d-VERY-AMPLE LINE BUNDLES AND EMBEDDINGS OF HILBERT SCHEMES OF 0-CYCLES

Fabrizio CATANESE - Lothar GŒTTSCHE

The purpose of this short note is to sharpen one of the results of a recent paper by Beltrametti and Sommese (theorem 3.1. of [B-S]), concerning the notion of d-very ample line bundles.

In fact, our main theorem gives indeed another characterization of this notion.

<u>so</u> Notation and statement of the result

Definition 0.1 (cf. [B-S]) Let X be a complete algebraic variety over an algebraically closed field k (or a projective scheme over spec(k)). i) by a 0-cycle on X we mean a purely 0-dimensional subscheme Z of X, defined by a sheaf of ideals J_Z of \mathfrak{O}_X (we set then $\mathfrak{O}_Z = \mathfrak{O}_X / J_Z$)

ii) the length d of Z is the dimension of the k-vector space $H^0(\mathfrak{O}_Z)$ Let \mathcal{L} be an invertible sheaf on X, then for any 0-cycle Z on X we can consider the restriction map r_Z to Z for the space of sections of \mathcal{L} , which fits into the exact sequence

 $\begin{array}{ccc} (*) \ 0 \to \ H^0 \ (X, J_Z \ \ensuremath{\mathcal{L}}) \to \ H^{\bar 0} \ (X, \ensuremath{\mathcal{L}}) \longrightarrow \ H^0 \ (\ensuremath{\mathcal{L}} \otimes \ensuremath{\mathcal{C}}_Z) & \longrightarrow \\ \longrightarrow & \ H^1 \ (X, J_Z \ \ensuremath{\mathcal{L}}) \longrightarrow \ H^1 \ (X, \ensuremath{\mathcal{L}}) \longrightarrow \ 0 \ . \end{array}$

iii) L is said to be **d-very ample** if the restriction map r_Z is onto for every 0-cycle Z of length less than or equal to (d+1).

<u>Remark 0.2</u> i) The notion of 0-very ample corresponds to the classical notion of "spanned by global sections", while the classical notion of "very ample" is easily seen to correspond to the notion of 1-very ample.

ii) If \mathcal{L} is 0-very ample, then $H^0(X, \mathcal{L})$ defines a morphism $\varphi_0 : X \longrightarrow \mathbb{P} (H^0(X, \mathcal{L})^*)$, which is an embedding precisely when \mathcal{L} is 1-very ample.

iii) If \mathcal{L} is d-very ample, then (*) associates to every 0-cycle Z of length = d+1 a subspace of H⁰ (X, \mathcal{L}) of codimension = d+1

(just H⁰ (X,J_Z L) !), and this map yields indeed a morphism

CATANESE - GŒTTSCHE

(0.3) $\varphi_d : X^{[d+1]} \longrightarrow \text{Grass} (d+1, H^0(X, \mathbb{L})^*)$,

where $X^{[d+1]}$ is the Hilbert scheme of 0-cycles on X of length equal to (d+1).

Then we claim that our previous remark ii) generalizes in a quite natural fashion, we have in fact the following :

MAIN THEOREM

The above morphism φ_d is an embedding if and only if Σ is d+1-very ample.

As we already mentioned, our main theorem improves upon theorem 3.1 of [B-S], where it is proven that φ_d is 1-1 if \mathcal{L} is (d + 1) - very ample and an embedding provided \mathcal{L} is 3 d - very ample (the only reason there to assume that X is a smooth projective surface is just in order to let the Hilbert scheme of 0-cycles to be smooth).

We would finally like to call the reader's attention to the quoted article by Beltrametti and Sommese ([B-S]), whose main theorem was an extension of Reider's criteria (cf. [Re]) in order to ensure d-very ampleness of the adjoint bundle of a nef line bundle on a smooth algebraic surface X.

<u>\$1</u> Proof of the main theorem

Lemma 1.1

Let A be a semilocal ring containing the field k and with residue fields isomorphic to k, let I be a finitely generated ideal of A of finite colength (i.e., B = A/I is Artinian).

