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§0 Introduction 

I. Reider ([Rei]) introduced a new method to prove that certain linear systems on algebraic 
surfaces are free from base points (respectively very ample). 

He uses a construction due to Schwarzenberger, ([Schl,2], [GH]) producing, if Z is a 0- 
cycle not imposing independent conditions on the linear system I K+L I, a certain rank 2 bundle 
occurring as an extension 

0 -~ ®s ~ ~ z  L ~  0 
and then derives a contradiction if the vector bundle ~ is numerically unstable according to 
Bogomolov ([Bog]). 

As pointed out by D. Kotschick ([Kot]), if the numerical inequality c12(~) - 4c2(~) > 0 
becomes an equality, i.e. L 2- 4 deg Z = 0, and the Chern class L is divisible by 2, then ~ is 
the twist (by a line bundle) of  a vector bundle with trivial Chern classes; hence, by a deep 
theorem of Donaldson ([Do]), if ~ is Mumford-stable with respect to an ample divisor H, then 
this vector bundle arises from an irreducible SU(2)-representation of the fundamental group 
xl(S) of the surface. 

In fact, cf. [Ko], when one has equality, and one can prove that the bundle ~ is stable for 
some ample divisor H, then the associated projective bundle P(~)  arises from a PU(2)- 
representation of the fundamental group xl(S) of the surface. 
We thus get a central extension F of Xl(S) by a cyclic group of order 2, whose extension class 
measures the obstruction to lifting the PU(2) to a SU(2)-representation. 

We apply this method to the study of bicanonical systems on surfaces S with Ks 2 = 4, 
where L = K s : in this case one cannot have a SU(2)-irreducible representation since the 
numerical class of L = K s is not divisible by 2 .  Whence, we get in § 1 the result that 1 2K s I is 
free from base points if H2(Xl(S), ~-/2;~)=0. 

This partial result is of some interest in view of the open problem (cf. §1) whether I 2K s I 
has base points only when Ks 2 = 1, and pg = 0 (the only cases which are left open being the 
ones where pg = 0, Ks 2 = 2,3,4). 

After the results of §2, we obtain a sharper theorem (Thm. 3.2) implying in particular that 
1 2K s I is base point free if the pull back of K s to the universal covering is not 2-divisible, or it 
gives rise to a trivial extension. 

The second section is devoted to the geometrical analysis of the possible central extension of 
the fundamental group. This problem is treated in a greater generality, by considering the 
standard m th root extraction covering trick (cf. [Mi2]), under which the pull-back of a divisor L 
becomes m-divisible; we first show (cf. Lemma 2.1) that in this situation the fundamental group 
changes up to a central extension by a cyclic group of order dividing m (this argument is 
essential for the main result of [Mi2]). Later on, we give a complete description of the extension 
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which occurs, in terms of the divisibility properties of  the pull-back of  L to the universal 
covering of S. 

Our first example where the In'st homology group would not change, but the fundamental 
group would, was the case of a (Z/2Z)2-Galois cover of an Abelian surface: here L gives a 
polarization of type (1,4) and the fundamental group of the cover is the classical Heisenberg 
central extension of  the fundamental group of the Abelian surface associated to the mod 2 
reduction of the alternating form given by the Chern class of L. 

We appealed again to Donaldson's theorem in order to calculate the fundamental group of the 
cover, just by providing the existence of some stable bundle with trivial Chern classes (the ideas 
here were influenced by the article [BLvS], whose results by the way can also be reproved 
using the above ideas (cf. work in progress by the second author)). 

Later on, guided by the conjecture raised by this nice example, we worked out completely 
the general case, where we essentially investigate the spectral sequence describing the 
cohomology of the quotient S in terms of group cohomology. 

The main result of the paper is the following 
Main Theqrem: Let Y --~ X be the (Z/mZ)2-Galois covering given by the m th root extraction 
of the divisor D. 
Then we have a central extension 

0 --~ Z / rZ  --~ hi(Y) ~ 7~l(X ) -'~ 0 
where, if ~: X --~ X is the universal covering of X, D = n*(D), d the divisibility index of D, 

then r = G.C.D.(m,d) and the extension class in H2(G,Z/rZ) ,  (G = ~I(X)), is given by the 
Chern class of (-D) modulo r, via the exact sequence 

0 ---> H2(G,7-/rZ) ---¢ H2(X,Z/rZ)  ~ H2(X ,Z / rZ)  G 

Acknowledgements : both authors would like to acknowledge support from M.U.R.S.T. ; the 
first author would like to acknowledge the warm hospitality of the Max Planck Institute in 
October '90, where the final part of the paper was prepared. 
We want to thank Igor Reider and Ingrid Bauer Kosarew for some useful conversation. 
Mathias Kreck showed us kindly how one could avoid the use of Lefschetz duality in 2.18. 
Added in prqof: we would like to call the readers attention to related partial results, concerning 
base points of the bicanonical system, by Weng Lin ([We]). 

§ 1. Bicanonical systems on surfaces of general type, 

Let S be a smooth (complete) minimal surface of general type, and consider the bicanonical 
linear system I 2K s I, where K s is a canonical divisor on S .  

Through work of  several people (Moishezon [Moi], Kodaira [Kod], Bombieri [Bol,2], 
Francia [Fr], Reider [Rei] and others, e.g. [Ca-Ci], [Mil])) it is known that the above linear 
system has no base points if pg is _> 1, and also in the case pg = 0, provided K 2 -> 5, and 
particular cases when K 2 = 2 (cf. [Pet2], [Xi] Thm 5.5 page 77). 
Since 1 2K s I is a pencil exactly when Ks2 = 1, one may ask about the remaining cases pg = 0, 
Ks 2 = 3,4. 

There are no known examples of surfaces with invariants pg = 0, K 2 = 3,4 such that the 
bicanonical linear system has base points. 



53 

In this paragraph we shall give some sufficient conditions, concerning the fundamental 
group ~1(S), which ensure that 12K s I be (base point) free.  

On the other hand, by looking at some examples of  surfaces with the above invariants 
constructed by Burniat and Keum ([Bu], [Pet], [Ke]), we shall see however that those 
conditions are not necessary (but, using the results of the next paragraph one gets some weaker 
sufficient conditions). 

As we remarked in the introduction, it remains an interesting question to know whether the 
case pg = 0 and Ks 2 = 1 is indeed the only exception to I 2K s I being (base point) free. 

Theorem 1.1 Let S be a minimal surface with pg = 0, Ks 2 = 4, and such that no nontrivial 
central extension F 

1---) 7P/27. ---) F --~ 7t1(S) ~ 0 
of nt(S) has an irreducible SU(2)-representation. 
Then the bicanonical linear system 12K s I is (base point) free. 

Corollarv 1.2 In particular, the theorem holds if H2(~1(S),7./27p) = 0 (e.g. if ~1(S) is cyclic, 
or it has odd order). 

Proof of Theorem 1.1 The proof of the theorem will be divided in two different cases and will 
involve some assertions that will be justified at a later time. 

Assume that the bicanonical linear system 12K s I has a base point x. Then (cf. [GH], [Rei]) 
there exists a vector bundle ~ of rank 2 on S occurring as an extension 

(1.3) 0 --~ ®s ~ ~ ~ ~x(Ks ) -'~ 0 
where ax is the ideal sheaf of  the given point x. We will show that (with no assumption on 
~I(S)) the vector bundle ~ is K-stable (prop. 1.4) and, furthermore, it is stable with respect to 
a suitable ample line bundle H on S (see prop. 1.9). 

