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0 Introduction 

Mumford and Takemoto [Mul ,  Ta] introduced the notion of a stable vector 
bundle E on a projective (or Kfihler) variety X, in terms of the slope relative to 
a chosen polarization. 

When X is a curve, and E is semistable, the condition of stability immediately 
implies that the degree of the zero scheme of a section a of E is bounded by the 
slope of E (which in this case is the quotient d/r, d being the degree of E, r being the 
rank of E). 

The main purpose of this paper is to show that a similar result holds also in 
higher dimensions. 

To be more precise, recall that if n = dim X and r = rank E, and a is a section 
whose associated zero scheme Z~ has codimension r, then the r-th Chern class cr(E) 
gives precisely the cohomology class of Z, ,  hence, if we have chosen an ample 
divisor H on X, the degree of Z~ equals H"- r "  c~(E). 

In general we show 

Theorem 2.2. Let E be a semistable vector bundle on a Cohen-Macaulay projective 
variety X of dimension n which is non-singular in codimension 2 and is embedded by 
a very ample divisor H. There is a polynomial type function Pn, h(E) in the class H, in 
the first h Chern classes of E and in the first two Chern classes of X, such that for 
every nonzero section a ~ H ~ (X, E), whose scheme of zeroes Z has codimension h, the 
degree of Z is bounded from above by P,,h(E). 

Here, by a polynomial type function P in some cohomology classes, we mean 
a polynomial P in the absolute values of the numbers obtained by taking top 
dimensional cup products of these cohomology classes. 

The main motivation to establish the above estimate was to obtain upper 
bounds for the degrees of Weierstrass loci on varieties of general type, for which the 
cotangent bundle t2} is known to be semistable by a result of Tsuji [Tsu]. 
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We obtain the desired upper bounds, namely 

Theorem 3.14. Let X be a smooth projective variety of  dimension n with ample 
canonical bundle K. 

Then there exist constants C and N such that the degrees of the Weierstrass 
schemes WE(K)  (with respect to the ample divisor K), can be bounded by C times the 
N-th power of  K ' .  

We postpone to subsequent work the attempt to use these types of results 
in order to give polynomial upper bounds for the order of the group of 
automorphisms Aut(X) of varieties of general type (cf. the work of Corti 
in [Cor], where this program was carried out with success in the case of 
surfaces). 

The above mentioned results are based on a sequel of technical results which 
are contained in the first section and that we would like to summarize in the 
following Theorem A, which incorporates results from Theorem 1.9, Proposition 
1.11 and Corollary 1.15. 

Theorem A. Let X be a Cohen-Macaulay projective variety which is non-singular in 
codimension 2, has dimension n and is embedded in IP u with degree d by a very ample 
divisor H. 

Let E be a semistable rank r vector bundle with H-slope # = p(E). There exist 
universal polynomial type functions Q,( E ) and P,( E ) in the class H and in the first two 
Chern classes of E and X,  such that 

(i) Hq(x ,  E(kH))  = O for each q > 1, and k > Q,(E), 
(ii) E(kH)  is globally generated for k > Q,(E) + n, 
(iii) d imHq(X ,  E) < P , (E) for  q > 1, 
(iv) there exists a universal polynomial F,(#, d) with positive coefficients (which 

depend only upon r and n) in the variables #, d, and d -  1, and with degree equal to n in 
#, such that 

d i m H ~  < F, (p ,d)  if # > O . 

Bounds of this type for projective space have been given by Elencwajg and 
Forster in [E-F]. 

Two words concerning the techniques of proof of Theorem A: we use an 
effective version due to Flenner of the Mehta-Ramanathan semi-stable restriction 
theorem, and the Castelnuovo-Mumford theory of m-regularity of a sheaf. 

Other consequences of our results here are 

Theorem 3.9. The dimension of the moduli space M = M(c l ,  . . . , Cmin(r,n) ) of stable 
vector bundles of rank r with given Chern classes can be bounded from above by 
a polynomial type function in the class of  H, in the first two Chern classes of X 
and in cl,  c2. 

and 

Theorem 3.11. Let X be a smooth projective variety of dimension n > 3 and let E be 
a semistable vector bundle on X. 
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For each multiindex I there exists a polynomial type function P~ dependin9 only 
on H, and the first two Chern classes of E and X, such that 

cI(E).H,-III  < Pt . 

The second paragraph contains also an attempt to define a canonical sequence 
of residual subschemes for the zero scheme of a section of bundle, and to bound 
their degrees. 

The last paragraph contains the above mentioned and some further 
applications. 

1 Bounds for global generation and cohomology vanishing 

Let E be a rank r vector bundle on a Cohen-Macaulay projective variety X of 
dimension n which we assume to be embedded by a very ample divisor H and to be 
non-singular in codimension 2 (in particular X is normal : varieties of this type are 
e.g. varieties with terminal singularities). 

We denote by d the degree of X, thus d = deg(X) = H". 
The (H-) slope #(E) is defined to be (I/r) cx(E) 'H  "-1, and E is said to be (H-) 

semistable if # ( ~ )  < #(E) for every nontrivial subsheaf Y of E. 
Notice that, if Y is a hypersurface in the linear system I mHI, then the slope 

#(E I y) = mlt(E). 
Also, the first two Chern classes of Y are expressed in terms of the first two 

Chern classes of X and H as follows: 

e l (Y)  = ( e l ( X ) -  mH)lr , 

c2(Y) = ( c 2 ( X )  - mHcx(X) + m2H2)lV . 

