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§0. INTRODUCTION

Ler PeC[:] be a polynomial of degree (n + 1). As in [2]. we define P to be lemniscate
generic if, y,,. . ..y, being the roots of P’, then, setting w, = P(y,). one has w; # 0 for each
i=1,...,nand|w] =|w,=1i=j As weshall sce in §1, P is lemniscate-generic if and only
if | P|? has only non degenerate critical points. and has distinct critical values of index 1. In
general, a big lemniscate of P is a singular level set I*, = {z] | P(2)] = ¢ > 0} of | P|, whereas
a small lemniscate of P is a connected singular component of a big lemniscate.

In this context. P is lemniscate-generic if and only if P has (n + 1) distinct roots, n big
lemniscates, cach one of which has only one small lemniscate, having only one singularity,
which is an ordinary (real) double point. or node (cf. Fig. 1).

In the open set V), of polynomials of degree exactly (n + 1), lemniscate-generic poly-
nomials form an open set #, whose complement V, — ¢, is a union of real hypersurfaces.

To Pe ¥, we associate the big lemniscate configuration, ie. if T is the union of the
singular level sets I, of | Pi{c = 0). the homcomorphism (or diffcomorphism) class of the pair
(I', C)).

It is clear that the big lemniscate configuration does not change if P varies in a connec-
ted component of #,, and onc of the main purposes of this article is to show that
conversely, if P, P, have the same configuration, then they lie in the same connected
component of .&,.

The key point is that if E, is the set of isomorphism classes of edge labelled trees with
n edges, there is a natural mapping (cf. Fig. 1) from E, to the set of big lemniscate
configurations; moreover, as in [2], there is a natural action of the braid group #4, on E,,
and a natural isomorphism of Z"~! with a subgroup A, of :4,.

Using these ideas, we can also give a very casy combinatorial description of all the
connected components of .

We can now state the

MAIN-THEOREM. There exists a natural bijection between

(1) mo(Z,)

(i1) The set of big lemniscate confiqurations

(iii) The set of A,-orbits on E,

(iv) The set £,_5 = {(xg,. .., X,-2)|x;eN, 0 € x; i, no integer occurs three times in
the sequence, ie., Yme N the equation x; = m has at most two solutions x;}.

Interest for this research stemmed from the sccond author’s investigations [6] on
ordinary differential equations integrable by rational functions (after a suitable change of
coordinatcs).
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In fact, the level curves | P(z)! = ¢ are the solutions of the O.D.E. d- dt = l;:*(‘:_—)) In this

other context, the small lemniscates are the singular solutions of the given O.D.E.. and our
main theorem allows also a combinatorial description of the small lemniscate configura-
tions, and of how a sequence of numbers (x,.....x,_,)€X,_, determines a small config-
uration.

In particular we see that all the a priori possible big and small configurations do in fact
occur, and moreover (§4) that this can be achieved by using a polynomial with real
coeflicients.

The appendix is devoted to a counting problem: namely, if a(n) is the number of big
lemniscate configurations, and b(n) is the number of small lemniscate configurations, we
describe the generating functions

M,"
n!

Ybme® and Y

showing in particular that the latter function equals (1 — sin¢) ™!, whereas for the former we
can give a sequence rapidly convergent to its radius of convergence, thereby at least
estimating the asymptotic growth of the coefficients b(n).

§1. THE BRANCH-POINTS FIBRATION

Lemma LI Pe %, «|P|? is a local Morse function (i.e.. it has only non degenerate
critical points) with distinct critical values of index 1.

Proof. |P}? = PP. Since &(PP) = (?P)P. {(PP) = P(7P). the critical points are exactly
the points where cither P or 0P = P’ vanishes, Clearly, when P = 0, the critical point = is
non degenerate iff we have a simple root of P, i.e. P(z) = 0 = P’(z) # 0. On the other hand, if
P-0%P 0

0 P@P)
degenerate critical point (of signature (+1, — 1)) if and only if 72 P(z) # 0.

Hence, if PP is a local Morse function, then P’ has n distinct roots y,,. . ., y,, while
P has (n + 1) distinct roots zq,. .., z,, with z; # y,.

Finally, the critical values of index 1, if we set P(y;) = w,, are the n real numbers
[w, 1% ..., |w,|? and, since w; # 0 (y, is not a root of P), requiring moreover that they must
be different is equivalent to require that Pe £, Q.E.D.

P'(z) = 0, since the Hessian matrix of PP at = is given by ( ) we have a non

Remark 1.2. If Pe &,, we can choose an ordering v, . . ., y, of the roots of P such that
0 <|w,| < [w;] <...]w,|. Then Lemma 1.1 tells us that [, the big lemniscate configuration
of P, equals the union of the finite set P~'(0) with the big lemniscates [y .. .., [,
where, as in the introduction, I, = {z[{(P(2)| = ¢}.
def
We notice that y; is the unique singular point of ') = ;. and the singularity is a node

(locally analytically isomorphic to x? — y? = 0, i.e. two smooth branches meeting transver-
sally, cf. Fig. 1). We denote by A, the connected component of T'; containing y;.

Remark 1.3. Standard Morse theory (cf. [5]) shows that I, and I are diffeomorphic by
the gradient flow if [c, ¢'] contains no |w,/, that A, is an eight figure, and that I, has exactly
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n + 1 — i connected components if (setting {wo| =0, [woe ]l = + ) |wi] < ¢ <Iwivyl

Let's briefly recall the method used in [2] to study polynomial maps, and mention,
without proof, some of the results stated.

