d-VERY-AMPLE LINE BUNDLES AND EMBEDDINGS OF HILBERT SCHEMES OF 0-CYCLES

Fabrizio CATANESE - Lothar GGETTSCHE

The purpose of this short note is to sharpen one of the results of a recent paper by Beltrametti and Sommese (theorem 3.1. of [B-S]), concerning the notion of d-very ample line bundles.
In fact, our main theorem gives indeed another characterization of this notion.

S0 Notation and statement of the result

Definition 0.1 (cf. [B-S]) Let X be a complete algebraic variety over an algebraically closed field k (or a projective scheme over spec(k)).
i) by a 0 -cycle on X we mean a purely 0 -dimensional subscheme Z of X, defined by a sheaf of ideals J_{Z} of $\theta_{X} \quad$ (we set then $\theta_{Z}=\theta_{X} / J_{Z}$) ii) the length d of Z is the dimension of the k - vector space $H^{0}\left(\theta_{Z}\right)$

Let \mathcal{L} be an invertible sheaf on X, then for any 0 -cycle Z on X we can consider the restriction map r_{Z} to Z for the space of sections of \mathscr{L}, which fits into the exact sequence

$$
\begin{aligned}
& \left(^{*}\right) 0 \rightarrow \mathrm{H}^{0}\left(\mathrm{X}, \mathrm{~J}_{\mathrm{Z}} \mathcal{L}\right) \rightarrow \mathrm{H}^{0}(\mathrm{X}, \mathscr{L}) \longrightarrow \mathrm{r}_{\mathrm{Z}} \rightarrow \mathrm{H}^{0}\left(\mathscr{L} \otimes \Theta_{\mathrm{Z}}\right) \longrightarrow \\
& \xrightarrow{\longrightarrow} \mathrm{H}^{1}\left(\mathrm{X}, \mathrm{~J}_{\mathrm{Z}} \mathscr{L}\right) \longrightarrow \mathrm{H}^{1}(\mathrm{X}, \mathscr{L}) \longrightarrow 0
\end{aligned}
$$

iii) \mathcal{L} is said to be d-very ample if the restriction map r_{Z} is onto for every 0 -cycle Z of length less than or equal to $(d+1)$.

Remark 0.2 i) The notion of 0 -very ample corresponds to the classical notion of "spanned by global sections", while the classical notion of "very ample" is easily seen to correspond to the notion of 1 -very ample.
ii) If \mathscr{L} is 0 -very ample, then $H^{0}(X, \mathscr{L})$ defines a morphism $\varphi_{0}: \mathrm{X} \longrightarrow \mathbb{P}\left(\mathrm{H}^{0}(\mathrm{X}, \mathscr{L})^{*}\right)$, which is an embedding precisely when \mathcal{L} is 1 -very ample .
iii) If \mathcal{L} is d-very ample, then (*) associates to every 0 -cycle Z of length $=d+1$ a subspace of $\mathrm{H}^{0}(\mathrm{X}, \mathscr{L})$ of codimension $=\mathrm{d}+1$ (just $\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{I}^{2}\right.$ L) !), and this map yields indeed a morphism
(0.3) $\quad \varphi_{d}: X^{[d+1]} \longrightarrow$ Grass $\left(d+1, H^{0}(X, \mathscr{L})^{*}\right)$,
where $\mathrm{X}^{[d+1]}$ is the Hilbert scheme of 0 -cycles on X of length equal to (d+1).
Then we claim that our previous remark ii) generalizes in a quite natural fashion, we have in fact the following :

MAIN THEOREM

The above morphism φ_{d} is an embedding if and only if \mathcal{L} is $\quad \mathbf{d}+\mathbf{1}$-very ample.