We remark moreover that if X is Cohen-Macaulay and non-singular in codi- 
mension 2, the same is true for Y if Y is sufficiently general. 

Before we explain what we are going to prove, we need to introduce the concept 
of a polynomial type function. 

(1.1) A function G : I R " ~ I R  is said to be of polynomial type if there exists a 
polynomial P ( x ) =  P ( x l , . . .  , x , )  with real coefficients, such that G(x)= 
P(Ix~l . . . . .  Ix, I). 

In general, given a polynomial P ( x ) =  P(xl  . . . .  , x.)  with real coefficients, we 
denote by P + (x) the polynomial obtained by replacing the coefficients of P by their 
absolute values. 

One has then obviously 

(1.2) P(x) < P + ( I x l l  . . . . .  Ix.I), and if G1(x), G2(x)  . . . .  Gr(x) are of poly- 
nomial type, then there exists a function G(x) of polynomial type such that 
G(x) > max(Gl(x) ,  G2(x) . . . . .  Gr(x)). 

We shall apply (1.2) in the following way: 

(1.3) Assume that we are given a finite number of subsets of IR", $1, $2 . . . . .  Ss, 
whose union is the whole of IR", and corresponding polynomials P~, P2 . . . . .  P~, 
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such that the following holds: given an integer k and a point x in S~, a certain 
property ( ~ k ( X ) )  holds true if the integer k is at least > Pi(x) .  

Then there exists a polynomial type function G on IR" such that, for each x, (~k(X)) 
holds true if the integer k is at least > G(x). 

Moreover, by slight abuse of language, when we shall speak of a polynomial 
P in certain cohomology classes we shall mean that P is a polynomial function in 
the numbers which are obtained from these cohomology classes by evaluating on 
the fundamental class all the monomials of maximal degree in these cohomology 
classes (similarly for polynomial type functions). 

We shall show, by induction on n, that there exist a polynomial type function 
Q,(E)  = Q,(e l (E) ,  c2(E), cl(X), c2(X), H) in the first two Chern classes of E, X 
and in the class H, and polynomial type functions (except that for q = 0 we have 
indeed a polynomial). G~,,(E, k) = Gq,,(cx(E), c2(E), c~(X), c2(X), H, k) in k, in 
the first two Chern classes of E, X and in the class H, such that 

(1.4) Hq(X,  E (kH) )  = 0 for each q > 1, and k > Q,(E),  

(1.5) d im(Hq(X ,  E ( k H ) )  < Gq,,(E, k). 

The inductive procedure is made possible by virtue of the following result 
(see [F1]): 

(1.6) Theorem (Flenner). Given a semistable rank r vector bundle E on a normal 
projective variety X embedded in IP u by a very ample divisor H, assume that m is an 
integer satisfying 1/m(C(m, n + m) - m - 1) > deg(X) max((r 2 - 1)/4, 1), C(a, b) 
being the binomial coefficient, and assume also that Y is a sufficiently general element 
of  the linear system [mill: then the restriction g IY is semistable. 

(1.7) Remark.  It is easy to see that, for fixed r and n, Flenner's inequality holds if 
1/m (const. m" - m - 1) > const, deg(X), i.e. for m"- 1 > const, deg(X), afort iori  if 
m > const, deg(X). In the case of surfaces (n = 2), m = 2d suffices for r = 2, 
otherwise for higher r, m > d(r 2 - 1)/2. 

We also recall the basic results of the Castelnuovo-Mumford theory of 
regularity (cf. [Mu2, lecture 14, p. 99 and foil.]) 

(1.8) Theorem (Castelnuovo-Mumford). Let  o~ be a coherent sheaf on IP N which is 
m-regular, i.e. such that Hq(IP N, ~ ( m  - q)) = O for  all q > 1 : then 

(i) H~ N, ~-(k - 1)) | H~ N, (9(1)) ~ H~ N, ~-(k)) is surject ivefor k > m, 
(ii) Hq(F N, o~(k)) = O for  each q > 1, whenever k + q > m, and thus in particu- 

lar, 
(iii) ~-(k) is generated by global sections for  k > m. 

(1.9) Theorem. Let  X be a Cohen-Macaulay projective variety which is non-singular 
in codimension 2, has dimension n and is embedded in ~N with degree d by a very 
ample divisor H. 

Let  E be a semistable rank r vector bundle with H-slope p(E). There exist 
universal polynomial type functions Q,( E ) = Q.( c l ( E ), c2(E), cl(X), c2(X), H ) i n  the 
class H, in the f irst  two Chern classes of E and X ,  and G~,,( E, k) = Gq, n( c l ( E ), c2(E ), 



Degrees of WeierstraB schemes 583 

c l ( X ), c 2 ( X ), H, k) in k, in the class H, in the first two Chern classes of E and X, such 
that the following (1.4) and (1.5) hold: 

(1.4) n q ( x ,  E (kn ) )  = 0 for each q >__ 1, and k >->_ Qn(E), 

(1.5) dim(Hq(X, E(kH))) < Gq.n(E, k) . 

Moreover, the assertion d i m ( n ~  E(kH)) )<  Go,n(E,k) can be sharpened to 
the following one: there exists a polynomial G~( E, k) in the variables v = It + kd (v 
is the slope of E(kn)) ,  d, d -1, and of degree n in v, such that 
d i m ( n ~  E(kn) ) )  < G~(E, k) if v >= O, 

whereas obviously H~ E(kH)) = 0 if v < O. 

