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Introduction 

Let F be a discrete subgroup of  On: then the study of  the F-periodic mero- 
morphic functions on II;" can be reduced to the study of the space of  sections 
of  holomorphic line bundles L on the quotient complex manifold X = Cn/F 
called a quasi- toms. 

Furthermore, one can reduce (cf. e.g. [C-C, especially p. 62-65])  oneself 
to consider the case where 

1) X is a Cousin quasi-toms (also called a toroidal group): this means that 
H~ (9x) = IE, and implies in particular that the Z-rank of  F equals n + m, 
with 0 < m < n, and where 

2) L is a positive line bundle, i.e., the alternating form cl(L) : F x F ~ 2g 
given by the first Chern class of  L can be obtained as the imaginary part of  a 
positive definite Hermitian fonn H on ~n (i.e., cl(L) = Im(H) /r •  

In fact, (cf. e.g. [A-G] and [C-C]) a quotient Cousin quasi-toms X = ffg~/F 
is said to be a quasi-abelian variety if  the following equivalent conditions are 
satisfied 

(i) there exists a positive line bundle L on X 
(ii) (Generalized Riemann bilinear relations) there exists a Hermitian form H 

such that 
(iia) H is positive definite on IE'. 
(iib) Im(H) / r •  ~ Z 

(iii) X has the structure of  a quasi-projective algebraic variety 
(iv) there exists an aperiodic meromorphic function on X. 

The main difference with the classical case of  Abelian varieties, which are 
the X ' s  as above which are compact, is that here the Picard group of  line bun- 
dles can be infinite dimensional (cf. [Ma, Vo]), and there are the so called non 
linearizable bundles. Whereas in the classical case the sections of  line bundles 
can be explicitly written down in terms of  the so called theta functions, up 
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to now was not even completely solved the problem of determining the line 
bundles which have non zero sections. 

In [C-C] we gave the answer to this problem admitting the validity of 
conjecture 3.22 in [C-C]. 

The first goal of  this paper is to show the above conjecture: 

Theorem A l f  L is a positive line bundle, then H~ L):~ O, and indeed infinite 
dimensional if  X is not compact. 

This conjecture had been proven by Cousin [Cou] in the special case m = 1 
by constructing explicit Weierstrass products. 

With different methods (essentially Nakano's vanishing theorems [Na] for 
positive line bundles on weakly l-complete manifolds), Abe [A2] reproved 
Cousin's result and showed morever the existence of a (non explicitly given) 
positive integer r such that if L is positive and cl(L) is divisible by an inte- 
ger d ~ r, then H~ is infinite dimensional in the case where X is not 
compact. Our proof is based on Abe's result and consists in two basic steps. 
Firstly, via the descent trick, for every subgroup F t C F such that the pull back 
of L on X t = fign/Fr has Chem class cl(L) divisible by an integer d > r, we 
show that there exists a representation Z : El Ft --" fig* such that, if M z is the 
fiat bundle on X associated to Z, then H~ | M z) 4: O. 

Secondly, we show that for every unitary fiat bundle M, L | M is isomor- 
phic to a translate of  L by an element of  the maximal complex subspace F 
of IRE. 

Moreover, in [C-C] we based our characterization of quasi-Abelian varieties 
on some weak Lefschetz type embedding theorems. 

In the second part of this paper we obtain all the analogues, both of  the 
classic embedding theorems of Lefschetz and of its recent improvements, in 
the non compact case of quasi-Abelian varieties. In fact, we prove the best 
possible Lefschetz-type results: 

Theorem A ~ I f  dlcl(L) with d ~ 2, then H~ is base point free. 

Theorem B I f  d[ cl(L), with d > 3, then H~ gives a projective embedding 
of X. 

In our non compact situation, a projective embedding is simply an injective map 
everywhere of  maximal rank (since H~ is an infinite dimensional space, a 
more concrete statement is that there exists a finite dimensional vector subspace 
of H~ yielding an injective map f : X ~ IP ~q which is a local embedding). 