As we already mentioned, our main theorem improves upon theorem 3.1 of [B-S], where it is proven that φ_{d} is $1-1$ if \mathcal{L} is $(d+1)$ - very ample and an embedding provided \mathcal{L} is 3 d -very ample (the only reason there to assume that X is a smooth projective surface is just in order to let the Hilbert scheme of 0 -cycles to be smooth).
We would finally like to call the reader's attention to the quoted article by Beltrametti and Sommese ([B-S]), whose main theorem was an extension of Reider's criteria (cf. [Re]) in order to ensure d-very ampleness of the adjoint bundle of a nef line bundle on a smooth algebraic surface X .

S1. Proof of the main theorem

Lemma 1.1

Let A be a semilocal ring containing the field k and with residue fields isomorphic to k, let I be a finitely generated ideal of A of finite colength (i.e., $\mathrm{B}=\mathrm{A} / \mathrm{I}$ is Artinian) .
Then there does exist an ideal J of A with $\mathrm{I}^{2} \subset \mathrm{~J} \subset \mathrm{I}$, and such that I / J is a 1 -dimensional k -vector space.
Assume moreover that we are given a non zero homomorphism
$\mathrm{f}: \mathrm{I} / \mathrm{I}^{2} \longrightarrow \mathrm{~B}=\mathrm{A} / \mathrm{I}$ of A - modules (equivalently, of B -modules) : then we can find such a J satisfying the further property that J / I^{2} ว ker f.
Conversely, given J , such that $\mathrm{C}=\mathrm{A} / \mathrm{J}$ has a non trivial radical, we can find I with $\mathrm{I}^{2} \subset \mathrm{~J} \subset \mathrm{I}$, and such that I / J is a 1 -dimensional k -vector space.

Proof Let's first prove the first assertion.
Denote by N^{\prime} the B -module $\mathrm{I} / \mathrm{I}^{2}$ and by K the B -submodule $=\operatorname{ker}(\mathrm{f})$ (set $K=0$ if we are not given f). Set moreover $N=N^{\prime} / K$: by our assumption N is $\neq 0$, and a finite B -module.

CATANESE - GEETTSCHE

Assume that M is a B -submodule of N such that N / M is a k -vector space of dimension 1 : then it suffices to take J as the inverse image of M under the surjection of I onto N .
To show the existence of such a submodule M, let \mathcal{M} be the radical of the Artinian ring B. By Nakayama's lemma, the submodule MN is a proper submodule of N,and it suffices, replacing N by $N / M N$, respectively B by B / M, to reduce to the case where B is isomorphic to a direct sum ring kr^{r}, and where N is a finite unitary B module (i.e., the identity of k^{r} acts as the identity on N).
Since N is finite, there is an epimorphism ($\left.k^{r}\right)^{n} \longrightarrow N$, thus N has a filtration by B -submodules $\quad 0 \subset \mathrm{~N}_{1} \subset \mathrm{~N}_{2} \subset \ldots \mathrm{~N}_{\mathrm{nr}-1} \subset \mathrm{~N}$ such that $\mathrm{N}_{\mathrm{i}} / \mathrm{N}_{\mathrm{i}-1}$ is either 0 or isomorphic to k . Whence our claim .
To prove the second assertion, let $\mathrm{C}=\mathrm{A} / \mathrm{J}$, consider the natural decreasing filtration on C given by the powers of the radical M of the Artinian ring C . Let C^{\prime} be the last non zero ideal in the filtration. Choose then a 1 -dimensional k - vector subspace L of C^{\prime}, and let I be its inverse image under the surjection of A onto A / J.
The inclusion $\mathrm{I}^{2} \subset \mathrm{~J}$ follows since $\mathrm{L}^{2}=0$ in C .
ged.
We shall apply the previous lemma to the situation where A is the semilocal ring of functions which are regular at the points of $\operatorname{supp}(Z)$ (i.e.,given an affine open set $U \supset \operatorname{supp}(Z)$, we localize $\mathrm{H}^{0}(\mathrm{U}, \vartheta$ X) w.r.t the multiplicative set which is the complement of the union of the prime ideals corresponding to points of $\operatorname{supp}(\mathrm{Z})$), and where I equals the ideal $\mathrm{I}=\mathrm{H}^{0}\left(\mathrm{U}, \mathrm{Z}{ }^{\ominus} \mathrm{X}\right)$.
Thus $\mathrm{B}=\theta_{\mathrm{Z}} \cong \mathrm{H}^{0}\left({ }^{(} \mathrm{Z}\right)$, and the first assertion of the lemma provides a 0 cycle Z^{\prime} containing Z, and with length $\left(Z^{\prime}\right)=$ length $(Z)+1$.