One defines U, to be {PeC[:]| degP =n+ 1, P has n distinct branch points
Wiee oWl

Then. to Pe U, one can associate the branch set Bp = {w,,...,w,}e W, =C"—- A/¥,,
where A = {(wy.....w,)|w; = w;for some i,j with i # j} and &, is the permutation group
on n letters. B, may also be viewed as the space of all monic polynomials Q(z) of degree
n with n distinct roots

Q) =[]z = wa) (1.4)
i=1
Ve
P — B, defines a holomorphic map U, — W/, (L5)

Py 5 .
which factors as U, SR Z,—— W,.and (cf. Prop. 5 of [2]) ¢, is a principal bundle with

fibre the group A(l, C) of coordinate transformations in the source C, and f,:Z, - W, is
a {connected) covering space.

Definition 1.6, Let E, be the set of isomorphism classes of edge labelled trees with
n edges (cf. Fig. 1).

Remark 1.7, E, coincides with the equivalence classes of homomorphisms g:F, = .,
such that

() F,is a fixed free group with generators y,,. .., 7,
(i} Y54y is the symmetric group in (n + 1) letters and u(y;) = t; is a transposition
(i) p(F,) 1s a transitive subgroup
(iv) g and ' are said to be equivalent (we shall write [g] = [¢']) iff there exists
neY ., such that
) =rp)n~t VyeF,.

Indeed, such homomorphisms u are in bijective correspondence with the set VE, of edge
and vertex labelled trees with n edges, in such a way that the transposition t; exchanges the
2 vertices joined by the i'M-edge of the tree.

In [2], Proposition 6, it is shown that, fixing in W, the base point {1,. . ., n}, then one
can choose a fixed geometrical basis y,,. .., v, of F, = n,(C — {1,. .., n}), and the mono-
dromy of a polynomial P, with branch set {1, ..., n} is represented by an element of E,.

The reason why the vertices are not labelled is that, even if P, is fixed as a base point in
U, (resp: Z,), the vertices of the tree correspond to the (unordered) set of roots of P,.

Moreover, the monodromy of f, is given by the following action of the braid group
A, =n,(W,)on E,.

Since A, acts as a group of automorphisms a:F, — F,(cf. [1], §1, where, though, unlike
in [2], the action is on the left), one can define, for pe .4, [u]€E,

@([1])=[u ¢ '] and then (1.8)
(1.8) is the monodromy of the covering Z, — W, (1.9)

(cf. [2]. Prop. 7).
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Definition 1.10. Let Y, = W, be the subset
W e 0 < w | < w,l << wy ],

and let A, be the image of m (Y,. {1.....n)) == (W, {1.....n}).

Remark 1.11. Writing w; = |w;|-wi'iwil, and ry = |wil. ro=wil/Iwy]....,r=
twal/|wa—1|, we see that ¥, is homeomorphic to (S!)" x(R*)", hence n(Y,) = Z". The
generators of m(Y,) give the braids 7;. which keep fixed the branch points 1,...,n
different from j, and move j in a circle around the origin (j — 2™+ j). The basic observation
is that

£ =ya () (1.12)
and the standard theory of covering spaces gives

ProposiTion .13, There is a bijection between the set n,(£,) of connected components of
&.. and the set of A,-orbits in E,. Moreover, if a component &' of &', corresponds to an orbit
of cardinality r, then r equals the degree of the covering ' JA(1,C)— T,.

It remains therefore to study the action of A, on E,. 1t is easy to see that, in terms of the
standard generators a,....,0,., of .4,. the generators T7,. .., T, of n,(Y,) map to the
following braids T,....,T,.

- ye b hd
I'=1, Ty=96i,..., T,=0,40,_5...0,0(0,...0;.. (1.14)

Remark 1.15. A, is a subgroup of the pure braid group .2,, and one can in fact write
7} = Al.jAZ.)" .. AI S
It is also easy to see, by induction, that A, = Z" ™",

Remark 1.16. The above formulac (1.14) hold for a given choice of a base point and of
a basis of n,(C — {1,. .., n}) which is different from the one we shall adopt in §2.

§2. THE MAIN THEOREM AND ITS PROOF

In order to prove the main theorem, we need to make its statement stronger. We have
defined in the introduction and in §1 the big lemniscate configuration of a polynomial
Pe2,.

What in particular we are going to show is that any such figure occurs, up to isotopy, as
the big lemniscate configuration of some polynomial.

To be more precise, we need to introduce the more general concept of a possible big
lemniscate n-configuration: that is, as we shall more amply discuss in the proof of the
theorem, an embedding ¢ in the complex plane C of the space X given by the disjoint union
of (n + 1) points, n figure cights, and (n — 1)n,2 circumferences, satisfying the same proper-
ties as the ones enjoyed by big lemniscate configurations of polynomials Pe &,

MawN TueoreMm. There exist natural bijections between the following sets

(a) The set no(Z,)} of connected components of Z,.

(b) The set of homeomorphism (isotopy) clusses of big lemniscate configurations.

(b') The set of homeomorphism (isotopy) classes of possible big lemniscate configurations.
(¢) Theset X,_,.

(d) The set of A,-orbits in E,.
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Plun of the proof. (a) <> (d) is Proposition 1.13. The first step of proof shall consist in
proving the equivalence (b') < (c). One may observe that (b) is a subset of (b'). Afterwards,
the plan of proof proceeds as follows: show, as a second step, that the natural map from E,
to (possible big lemniscate configurations) is surjective (thereby proving the equality of (b),
and (b')). While showing this. it will be very convenient at the same time to prove that two
edge labelled trees give homeomorphic big lemniscate configurations if and only if they lie in
the same A,-orbit. With this. the equivalence (b’) <> (d) shall be shown, and the proof of the
theorem shall finally be through.