Note that the above theorem B is indeed even better than the "conditional" 
theorem 3.26 of [C-C]. 

We can do even more, showing the analogue of a result of Ohbuchi ([O], 
cf. also [L-B], p. 88): 

Theorem C I f  2l.cl(L ) then H~ gives a projective embedding of  X unless 
the linearized bundle B associated to a square root of  L yields a polarization 
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(X,B) which is reducible with one factor (XI,L1) yielding a principally polar- 
ized Abelian variety. 

As we show in 2.4, the further difficulty that one encounters is that 
Poincare's complete reducibility theorem does not hold in the non compact 
case. 

Finally, at the end of  sect. 2, we pose some new questions. 

1 Positive line-bundles on quasi-abelian varieties have non-zero sections 

Proposition 1.1 Let L be a positive line bundle on X and let F' C F be a 
discrete subgroup s.t. H~ 4=0 on X '  = r ', where ~' : X '  ~ X is the 
canonical projection. Then there exists a representation "Z : F/F' ---* ~* such 
that, i f  M z is the flat bundle on X associated to Z, H~ L | M z ) t 0  (and 
indeed infinite dimensional i fH~ is such). 

Proof Let G = F/F' be the kemel of  rr', and let r be its exponent. Then the 
bundle L'  = rc'*(L) is G-linearized (cf. [Mul])  and 

H~ U ) "~= H ~ (L)) =" H~ L | rt " ( (gx )) 

=,,~ ~ H O ( L  @ M  z ). 

2eG" 

where G ~ is the group of  characters o f  G, G" = H o m ( G , ~ * )  and M z is the 
fiat line bundle associated to the representation o f  Hi (X)  = F induced by )~ : 
G ~ / ~ r  C C* via the epimorphism F ~ G = F/F t. We can conclude that there 
exists a zeG v s.t. H~174 Q.E.D 

Corollary 1.2 Let L be a positive line bundle. Then there exists a flat torsion 
bundle F s.t. H~ | F ) t O  (and it is indeed infinite dimensional if  X is not 
compact). 

Proof Let r : X ~ X be the multiplication by an integer r. By the result of  
Abe [A2, thrboreme 6.4] U - - r * ( L )  has non zero sections (and has infinite 
dimension if  X is not compact) if r~>0, since c l ( U ) =  r2cl(L). We can thus 
apply proposition 1.1. Q.E.D 

Now, we are able to give the proof  of  the main result concerning the existence 
of  non-zero sections o f  positive line-bundles on quasi-abelian varieties. 

Let us start with two easy lemmas of  linear algebra. 

Lemma 1.3 Let a : IE" --~ IF. be a lR-linear function. Then there exist a unique 
~-linear function 2 and a unique C.antilinear function ~ such that a = 2 + ~. 

Moreover, a : ~n ~ IR iff ff = 7.. 
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P r o o f  It suffices to define: 

)+(x) =�89 + i a(ix)] 

~(x) =�89 - i a(ix)] . 

It is easy to verify the remaining assertions. 

and 

Q.E.D 

Lemma 1.4 Let  V be a N-vector  subspace o f  II~ n and let a : V ~ IR be a 
IR-linear function. 

Denote by  F the max imal  C-subspace o f  C ~ contained in V, and assume 
that H is a positive definite Hermitian f o rm  on I1~ ~. Then there do exist an 
element ~ E F and a tE-linear funct ion q) : <rf -* 112 such that: 

a ( x ) = H ( ~ , x ) + ~ o ( x )  f o r  a l l x E  V .  

P r o o f  We can assume V spans ~n and find a IR-subspace W such that 
V = F | W, and <E ~ = F |  W e i W  (we set for convenience U = W | iW, 
which is a complex subspace). 

For all x E C", decompose accordingly x = xl + x2 with xl E F and x2 E 
U(x2 E W i f f x E  V). 

Let the N-linear forms a~ and a2 be the respective restrictions o f  a to 
F and W. Applying lemma 1.3, we can write: at = 2t + 01 with 2~ 112- 
linear on F ,  resp. Ol tE -antilinear. Since the restriction of  H to F is pos- 
itive definite, the map t --~ H(t ,  xt ) yields an isomorphism between F and the 
space o f  the C-antilinear functions on F. Therefore, there exists an element 

E F such that ~/I(XI)=H(~,xt). We can observe that 21 = f l .  The form 
22(x2) = a 2 ( x 2 ) -  H(z,  x2) is N-linear on W and thus it can be uniquely ex- 
tended to a <E-linear form on the whole of  U. Define the rE-linear form q3 
by q~(x) = 21(Xl ) + ,;+2(X2). Then, for x E V, we have a(x) = al(Xl ) + az(x~) = 
)q(xl ) + H(~,x t  ) + H(r ,  x2) + 22(xz) = H ( z , x )  + q~(x), as it had to be shown. 

Q.E.D. 

Theorem A Let  L be a positive line bundle on a quasi-abetian variety X. 
Then H~ and it is indeed an infinite dimensional vector space i f  X is 
not compact. 

P r o o f  Let f , t ( z )  = p ( v ) e ( - ~ [ H ( z , 7 )  + �89 + ~b~(z)) (where we use the 
notation e ( ~ ) =  exp(2zri ~)), be a cocycle in Hl(F,(9~:n) in Appell-Humbert 
normal form representing the line bundle L cf. [A-G]). 

We have here in particular that: 
1 ) H is a positive definite Hermitian form on •" 
2) p(V) is a semicharacter o f  F relative to the integral alternating form cl (L) = 
I m H  
3) The ~ ( z ) ' s  are F-periodic entire functions. 

Let M be a torsion flat bundle such that H~ | M)+-O as in Corollary 
1.2. M is associated to a cocycle Z~ which is a unitary character. Then there 
is a lR-linear form a : IRF --+ IR such that X~ = e(a(?)). 
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We can therefore apply Lemma 1.4 with V = ]RE, and we obtain a vector 
z C F and a ~-l inear form ~o such that: 

a(z) = H(-iz/2,z)  + q~(z) for z E IRF.  

Let TT : X ---, X be the translation on X induced by z, and let L~ = (TO*(L) 
be the pull-back of  the bundle L. 

The cocycle which expresses L~ is the following: 

( ~ [ H  1 ] ) g~(z )=fT(z+v)=p(7)  e - ( z + ~ , ~ ) + ~ H ( 7 ,  y) +O~ , ( z+~)  

and since the ~b~'s are F-periodic 

g~,(z) =p('/) e ( - ~  [H(z,?) + lH('/,?)J + ~7(z)) e (-~H(T, , / ))  

= f T ( z )  e ( -2H(z , ' / )  ) �9 

If we alter this cocycle by the coboundary e(q~(z + ?) - q~(z)) = e(~p(~,)) we 
obtain: 

i H , g~(z)= f;,(z) e ( - ~  ( T , ? ) ) e ( c p ( y ) )  

(i ) 
= f~(z) e - sH(z ,7)  + r 

=fT(z) ~'l by our choice o f z .  

But it is immediate to see that 9~(z) is the cocycle associated to the line bundle 
L | M, so L~ and L | M are isomorphic. 

Hence H~ | M) ~- H~ -~ H~ and then also the vector space H~ 
is non zero and indeed infinite dimensional if X is not compact. Q.E.D. 

2 Lefschetz type theorems 

The following is a direct consequence of  theorem A (here we essentially re- 
produce, for the benefit of  the reader's warm up, the proof of  Theorem 3.8 of  
[c-c]): 

Theorem A p Let L be a positive line bundle on X. If dlcl(L), with d ~ 2, 
then H~ is base point free. 

Proof We can write L = B a | c~o, where B is linearized and positive and c~, 
is a topologically trivial line bundle. 

Let F as above be the maximal complex subspace contained in IR | F. 
Here and in the following we shall often, by slight abuse of  notation, use the 
same symbol for vectors and subsets of  ~"  and their image in X under the 
canonical projection n : 112 n --, X. 
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If  a E F,  let To : X ~ X be the translation by a and set (T~)*(B) = Bo. 
Notice that (T~)*(c~) -~ c f  because the cocycle o f  ~ is given by F-periodic 
functions. 

Let ~ be a non zero section in H~ | ZP), and s2 . . . .  sa non zero sections 
in H~ 

It is straightforward to see that U i=Z,.,dSi(Z -- a i )  �9 t7(s 4- a 2 + ..ad) is a sec- 
tion o f  L for each choice o f  a2, ..ad in F.  

Assume that exists a point z s.t. 

(*) l-I si(z - al) �9 tr(z + a2 + ..ad) = 0 for all (a2,..ad) in F d-t 
i=2,..d 

Then one o f  the d above holomorphic functions must be identically zero on 
z + F ,  call it s. But, since F has dense image in K = IRF/F (cf. [Mo]), and the 
smallest (complex) analytic set containing z + K is X, s should be identically 
zero on X,  which is a contradiction. Q.E.D. 

Theorem B I f  L is positive and dlcl(L ), with d >= 3, then H~ 9ives an 
embeddino o f  X in a projective space. 

Proof  We can write L = B d Q ~-4', where B is linearized and positive and ~ is 
a topologically trivial line bundle. Setting U = B i | ..~ where i = 1 or 2, i -z d 
(mod2) ,  we decompose L ~ L ' |  N 2 where N is linearized and positive and 
where, by theorem A, H~ Note again that, for a in F, if i + 2 j  = d, 
then 

L '~ (T2jo)*L' | ((T-ia)*N) 2 �9 

Claim I. Let ~a be the base locus of  H~ for a E F: then the 
intersection A = NaeF~o = (2~. 

Proof  ~ a = ~ ' 0 + a ,  whence, i f z E A ,  then z + r r ( F )  C A , z + K C A  and 
finally 

Claim II .  The sections o f  L 9ire a local embeddin9 at any point of  x of  X. 

Proof We can assume that a E F is generic, thus if s is a non zero section 
o f  H~ by claim I, s(x + 2ja) is non zero. 

It suffices thus to show that for generic a, the sections of  H~ * N )  2) 
give a local embedding a t  x. 

By the same argument as in claim I, it suffices therefore to know that the 
locus 2~ of  points where the sections of  H ~  2) do not give a local embedding 
is a proper analytic subset o f  X. 

Otherwise the sections of  H~ 2) would give a map with positive dimen- 
sional fibres. This is contradicted by the following 

Claim IIC The Sections o f  H~ 2) 9ire a map with no positive dimensional 
fibre. 
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Proof Let x and y be points in one such fibre. 

Since N 2 ~- (Tb)*N | (T-b)* N, for each b in X (N being linearized), we 
find that for each divisor D o f  a section o f  N, for each b in X,  if  x lies in 
D + b, then either D - b contains y, or D + b contains y. I.e., for each d in D 
(set b = x - d)  then D contains either y + x - d, or y - x + d. Whence either 
(Ty+x)(-D) = D, or (Ty_x)(D) = D. 

The conclusion is that the group of  translations of  D, {tlD + t - - D }  has 
positive dimension for all such D. 

Let now X J be a quotient Abelian variety of  X such that the linearized 
bundle N pulls back form X ~, and let D be the pull back of  a divisor D ~ of  a 
section o f  N' on X ~ (cf. e.g., proposition 2.8 of  [C-C]). Then also D ~ should 
have a positive dimensional group of  translations, contradicting the fact that 
this group is well known to be finite, N J being a positive line bundle on an 
Abelian variety. [] 

Claim II I .  The sections of L separate pairs of points x:~ y of X 

Proof Similarly, it suffices to show that for generic a the sections o f  
H~ 2) separate x and y, i.e., the sections of  H~ z) separate x + a 
and y + a for generic a in F.  

Otherwise, for every section f o f  H~ let D be its divisor. Then one 
would have that for each a in F and each b, if D + b contains x + a, then 
either 
(i) D + b contains y + a, or 

(ii) D - b contains y + a. 
In case (ii), for each d in D, and each a in F ,  if we set b = x  + a - d ,  

then y + a + b = y + x + 2a - d lies in D, whence D contains a translate o f  
F ,  what is a contradiction as usual. 

Thus (i) holds, thus for each d in D , d + y - x  lies in D, that is, D is 
(y  - x) periodic. 

I f  X is compact, this is not possible, otherwise (cf. [L-B]) all sections o f  
H~ would pull back from a quotient of  X,  contradicting the Riemann-Roch 
formula. In the non compact case, we use Proposition 2.8 o f  [C-C], by which 
there exist quotients XI,X2, such that 

1 ) N is a pull back of  a line bundle Ni on X/ 
2) ker (X ~ X I  xX2)  = 0 .  
Since X~. is compact, there exists an aperiodic section of  H~ .) for i = 1,2; 

whence (x - y )  maps to 0 in X/ and it follows from 2) that x = y. Q.E.D. 

One may ask whether the above results (Theorems A J, B) are the best possible 
ones. The answer is yes, and it suffices to look at the case where X is compact 
and L gives a principal polarization, i.e., when all the elementary divisors di 
are equal to 1. 

In fact, in this case, H~ has only one non zero section, whereas H~ 2) 
yields a 2 to 1 map (more precisely, c.f. [L-B, p. 99-101], for suitable choice 
of  the origin, an embedding of  the quotient o f  X by multiplication by - 1). 
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This exception reproduces itself as follows: 

Definition 2.1 Let (X,L) be a pair, consisting of a quasi-Abelian variety and 
a positive line bundle. Then (X,L) is called a polarized quasi-Abelian variety, 
and is said to be reducible i f  there exists two similar pairs (X,.,Li)i = 1,2 such 
that (X,L) ~- (Xi ,Ll)  | (X2,L2), what means that there exist homomorphisms 
rti :X--*X~. such that rq x r~2 is an isomorphism, and L ~- 7z~(Ll) | 
Otherwise, (X,L) is said to be irreducible. 

Remark 2.2 Let (X,L) be ~ (XI,L|)|  where Xl is compact and L2 
is trivial. Since )(2 is quasi-abelian, there are no nonconstant functions on it, 
and by the Kunneth formula (or by the Leray theorem) H~ ~- H~ ) 
which is a finite dimensional vector space. This example shows that theorem 
8.2 of [A2] is incorrect, the error lying in the unproven assertion that, for each 
n, L is the pull back from an Abelian variety of a line bundle with Pfaffian 
bigger than n. 

It follows easily that any (X,L) can be written as a product of irreducibles 
(Xi ,Ll)  |  | (Xr, Lr). Moreover, by the Kunneth formula, such a decompo- 
sition gives to the space of  global sections the structure of completed tensor 
product 

H~ ~ H~ |  |176 Lr). 

Therefore, if one such factor is a principally polarized Abelian variety, then 
again the generalized Lefschetz theorems A', B cannot be improved. To obtain 
improvements, it suffices in the classical case to assume that the pair (X, L) is 
irreducible (or that it does not have a reduction with a "principally polarized 
factor). 

But in order to show that in some cases a polarization is reducible, an 
important tool to study Abelian varieties is Poincare's reducibility theorem. 
We show here a partial extension of it, and in the following example we show 
that it does not hold in general for quasi-Abelian varieties. 

Proposition 2.3 Let (X,L ) be a polarized quasi-Abelian var&ty, and assume 
that X "  is an Abelian subvariety. