since we get thus the following recursion formulae. 

!+oof Erasing the root of a tree in j,,,, one obtains a pair of trees (one of them is possibly empty), 

in .Xi u .R,_, _i. with 2i 5 m - I. Conversely, two trees as above combine to yield a tree in 9,: one 

has to take special care of the case when i = m - I - i, that is, m = 2i + I, where the (unordered) pair 

may consist of equal trees. QED. 

To simplify the recursion we set 

thus we have, for j 2 I 

h,=O for jfz1/2I-Z (21) 

h, = f ‘$ h,h, -*- ( + fh,, ,),Z. (72) 
1-o 

Multiplying by r’ and summing over j we get 

/(I) = I + 1 h,r’= I + ;I 

[ ( 

1-I 

c z h,r’h,_, ~,r’ -’ -’ 

> 

+ h,, _,,, *(1’)‘& , 

I.21 Jr1 t=O I 

that is, 

j(l) = 1 + fw-‘(r) +/(t2)). (23) 

Before proceeding to discuss the functional equation (23) for the generating function,/; we would like 

to give some lower and upper bounds for the b,‘s. which in particular imply that the power scrirsj’(r) 

has a strictly positive radius of convergence t, (rO is also the first singular point ofj‘on the positive 

half-axis, since/has positive coefftcients). 

For this purpose, we define functions ;I([). +(r) by the following recursions 

c,=l c.r,=- ’ i c,c.-, 
( ) 2 ire 

do=1 dm+,=(i.d,dm-i) 

(24) 

By virtue of the recursion formulae (22). (24) we obtain 

y(r) <I(f) 5 $0). (25) 
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The auxiliary functions 7, $ are algebraic. since they clearly satisfy 

i 

i’ = 1 + jr;J 0 ;’ = 
I-, I-‘r 

t 

Expanding the power series ; 

we pet the rather crude estimates 

IL, 

c,= fl(2 
j=l 

implying that logh, prows linearly with n. 

- 3,j) I h, I 2°C” = d, (27) 

We follow now Bombieri’s beautiful idea to relate the 

function/(t) to the iteration of complex quadrattc polynomials studied by Douady and Hubbard 

(cf. [I A]). We set 
/ m 

q(r) = I - rj’(t) = I - x h,riL’ 
i = 0 

l.(Z) = (I(-_‘),/,- = ! - -_ ,$W’ 
(28) 

Multiply the functional equation hy 2 and replace r.J(rj by (1 - g(r)): then [I(I) satisfies 

(*) g(r ?) = g(r) + 2. 

Letting f = :2. 
problem 

and using (/(z’) = X(Z), finally wc charactcrk r as the solution of the following 

I 

I(:?) = I’($ + 2 

I 
r(z) = - + (power scrics in -_). 

2 

One can rephrase (29) as follows, setting 

w = I/: (30) 

Then f(rr*) = r( I/w) is a local hiholomorphism sondinp X, on the Riemann sphere to ite]f and with 

ditferential equal to I at ‘x: we denots by (p2 = q the local inverse IO this biholomorphism, so that 
setting 

F,(x) = x2 + c for ~EC. we have (3)) 

I 

F, J< = <,,p, or, equivalently, 

‘P~,F~“P;’ = F,,. 
(32) 

We refer to [IA] for the following propertics of (p2 = cp. If Z denotes the Ricmann sphere, cp = ‘p2 

extends to an analytic homeomorphism of 

I: - f., -+ E - E(0, R), where R = (to) -I,* 

(I, being the radius ofconvergence of_/‘(r). q(l)), B(0, R) is the ball with centre 0 and radius R, whereas, 
if, F: stands for the nth iterate of F,, and 

I) = qr = 10g]~~(-_)] = 1im Z-“log] F;(z)l, (33) 
I .I 

L, is the figure eight L, = (zjq2(z) 2 q2(0)), 

and its interior contains the Cantor set 

K, = {=I F!(z) does not tend to xi. 
(34) 

We can now draw the following conclusions: since R -’ IS the radius of convergence of 
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which is a series with positive coeffiaents. we pet that 

Setting 

and observing that 

we obtain 

R = oltO) = exp i lim 2 -“log E(O) 
.n-r 

- -7 ‘, --. -_” = F:(l. ,I = Fy(O1. 

lop(:,_ 1) = ?logl:,l + log 1 + z . 
( ) -_; 

(35) 

(36) 

(37) 

R = exp 
( 

ilog + i 2-“-’ 
“=, 

log(l+~))=2”(l+~)‘4(l+ijn)‘~(l+~)’”.... (38) 

Since R = (f,,- ‘,2, we get 

THEOREM 2. lim sup., +I i logb, = - 2 log R. where R is yirurl by (38). 

I would like to thank also Adrien Douady for reminding me about (35). 