Step I: Proof of (b'} <= (c) of the Theorem. Let P be a lemniscate generic polynomial. As
in 1.2, we consider the big lemniscate configuration associated to P, ie., if w,.. .., w, are the
branch points of P, T =T 0 [ ju. . 0l where I, = {z] | P(z)] = c}. We assume as
in 1.2, that 0 < |w | < |w,l <... <|w,l

We attach to T a tree J, whose vertices represent connected components of I', and
where an edge connects two vertices v, ¢’ if there exists an i such that v < T, |, 0" <= T,
(we set here wy, = 0)and ¢ is “inside™ ', i.e.. if you start from a smooth point x € v following
the gradient of PP you get a curve meeting a point of v'. The tree 7 thus obtained has some
remarkable properties To state them, we recall and state some combinatorial definitions.
We apologize if some of the following definitions should not be standard.

Dcefinition 2.1,

() A tree Tis a connected and simply connected graph.

(i} An end of T is a point (necessarily a vertex) v such that T — {¢} is connected.

(n1)  Given vertices ¢, ©° of T there is a unique path from v to v, i.e. a minimal subtree
7" < Thaving r and v’ as ends: the length of 77 (i.e., the number of edges of T") is called the
geodesical distance of v and v’

(iv) The height h(r) of a vertex v is the minimum of the geodesical distances from the
ends of the tree.

(v)  The root radius p(r) of a vertex v is the maximum of the geodesical distances of
v from the ends of the tree.

(vi) A weak centre of the tree T is a vertex v for which the root radius p(v) attains
a minimum.

(vit) A tree is called central if it has a unique weak centre vg.
With the terminology introduced above, we can define a class of trees which are decply

refated to big lemniscate configurations.

Definition 2.2. A tree T is called a central balanced tree of length n if

(1) 7T has {n + 1) ends.
(2) T is central and the height h(v,), and the root radius p(ry) of the centre vy, both
cqual n.

Definition 2.3. The weight w of a vertex v is the number of edges containing v. Hence
cnds arc vertices of weight one, whereas vertices of weight three are called nodes.

Definition 2.4. A simple central tree of length n is a central balanced tree of length n such
that

(i) the centre has weight 2
{11} there are no vertices with weight strictly bigger than 3
(1) thereis, foreach i = 1., ... {n — 1}, exactly one node at distance i from the centre.
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Remarks 2.5. (i), (ii), (iii) of 2.4 imply

(iv) there are exactly (i + 1) vertices at distance i from ¢,,. In particular, 2.2.(1), follows
from 2.2.(2) and 2.4.(i). (ii), (iii).

(v) There are exactly (n + 1)(n + 2) 2 vertices. One can notice moreover that (iii) could
be replaced by

(iii") there is at most one node at distance i from the centre.

ProPOSITION 2.6. The tree F associated to the big lemniscate configuration T of a poly-
nomial Pe &, is a simple central tree of length n. Moreover, letting X be the topological space
which is the disjoint union of (n + 1) points, n figure eights. and n(n — 1)/2 circumferences, any
simple central tree I of length n uniquely determines an isotopy class of embedding
¢r:X o C,insuch a way that (I, C) is isotopic to (e (X ). C) if T is the tree associated to I

Finally, 7 and F ' are isomorphic if and only if the associated isotopy classes are the same.

Proof. First of all we may set up a bijective correspondence between vertices of 7 and
connected components of X, in such a way that ends correspond to isolated points, nodes to

figure eights, and the centre to the remaining figure eight. We define the embedding ¢ ; by an
def

inductive procedure, assuming that £, has been defined on X% = the union of the
components of X corresponding to vertices ¢ at distance at most i from the centre. The
inductive procedure is based on the following definitions:

Definition 2.7. Given vertices v, v’ of a simple central tree, or more generally, of
a “rooted” tree (where a given vertex has been chosen as root), v is said to be a direct
successor of v' if ¢’ belongs to the path joining v and the centre vy, and moreover
dist(v, vy) = dist{v, v,) + 1.

Remark that a node and the centre have exactly two dircct successors, ends have no
successors, and all other vertices have exactly one direct succeessor. One can then inductively
define the notion of successor.

Definition 2.8. A differentiable embedding of a figure eight E in C, ¢: E — C is said to be
unreversed if, B, and B, being the bounded connected components of C — ¢(E), 0 being the

singular point of E, then B, u B, — ¢(0) is disconnected.

Remark 2.9. There are only two isotopy classes of embeddings ¢: E — C, the reversed
and the unreversed one. In the reversed one, one can distinguish between B, and B, by
imposing the condition ¢B, & JB,, whereas in the unreversed case there is an orientation
preserving diffeomorphism of (C, £(E)) exchanging B, and B,. Moreover, both B, and B,
are diffeomorphic to disks.

Remark 2.10. Any two embeddings of a circumference (resp.: of a point) in a disk are
isotopic.

The initial part of the procedure consists in constructing an unreversed embedding in
C of the figure cight E corresponding to the centre of the tree.

Assume now that one has constructed (inductively) an embedding e?: X - C. For
each vertex te.7 at distance (i + 1) from the centre. there is a unique vertex ¢’ such that v is
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a direct successor of ¢, If X, is the corresponding connected component of X, there are two
possibilities:

(a) X, is a simple closed curve and v is the only successor of ¢’
(b) X, is a figure eight and ¢” has exactly two successors v = t,, and t,.