Then there does exist an ideal J of A with $I^2 \subset J \subset I$, and such that I / J is a 1-dimensional k-vector space.

Assume moreover that we are given a non zero homomorphism $f: I / I^2 \longrightarrow B = A/I$ of A-modules (equivalently, of B-modules): then we can find such a J satisfying the further property that $J / I^2 \supset$ ker f.

Conversely, given J, such that C= A/J has a non trivial radical, we can find I with $I^2 \subset J \subset I$, and such that I/J is a 1-dimensional k-vector space.

Proof Let's first prove the first assertion.

Denote by N' the B-module I / I² and by K the B-submodule = ker(f) (set K=0 if we are not given f). Set moreover N = N'/K: by our assumption N is $\neq 0$, and a finite B-module.

Assume that M is a B-submodule of N such that N/M is a k-vector space of dimension 1 : then it suffices to take J as the inverse image of M under the surjection of I onto N.

To show the existence of such a submodule M ,let \mathcal{M} be the radical of the Artinian ring B. By Nakayama's lemma, the submodule $\mathcal{M}N$ is a proper submodule of N ,and it suffices, replacing N by N/ $\mathcal{M}N$, respectively B by B/ \mathcal{M} , to reduce to the case where B is isomorphic to a direct sum ring k^r , and where N is a finite unitary B module (i.e., the identity of k^r acts as the identity on N).

Since N is finite, there is an epimorphism $(k^r)^n \longrightarrow N$, thus N has a filtration by B -submodules $0 \subset N_1 \subset N_2 \subset ...N_{nr-1} \subset N$ such that N_i/N_{i-1} is either 0 or isomorphic to k. Whence our claim.

To prove the second assertion, let C = A/J, consider the natural decreasing filtration on C given by the powers of the radical \mathcal{M} of the Artinian ring C. Let C' be the last non zero ideal in the filtration. Choose then a 1-dimensional k-vector subspace L of C', and let I be its inverse image under the surjection of A onto A/J.

The inclusion $I^2 \subset J$ follows since $L^2 = 0$ in C.

<u>qed.</u>

We shall apply the previous lemma to the situation where A is the semilocal ring of functions which are regular at the points of supp(Z) (i.e.,given an affine open set $U \supset \text{supp}(Z)$, we localize $H^0(U, \mathfrak{O}_X)$ w.r.t the multiplicative set which is the complement of the union of the prime ideals corresponding to points of supp(Z)), and where I equals the ideal $I = H^0(U, J_Z \mathfrak{O}_X)$.

Thus $B = \Im_Z \cong H^0(\Im_Z)$, and the first assertion of the lemma provides a 0-cycle Z' containing Z, and with length (Z') = length(Z) +1.

Corollary 1.2

Let $f: J_Z / J_Z^2 \longrightarrow \mathfrak{O}_Z$ be a non zero homomorphism of \mathfrak{O}_Z modules, and let $F: H^0(X, J_Z \mathfrak{L}) \longrightarrow H^0(\mathfrak{L} \otimes \mathfrak{O}_Z) \cong \mathfrak{O}_Z$ be the induced homomorphism of finite dimensional k-vector spaces. Then, if length(Z) = d+1, and \mathfrak{L} is (d+1) -very ample, then F is also nonzero.

Proof Pick a 0-cycle Z' of length (d+2) according to the assertion of lemma 1.1.

By assumption, $H^0(X, \mathbb{L}) \longrightarrow H^0(\mathbb{L} \otimes \mathbb{O}_{Z'})$ is surjective, hence $H^0(X, J_7 \mathbb{L})$ maps onto J_7 / J_7' .

On the other hand, $J_{Z'} / J_{Z^2}$ contains ker f, hence the image of H⁰ (X, $J_Z L$) into J_Z / J_Z^2 is not contained in ker f, and F is not zero.

ged.