(There is by Serre duality an analogous assertion for q = n.) 

Proof The proof of Theorem 1.9 shall be given through a sequel of propositions 
and several intermediate steps. 

Step n = 1 (X  is a curve). 
Let us consider the case n = 1. In this case we recall a fact we already observed in 
the introduction, namely that 

(1.10) Any nonzero section of a semi-stable bundle E of rank r vanishes at most at 
It(E) points. Whence 

h~ E) < deg(E) + r if deg(E) > 0 ,  
whereas, 

if deg(E) < 0, then h~ E) = O. 

By Riemann-Roch we get (if deg(E) ~ 0), ha(X, E) < rg, where g is the genus of X. 
On the other hand, Serre duality yields (even when deg(E) < 0) 

hi(X,  E) <= r(2g - 1) - deg(E), when deg(E) < r(2g - 2),  
whereas 

h l ( X , E ) = O  f o r d e g ( E ) > r ( 2 g - 2 ) .  

Therefore we can take QI(E) = 2g - 1 + IIt(E)l, 

Go, I(E, k) = Ideg(E)l + r + rdeg(X)[kr , 

Gl.x(E,k) = r ( 2 g -  1) + Ideg(E)f + rdeg(X)lk[ . 

Whereas, h~ E(kH)) < GI(E, k) = r(v + 1) if v > 0. Q.E.D. 

(1.11) Proposition. Given a semistable rank r vector bundle E on a normal and 
Cohen-Macaulay projective variety X embedded in IP ~ by a very ample divisor H, let 
It be the slope of E, and d the degree of X. 

Then there exists a universal polynomial F~(I~, d) with positive coefficients (which 
depend only upon r and n) in the variables #, d, and d-  1, with degree equal to n in #, 
and sucl~ that 

h~ E) < F,(It, d) i f#  > 0 (else, if It < O, h~ E) = 0) .  

Proof We already dealt with the case n = 1, Gl(it, d) = r(# + 1). 
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Assume now inductively that we have found the required polynomials for 
dimension n - 1, and let Y~ ImHI be as in Flenner's restriction Theorem 1.6. Note 
that, if Y is general, Y is again Cohen-Macaulay and non-singular in codimension 
1, whence Y is also normal and the inductive assumptions are fulfilled. 

We consider the long cohmology sequence associated to the exact sequence of 
sheaves obtained by restricting E ( - i m H )  to Y: 

(1.12) O.-* E( - ( i  + 1)mH)~ E( - imH)-*  E ( - imH) lY~O.  

We set/ t  = h(md) + x, with 0 < x < rod. 
Notice once again that if # is the slope of E on X, then the slope of Elf equals 

m#. In particular, E(--imH)lr has no sections for i > h + 1. 
By (1.12) and the induction hypothesis we obtain 

h~ E) < ~ h~ E(-imH)lr) N 
i = 0 ,  . . . , h  

=< ~ F,_  l(m(p - imd), rod) = 
i = 0  . . . . .  h i = 0  . . . . .  h 

Write F,_ l(t, rod) = ~ aj(md, m- ld -1 ) t  j. 
j = o  . . . . .  ( n - D  

Then 

h~ E) < 

F,_ 1 (m(X -t- imd), rod) . 

Since the polynomials a t have positive coefficients and x/md < 1, we can bound 

h~ < ~ aj'(m2d)J( ~ iJ) . 
j = O  . . . . .  ( n - l }  i = 0  . . . . .  h + l  

Elementary calculus yields ( ~ iJ)<=(1/j+l)(h+2)J+l.  Whence finally 
i = 0  . . . . .  h + l  

h~ < ~ aj'(m2d)J(1/j+ 1 ) (h+  2) j+ l  <-- 
j = 0  . . . . .  ( n - l )  

<= ~ (1/j + 1)aj'(mZd)J(2 + i,z/md) j+l <= 
j=O . . . . .  ( n - l )  

--< ~ ( l / j +  1)aj(md, m- ld -1 )mJ - ld  -1 (#+2md) j+l . 
j = o  . . . . .  ( n - l )  

By Remark 1.7 we may take m = cd, where c is a constant > 1 depending only on 
r and n, thus 

h~ E) < F,(#, d) = (definition) = 

= E (1/Jq- 1)aj(cd2, c - l d - 2 )  c j - l d j - 2  ( # + 2 c d 2 )  j+l ' 
j = O  . . . . .  ( n - - I )  

Q.E.D. for Proposition 1.11. 

aj(md, m- ld  -1) ~, (m(x + imd)) 2 = 
j = O  . . . . .  ( n - l )  i = 0  . . . .  , h  

aj'(m2d) j ~ (i + x/md) j . 
j = o  . . . . .  ( n -  1) i = 0  . . . . .  h 
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(1.13) Remarks. (i) We would like to spell out in detail the polynomial F2(#, d): 
since for FI(p, d) we have ao = al = r, then 

f2(#,  d ) = r{(/~ + 2cd2)c- ld  -2 + 1/2d-X(p + 2cd2) 2} = 

= r{(2 + 2c2d 3) + ( c - ld  -2 + 2cd)# + 1/2d-1#  2 } . 

(ii) it is clear that Go,,(E, k) is obtained from F,(p, d) by replacing /~ by 
I#[ + Ikld, and d -x by 1. 