In case (a), (X ,) bounds only one bounded component B of C — ¢"(X, ), and we may
embed X, in B (in an unreversed embedding if ¢ is a node); in case (b) we choose an ordering
of the two bounded components B,, B, of C — e’(X/): then we may embed (X, ) in B, for
i = 1,2.and in an unreversed way if r; is a node. By induction we construct ¢: X — C and the
unicity follows from Remarks 2.9, 2.10. We omit to verify the other assertions, which follow
immediately from our construction, and from the following

Remark 2.11. If A is a figure eight contained in the big lemniscate configuration
associated to a polynomial Pe %,, then A is given by an unreversed embedding.

Proof. Otherwise, cf. 2.9, {P| would have a local maximum in B, contradicting the
maximum principle.
Q.E.D. for 2.11. and Prop. 2.6.

The proof of Step [ shall be achicved via the following.

Prorosimion 2,12, There exists a bijective correspondence between the set of (isomorphism
classes of ) simple central trees of length nand the set X, _ 5.

Before proceeding to the proof of 2.12., we recall the well known (cf. [4]) Cayley-Priifer
correspondence for vertex labelled trees.

Definition 2.13. Let ¥, be the sct of isomorphism classes of trees with n vertices and with
a bijection of the set of vertices with the set {0, 1,. .., (n = 1)}. The Cayley-Priifer corres-
pondence is a bijective map

CP N, = {0,.. . (n—1)}0 -2

defined as follows: if Se ¥ |, identifying {0,...,(n — 1)} with the set of vertices of S, we
pick the end with biggest i, and if j is the neighbouring vertex, we set x(n — 2) = j. The
same can be done provided one has any strict total ordering of the vertices: therefore,
if 8’ is the subtree of § obtained by deleting the vertex i and the edge [i, j], we can assume
by induction that €2(S’') is defined and equal to (x(0),..., x(n — 3)), and thus there
remains only to define €#(S) = (x(0),...,x(n — 3), x(n — 2)). We set now X,_.; =
{0,...,(n= 1)} 0% =i e,

Xp-2=1(xg, ..., X0-2)|Ix,eN, 0 < x, <n — 1} (2.15)

Then X,_, « X,-, corresponds to a subset of ¥, which we shall denote by 1'.‘,.: recall
that Z,_, = {(xq....,X,-2)€X,-2]0 < x; <, the equation x;, = N has at most 2 solu-
tions YN }.

LemMa 2.16. Under the Cayley—Priifer correspondence. X, _ 3 corresponds to the set ¥, of
vertex labelled trees such that:

(1) taking O as a root (¢f. 2.7.0), if j is a successor of i, then j > i
(2) the tree has no vertex of weight > 4 and 0 is not a node (cf. 2.3.).
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Proof. Let's first prove that € 2(y ,) < £, _,. In fact, we observe that. by (1).(n — 1)isan
end, and removing it (together with the unique edge containing it). we obtain a tree §
in 1",,_1.

The first assertion shows that x,., <n— 2, and the second assertion implies. by
induction. that we have (x,.....x,_;)eX, ;. To prove that (x,.....x,_ .)€, _; it is
enough 1o observe that if the equation x; = N had more than 3 solutions. then N would
have at least 3 successors, contradicting (2).

In the other direction. it suffices to show that if €.#(S)eX, ;. then Se ¥ . Firstly.
(n — 1) is an end: in fact. (n — 1) does not appear in the Cayley-Priifer sequence. and if
a vertex i does not appear in the sequence. then it must be an end. At some step of the
Cayley-Priifer procedure. i has become an end and one marks the neighbouring vertex x;
now. if i were not an end. at some step another neighbouring vertex h would have become
the biggest end and would have been deleted, but then i would appear in the sequence.

Secondly, we use again induction (the cases n = 2,3 being trivial), lctting S’ be the
subtree obtained b\ cancelling the end (n — 1) we may therefore ((x,.. . .. x,_3)€ X, 3N
assume that S'e ¥ »-1- Moreover, § is obtained from S’ by connccting (7 — I) (as an end)
with the vertex x,., through an edge. Hence property (1) is clearly satisficd

{t remains to prove property (2): if x, . # 0, then x, -, is not a node of S if x, ., =0,
thenQisanend of S But S'e ¥, _ i» and it is easy to see then that a vertex with 2 successors
appears  twice  in the  Cayley-Prifer  sequence  {x,.....x,. ;). But since
(Xgoe o2 Xa-2)€Z, .2, X, .2 cannot appear twice in the sequence (x,,,. ... x, ;). Q.ED.

The proof of Proposition 2.12 follows immediately from the following

LemMma 2,17, There is a natural bijection between the set of (isomorphism classes of ) simple
central trees of length n, and the set 3, of vertex labelied trees (cf. 2.16.).

Proof. Let F be a simple central tree of length n: to 7 we associate a vertex labetled
tree Se f;,

First of all 0 correspands to the ¢centee of .77, and i to the unique node v; of .7 at distance
i from the centre. Morcover, an edge connects i and j if ¢, is a successor of v, but v} is not
a successor of any r, which is a successor of v;. Notice that S is a tree clearly satisfying (1),
and (2) holds since if j, k, | are direct successors of i, then the paths {v;, ;1. [v,. 0], [ v]
are disjoint, hence r; has 3 distinct direct successors, contradicting 2.4 (ii).

We have just exhibited a map @:.9¢ 7, = {Simple central trees of length nj — ' cand it
suffices (the sets being finite) to provide a one side inverse 1 - Y%¢7,.Given Se 1 Lfor
each edge [i, j] divide it into (j — i) equal parts, thus crm(mb (j—i—1) new cdbus and
vertices. If i # Ois neither a node noranend, or if i = 0 and 0 is an end, attach to i a string of
(n — i) consecutive edges (thus adding (n — i) vertices).

Whereas, if i is an end of §, attach 10 i two such strings having i is an endpowmnt. The tree
just obtained is Y (S) = J . [t is clear from the construction that .7 has exactly n nodes,
which are in such a natural bijection with the vertices of S (except 0), that if the node t;
corresponds 1o i, it has distance i from the vertex corresponding to 0. It is also ciear that
0 has weight 2 and 2.4.(i), (i), (iii) are verified.

Moreover, by construction, any path from v, to v; continues until an end at distance = n,
and 2.2.(2) holds. We conclude that 7 "€ "6.%,. since, by Remark 2.5, 2.2.(1) holds too. It is
immediate now to verify that ¢(y¢(S)) = S. Q.E.D.

We are now ready to begin

Step 11: E, surjects onto (b'), and is a quotient map for the A,-action. Recall that to
elements [u] of E, there correspond polynomials in &, with monodromy [x], and that by
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Prop. 1.13 every connected component of &, contains one such polynomial, and [u] and
[u'] belong to the same component if and only if they lie in the same A,-orbit. First of all,
then, let’s describe how a tree in E, determines a configuration of lemniscates. We fixed our
base point B, = {1... ., n} € W, and we know that each element of E, determines a covering
space P:S —» C,and [ = P~ 1({0} U {|w| = 1} U...{|w| = n!). Pictorially, the correspond-
ence is as follows: for any midpoint of edge i draw an eight with centre there and (n — i)
circles, as in Fig. 1.

2
1 —
3
(o}
\I
2
(0]
——— ———
! 2

Fig. 1. Edge labelled trees — Big Lemniscates — Simple central trees — Vertex labelled trees

In Fig. 1 is also depicted the associated simple central tree 7, It is somehow easier to
understand the map v: E, — ¥67,, the set of simple central trees of length n constructed
via Proposition 2.6. This map can formally be described as follows: ends of J = v(A)
correspond to vertices of 4, and vertices of J at distance k from the centre correspond to
connected components of the (n — k) skeleton of A, which is defined as the union of the
vertices of A with the first (n — k) edges of A. Edges in 7 are defined according to inclusions
of components of the (n — k) skeleton in components of the (n — k + 1) skeleton.

In fact, it is clear that passing through the critical value i makes the number of connected
components of I, drop by one. On the other hand, if the edge i connects two vertices v, ¢’
but v, ¢’ are not in the interior parts of the figure eight A; < I';, then, choosing 0 as base
point of n, (C — {1,...,n}), we see that a loop around i cannot have a monodromy
exchanging v and v’ (which are roots of P). There remains to prove the following

ProposiTION 2.18. v:E, — €T, is surjective and if v(4) = v(A’) = T, then Aand A’ are
in the same A,-orbit.
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Proof. Let A,; be the ith-skeleton of A: the proof will be based upon induction on i. Le.,
we assume inductively that the following assertions hold true:

(a;) if v(A4) = v(A4") = 7, then there exists a transformation 6€{T,,. .., T;) such that
O'(A')(," = Am

(b;) for each F € 6.7, there exists 4 s.t. A;, maps onto the subtree of 7 at distance at
least (n — i) from the centre.

Let’s prove the inductive step (b;+ ,): we need to add an edge (i + 1) to 4, in such a way
that it joins two vertices belonging to the 2 connected components C, D of A, which
correspond to the 2 direct successors of the unique node of J at distance (n — i — 1) from
the centre; then we can add ad libitum (i.e., to our taste) other edges to complete A, to
a tree A.

To prove (a;+). we may assume that, by the inductive assumption, A = A;,. and it
suffices to show that we can act with a 6e(T,...., T;,;) to have A;. ) = Aj+q). As
before, call C, D the connected components of 4, containing the two vertices of (i + 1). Let

T = [1 T, Ty, = [] T;. where the indexes in the products stand of course for edges of A.
jeC jeD

For this proof, again we choose 0 as base point in C — {1,.. ., n} and a geometric basis

[y.....T,asin Fig. 2. The action of T; is given by a full twist around the circle of radius i,

hence

(@) TUT;) = T;ifi>j

(b) 7:(r‘) = r;_,ri_z e rlr‘rl-l . e r"_.llr,‘_.‘l

() T(I) ="', fori<h.
In fact T(I"}) is as in Fig. 3, T(',) as in Fig. 4. We remark again that the present action
differs from 1.14 because of the change of base point for the generators I'y, . . ., I",. Itis then

2.0 0 0

Fig. 2.

Fig. 3.

Fig. 4.
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easy to see that, for jeC, T(I')) =T, . .. T(T';), but we observe that in general (i > j).
T,.. TWl')=T,.. )|(I'))=T,.. . T,(I'{'I';T"))
=T.. . T0{'r;t . . rpA\Mh, ... T
=T... T (Ot AL O TN, )
T (T =T,
Hence
{ T(T)=T;, Vj<i
Tp(l;)=T;

But.if we choose I';, |, TTi4y ) ifj,, . . ., J, are the ordered (j, <j, < ... <j,)edges of C,
equals (by the above computation)

| AL i PSS VR

Hence the action of T¢ ! on the transposition u(I';. ) is to conjugate it with the product
[, ...T;,, acyclical permutation on the vertices of the component C. Similarly for 7',
hence, using two appropriate powers of T¢ !, respectively T5!, we can choose at our wish
the respective points of C, D, which shall be the two vertices of the edge (i + 1). Q.E.D.