Corollary 1.2

Let $\mathrm{f}: \mathrm{J}_{\mathrm{Z}} / \mathrm{J}^{2} \longrightarrow{ }^{2}{ }^{\mathrm{O}}$ be a non zero homomorphism of ${ }^{\theta_{Z}}$ modules, and let $\mathrm{F}: \mathrm{H}^{0}\left(\mathrm{X}, \mathrm{J}^{£}\right) \longrightarrow \mathrm{H}^{0}\left(\mathcal{L} \otimes \Theta_{\mathrm{Z}}\right) \cong \theta_{\mathrm{Z}}$ be the induced homomorphism of finite dimensional k-vector spaces. Then, if length $(Z)=d+1$, and \mathscr{L} is ($d+1$) -very ample, then F is also nonzero.

Proof Pick a 0 -cycle Z ' of length ($\mathrm{d}+2$) according to the assertion of lemma 1.1 .
By assumption, $\mathrm{H}^{0}(\mathrm{X}, \mathscr{L})-\mathrm{r}_{\mathrm{Z}} \rightarrow \mathrm{H}^{0}\left(\mathcal{L} \otimes{ }^{\ominus} \mathrm{Z}^{\prime}\right)$ is surjective, hence $\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{J}_{\mathrm{Z}} \mathrm{L}\right)$ maps onto $\mathrm{J}_{\mathrm{Z}} / \mathrm{J}_{\mathrm{Z}}$.
On the other hand, $\mathrm{J}^{\prime} / \mathrm{J}^{2}$ contains ker f , hence the image of $H^{0}\left(X, J_{Z^{\mathcal{L}}}\right)$ into J_{Z} / J^{2} is not contained in ker f, and F is not zero. ged.

MAIN THEOREM

If \mathscr{L} is d-very ample , then the morphism
$\varphi_{\mathrm{d}}: \mathrm{X}[\mathrm{d}+1] \longrightarrow$ Grass $\left(\mathrm{d}+1, \mathrm{H}^{0}(\mathrm{X}, \mathscr{L})^{*}\right)$ is an embedding if and only if \mathcal{L} is also ($\mathrm{d}+1$) -very ample.

Proof Given two 0 -cycles of length $\mathrm{d}+1, \mathrm{Z}$ and Z^{\prime}, assume that $\varphi_{\mathrm{d}}(\mathrm{Z})$ $=\varphi_{\mathrm{d}}\left(\mathrm{Z}^{\prime}\right)$.
Then $\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{J}^{\mathcal{L}}\right)=\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{J}_{\mathrm{Z}^{\prime}}{ }^{\mathcal{L}}\right)=\mathrm{H}^{0}\left(\mathrm{X},\left(\mathrm{J}_{\mathrm{Z}^{+}} \mathrm{J}^{\prime}\right)^{\prime}\right)$ L $)$, hence if $\mathrm{Z}^{\prime \prime}$ is defined by the ideal $\left(\mathrm{J}^{+}{ }^{+} \mathrm{Z}^{\prime}\right)$, then
$\mathrm{H}^{0}(\mathrm{X}, \mathscr{L}) \mathrm{I}_{\mathrm{Z}^{\prime \prime}} \rightarrow \mathrm{H}^{0}\left(\mathscr{L} \otimes \Theta^{\prime \prime}\right)$ has a (d+1)-dimensional image.
If length $\left(Z^{\prime \prime}\right) \geq \mathrm{d}+2$, we can find , by lemma 1.1 , a 0 -cycle W of length $=(\mathrm{d}+2)$, such that W is contained in Z "; but then r_{W} cannot be surjective, which is impossible if \mathcal{L} is $(d+1)$-very ample.
We have shown the injectivity of φ_{d} under the assumption that \mathcal{L} be ($\mathrm{d}+1$) -very ample ; with the same assumption, the assertion that φ_{d} is an embedding follows directly from corollary 1.2 .
In fact, the tangent space to $\mathrm{X}[\mathrm{d}+1]$ at the point Z , by standard deformation theory, coincides with the sections of the normal sheaf to