(iii) G,,,(E, k), in view of Serre duality, is obtained from Go,,(E, k) by replacing 
I/~1 by I/~l + [deg K[, where K is the canonical sheaf of X. K is torsion free since by 
the assumption that X is normal and Cohen-Macaulay K coincides with the sheaf 
of Zariski differentials, which is a Weil divisorial sheaf (cf. [-Re]). We can then apply 
the restriction estimates to E* | K. 

As to the vanishing of H"(X, E(kH)), this is equivalent to the vanishing of 
H~ E* |  which holds true when the slope - p  + d e g K -  kd is 
negative, i.e., when k > d - l ( l# [  + [degK[), e.g. for k > (1#[ + ]degK[). 

Step n = 2 (X is a surface). 
By 1.12 and 1.13 we have to worry only about HI(x, E(kH)), and by our 
assumptions X is a smooth surface. 

Substep 2.1." bounding hi(X, E(kH)). 
We have by definition 

(1.14) h~(X, E(kH)) = h~ E(kH)) + h2(X, E(kH)) - z (X,  E(kH)) . 

By the Riemann-Roch theorem 

z(X, E) = (r/12)(Cl(X) 2 + c2(X)) + 1/2q(E)(cl(E)  + Cl(X)) - cz(E) ,  

whence also 

z(X, E(kH)) = (r/12)(Cl(X) 2 + c2(X)) + 1/2(c1(E) + rkH) (cx(E) + rkH + 

+ q ( X ) )  - c 2 ( E ) -  ( r -  1 ) q ( E ) H -  1 / 2 ( r -  1)rk2H 2 . 

We have now polynomial functions of k, p = c l ( E ) ' H / r , d  = H 2, 
e=c2(X),  6 = deg(K)=  - q ( X ) "  H . . . . .  and we have four basic regions. 

(A) 6 > p + d k > O  

(B) p + dk > O,t~ + dk > 6: here h2(X, E(kH)) = 0 

(C) 0 >/~ + dk > 6: here h~ E(kH)) = h2(X, E(kH)) = 0 

(D) 0 > # + dk, 6 > It + dk: here h~ E(kH)) = 0 .  

In each region, by 1.12, 1.13 and 1.14, hi(X,  E(kH)) is bounded by a polynomial 
expression. 

By 1.3 we conclude that there exists a polynomial type upper bound for 
h~(X, (kH)). 

We actually want to prove here more, namely that the degree in k is at most 1. 
Then we observe firstly that in the regions (A) and (C) k is bounded, whence the 
upper bound is given by an expression which is of degree zero in k. 

Secondly, since regions (B) and (D) correspond to each other via Serre duality, it 
suffices to check that in case (B) we have an upper bound which is of degree at most 
1 ink.  
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In fact, by 1.13(i) 

h~ E(kH)) < r/2dk 2 + . . .  (terms of lower degree in k), while 

z(X, E(kH)) = 1/2(dr2k 2 - (r - 1)rdk 2) + . . .  (lower terms). 

The assertion is thus proven. 

Substep 2.H: effective vanishing of hi(X, E(kH)) for Ikl >> 0. 

As in Proposition 1.11 we let Ye lrnHl be as in Flenner's restriction Theorem 1.6. 
We firstly assume k > ko = (29 - 1) + Im/~(E)l, where g is the genus of Y. 
We have the following long exact cohomology sequence 

0 ~ n ~  E((k - m)n))  ~ H~ E(kH)) ~ n ~  E(kn)lr  ) 

H ' (X ,  E((k - re)H))---* H~(X, E(kH))---* O . 

By step 2.I and the above exact sequence the dimensi on of H ~ ( X, E ( (k - m) H )) 
is at most kx = GI,E(E, ko), thus there exists a k' with k0 < k' < ko + k~ and such 
that Hi(X,  E ( ( k ' - - r e ) H ) ) ~  Hi(X,  E(k'H)) is an isomorphism, or equivalently 
H~ E(k'H)) ~ H~ E(k'H)lr ) is surjective. 

We have the following diagram 

n ~  E(k'H)) | Hoop s, (9(1)) 

l 
H~ X, E(k' H)lr)@ H~ N, (9(1)) 

, H~ E((k + 1)H)) 

1 
, n~ E((k'+ 1)H)~). 

In the above, if k' is > ko + 3, then by Castelnuovo-Mumford's Theorem 1.8, 
the lower horizontal arrow is surjective. 

The left vertical arrow is surjective by the choice of k', therefore the right 
vertical arrow is also surjective, which means that 

Hi(X,  E(k' + 1 - m)n) )  ~ n ~ ( s ,  E(k' + 1)n)) 

is also an isomorphism. 
By iterating this procedure we get that the homomorphism H ~ (X, E((k -- re)H)) 

~ H t ( X ,  E(kH))is  an ismorphism for all k > k', and Serre's theorem B implies the 
vanishing of HI (X ,E(kH) )  for all k > ko + kl + 3. 

It suffices then for k positive to take Q ~ ( E , k ) = m a x ( ( k o + k l  +3) ,  
(1~1 + Ideggl)).  

On the other hand, for k negative we may consider Q~(E,k)= 
Q'z'(E* | K, Ikl), and finally we set 

Qz(E, k) = max(Q~(E, Ikl), Q*(E, k)) .  

Step III: vanishing of  h~(X, E(kH)) for q >= 1, tkl >> O, n > 3. 
By induction (the case n = 2 being already settled) and by virtue of the exact 
sequence 

. . . - - . H ~ - I ( X ,  E((k + rn)n)lr)  ~ 

H~(X, E(kn) )  ~ H~(X, E((k + re)H)) ~ nq(x ,  E((k + m)n)lr)  ~ .  . . 

Serre's Theorem B implies immediately that 

Hq(X,E(kH))  = 0 for each q > 2, and k > Q,_~(EIr ) . 

The case of negative k is treated similarly. 
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We only need at this point to remark that, since 

c1(Y)  = (e l (X)  - mH)lr, c2(Y) = (c2(X) -- m H e l ( X )  + mZH2)lr ,  

# ( E i r ) =  ml~(E) , . . .  Q,- l (E i r )  is a polynomial type function Q.(cl(E),cz(E),  
e l(X),  e2(X), H) as desired. 

Finally, the case q = 1 is reduced by means of Serre duality to the case 
q = n - l > 2 ,  

Step IV: bounding h e (X, E ( k H ) ) f o r  all q with n - 1 > q > 1. 
By Serre duality, it suffices to consider only the case where k is positive. 

We consider again the exact sequence 

. . .  - .  H q - I ( X , E ( ( k  + m ) n ) l Y ) ~  

He(X, E(kH))  ~ He(X, E((k + m)H)) ~ He(X, E((k + m)H)lr) ~ . . .  

We know that He(X, E((k + ira)H)) = 0 for (k + ira) > Q,(E), therefore 

hq(X, E(kH))  < ~ h q-1 (X, E((k + im)H)lr) . 
i=o ..... (Um)(Q~(E)-k) 

At this moment we proceed similarly as in Proposition 1.11, and since 
h e - ~ ( X , E ( ( k  + md)H)lr) is bounded by a polynomial type function 
Gq,,_~(E, k + rod) we finally obtain a polynomial type function Go,,(E, k) with 
he(X, E(kH))  <= Gq,.(E, k). 

Q.E.D. for Theorem 1.9. 

(1.15) Corollary. Given a semistable rank r vector bundle E on a Cohen-Macaulay 
projective variety X of dimension n which is non-singular in codimension 2 and is 
embedded in IP N by a very ample divisor H, then E(kH) is globally generated for 
k > Q,(E) + n. 

Moreover, there exists a polynomial type function P,(cl (E), cz(E), cl(X),  e2(X), 
H) in the class H, in the first two Chern classes of E and X, such that, for all q with 
1 < q < n - 1, and for all natural numbers k holds: dim(He(X, E(kH)))  < P,(E). 

Proof The proof of the first assertion follows immediately from Castelnuovo- 
Mumford's Theorem 1.8. and (1.4). 

The second assertion follows easily from Theorem 1.9. Q.E.D. 

2 Bounds for the degree of sections of semistable bundles 

Throughout  this section let E be semistable rank r vector bundle on a Cohen- 
Macaulay projective variety X of dimension n which is non-singular in codimen- 
sion 2 and is embedded by a very ample divisor H. 

Let a ~ H~  E) be a nonzero section, and let Z = Z ,  be the scheme of zeroes 
of a. We make no assumption whatsoever on the codimension h of Z. 

We can define the "top dimensional subscheme" Z '  of Z as follows: given a local 
primary decomposition for the ideal sheaf J of Z, we consider the intersection J '  
of the primary ideals corresponding to the components of codimension h (they are 
of minimal codimension, whence the corresponding primary ideals are uniquely 
determined). 

(2.1) Definition. Given a nonzero section a ~ H~  E), with scheme of zeroes Z, 
we define its degree d with respect to H as the intersection product Z "  H h. 
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Our main result in this section gives an upper bound for d = deg(Z) which is of 
polynomial type in the Chern classes of E. 

(2.2) Theorem. Let E be a semistable vector bundle on a Cohen-Macaulay projective 
variety X of dimension n which is non-singular in codimension 2 and is embedded by 
a very ample divisor H. There is a polynomial type function P,,h(E) in the class H, in 
the first h Chern classes of E and in the first two Chern classes of X, such that for 
every nonzero section cr~ H~ E), whose scheme of zeroes Z has codimension h, the 
degree of Z is bounded from above by P,,h(E). 

Proof. Notice firstly that, if r is the rank of E, then clearly h < r. 

Step I. Reduction to the case where h = n, i.e., Z = Z '  has dimension O. 
In fact the degree d of Z is given by the intersection product Z "  H h, and we can 
choose general hypersurfaces Y1 . . . . .  Yh such that the schematic intersections 
Z c~ Y1 c~. . .  c~ Yh, respectively Z'  ~ YI c~. . .  c~ Yh coincide and have dimension 
z e r o .  

Setting X *  = Y1 c~. . . c~ Yn and Z* = Z c~ Y~ ~ .  . . c~ Yh we have that Z* is 
the scheme of zeroes of the restriction of the section ~r to X*.  

It suffices to apply Flenner's Theorem 1.6 so that the restriction of E to X* is 
semistable, and then notice that if Yi~ImHt, then degZ*  = m h degZ;  then we 
repeatedly apply the standard argument that polynomials in the class H, in 
m (chosen according to Flenner's theorem), and in the Chern classes of X* and 
E are polynomials in H and in the Chern classes of E and X. 

Step H: the case where d i m Z  = 0. By Corollary 1.15 there exists a positive 
integer k such that E(kH) is generated by global sections, with k as usually 
depending polynomially on the Chern classes of E, X, and H. 

We have thus an epimorphism (9(-kH)N--* E, and it is a standard fact that 
there exists an exact sequence of vector bundles 

(2.3) 0 --* ( 9 ( - k H )  r-" --* E ~ F ~ O . 

Clearly every nonzero section o-e H ~ E) induces a section z ~ H~ F). 
Let W be the zero scheme of ~: clearly Z = Z~ is a subscheme of W, and we 

claim that dim W = 0 = dim Z. 
Let in fact F be a positive dimensional subvariety contained in W. It suffices 

then to show, by contradiction, that F is contained also in Z. This follows since, by 
2.3, Z c Wis defined by r - n sections of H~ (9 ( -kH) ) :  H being ample, these 
sections vanish identically on F, as we wanted to show. 

The conclusion is that deg (Z) = length ((gz) < length ((gw) = c,(F). Finally, by 
2.3, c,(F) is clearly a polynomial in the Chern classes of E and in kH, and 
alltogether we can bound deg(Z) by a polynomial type function in the Chern 
classes of E, X, and H. Q.E.D. 

The following result is central for applications 

(2.4) Theorem. Let X be a Cohen-Macaulay projective variety of dimension n which 
is non-singular in codimension 2, and assume we are given a vector bundle E equipped 
with an increasing filtration Fi by subbundles with semistable quotients Ei = Fi+ 1/Fi. 
There is a polynomial type function P,,h(E) in the class H, in the first h Chern classes 
of the Ei' s and in the first two Chern classes of X, such that for every nonzero section 
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a ~ H~ E), whose scheme of  zeroes Z has codimension h, the degree of a is bounded 
from above by P,.h(E). 

Proof. The proof  proceeds in an entirely analogous fashion to the one given in 2.2, 
once we show that there exists a positive integer k such that E(kH)  is generated by 
global sections, with k depending polynomially on the Chern classes of the Ei's and 
X, and on the class H. This follows inductively (on the length of the filtration) since 
if we have a short exact sequence of vector bundles 0 ~ A ~ B ~ C ~ 0, and k is an 
integer such that A(k), C(k) are generated by global sections, and moreover 
H i ( X ,  A(k)) = 0, then also B(k) is generated by global sections. 

It suffices then to apply Corollary 1.15 and Theorem 1.9. Q.E.D. 

Next, we consider the rather particular case where E is a rank 2 vector bundle 
over a surface X, and a is a nonzero section vanishing also in codimension 1. 

(2.5) Theorem. Let E be a rank 2 semistable vector bundle on a smooth projective 
surface X,  and let a be a nontrivial section of  E giving rise to an exact sequence 

0 --* (9(D) --* E ~ J w ( L  - D) ~ 0 

where L = det(E), D is an effective divisor, W is a O-dimensional subscheme. Then, if 
we set b = length(W), we have: 

(i) if L is a nef divisor ~ <~ c2(E) + ( L ' H ) 2 / 4 H  2, 
otherwise 

(ii) b <= a polynomial type function in H, and in the Chern classes of  E, X.  

Proof. By the above exact sequence we get the following equality for Chern classes: 

= c2(E) - D(L - D) = c2(E) + D 2 - D ' L  <= c2(E) + D 2 

since L is nef, and D is effective. 
By the Index theorem, we have D2H 2 <= (D. H) 2. Now use the semistability of 

E to infer D" H =< (1/2)L" H, and the first assertion is proven. 
Otherwise, i.e. i fD .  L is < 0, we use 1.15 to find an integer k, given as usual by 

a polynomial in H, and in the Chern classes of E, X, and a homomorphism r 

r ( ~ ( - k H )  2 ~ E 

such that coker(q~) is supported on an effective divisor C which has no common 
components with D. 

Then we can write C = 2 k H + L ,  whence - D ' L = 2 k H ' D - C ' D <  
2kH" D < (by semistability) __< kL" H. Q.E.D. 

(2.6) Remark. In the case of higher rank on a surface, a gives rise to a pair of exact 
sequences 

0 --, e , ( D )  ~ E ~ ~ --. o 

where V is a vector bundle (of rank r - 1), D is an effective divisor, and A is 
supported on a finite set. 

We notice that if we set 6 = length(A), then our definition coincides with the 
one given in 2.5, and a similar calculation with Chern classes yields: 

6 = c 2 ( E ) -  D ( L -  D ) -  c2(V),  

and the only problem is to bound c2(V)f rom below. 
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In the case where dim X > 2, one can still, in the case when the scheme of zeroes 
Z of a nonzero section aeH~ E) is not pure dimensional (Z'  different from 
Z according to our previous notation), try to define a residual lower dimensional 
subscheme Z"  of Z '  in Z, and try to estimate the degree of Z". 

One possibility is, denoting as above by J '  the ideal of the "top dimensional 
subscheme" Z',  and observing that J '  contains the ideal sheaf J of Z, to consider 
the "top dimensional part" J "  of A n n ( J ' / J ) .  

(2.7) Lemma. Let J be a sheaf of (9 ideals, and consider, given a local primary 
decomposition of J ,  the intersection J '  of the primary ideals corresponding to the 
components of minimal codimension = h. Let J be A n n ( J ' / J ) ,  and define ~r 
analogously to J ' .  Then the associated primes of ( J ' /  J ) coincide with the associated 
primes of (9 / J of eodimension > h, in particular the associated primes of j ' coincide 
with the associated primes of (9/J of subminimal codimension h" > h. 