Then, (cf. e.g. [Ko], thm. 10.19, page 236, and thm. 4.7, page 114) ~ admits a Hermite- 
Einstein structure, and, since c12(~) - 4 c2(~) = 0, it is projectively flat, i.e., it comes from an 
irreducible PU(2)-representation of ~1(S). We can lift thus the central extension 

1 ~ Z/27. --o SU(2) ---r PU(2) ~ 0 

to obtain 

1---~ Z / 2 Z  ~ F ~ ~1(S) ~ 0 .  
If  this last extension were split, then the bundle ~ would arise from an irreducible SU(2)- 

representation; hence its Stiefel-Whitney class w 2 would vanish. Then, since w 2 is the mod 2 
reduction of the first Chem class of ~,  K s would be 2-divisible. 

But we claim that in fact K s is not 2-divisible even in Num(S) = H2(S,7.)/torsion. In fact, 
if K s is numerically equivalent to 2L, then L 2 = 1 and K s • L = 2 : by the genus formula we 
have then a contradiction. 

Q.E.D. for theorem 1.1 

Proposition 1.4 The vector bundle ~ is stable with respect to the canonical bundle K s. 

Proof  Otherwise there exists an invertible and saturated subsheaf N of ~ which satisfies the 
inequality N • K s > (1/2) Ks 2 and gives a diagram of exact arrows of the following form 
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0 
$ 
N 
$ 

(1.5) 0--~ ®s  ~ ~ ~ a x ( K s )  ~ 0 
$ 

~z(M) =~z(Ks - N) 
$ 
0 

where Z is a 0 dimensional  subscheme of  S and M = K s - N is then a line bundle on S with 

the property 

(1.6) M -  K s < 2 .  

W e  can compare  the two expressions of  the Euler  characteristic o f  the bundle ~ obtained f rom 

the two above exact sequences: 

)~(~) = ~ ( ® s  ) + )C(~x(Ks)) = 2)~(®s ) - 1 
= )c(N) + )C(~z(M)) = 2)~(M) - deg Z .  

Hence we have the equal i ty  1 + deg Z = 2x(M ) and therefore,  apply ing  the Riemann-Roch  

theorem to M and the fact  that M • (K s - M) is even, we infer that M satisfies the further 
inequality: 

(1.7) M2_> M .  K s . 
By the Index theorem, we have 
(1.8) M 2 K s  2 -  ( M .  Ks )  2 < 0 

and so, by 1.6 and 1.7, M 2 =  M -  K s = 0. But, again by the Index theorem, this can only  

happen if  M = 0. 

D iagram 1.5 then g ives  a contradic t ion,  s ince N = K s . In fact  there is no  non zero 

morphism K s ~ ®s  nor K s ~ ax(Ks). Q.E.D. 

Proposi t ion 1.9 There exists  an ample line bundle H on S such that the vector  bundle  ~ is H- 

stable. 

P r o o f  If  K s is ample,  it  is  enough to take H = K s . Otherwise ,  let  E 1 . . . . .  Eg be the 
1 

f ini te ly many  curves (___-IP) on S such that K s • E i = 0 for each i = 1 . . . . .  g. W e  recal l  that 

the intersection matrix (E i • Ej) is negative definite. 

One can easily construct an effective divisor W on S of  the form W = I~ i n i E i (n i e N )  such 

that W • E i < 0 for  each i: i f  D is a divisor  on S such that d im (supp D n supp Ei) = 0 and 

D • E i > 0 for each i, and ~: S --~ X is the blow down of  the Ei's, the divisor  W can be def ined 
by  the condi t ion ~* (g ,D)  = W + D. 

By the NakaJ-Moishezon cri terion the divisor  H t = K s - tW is then ample  for  0 < t << 1: 

in fact we can assume that D is ample and this implies 

(1.10) H t = K  s - t W = K s - t g * ( g , D )  + t D =  

= ~*(K x - t g , D )  + t D ; 
moreover ,  K x - t g , D  is ample  for t << 1 because K x is ample on X. 

F o r  each effect ive  d iv i sor  M on S we decompose  M as the sum M = M'+M"  of  two 

effect ive divisors ,  where  M" e < E 1 . . . . .  E > and d im (M' n E i ) -- 0 for  each i .  

If, for each t, there exists a line bundle N t destabi l izing ~ with respect  to H t , then for each 

t we have a diagram 
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0 
$ 

Nt 
$ 

(1.11) 0 ---) ®s  ~ ~ ---) ax(Ks )--) 0 
$ 

~Zt(LMt) =~zt(Ks - Nt) 

0 
I f  the "oblique arrow" ® s  ~ ~zt(Mt) were zero, then ® s  C Nt ,  and, since both are 

saturated, ® s ~- Nt contradicting N t - H t > 0. 
It follows that M t is an effective divisor for each t and, moreover, that 

(1.12) M t. H t < (1/2) K s • H t = (1/2) Ks 2 -  t W .  K s = 

=(1/2)  Ks 2 = 2  . 

But M t • H t = M t • K s - t Mt" • W - t Mr'. W : the inequality M t • K s < 2 would contradict 
the Ks-stability o f  ~ and so we have M t • K s (=M t' • Ks) > 3 and M t • H t < 2 for each t. It 
follows that 

(1.13) t (M t • W) > 1 
and then 0 < M t . W = Mt'. W + Mr" • W, where Mt" • W < 0 by the choice of  W. 

Let us fix now an index t o such that Hto is ample. Then 

M t .Hto  = M  t- (K s - t  o W ) = M  t . ( K  s - t w - ( t  o - t )  w ) =  
= M t • H t - (t o - t) M t • W < 2 for 0 < t < t o . 

This implies that {Mt} is a bounded family and so the set {W .Mr} is bounded too: but this is 
absurd, because then the inequality W .  M t > t --1 is impossible. Q.E.D. 

We will now consider two examples of  surfaces S o f  general type with pg = 0, Ks 2 = 4, 
which have a base point free bicanonical  system but fail to satisfy the hypotheses  o f  
Theorem 1.1. 

Example  1.14 The Burniat surface B(2) has fundamental  group ~](B(2))  isomorphic  to 
2 

@ ( Z / 2 Z )  , where IH is the quaternion group of  order 8 (cf. table 13 of  [BPV], [Bu], [Pet]): 
so 7t1(B(2)) has a non trivial central extension given by ~2 ,  which clearly admits an irreducible 
SU(2)-representation, since the group ~I admits the following irreducible SU(2)-representation, 
given by 

i - 

/ o 
k - - ,  o • 

Proposition 1.1~ The bicanonical system is free from base points for the Burniat surface with 
K2=4. 

Proof  By lemma 3.3. of  ([Pet], (ii) page 118) it follows that, S being a (Z/2Z)2-Galois  cover 
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of the blow up Y of  the plane in 5 points of which 3 lie on a line, all the sections of 
H0(S,2Ks) are Galois invariant and are pull-backs of rational tensor 2-forms with simt~le poles 
on the branch divisor. Hence the linear system 12Ksl factors through the (Z/2:~) ' -Galois  
cover and indeed through the anticanonical mapping of Y which is a birational morphism onto a 
quartic weak del Pezzo surface with a node corresponding to the line containing the 3 collinear 
points. Q.E.D. 

Example 1.16 In [Ke], J.H. Keum gives an example of a surface S of general type with 
pg = (), Ks 2 = 4 and with fundamental group rq(S) = Z 4 ~ ( Z / 2 Z )  2. Also here there exists 
a non split central extension F" of F by ~./27. which admits an irreducible SU(2)- 
representation, since there is a surjective map ~t obtained as a composition 

~t: r ----)Z4~(7-127~) 3 ---4(7-/27~) 2 

and as above one can pull-back by ~ the extension 1 --~ 7/27Y---) U --~ (~ /2Z)  2 ---) 0 .  

Proposition 1.17 If S is the surface in Keum's example, the bicanonical system I 2K s I is 
base point free. 

Proof We recall the notation of the quoted paper. Let A = E 1 × E 2 be a product of two elliptic 
curves E i = ~ / Z + ' c i Z  and e i for i=1,2 be a nonzero 2-torsion point of E i. Then the 
endomorphism 0: A ---) A defined by 

0(Zl,Z2) = (--Zl+ el, z2+ e2) 
induces a fixed-point-free involution on the Kummer surface K of A and the quotient surface 
Y = K/0 is an Enriques surface. Keum's surface S is the minimal model of the canonical 
resolution of singularities X ---~X of a ramified double covering X of Y; this covering X is 
determined by a square root of a reduced divisor B of Y with at most simple singularities and B 
is defined as follows. Let q : A ---) K and p: K ---~Y be the natural maps; we denote by R 1, R 5 
(resp. R 3, R7) the images under the composition map pq of the subsets of A of  the form (a 2- 
torsion point of E 1) x E 2 (resp. of the form E 1 x (a 2-torsion point of E2)) and by R z, R 9, R 4, 
Rll,  R 6, R12, R 8, R:0 the remaining 16 exceptional lines corresponding to the 2-torsion points 
of A; the lines intersect as in the picture below: 

R. jR3 

R R4 

The branch divisor B is defined by 

B = R2+R4+R6+R8+R9+R10+R1;+R12+F+G 
where F, G are smooth elliptic curves belonging to the elliptic pencils 12R3+R2+R4+R9+Rlll 
and 12R:+R2+Rs+Rg+R:ol respectively. In particular, it holds 
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(pcL)*(F)= a x E2+(-a ) × E2+(a+el) x E2+(-a+%) x E, 2 
(pq) (G) = E 1 × b+E 1 x (-b)+E 1 × (b+e2)+E 1 x (-b+e2) 

for some ae E 1, be E 2. 
To prove the proposition, it is enough to check that the bicanonical system 12K~ I of  the 

surface X has base locus consisting entirely of the exceptional curves of  the fhst kind counted 
with multiplicity one. Moreover, we can reduce the problem to the inspection of the linear 
system I F+G I on Y, via the isomorphisms H°(2K~) = H°(®y(B))  = H°(® y(F+G)). This 
follows since both I F I and I G t are base point free pencils. Q.E.D. 

§2 m th root extraction trick and change of fundamental group 

In this paragraph we are going to sharpen the result of theorem 1.1, showing that the 
• 2 • 

extension appearing there can be realized by the fundamental group of a (7/27.)  -Galols cover 
Y of S .  By pulling back ~ to Y, and showing that the pull back still remains stable (and not 
only semistable) we shall be able to apply Donaldson's theorem to a stable vector bundle on Y 
with trivial Chern classes ([Do], [Ko]). 

In order to do so,  we recall the mth root extraction trick, which will produce the desired Y in 
the case m=2. 

In the rest of the paragraph we shall explicitly describe how the fundamental group of Y can 
be computed, later on we shall apply this recipe in some concrete examples. 

Lemma 2.1 (m th root extraction trick) Let S be a smooth algebraic surface and f : S ---) ]p2 be 
a holomorphic map associated to a base point free subsystem of a linear system I D I. Let Y be 

2 
obtained as the fibre product Y = S x ~2 ]p2 of the previous f : S ---~ , and, for a general 
choice of  coordinates, of  the m th power map g : ]p 2.__) IP 2 (i.e., g (Yo,Yl,Y2) = 

rn (Yo m ,y l  ,Y2 rn))- 

Then, if F is the natural morphism F: Y ---) S ,  F,: tel(Y) ~ ~I(S) is surjective, and its 
kernel K is cyclic of order dividing m; moreover K is contained in the centre of ~](Y). 

Proof We denote for simplicity by H i 0=0,1,2) the coordinate lines on •2, by D i the inverse 
image of H i under f, by C i the inverse image of D i under F, by H' the union of  the Hi's, and 
similarly we define D' and C'. By the genericity of the Hi's, all the above divisors have global 
normal crossings, Y is smooth, F is a Galois (Z/mZ)2-cover  branched on D' and totally 
ramified at the singular points of D'. In particular ~I(Y-C')---)gl(S-D') is a normal subgroup 
with quotient group (Z /mZ)  2. 

We have the following diagram of sequences 
0 0 
T T 

(Z /mZ)3 -~%/% -~ (Z /mZ)  2 -~ 0 

(2.2) 

$ $ 
0 --> ~7, --o ~I(S-D') --> ~l(S)---) 0 

1" "['F, T F ,  

0 -+ % --o ~l(Y-C')  --o ~I(Y)--o 0 
$ T 
0 0 
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which are exact, with the exception of  the fwst row. Here exactness of the middle column was 
already mentioned, whereas exactness 'of  the second and third row is standard, and the 
inclusion Sg c ~K~ is obvious. 

I n  i n  i n  
Claim 2.3 ~ ,~g are central and with respective generators ~/0,~1,Y2 for ~ ,  ~'0 ,~1 ,q(2 for Sg. 

Proof of the Claim 2.3 : let Yi, for i--0,1,2, be a loop consisting of the conjugate (under a path 
in S-D') of a small circle in the normal space to a smooth point of D i . Argueing as in theorem 
1.6 of [Call, one shows that ~ is generated by conjugates of the "/i's, and that the "fi's lie in 
the centre of  ~](S-D'). 
An entirely similar argument applies to %, since ~/i m is obtained in Y-C' by the same procedure 
by which Yi is gotten. Q.E.D. for the claim 

It is worthwhile to notice that, since ~t i , "~ can be chosen to be local generators of ~I(U-D') 
for a suitable neighbourhood of x ~ D i c~Dj, by looking at the local monodromy of F, we 
obtain that they map to 2 generators of (Z/mZ)  2. 

By diagram chasing, the surjectivity of F.  follows from the surjectivity of the map 
~ I % ~ ( Z l m Z )  2. 

Clearly K = ker (F,: ~](Y) --~ n](S)) = ( ~  c~ ~] (Y-C' ) ) I%,  is contained in ~ 1 % .  But, 
as we mentioned above, we have two surjective maps (Z /m Z)  3 --~ ~ / ~  ---~(Z/mZ) 2 such 
that any 2 of the 3 standard generators of (Z /mZ)  3 map to 2 generators of (Z /m Z)  2. Hence K 
is cyclic of  order dividing m. 

We can be more precise since in fact K is isomorphic to the kernel of ~ / %  ~ ( Z / m Z )  2, 
therefore K is the image of the cyclic group ( Z / m Z )  = ker ( (Z/m:~)  3 ~ (7 . /mZ)  2) inside 
~x(Y). Q.E.D. 

Corollary 2.4 If S is simply connected, 7q(Y) is cyclic of  order r where r = G.C.D. (m,d), 
and d is the divisibility index of the divisor D (i.e., d is the order of the cyclic group 
(QDc'uH2(S,Z))/ZD)). More generally, the kernel K always admits a surjective homomorphism 
onto a cyclic group of order r. 

Proof Hypotheses of proposition 1.8 of [Cal] are satisfied. Applying this proposition, one can 
see that ~I(Y) is the quotient of ker ((Z/mZ)3---~(~-/mZ) 2) by the image of the map obtained 
as the composition of (H2(S,Z) --~ H2(D,7 . )=  Z3----~(Z/mZ)3). By Poincare' duality, this 
image consists of the elements divisible by d and our assertion is proven. 
In the general case, the above quotient represents exactly the natural image of K in HI(S-D' ,Z)  
(cf. the proof of  cor. 1.7, prop. 1.8 ibidem). Q.E.D.  

We can indeed prove a much more precise statement (see Th. 2.16 below), which is our 
main result. If m is a fixed positive integer, the assertion in lemma 2.1 shows that (it suffices, 
in general, to add to the divisor D m times a suitably very ample divisor H, such that I D+mH I 
yields a finite morphism to IP 2) to each divisor D on a smooth surface S we can associate a 
central extension of the fundamental group of the surface by a cyclic group Z/ r 'Z ,  where r' is 
divisible by r = G.C.D. (m,d) and d is the divisibility index of D: this is the extension 
describing the fundamental group of a (•/mZ)2-Galois covering of S under which the divisor 
D becomes m-divisible. 
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Looking now at S as a quotient of its universal covering space S, we will see that, by general 
properties of the cohomology of good quotient spaces, to each divisor D and to each integer m 
is uniquely associated another central extension of gl(S) by a cyclic group: we shall call the 
latter the "algebraic construction" Of the extension. 

The key fact is that this algebraic construction yields the same extension that we obtain by 
the geometrical construction of extracting the m th root of D, as it will be shown in Th. 2.16. 

We firstly recall some basic facts and notation concerning the spectral sequence for the 
cohomology of  a quotient X = X/G by a properly discontinuous group G (see [Mu], appendix 
to section 2, and [G], ch. 5). 

If ~" is a G-linearized sheaf on X and g: X--~X is the quotient map, one can describe the 

functor F(~I~')  G as a composition in two different ways: 

(2.5) a" ~ r ( ~ , a ' ) ~  r(~,a') G 
(2.6) ~" ~ 7r,(~')G--4 F(X,Tr.(~') G ) 
The derived cohomology functors are then given with two filtrations whose associated gradings 
are the limits of two spectral sequences 

(2.7) HP(G,Hq(X,~')) = E2P'q 

(2.8) Hi(x,~'tG j n , ( ~ ) )  = E'2 i'j 
where HP(G, - )  is the group cohomology and ~'~ G J n . ( - )  denote the derived cohomology 
functors of  7r,(-) G . If the action of G is free and gives indeed a covering space, then the 
functor ~" __.~ (~,~-)G is exact and consequently ~'~,GJ~,(~ ") = 0 for each j > 0. So the 
spectral sequence degenerates at E' 2 and the first spectral sequence converges to 
Hi(x ,  0r.~l:')G): 

(2.9) HP(G,Hq(X,I~')) =~ H*(X,(n.~ ' )G).  

Assume now that ~" = 7.~. Then 0r,7-~) G = Z x ,  thus 

(2.10) HP(G,Hq(X,7-g)) ~ H*(X,Tx) .  
If we assume moreover that HI(,X, Zff) = 0, e.g. if X is the universal cover of X, the E2 p'I- 
term in the spectral sequence 2.7 vanishes and so the differential d 2 : E2P'q---~E2 p+2'q-1 is zero 
for each q < 2. So we can say that F_,2P'q = E3P'q for each q < 2 and, ffmally, that 

(2.1 1) d 3 : HP(G, H2(X,Z~)) --4 H p+3 (G, H°(X,Z~)) 
is the only non zero map for q < 2. The edge-morphisms give then an isomorphism 

(2.12) HI (X ,Zx)  _=_ HI(G,~.) 
and an exact sequence 

(2.13) 0 --~ H2(G,~)  ~ H2(X,~x)  --4 H2(,X,~:~) G --~ H3(G,~) 

where the arrow H2(X,~.x) ~ H2(X,7~ff) G is given by the inverse image ~*. We similarly 
have an analogous sequence for any system IF of coefficients (IF = ~-/m~-, ~ .. . .  ) and in 
particular, associated to the exact sequence 
commutative diagram , 

0 --~ H2(G,Z) --~ H2(X,Zx) ~ H2(,X,2ff) G 
m~, mS . m.l, 

(2.14) 0 ~ H2(G,;~) ~ H2(X,:~x) ~ H2(,~,Z:~) G 
$ $ $ 

0 ~ m Z - - ~ Z  --~ Z / m Z  - -~Owehavea  

--~ H3(G,72 ) 
m.l, 

H3(G,Z) 
$ 

0---~H2(G,7/mZ)---~H2(X, Z x/m 7p x)--~H2(X, 7-X/mTX)G'-~H3(G,z[mz) 
which is exact in the rows and in the columns. 
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Algebraic construction Now let 7t: X--~X be the universal covering, let G be the 
foundamental group of X and m be a fixed positive integer. By the universal coefficients 
formula, the group H2(X,Tff) is torsion free, hence, if d is the divisibility index of a class 1~ in 
H2(X,Z~) G, then the image ~ a H2(X,7./mT~ff) G under the map of diagram 2.14 has period 
exactly m/r, where r = G.C.D.(m,d). In particular, the image ~ in H2(X,Z/rT.~) G is 0. Hence 
ifI~ ~ H2(,X,Zff) G equals ~*(D) for D ~ H2(X,7.x), the class D maps to a cohomology class 
~a H2(X,Z / rTx)  coming from a cohomology class fie H2(G,7./rZ),  since we must have 

= ~*(~) = 0 in H2(X,7~/rT.~) G. So we get: 

Construction To each class D ~ H2(X,~.x) we can associate I~, r, ~5 as above, hence a unique 
(up to isomorphism) central extension 
(2.15) 0 ---) Z/rZ---) G(5) ---) G --~ 0 

Theorem 2.16 If Y is obtained from X via the m th root extraction trick associated to I D I, then 
we have that ~I(Y) _= G(-8) ,  i.e., as an extension of G = nl(X),  ~I(Y) is the extension 
associated to - D  by the "algebraic construction" described before. 

Proof Let us take the fibre product Y' of the universal covering ~: X---) X and the m th root  
extraction (Z/mZ)Z-Galois covering F: Y ---) X; we have the following diagram q 

(2.17) 

where 
i) 0 ---) 

~/ ----~ y '  ~ 

P $  F $~ 
Y ~ X 

xg ,~ (yimx $ f 
ip 2 -.~ lp 2 

Z / r ' Z - - ) n l ( Y  ) --) n l (X)=G --> 0 is a central extension and r' divides m, as we 
know from lemma 2.1; 
ii) p is the covering associated to Z/r'7. , so ~](Y') = 7./r 'Z ; 
iii) f* (9(1) - D; 
iv) ( Z / m Z )  2 × F operates on Y'. The covering ~(---) Y' is an etale (Z/ r 'Z)-Galois  cover 
induced by the universal covering Y ---~Y, since F operates freely. 

Let D' = DIUD2uD 3 and 1~' = rc-l(D'), where the Di's are the inverse image under the 
map f of the coordinate lines on •2. 
Then nl(X-l~') = ker (~I(X-D') ~ 7~l(X)) = ~(~ is abelian and is generated by Y0,Y1,Y2. 

Step I We show that r = r ' .  
By Lefschetz's theorem 7~l(Di) surjects onto ~I(X), hence ~---l(Di) = l~iis connected and 

smooth. 
The map Y' --) ,X is an abelian (Z /mZ)2-cover  which is unramified on X--D'. Since 

~I(Y') is cyclic, it suffices to calculate the first homology group Ht(Y',Z). 
We proceed as in [Call ,  sequel to cor. 1.7., and prop. 1.8. Here we have to apply 

Lefschetz's duality as in [Dol] prop. 7.14 page 297, by which it follows that, for a manifold M 
with boundary L = 0M, and of dimension n, I-In_i(X) = Hn_i(X---0X) -= Hci (x ,0x)  the last 
group denoting cohomology with compact supports. 
Hence, argueing as in loc. cit., H](,'K--I~') = Hca(X, I~'), which, by the exact sequence 
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(2.18) Hc2(X) ~ Hc2(I~ ') --> Hc3(ff,I~ ') --~ 0 
is isomorphic to coker (p), X being simply connected. 
Now, by Poincare' duality Hc2(X) _= H2(;~) is a free Z-module, whereas by M ayer-Vietoris 
and again Poincare' duality Hc2(I~ ') = (DiHc2([~'i)~ (DiHo(]~' i ) --=- Z 3, the D'i 's  being as 
we mentioned smooth and connected. The map 19 is given by geometrical intersection and its 
dual sends ~3 __) H2(~ ,Z)  by mapping each generator e I, e. 2, e 3 to the class of I~ i . 

Argueing as in loc. cit. and as in claim 2.3, we obtain that, if d is the divisibility index ofl~, 
then firstly c o k e r ( p )  is isomorphic to 7 - 3 / Z ( d e 1 + d e 2 + d e 3 ) ,  hence secondly 
xt(Y') = (Z /mT) / (d )  = Z/rT. if r = G.C.D.(m,d) as in our notation. 

Step II We can reduce the proof of the theorem to the case where r = m. 
In fact, we can factor F: Y ~ X as Y ~-> Z ~ X where F' is obtained by extracting the 

r th root of D, hence F'*(D) - rL. We shall show in Step HI that the divisibility of  the pull back 
of L to the universal cover Z of Z is precisely d/r. 
Since F" is obtained by extracting the (m/r) th root of L, it follows by step I that 

xl(Y) = xt (Z) ,  thereby reducing the proof of the theorem to the case r = m. 

Proof of step II (Proof of the theorem in the special case r=-m) 
We fu'st introduce some notation to describe explicitly the cocycles on X and X. 

Let {Uct} be a sufficiently fine cover of X, such that, for each Uct, x - l ( u  ) = UgeGg(Vcx) 
where the union is disjoint and we have made a non canonical choice of V a, a connected 

component of r r1(Ua) .  We shall also write, for further use, 

(2.19) g(Va) = g • Vc~= V(c~.g ) (so V(ot,1)= Vct) 
and we let G act on the left. 

One can observe the following facts: 

a) For each (cz,[3) such that UctnUt~ # 0 ,  there exists a unique element h(0t,[3) of G such that 

(2.20) V(ctA)nV(c~,h(cc,~)) # O 
b) If Uc~c~U ~ nU.  r # 0 ,  since x is a local homeomorphism 

(2.21) O # V(.,[,h(ot,.y))AV([i,h(ot,~)) (= h((x,[3) • (V(zh(EV))nV(~,I))) 
Hence, if G acts on the left, we have the relation 

(2.22) h((x,T) = h(ct,]3) h(13,'y) for each U nUgnU # ~. 

In particular h(13,tx) = h(ot,~) -1 

c) If UanUt~#O, V(c~,g ) intersects exactly V(~,g h(a,l~)) " 
Therefore, if (foxy) is a cocycle for L = (gx(D) relative to the covering {Uct } on X, there 

exists, for the line bundle ~, on X such that ~ ®  r) _= , ( O x ( D )  ) (whose existence is guaranteed 

by our assumption), a cocycle (f'(ct, g)(~, s h((x,[~)) ) such that ('/(c~,s)(~, g h(ot,~)) )r = E~" 
For short, we write (f'(ct,s)(~,g,)) but we recall that g' = g h((x,~). 

We write z(ct,g ) for a local generator of on V(o~g ), so that 
N 

(2.23) z(a.g) = f (ct,g) (~')r z(~,g,.) . 

Using the isomorphism ~, --- ~ (L) we can assume that G acts on (~e r) by sending the 

local generators (z(ct,g) )r of (L ® r) one to another, i.e. for each ~ e G 

(2.24) ~: (z(a,g) )r ---) (z(ct, ~ g))r 



62 

(2 .28)  

We can 

identity: 

* G SinceL e H I ( x  ,®x-) , for each ~ ~ G there is an isomorphism L ~ ~ , ( L  ), which we 

still denote by ~ and which induces the above action on (~ ® r) (by which (L ® r) =x*(L)).  

Hence ~ acts on ~, b y 

(2.25) ~: z(a,g ) ---) c ~" (a,g) z(a,gg) 

where cg-(a,g) satisfies the identity (cga,g))r = 1. The constants c ~-(ct,g) must satisfy some 

compatibility condition, since 

c g z(a,g) = f'(a,g) (~,g') z(i~,g,) ~ f'(a,g) (~,g') ([~,g,) z(~,~ g,) 

(2.26) +~- 

c g = c ~- ~ (a,g) z(a,~ g) (a,g) f (a,~ g) (~,g g') z(~,~ g,) 

where g' = g h(a,]3) as before. Hence: 

(2 .27)  c ~ f" = - c g (a,g) (a,gg)(13, ~ gh(a,13)) f (a.g) (13,gh(a,~)) (13,gh(a,13)) 
The above formula shows that c ~ is completely determined by c ~- ~ ~t r , where 

(~,gh(ct,[~)) (a,g) 
~t r is the group of the r th roots of the unity. 

Since X is connected, the c g are completely determined by one of them. Moreover, once 

fixed a local generator z(a,O f ( o ~ e  bundle L such that (z(a g) )r is G-invariant as before, for 

each ~ G one can also choose the root z(a,~ ) such that the action is given by 

g: z(ctA) --~ z(a,g)- 
In other words, we may assume: 

g 
c(a,t ) =1 for e a c h g ~  G.  

now check how the composite  action of  (gl g2) -1" gl" g2 fails to act as the 

g2 g2 gl g~ gl 
Z(ct, g) ~ ~a,g)Z(a,g2g) "-') C(a~g)C(ot,g2g) Z(a.glg2g) 

(2.29) 

-I 

(gl g2 ) 

cgl c(glg2 )-1 
~g2g) (Ct'gEg) (a'glg2g) Z(ot,g)= 

g2 gl [ (glg2))-1 = C C I,C(a,g ) Z(a,g ) 
(ct,g) (a,g2g) 

where the last equality follows by observing that we can assume: 
_-1 ~- -1 

(2.30) cg(a,8) = (c(a,(~)-tg))" " 

By 2.27 and the connectedness of X we get then: 
g2 gl : (g.g,~) x,-1 

(2.31) cta,g)C.tct,g2g~. [cca,gj" "" ) is independent of (a,g). 

This is in fact an element of H2(G,Ix r) classifying the extension of groups Ctheta group" 

extending G): by the assumption 2.28, we know that for each a: 
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g2 gl . (glg2) )-1 Cgl (2 .32)  c c. (c = = c(gl g2) (0t,g) (0t,g2g) (et,glg2g) (OLg2) 
and we found that: 

gl (2.33)  c~al, g2) = c 2 = c (gl, g2) is independent of  o~. 

We must then explicitly write the cocycle cc~v ~ H2(X,~) which is associated to the cocycle 

c(gl, g2) given in 2.32. We use the description proven in ([Mu], page 23) of  the image of 

c(gl, g2) which yields the following formula: 
hfoq~) 

(2.34) Cc*[~V = Ch(~'~) -1 

We want now to show that, taking Chem classes modulo r, the inverse (c~ . t )  gives 

exactly the Chern class of L. 
We start by describing more explicitly this class, in terms of the chosen cocycles for L and 

L .  We will use the exact sequence 
/I:* 

(2.35) 0 ~ H2(G,I.tr) ---) H2(X,l.tr) ---) H2(X,~)G--~H3(G,~) 

obtained as in 2.13. 
We can apply the theory of spectral sequences for G-linearized sheaves discussed above to 

the case ~ =  ®:~, ®~ : specializing 2.9, we get 

(2.36) HP(G,Hq(X,®~)) ~ H*(X,®x) 

(2.37) HP(G, Hq(X,G~'0) ~ H (X,®x) (since n , (®~)  = ®x and n.(® x )  = @x) and an 

exact sequence 
* * ~ *  * 

(2.38) 0---~ H a ( G , H ° ( O ~ ) ) - ) H I ( X , O x )  --) HI(,X,®*.~) G ~ H2(G,H°(®~))  

In this sequence, to each G-linearized line bundle ~ on X is associated the "theta group" 9(~) :  

this is a central extension 
0 * (2.39) 0---) A u t ( ~ ) = H ( ® ~ )  ~ g(33) ~ G ~ 0  

0 * classified by ~(~) e H2(G, H (®~)). In particular this applies when ~ is a pull back bundle 

from X. 
We will firstly consider the (2ni)-twisted exponential sequence 

(2.40) 0 --+ Z ---) ®x b_~ ®x___ ) 0 

on X (and the corresponding on X) that gives rise to the diagram 

0---) HI(G,H°(®~)) - - - )HI(X,®x)  ~ HI (x ,®~)  G 

(2.41) 

H2(G,H0(® :~)) 

1 0 *~ 1 * ~* * 0 ~ H (G,H (®x)) "-~ H (X,®×) ---) HI('X,®*2) G ~ H2(G,H°(®:~)) 
$ ~$ , :  % $ $ 

0 ---) H2(G,Z)  ---) H2(X,7~) ---) H / (X ,7 )  G ~ H3(G,2)  

in which rows and columns are exact and the map 5 is the first Chem class: so Im 8 is the 

Neron Severi group NS(X) of X and Im 8 G is NS G . 
On the other hand, we can consider the Kummer sequence 

(2.42) 0 ---) ].t r -~  ®x -~  ®x ---) 0 ,  
* r * 

where by ®x -'-~®x we denote the r th power (and the corresponding sequence on ~O: the 

exact sequence of cohomology groups gives then 
1 * 1 * (2.43) H (X,Ox)  -~  ---) H (X,® x) H2(X,I~r) 
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and, again, we have a diagram with exact rows and colums 
I * ~* * 0 ~ H I ( G . H ° ( O x ) )  ~ H (X,® x)  ---> HI(x,O~) G ~ H2(G,H°(®g))  

0 " H I ( X , ® x ) _ ~  HI(~,®*~)G ~ H2(G,H0(®X)) (2.44) 0 ~ H I ( G , H  (®~)) --> 
$ $ $ $ 

0 --> H2(G,IZr) --> H2(X,~ ) --> H2(X,~)  G --> H3(G,P-r) • 

By diagram chasing, using 2.44, we check that the Chern class "d I(L) (this is the In'st Chem 

class el(L) modulo r) of L is given by 

(2.45) ~ t (L  ) = f  1/r f~ 1/r f a -1 / r  

~ "~ - I  
= f (et, lXl3,h(a,l~)) f (13.1)(5',h(~.y)) ((a,1)(y.h(a,'/))) " 

(we can take the cocycle (1/2nS)[log fa[~ + log f[~ + log flu] as a representative for Cl(L) ). 
r 

Since fet~ = (f(a,g)(ILah(a.[~))) the class is zero in H2(X,~) as follows from the equality 

(2.46) f (a,g)(lLgh(a,l~)) f (~,gh(et,13))(y, gh(ct,y)) = f ([x,g)(T, gh((z.y))" 

Hence~ I(L) is cohomologous to a class coming from H2(G,I.tr) in 2.35, and our claim is that 
-1 

this class is the inverse (cal~. t)  of the class c(x~ , described in 2.34. 

So we have to show that 
~ ~ ) - 1  

(2 .47)  ~ = "c I(L) = f (aA)(lLh(a,[~)) f (~,l)(7,h(~,~t)) ( f (a,1)(y.h(ct,7)) 

is cohomologous (in H2(X,~ )) to 
)-1 / h(a,13 ) ) -1  -1 

(2.48) (C~l~. t = kCh(~4,) = c(h(a,[3),h([3,y)) , 

where, for each g, ~, (z,~ it holds (notice that c ~ ~ ~t r) 
( a . g )  

(2.49) c ~" - = c g - f (a,~g)(lL~h(a,l~)) gh(a,l~) f (a,g)(~,gh(a,[~)) " 
In particular 

= c g (2 .50)  f'(a.~)(IL~h(a.l~)) h(a.~) f (a.1)(~.h(a.t~)) " 
We shall use again the cocycle condition 

(2 .51)  1 = f'(ct,1)(~,h(~t,[3)) "f(13,h(ct.13))(y,h(a,7) ) 

(2.5 2) ~" "~ f'(13,1)(~.~(~.,t)) 
- 1 - 

f (~,h(a,~))(7,h((~,y)) 

which, using 2.50, gives the desired equality: 
1 

(2.53) ~ = _h(a,13) 
Ch(~,r) 

)-1 
( f ' f a , 1 ) ( , t . h f a . ~ ) )  • 

Step III We must now prove that, if F': Z --~ X is obtained by extracting the r th root of D, 
and we thus have (F)*(D) - rL, then the pull back ~_. of L to the universal cover Z of Z is 
exactly (d/r)-divisible, if the pull back D of D to the universal cover X is exactly d-divisible. 

We have thus M such that D--- dl~, and we remark that in the previous steps we have proved 
the following: 
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Fact: the map f: Z --4 ,~ is a (7/rZ)3-Galois cover, obtained as the fibre product of three 
elementary cyclic covers fi : V/i "--~ (hence f is the composition of three elementary cyclic 
covers). Each fi is gotten by taking the r th root of a smooth and connected divisor D i , 
linearly equivalent to D, inside the line bundle associated to the divisor (d/r)l~ . 

Since ~_, = f*((d/r)!~l), the desired result shall follow by iterated application of the following: 

Proposition 2.55 Let f: Y --~ X be an elementary cyclic covering of connected and simpty 
connected complex manifolds, i.e. there is an effective smooth irreducible divisor D given by a 
section o of ~ ®r, and Y is the submanifold of the total space of the line bundle associated to 
~ ,  obtained by extracting the r th root of D. Then, NS(X) denoting the Neron Severi group of 
X, the map f* induces an isomorphism between NS(X) and NS(Y) z / rz ,  and in particular the 
divisibility index of the class of a divisor M equals the one of f*(M). 

Proof: We shall argue as in lemma 4 of [Ca2], recalling that NS(X) C H2(X,Zx) is given 
by the Chern classes of invertible sheaves, for which, though, we shall use the notation as for 
divisors (by real abuse of notation). 

First of all, f.f*: NS(X)---~NS(X) is given by multiplication by r, hence clearly, H2(X,Zx) 
being free, f* is injective. 

Moreover ,  i f  f * ( M ) =  kN, then first of  all N~ N S ( Y ) Z / r Z  In fact, 
N = (l /k) f*(M), hence N ~ H2(S,Z)c~(I)NS(Y) Z/rZ = NS(Y) Z/rZ. In view of the exact 
sequence 

(2.56) 0 --~ HI(Y,®y) ---~HI(Y,tg*y) ~ NS(Y) ~ 0 , 
we can assume that, if f*(M) = kN, and M is an invertible sheaf on X, we have an 
invertible sheaf N such that f*(M)-- N ®k. Since H I ( Z / r T - , H I ( y , ® y ) ) =  0 (these are 
homomorphisms of 7./r7. into a ~-vector space), we can achieve that Ne HI(Y,®y) Z/rz. 

To N we associate the theta group of automorphisms of the line bundle associated to N 
which cover the action of 7P/r7 on Y, we have thus a (non centxal) extension 

0 * (2.57) 0 --4 H (Y,®y) ~ 9(N) ~ 7 / r 7  ~ 0 .  

Claim: The sequence 2.57 splits. 

Assuming the claim, we obtain that there is an action of (Z/ rZ)  on the invertible sheaf N, 
and it suffices then to show that the invariant direct image sheaf % = f,(N)Z/rZis invertible, 
since then N = f*(% ). The sheaf % is clearly invertible outside the branch divisor D, 
whereas, locally at D, f ,  Ov  = { z r ~  fi (x,t3) z i }, where z r = o,  o = 0 being the local 
equation of D, and (x,o) is a local coordinate vector for X at a point of D. 

Locally a generator g of Z / r Z  acts on Y by z ~ ez, e = exp(2rd/r), and, if  N is locally 

w a fibre variable, by (z, w) ~ (ez, (p(x,z)w): here I-l~cp(x,e i -  z) = 1, trivialized with since 
gr = 1. 

Writing tp(x,z) = ~r-1 z i i=0 ~i (x) , we obtain tP0(x) r = 1, hence there exists h such that 

0 < h < r - 1  and 

(2.58) tp(x,z) = E h (l+~..i_>l (Pi(x)zi) = £h exp(~.i_>l ~i  (x) zi). 

Changing the local trivialization of N by 

(2.59) w ~ exp (~j>_l aj (x) zJ ) 
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we replace to(x,z) by e h exp (~'j_>l zJ ( ~ j  (x) - aj (x) + E j aj (x ) ) ) ,  hence we may  
assume Vi (x) -= 0 for i not divisible by r. 

Finally, since to = to(x,(~), the equality I-I~=~ to(x,eiz) = 1 implies that t o = e h . But then the 
locally invariant sections are given by functions ~(x,z) such that ~(x,e z) = e h ~(x,z), hence 
we can write ~(x, z) = z h ~(x,z), thereby proving that f . (N)  Z/rz  is invertible. 

There remains to prove the claim. 

Proof  of  the claim: We choose an acyclic cover {Uct} of  X such that each inverse image 

to-l(Uct ) = Vet is also acyclic. Then V is defined by local equations in Ua x E ,  z(xr= (r a , with 

z~ = g _ , z , ,  g , b e i n g  a cocycle in H I ( X , ® x )  for ;g. 
~,  ~ . p  ~ OLp ~ , 

Then H ° ( ® y )  = H ° ( ( g x ) ~ 9 ( ~ = ~ I H ° ( L - ~ ) ) ,  and we have just  written the eigenspace 

decomposition for the action of Z/rT. on Y. 

Le t  (n a) be a cocyc le  for  N relat ive to the cover  {Va} o f  Y: saying that 

~.r-1 niaB zeti, £ = exp(2~i/r) ,  then the cocycle  N ~ H I ( y ~ g y )  7 / r2  means that, if  naB= i=0 , 

nA aB = ~.r-li=0 ni,al3 E i za~" is cohomologous to nab .  I.e., 

^ " - (Z  r-1 z i (2.60) nal3= nab  (zir-1 lq/i,a Zal) 1 ,. i :0 ~l/i,13 (gab ct ) )" 

The equation 2.60 is indeed equivalent  to the assertion: if w a = net_~ w B is a fibre 

coordinate for  the line bundle associated to N, then w a ---) ~Vwa ( x~ a = F.~ -1  ~i,a zet i ) lifts 

the action of  the generator g of  Z/r~- from Y to N. 
One can lift this action in a different way, just by multiplying ~ct by a global invertible 

function v on Y, and what we have to show amounts to prove that we can choose v in such a 
way that this action has period r. In other words, we want 

r-1 i (2.60) 1-Ii= 0 g (~tav) =1. 

We notice that ~et= l-I r-1 . i=0 g i ( ~ a )  is an invariant invertible function on Va ' hence. 

~a c ®x(Ua);  moreover,  by the previous equation 2.60, ~a=~B and we have ~ ~ H°(X,®x) .  

Since X is simply connected, we can choose v to be the inverse o f  an rth root of  ~, whence 
1--lr- 1 i V r i=0 g ( V a )  = V • ~ = 1. Q.E.D. 

§3 Back to stable bundles and linear systems 

In order to apply the previous theorem, let now n: Y ----) S be a (Z/2Z)2-Galois  cover of  S 
as in L e m m a  2.1, such that n * ( K s ) -  2L for  a l ine bundle  L on Y and 
7g.(l~y) = I~) s (~ ( (gs ( -3Ks) )  3 . 

Proposition 3.1 The pullback x*(~)  is n*(H)-stable if H is an ample line bundle on S such that 
is H-stable. 

Proof By pullback under ~ we have the exact sequence on Y 
(*) 0 --') I~y --) ~*~ ---) ~7~-l(x) (u*K s ) --) 0 .  

Let  0 ---> N'-->u*C--->~z(M' ) --> 0 be a H'(=u H)-seml-destablllzmg sequence for ~*~ on Y. 

The Galois group G = ( Z / 2 Z )  2 acts on Y and u*~ has a natural G-lineadzation.  There are 

two different cases 
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i) g*N' = N' for each g a G ; 
ii) g*N' # N' for some g e G .  

In case i) the line bundle inherits from ~*~ a G-linearization and then there exists an 
invertible subsheaf N of ~ on S such that N' = ~*N. But then H • N = (1/4) H'-N' > 

t (1/8) ~ K s • H = (1/2) K s • H and ~ is not H-stable, which is absurd. 
• .  ~k t . • . - • In case n), let us set g N = N .  The hne bundle N ~s still a subsheaf of ~ and satisfies also 

the equalities (N')2= (N") 2, H' • N ' =  H' • N" . 
By hypothesis N' and N" are distinct, so the map obtained as a composition 

IB: N" ~ ~*~ ~ as(M') gives a non zero element of H°(az(M'-N")). 
• ! i ~ ~ . ~ • • f t t ! t !  _ _  J But dlv(l~). .H = H - M - H . N  _ 0  lmphes  N - H  = M  - H ,  N - - M , Z = O .  

So the bundle ~ ~ splits as a direct sum ~x ~ _=N ~ N  and there exlsts two respecnve global 
holomorphic sections of  N' and N" such that the sequence (*) has the following form 

t(n',n") (-n",n') 
0 ~ ®v ~ n*~ --4 ~(n_~(x))(~*Ks) ~ 0 .  

In particular, (if=0) c~ (n"=0) = r ( l (x)  and N'. N" = 4. But the long exact sequence of  
cohomology associated to the sequence (*) gives 

0 ~ h°(a(n_~(x))(~*Ks)) _< h°(r~,~*Ks) = h°(Ks • Oy( -2Ks)  3) = 0. 
Q.E.D. 

Since 4 as we saw in theorem 1.1, the canonical bundle is not 2-divisible, we consider the 
(7/27-)--Galois cover ~: Y ~ S of S described in Lemma 2.1 and associated to the linear 
system I D I = I 3K s I .  Then there exists a line bundle L on Y such that g*(Ks) - 2L and 
g , (®y)  = O s ~ ( ® s ( _ 3 K  s ))3. By Prop. 3.1 the pullback g*(~) is rc*(H)-stable for any ample 
line bundle H on S such that ~ is H-stable. Moreover, g*(~)(-L)  has trivial Chern classes, 
hence it gives rise to an irreducible SU(2)-representation of  gl(Y) not induced by 

~I(Y)---)~I(S). 
We get thus the theorem 

Theorem 3.2 Let S be a minimal surface with pg = 0, Ks 2 = 4. Then I 2K s I is base point 
free if, g: S --~ S being the universal cover, either 
i) g*(K s ) is not 2-divisible, 
ii) g*(K s ) is 2-divisible and either its Chern class modulo 2 is trivial or it gives a central 
extension 

1 - - - )Z/2~  --~ F ~ gt (S)  ~ 0 
not associated to any irreducible PU(2)-representation of gl(S). 

We give now an alternative proof (using Donaldson's theorem) of  the existence of an 
example where m = 2, D is not 2-divisible, but :xl(Y) ~ ~1(S). 

Let A be a simple minimal abelian surface admitting a polarization L of type (1,4). Consider 
2 

now a G = ( Z / 2 Z )  -Galois ramified cover ~: Y --> A over A associated to I L I as in Lemma 
2.1. The pullback of L under ~ is 2-divisible and ~ . ( O y )  = ®s @(®s (-L))  3. The map 
associated to the linear system I L I is a well defined birational but not injective morphism 
9 = 91LI on A (cf. [BLvS]); let Z = {x], x2} be a subset of A such that 9(Xl) = 9(x2). 
There exists then a vector bundle ~ of rank 2 on S occurring as an extension 

(3.3) 0 --> O A --> ~ --> ~z(L)--> 0 



68 

Proposition 3.4 The vector bundle ~ is L-stable (since A is simple). 

Proof Otherwise there exists an invertible and saturated subsheaf N of ~ which satisfies the 
inequality N • L > (1/2) L 2 = 4 and gives a diagram of exact arrows of the following form 

0 
$ 
N 
$ 

(3.5) 0 --~ I~ A --~ (~ --~ ~z(L)--~ 0 
J. 

~w(~) =~w (L-N) 

0 
for a suitable 0-dimensional subset of A. 

The composition of maps ~: N --) C -~ ~z(L) is non-zero and so M is an effective non- 
. . 2 >  2 . 

zero divisor. We have that N _ M , because of the inequahty 
(3.6) 0 _< (N - M) .  L = (N -M)  • (N + M) -- N 2 - M "2 , 

and by computing the first Chern class of C, we get the equality M • N + deg W = 2 which 
implies that M • N < 2. 

Then we get M 2 _<2 from the inequality M - L < 4 .  
• 2 M 2 = By the hypothes~s that A is simple, since M is even, the only possibility is 2. But 

2 .-2 2 
then by the Index theorem M N < 4  ~ N < 2  ~ M 2 = N  2 = 2 , M . N = 2 , a n d  
again by the Index theorem M and N differ by a topologically trivial line bundle on A: but this is 
impossible, because the line bundle L is not 2-divisible on A. Q.E.D. 

Theorem 3,7 The pullback bundle ~*(C) on Y is n*(L)-stable. 

Corollary 3.8 The corresponding surjective map r q ( Y ) ~  ~I(A) between fundamental 
groups has a kernel isomorphic to 7./2~..  

Proof of  corollary 3.9 Otherwise, Lemma 2.1 would imply that ~Xl(Y) =- Xl(A) =-- 7-4 and, by 
Donaldson's Theorem, Y does not admit any stable rank two vector bundle with trivial Chern 
classes because every SU(2)-representation of x1(Y) is reducible• But x*(L) - 2L" for some 
line bundle L" on Y and the vector bundle x*(~)® (L") -) cannot be stable, contradicting the 
theorem. Q.E.D. for corollary 3.8 

Proof of  lhe0r~m 3.8 As in Prop. 3.1, we can assume otherwise that the bundle x*(~ ) splits 
as a direct sum x*~ _=_ N ' ~ N "  of line bundles on Y such that (N') 2 = (N") 2 = N'- N" = 8 and 

so by the Index theorem N' is homologous to N". In particular, by pullback under x, the 
sequence 3.3 gives rise to an exact sequence on Y of the form 

t(n',n") ( -n",n' )  

(3.10) 0 ~ ®y  ~ x*~ ~ ~(n-l(x)) ( x ' K s )  --~ 0. 

where n' and n" are respective holomorphic sections of N' and N" whose divisors have no 
common components and meet (tranversally) in 8 points• 

Since in any case H I ( A , Z )  ___-Ht(y,Z), then  Pic°(Y)___-Pic°(A) and there exists a 
topologically trivial line bundle M such that N" ___- N'® x*(M). 
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It follows that (x,(N'(3 N"))___-x,(x*~) = ~ ® x,® y-~ ~ (3 ~( -L)  3. This is absurd: in 
fact, being also (x,(N'(3 N")) _= x,(N')(3 (x,(N')® M)), for each stable quotient ~" in the 
Harder-Narasimhan filtration of (x,(N'(3 N")), a colTesponding quotient ~ ® M must also 
appear (cf. [Ko], ch. 5), whereas ~ and ~(-L) are stable. 

Q.E.D. for Theorem 3.9 
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