On the other hand, the tangent space to the Grassmanian at $\varphi_{d}(\mathrm{Z})$ coincides with $\operatorname{Hom}_{\mathrm{k}}\left(\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{J}_{\mathrm{Z}} \mathrm{L}\right), \mathrm{H}^{0}(\mathcal{L} \otimes \Theta \mathrm{Z})\right)$, and it is not difficult to verify (see e.g. [B-S]) that the differential of φ_{d} carries , notation being as in corollary $1.2, \mathrm{f}$ to F . Thus corollary 1.2 simply says that the differential of φ_{d} is injective.
In the other direction, if there exists a 0 -cycle Z ' of length ($\mathrm{d}+2$) with r_{Z} not surjective, inere are two possibilities.
If ${ }^{\circ} \mathrm{Z}$ ' is reduced, then we have $(\mathrm{d}+2)$ distinct points, and any choice of ($\mathrm{d}+1$) of them yields ,by our assumptions, distinct 0 -cycles with the same image under φ_{d}.
Otherwise, if ${ }^{\circ} \mathrm{Z}$ ' is not reduced, we can pick-up, by lemma $1.1, \mathrm{a} 0$ cycle Z of length $(d+1)$ contained in Z^{\prime}, and such that $J_{Z} \supset J_{Z} \supset J_{Z^{2}}$ We then let f in $\mathrm{Hom} \theta_{\mathrm{Z}}\left(\mathrm{J}_{\mathrm{Z}} / \mathrm{J}_{\mathrm{Z}}{ }^{2},{ }_{\mathrm{Z}} \mathrm{Z}\right)$ be the composition of the natural surjection of $\mathrm{J}_{\mathrm{Z}} / \mathrm{J}^{2}$ onto
$\mathrm{J}_{\mathrm{Z}} / \mathrm{J}_{\mathrm{Z}} \cong \mathrm{k}$ with the natural embedding of k into ${ }^{\theta} \mathrm{Z}$.
By construction, the associated homomorphism F in the space
$\operatorname{Hom}_{k}\left(\mathrm{H}^{0}\left(\mathrm{X}, \mathrm{J}^{\mathscr{L}}\right), \mathrm{H}^{0}\left(\mathscr{L} \otimes \Theta^{\circ}\right)\right)$ is zero, and we succeeded in showing that the differential of φ_{d} is not injective.

> ged.

CATANESE - GCETTSCHE

REFERENCES

[B-S] - Beltrametti,M.-Sommese,A.J.: "Zero cycles and k-th order embeddings of smooth projective surfaces", in 'Problems on surfaces and their classification', Proc. Cortona 1988, Symposia Mathematica, INdAM, Academic Press
[B-F-S] - Beltrametti,M.-Francia,P. -Sommese,A.J.: "On Reider's method and higher order embeddings", Duke Math. Jour. 58,2,(1989),425-439 [Rei] - Reider,I. : "Vector bundles of rank 2 and linear systems on algebraic surfaces" , Ann. of Math. , 127, (1988), 309-316
[Tju] - Tjurin,A.: "Cycles,curves and vector bundles on an algebraic surface", Duke Math. Jour. , 54 ,(1987), 1-26

Fabrizio CATANESE,
Dipartimento di Matematica dell'Universita' di Pisa, via Buonarroti 2,56127 PISA, ITALIA
Lothar GOETTSCHE, Max -Planck Institut fur Mathematik , Gottfried Claren Strasse 26,D-5300 BONN 3,BDR