Proof Recall that ~ is an associated prime of a module M if and only if there is an 
embedding of (9/~ in M, or equivalently there is an element x in M such that 

= Ann(x);  observe moreover that, (9/~ being an integral domain, ~ = Ann(y) 
for each y in the image of (9/~, whence if this image intersects nontrivially 
a submodule N then ~ is also an associated prime of N. 

Since J ' / J  is contained in (9/or A s s ( J ' / J )  c Ass((9/J),  moreover if ~ is an 
associated prime of (9 /J ,  but not of J ' / J ,  then ~ is an associated prime of (9/or 
whence it is an associated prime of codimension = h. Conversely, if ~ is an 
associated prime of J ' / J ,  and has codimension = h, then by localizing at ~ we 
obtain J ~  = J ~ ,  whence ( J ' / J ) ~  = 0, contradicting the existence of an embed- 
ding of (9/~ into J ' / J .  

The final assertion follows since, given a module M, the minimal primes of 
Ass(M) and of Ann(M) are the same (cf. [Mat, Theorem 9, p. 50]). Q.E.D. 

(2.8) Remark. It is clear that the procedure can be continued to inductively define 
a sequence of ideal sheaves J = j m ,  ~r = j(2), j (3)  . . . .  so that one can define 
residual schemes to the top dimensional part Z '  of the subscheme of zeroes Z of 
a section a of E. 

One can easily verify that in the situation of Theorem 2.5, if a vanishes in 
codimension 1, then the 0-dimensional scheme W coincides with the residual 
subscheme Z" we ha~e just defined. 

We notice moreover that if Y is a sufficiently general hypersurface section of X, 
and we consider the restriction z of the section a e H ~  to Y, then the 
subschemes associated to z coincide with the intersection with Y of the subschemes 
associated to a. 

From this it follows that Theorem 2.5 has the following corollary 

(2.9) Corollary. Let E be a rank 2 semistable vector bundle on a smooth projective 
variety X, and let a be a nontrivial section of E vanishing in codimension 1. Then the 
degree of the residual subscheme Z" can be bounded by a polynomial type function in 
H, and in the first two Chern classes of E, X. 

(2.10) Question: can one in general give upper bounds for the degrees of all the 
residual subschemes of the subscheme of zeroes Z of a section of a semistable vector 
bundle? 
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3 Applications 

In this section we shall give applications of the above techniques in several 
directions. 

First we shall give bounds for the degrees of Weierstrass schemes, later on we 
shall show that the dimension of moduli spaces of semistable vector bundles with 
given Chern classes can be bounded by a polynomial expression in the Chern 
classes of the bundle, finally, after proving a restriction theorem, we shall show that 
the Chern numbers and the degrees of the higher Chern classes of a semistable 
vector bundle are bounded by polynomial type functions in the first two Chern 
classes: this applies in particular to varieties of general type with ample canonical 
bundle. 

3.a. Weierstrass schemes 

Let X be a smooth projective variety of dimension n, and let E be a vector bundle 
over X. 

We consider the bundle JR(E) of k-jets of E. 
We have a natural bundle homomorphism 

(3.1) Vk(E): H~ E) | (9 -~ JR(E) . 

For any integer m we get the associated exterior m-power map" 

(3.2) Am(vk(E)): Am(H~ E)) | (9 ~ Am(JR(E)), yielding a section 

(3.3) w~"(E): (9 --, Am(H~ E)) * | Am(JR(E)), 

�9 denoting the dual vector space.  

3.4. Definition (cf. [Oga]) The Weierstrass subscheme W~'(E) is the scheme of 
zeroes of the section w~'(E) given in 3.3. 

(3.5) Theorem. Let E be a semistable rank r vector bundle on a smooth projective 
variety X of dimension n with ample canonical divisor K. 

Then the degrees of the Weierstrass schemes WRY(E), defined as in 2.1 with respect 
to the ample divisor K, can be bounded by polynomial type functions in the first two 
Chern classes of E and X. 

Proof. We recall that there is a natural exact sequence 

(3.6) 0 --, Sk(t2~x) @ E ~ JR(E) ~ Jk-l(E) --' O . 

On Am(JR(E)) there is the natural A-filtration associated to the exact sequence 3.6 
whose successive quotients are isomorphic to Am-i(Sk(f2~c)| E)@ Ai(JR_I(E)) 
so that by induction we get a filtration on Am(JR(E)) with quotients isomorphic to 
tensor products of vector bundles of the form AJ(SR(f2~)| E) with j, h non- 
negative integers. 

Since by Tsuji's theorem [Tsu] f2~ is K-semistable, we can apply Maruyama's 
theorem [Ma] asserting that the tensor product of semistable bundles is semistable 
and that bundles associated to a semistable bundle via a representation of the 
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linear group are also semistable, and we obtain that these quotient bundles are 
K-semistable. 

Now, all our explicit estimates were based on the datum of a very ample divisor 
H. But this is provided by a recent result of Demailly [De], showing that if K is 
ample, then 12n'K is indeed very ample. 

We apply now Theorem 2.4. Q.E.D. 

(3.7) Remark. The canonical filtrations on the vector bundles A m(Jk(E)) give rise 
to a sequence of subschemes containing the Weierstrass subscheme WI"(E). 

(3.8) Remark. Theorem 3.5 has a natural application in the case where the bundle 
E is invariant under the group Aut (X) of automorphisms of X. Obvious choices for 
such bundles E are the canonical bundle K, or more generally the bundles 
A~(sh(ol)).  In this way in fact one can produce invariant subschemes for the 
action of Aut(X). 

3.b. Moduli spaces 

Fix a smooth projective variety X of dimension n, and consider the moduli space 
M = M(cl . . . . .  Cmi,<r.,)) of stable vector bundles of rank r with given Chern 
cohomology classes. 

By deformation theory the Zariski tangent space at E ~ M is isomorphic to the 
vector space H i ( X ,  End(E)). 

Again by Maruyama's theorem End(E) is semistable, hence we can apply 
Theorem 1.9 to obtain the following result which answers a question posed by 
Balancheff. 

(3.9) Theorem. The dimension of the moduli space M = M ( c l , . . . ,  Cmin(r,n) ) of 
stable vector bundles of rank r with given Chern classes can be bounded from above by 
a polynomial type function in the class of H, in thefirst two Chern classes of X and in 
Cl~ C2. 

3.c. Restriction theorems for semistable vector bundles 

(3.10) Theorem. Let X be a smooth projective variety and let E and F be semistable 
vector bundles on X. 

Then there exists an integer ko depending polynomially in the class H and in the 
first two Chern classes of E, F and X such that !f their restrictions E IY, F It, to 
a general element Y~ IkH[, k >= ko are isomorphic, then E and F are isomorphic. 

Proof The bundle G = Hom(E, F) is semistable by Maruyama's theorem, hence 
by Theorem 1.9. we find a number ko with the required polynomial dependence 
such that H i ( X ,  G ( - k H ) )  = 0 and the restrictions ElY, Fly, to a general element 
YelkHI are semistable for all k > ko. 

Whence H~ G) surjects onto H~ Gir). 
Lift the isomorphism which exists by our assumption to obtain a homo- 

morphism ct: E--* F whose determinant det(~) is a section of det(G) which has no 
zeros on Y. 
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Since Y is ample det(c0 never vanishes and E, F are isomorphic. Q.E.D. 

3.d. Bounding the higher Chern classes in terms of  cl,  e2 

Let X be a smooth projective variety of dimension n > 3, and let E be a semistable 
vector bundle on X. 

Let us set up some notation: assume that, for each j such that 
1 < j < s = min(r, n) we are given a non-negative integer i t, then we let I be the 

/ 

(il . . . .  , is) and we denote by Ill its weight (l lI  equals the weighted sum multiindex 
\ 

(ij)j) ,  and by c1(E) the product c1(E)= I-1 (cj(E)) i~, yielding a co- 

N 

j = l  . . . . .  s , /  j ~ l  . . . . .  s 

homology class in H 21~1 (X, Z). 

(3.11) Theorem. Let X be a smooth projective variety of dimension n >_ 3, and let 
E be a semistable vector bundle on X. 

For each multiindex I there exists a polynomial type function PI depending only 
on H, and the first two Chern classes of E and X,  such that 

c~(E) "Hn-I~I < PI �9 

Proof We first recall a result of [D-P-S, Corollary 2.6], stating that for a nef 
bundle F one has 

(3.12) cI(F).  H "-Itl < (cl(F)  I11.Hn-I~l. 

We know by Corollary 1.15 that the polynomial type function Qn(E) has the 
property that for k = Qn(E) + n the bundle F = E(kH) is generated by global 
sections. Therefore in particular F is nef and (3.12) holds. 

The theorem is now readily proven by induction on ]I [. In fact, for Ill = 1 there 
is nothing to prove. For the inductive step we use (3.12) and the fact that, with our 
choice of F, c~(F) = ci(E(k)) = cI(E) + ~ aj(cs(E)'(kH)111-Lsl), where the 

IJ[<lll 
coefficients as are universal constants and k is a polynomial type function of the 
desired kind. Q.E.D. 

(3.13) Proposition. Let X be a smooth projective variety of dimension n with ample 
canonical bundle K. Then for each multiindex I of weight n there exists a constant Dx 
such that 

ct(Q~r 5 DxK n �9 

Proof By the quoted result of Demailly, we have that mK is very ample if 
m > 12n". It follows immediately that f2x~(2mK) is generated by global sections, 
whence (3.12) applies to the case: F = t2~(2mK), H = K, I such that il = 0. We can 
then apply the same induction on Ill as in the proof of 3.11 Q.E.D. 

(3.14) Theorem. Let X be a smooth projective variety of dimension n with ample 
canonical bundle K. 
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Then there exist constants C and N such that the degrees of the Weierstrass 
schemes W~(K) (defined as in 2.1 with respect to the ample divisor K), can be 
bounded by C times the N-th power of K n. 

Proof. Apply  T h e o r e m  3.5 and P ropos i t i on  3.13. Q.E.D. 

W e  would  like to make  a conc lud ing  r emark  to the effect that  mos t  of the 
inequal i t ies  we wrote  could  be i m p r o v e d  with a more  careful analysis,  especial ly if 
we would  give up  the desire to express  everything by means  of a single po lynomia l  
type function.  O n  the o ther  hand,  one has to admi t  tha t  the overal l  concep tua l  
t r ea tmen t  is thus simplif ied for the reader.  
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