MAIN THEOREM

If \mathcal{L} is d-very ample, then the morphism

 $\varphi_d : X^{[d+1]} \longrightarrow \text{Grass} (d+1, H^0(X, \mathcal{L})^*)$ is an embedding if and only if \mathcal{L} is also (d+1)-very ample.

Proof Given two 0-cycles of length d+1, Z and Z', assume that φ_d (Z) = φ_d (Z').

Then $H^0(X,J_ZL) = H^0(X,J_Z'L) = H^0(X,(J_Z+J_Z')L)$, hence if Z'' is defined by the ideal (J_Z+J_Z') , then

H⁰ (X, L) $-r_{Z^{"}}$ → H⁰ (L ⊗ C_{Z"}) has a (d+1)-dimensional image. If length(Z") ≥ d+2, we can find, by lemma 1.1, a 0-cycle W of length =(d+2), such that W is contained in Z"; but then r_{W} cannot be surjective, which is impossible if L is (d+1) -very ample.

We have shown the injectivity of φ_d under the assumption that \mathcal{L} be (d+1)-very ample; with the same assumption, the assertion that φ_d is an embedding follows directly from corollary 1.2.

In fact, the tangent space to $X^{[d+1]}$ at the point Z, by standard deformation theory, coincides with the sections of the normal sheaf to Z,which is exactly Hom_{OZ}(J_Z/J_Z², O_Z).

On the other hand, the tangent space to the Grassmanian at φ_d (Z) coincides with Hom _k (H⁰ (X,J_ZL),H⁰ (L \otimes \odot_Z)), and it is not difficult to verify (see e.g. [B-S]) that the differential of φ_d carries notation being as in corollary 1.2, f to F. Thus corollary 1.2 simply says that the differential of φ_d is injective.

In the other direction, if there exists a 0-cycle Z' of length (d+2) with $r_{Z'}$ not surjective, there are two possibilities.

If \mathfrak{O}_Z' is reduced, then we have (d+2) distinct points, and any choice of (d+1) of them yields, by our assumptions, distinct 0-cycles with the same image under ϕ_d .

Otherwise, if \mathfrak{O}_Z' is not reduced, we can pick-up, by lemma 1.1,a 0-cycle Z of length (d+1) contained in Z' ,and such that $J_Z \supset J_Z' \supset J_Z^2$ We then let f in Hom $\mathfrak{O}_Z(J_Z/J_Z^2, \mathfrak{O}_Z)$ be the composition of the natural surjection of J_Z/J_Z^2 onto

 $J_Z / J_Z \cong k$ with the natural embedding of k into \mathfrak{O}_Z .

By construction, the associated homomorphism F in the space

Hom k (H⁰ (X,JZL), H⁰ ($\mathcal{L} \otimes \mathfrak{O}_Z$)) is zero, and we succeeded in showing that the differential of φ_d is not injective.

<u>qed.</u>

CATANESE - GŒTTSCHE

REFERENCES

[B-S] - Beltrametti, M.-Sommese, A.J.: "Zero cycles and k-th order embeddings of smooth projective surfaces", in 'Problems on surfaces and their classification', Proc. Cortona 1988, Symposia Mathematica, INdAM, Academic Press

[B-F-S] - Beltrametti,M.-Francia,P. -Sommese,A.J.: "On Reider's method and higher order embeddings", Duke Math. Jour. 58,2,(1989),425-439

[Rei] - Reider,I. : "Vector bundles of rank 2 and linear systems on algebraic surfaces", Ann. of Math. , **127**, (1988), 309-316 [Tju] - Tjurin,A.: "Cycles, curves and vector bundles on an algebraic surface", Duke Math. Jour. , **54**, (1987), 1-26

Fabrizio CATANESE, Dipartimento di Matematica dell'Universita' di Pisa, via Buonarroti 2,56127 PISA, ITALIA

Lothar GETTSCHE, Max -Planck Institut fur Mathematik , Gottfried Claren Strasse 26,D-5300 BONN 3,BDR

(Received April 23, 1990)