§3. SMALL LEMNISCATE CONFIGURATIONS

As in the introduction, if P e Z,, the small lemniscate configuration associated to P is the
homecomorphism class of the pair (Y, C) where Y, = P~ ‘(O)uA,wx,u. ..UA|, |, where
A, is the component of I}, | homeomorphic to a figure cight. We have thus (n + 1)-points
and n figurc cights, embedded in € by an unreversed embedding, and again we want to give
first an casier combinatorial description of the possible configurations, then to show that all
the a priori possible configurations do in fact occur.

Definition 3.1. The rooted tree associated to a small lemniscate configuration is a rooted
trce R with n unlabelled vertices corresponding to the components Ay, .. . ., A, with
A., as a root vertex, and an edge connecting two vertices corresponding to Aj, . Ay
if A . lics in the interior of A, |, and there is no Ay, lying in the interior of Ay, and
having A, in its interior.

Remark 3.2. The rooted tree R is simply obtained from the vertex labelled tree Se f',,
introduced in 2.16, 2.17, simply by forgetting the vertex labelling except for the “root™ 0.
We obtain immediately from the results of §2, and by the previous remark

THeOREM 3.3. The map which to a connected component U € ny(Z,) associates the small
lemniscate configuration of a polynomial P, is isomorphic, via the bijection ny(#,) <> ‘IA;,. to
the forgetful mapping &: ‘IA‘,, - 3?,, (where .9;‘,‘ is the set of isomorphism classes of rooted trees
with n vertices, such that every vertex has weight 1 < w < 3, and the root has weight < 2),
given by forgetting the labellings 1,...,(n — 1).

CoroLLAaryY 3.4. All a priori possible small lemniscate configurations do in fact occur.
Proof. Given a rooted tree R ea’},,, it suffices to choose a labelling of the other vertices

such that if j is a successor of i, then j > i. That this is possible can easily be shown by
induction, in fact it suffices to label (n — 1) any vertex without successor. Q.E.D.
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Remark 3.5. Notice that the number of allowed labellings for a tree Re A, tells the
number of connected components of #, which realize the small lemniscate configuration
associated to R. This number is | only if R is a string, otherwise it can be very big, as it will
follow from the results in the appendix.

§4. REAL POLYNOMIALS

The main purpose of this section is to show that every big lemniscate configuration
occurs as the lemniscate configuration associated to a suitable real polynomial Pe R[x] of
degree (n + 1) with (n + 1) distinct roots. To this purpose, we give the following.

Definition 4.1. An edge labelled tree A€ E,, is said to be linear if it does not have nodes
(i.e., it is homeomorphic to [0, 1]).

ProposiTION 4.2, Every A, -orbit in E, contains a linear tree A.

Proof. By Proposition 2.18, every orbit corresponds uniquely to a simple central tree
J of length n. First we shall establish a bijection between the set of ends of .7 and a subset
of [0, 1] of the form {a,.....a,}, where a, =0 <4, <...<a,=1. Then we construct
A simply by considering {a,.. ... q,} as the set of vertices of A, and letting the intervals
(a;, ;. ] be the edges of A. There remains to give a labelling to each edge [a;, a;,,] We
can do this in a unique fashion by giving to [a;, a;, ] the label k iff 2k equals the geodesic
distance of the two ends corresponding to a;, ;. . It is easy to verify that A€ E,, and that
v(A) = 7. Q.E.D.

(4.3) Given a monic lemniscate generic polynomial P(x) = [] (x — x;) of degree n + 1
i=1

with real roots x, < x; <... < x,, we consider the following linear tree A’ such that

(i) the vertices of A" are the points xg,. . ., X,

(ii) the edges of A’ are the intervals [x;, x;4,]

(1)) [x;, xi+ (] has the label j if and only if, letting y; be the only root of P’(x) in the
interval (x;, x;, ) then, setting as usual w; = P(y;), we have |w,| <[w,| <... <|w,]|

The following lemma is a particular case of a thcorem of C. Davis ([3]).

Lemma 4.4. Given a linear tree A, there do exist real numbers xo < x; < ... < x, such
that A is isomorphic to the tree A’ obtained as in (4.3).

Proof. Notice that | P(y;)| = max {[P(y)||ye[x;. x;+,]} and that if | x; — x;,+,| = 0, this
maximum also tends to 0. Thus, fixing i, we can achieve that | P(y;)| be minimum. The rest of
the proof follows easily. Q.ED.

THeOREM 4.5, For each big lemniscate configuration, there exists a (real) monic lemniscate

"

generic polynomial with n + 1 (distinct) real roots P(x) = n (x — x;), whose big lemniscate

i=1

configuration T is isotopic to the given one.

Proof. By the main theorem, Prop. 2.18, Prop. 42 and Lemma 4.4 we can take
a polynomial P(x) as above whose associated lincar tree A’ (cf. 4.3) represents the A,-orbit
associated to the given lemniscate configuration. To finish the proof it suffices to verify that
the tree A’ gives the monodromy of P. But the n paths connecting x; with x;, , and obtained



POLYNOMIAL -LEMNISCATES, TREES AND BRAIDS 635

by replacing. in the segment [x;, x;.,], @ small segment with center y; with the lower
semicircumference with same center and ends, are such that their images under P form
a geometric basis of 7 (T — tw ... w,|) Q.E.D.
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APPENDIX
COUNTING LEMNISCATE CONFIGURATIONS

By FABRIZ10 CATANESE (with the cooperation of RICK MIRANDA, DON ZAGIER, ENRICO BOMBIERI).

§AL. BIG CONFIGURATIONS
Our first purpose is to give a formula for the number of big lemniscate configurations of lemniscate
generic polynomials of degree (n + 1), By the main theorem, this number equals the cardinality of
Y, >, where

.= xg . X)0<x, <@, and. YmeN (0)

there are at most 2 integers 0 <i<n such that x; =mj.

. = d L
THEOREM L. Set ay =0, a, = cardindlity of Z, .. Then Z —:1" =(l —sing)~ L.
n=0 n.
We shall give the proof of Theorem 1 by a sequence of steps. The first one, suggested by Rick
Miranda, is to study the generating function corresponding to the a,’s through a generating function
in two variables, for whose coctlicients it is possible to write a recursion relation. So we define

Toa=ilxg....ox e feard{x,. . o x, =n 4+ 1~k

In other words, T, consists of the sequences where k integers occur twice.

LemMa 3 If A, = card £, . then

.‘1,,_, = (l + l)/1,,-|.,' + (n + 2 - 2“.‘1,,- li~-1-
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Proof. Let m:I —ZX,_, be the map such that =m(xq,....x,)=(x,,...,x,_,) Then
n(Zai) S Zaoy iV, yioy. Moreover if y =(yo.....¥a-1) belongs to Z,_ ;.7 '({y})~Z,, has
cardinality (i + 1). since x, must be different from all the v/'s. Whereas if yeZ,_,,_,, x, has to be
chosen among the n — 2(i — 1) numbers which occur exactly once in the Priifer sequence y. Q.E.D.

We set, for convenience (c¢f. Thm. 1).

a(n, i) = cardinality of £, ;, so that by Lemma 3 4)

ani)=(@G+Da(n—-1,i)+(n+1-2i)an—-1,i—1). 4)

Remark 5. a(n.i) = 0 for 2i > n. The first values of a(n. i) are given by the following table

i= 0 1 2 3

n= 0 1

1 1

2 1 1

3 1 4

4 1 11 4

5 1 26 34

6 1 57 180 34

7 1 120 568 496

It is obvious that a, < n!, on the other hand, by (4'), since

"2

a,= Y a(ni),

i-0

n-1)y2
a,= 3 atn—Lii+D+(@n—-1-2)]

=0

= Z a(n—l,i)(n—i)z(":I)a,,.l.

igin )2 -

hence u, > (1 + 1)'2 7" Hence, in order to avoid to have a diverging scries as gencrating function, we
follow Zagier’s advice and we set

< a(n,i) 1 +x 1 + 4x I+ 1lx +4x2
Alx, 1) = —_— "=+t + 2+ t*+ o+
.0 Zo n! 2 6 24

where a(n, i) = 0 for n < 2i. Then the recursion formula (4°) translates into the following P.D.E.

cA cA
1 —xt)— +(2x3 — x)— = A. 8
In fact, we have: ( X)‘jl (2 )‘ﬁ'x ®
A .J . + 1,
“_ 5 a(rzn'x,,m-.z 3 x.,,ﬁ"‘_)
o L ae(m—=1) V7o n!
nz20
IPA ¥ a(m, j) W= “.lna(n.i— )
Xt — = —_— = ) e
M L Tsem =1 ot (n—1)
nz0
cA a(m,j) o a(n,i—1)
i = = gty = xi — 1) ————
¢ Cx MIZ;O m! / E:‘, ( ) n!
nz0
oX .30 n

Looking at the coefficient of x‘t", multiplied by n!, we have for i > 1

a(n + 1,i) — na(n, i — 1) + 2(i — Da(n. i — 1) —ia(n. i) = a(n, i)
since
a(n + 1,i) = (i + Da(n, i) + [n = 2( — D]a(n,i = 1) by (4').
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Moreover, clearly A(x,t) satisfies the Boundary values

A0, 1) =¢'
9
{A(x.0)= 1 )
We seek for a change of coordinates
(x,¢) = (x. flx,ch=(x,1) (10)

. . d FA  CA
where the P.D.E. reduces to an O.D.E. in the x variable. Since yp Alx, f(x,c)) = (c“— +f e want
A X C

éA A . ~ L. . ,dt
to find f(x) such that — + f 5= (2x% — x) ' 4, ie.. in view of (8). and since f’ = ™ we need to
C )

x
solve the O.D.E.

dr(2x? — x) = (1 — xt)dx (1y
Dividing by — x(1 — 2x)"2, we get
—dx
1 -2 —t(l = 2x)" Vdx =
di( x) ( x) x 2972
which yields, by integration,
dx 1—(t —29"?
01 -20 = [ o g (2

(the last equality holds up to a constant of integration which can be set equal to ¢). In the (x.¢)
variables the P.D.E. for A4 becomes

dlog A l (13)
= ———
dx 2x% — x
there is a function F(c) such that
I - 2x
Al =~ | F(0) (14)
We set for convenicnce
1 - /1 =2
u = log ——— (15)
1+ /1 -2

Thus
c=t(1 =2x)'"? +u

Alx, 1) = (—’—3;—*—') Fit /1 = 2x + u).

The boundary condition (cf. (9)) A(x,0) = | implies

Flu) = e which equals, by (15), and an easy calculation, (16)
2

F TR m———— | 7

(w) e e =2 (7

Whence

A,y = 24— 2 2“)[
X

e,v,,,"_:'l—,/l — 2 ionl + /1 -2 2]"
I+ /1~ 2x - /1 —2x

-2
sinh(é./l —2x)

t
=lcosh{- /T=2x)-—>— 7
(317 ) - — =

TOP 30:4-1
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The last formula clearly shows that 4(0, 1) = ¢'. Plugging in x = 1, we get

AL = —4[e* 1 =P + e (1 + i) —4]7!

; -1
= [l + %(e“ - e"')] =(1 —sing)~ L Q.E.D. for Theorem 1.

§A2. SMALL CONFIGURATIONS

By Theorem 3.3, and Corollary 3.4, we know that there is a natural bijection between the set of
isotopy classes of small lemniscate configurations and the set #, of isomorphism classes of rooted
trees with n vertices such that each vertex has weight w < 3, and the root has weight w < 2. We set

b, = #(A,)
© (19)
S =Y bt", where we have set by(=b, =bh;) =1

n=0

It is convenient to have set b, = 1, since we get thus the following recursion formulae.
PROPOSITION 20. by, = by 1 bg + . oo + bby_ 1 baner = bagby + bawy by +... + (b} +b,)/2.

Proof. Erasing the root of a tree in J;,_. one obtains a pair of trees (one of them is possibly empty),
in#, 0.2, .. with 2i <m — 1. Conversely, two trees as above combine to yield a tree in .);’,,,: one
has to take special care of the case when i = m — 1| — i, thatis, m = 2i + {, where the (unordered) pair
may consist of equal trees. Q.ED.

To simplify the recursion we set

b;=0 for jel2Z-2Z (21)
thus we have, for j > |
!

|
"1 =5 Z bbby ioyv + by w2 (22)
2.5 2

Multiplying by t/ and summing over j we get
1 J _ i
Jo=1+ Y bt'=1+ E’I: Y (z byt'b, it »|...> v by _”/2(,-’1«1/.J'
IER j2zi\i=0
that is,
SO =1+ (S0 +f0%). (23)

Before proceeding to discuss the functional equation (23) for the generating function f, we would like
to give some lower and upper bounds for the b,'s, which in particular imply that the power scries f (1)
has a strictly positive radius of convergence t, (t, is also the first singular point of fon the positive
half-axis, since f has positive cocefficients).

For this purpose, we define functions y(1), ¢ (1) by the following recursions

r l L]
co=1 c...=§<2c,c,-,-)
i=0
do=l du*l=<zd|dl<i>

< =0 (24)
=1=3 ¢,

nz0

vy =1=% d.r

. n20

By virtue of the recursion formulae (22), (24) we obtain
y(t) S f{t) < o). (25)
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The auxiliary functions 7, ¢ are algebraic. since they clearly satisfy

- 1 —2

t
26)
s - 1% (
w =14 [w' <> l// = v
2
Expanding the power series y
l (12 ol CY=-3)
70 = —t"[Z (—2ri‘< . )]= )3 (ﬂ L )r"‘
i=1 ¢ i=1 \j=2 J
we get the rather crude estimates
a=[12~3j)<b, <2, =d, 27)

i=2
implying that log b, grows linearly with n. We follow now Bombieri's beautiful idea to relate the

function f(¢) to the iteration of complex quadratic polynomials studied by Douady and Hubbard
(cf. [1A]). We set

g =1—-ty@t)=1- Zh,r“'

i=0

. 1 * -

v(z) =g(z*)/z = -— Z bzt
- i

Multiply the functional equation by 2r and replace ¢f (1) by (1 — g(1)): then g(t) satisfies

(+) g(t?) = g*(t) + 2e.
Letting ¢ = 22, and using g(z2) = ze(z), finally we characterize ¢ as the solution of the following
problem
(22 =r(2)? +2
v(z°) lr( ) (29)
v(z) = -+ ... (power serics in Z).
One can rephrase (29) as follows, setting
w=l/z (30)

Then §(w) = v(1/w) is a local biholomorphism sending . on the Riemann sphere to itelf and with
differential equal to 1 at «: we denote by ¢, = ¢ the local inverse to this biholomorphism, so that
setting

Fx)=x+c¢ for ceC, we have 31)

b = Eo sveale
{Fz ; &+ F, or, equivalently, 32)

¢, Fyro! =F,.
We refer to [1A] for the following properties of ¢, = ¢. If T denotes the Riemann sphere, ¢ = ¢,
extends to an analytic homeomorphism of

£—L,~Z—BOR) where R=() "?

(to being the radius of convergence of f(¢), ¢(1)), B(0, R) is the ball with centre 0 and radius R, whereas,
if, F} stands for the nth iterate of F,, and
n=n,=logle,()| = lim 27" log|F3(z)|, (33)
L, is the figure eight L, = {z|n,(z) < n,(0)},
and its interior contains the Cantor set (39)
K, = {z| F3(z) does not tend to « }.

We can now draw the following conclusions: since R ™!

I r . ~1
—=z{l =Y b:¥*2)
t(z) ( -';o ! )

is the radius of convergence of
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which is a series with positive coefficients, we get that

A

R = 0.0) = cxp( lim 2" "log FS(())).

Setting

and observing that

2= Fylza- 1) = FYO)

log(z,. )= 2logiz,) + log(l +

we obtain

l x
R = exp(;logZ + Y 27" 'og

n=1

Since R = (t,)" "2, we get

(

-
l*—,

~-n

-

)

1
THEOREM 2. limsup,- . —logh, = — 2log R. where R is given by (38).
n

I would like to thank also Adrien Douady for reminding me about (35).
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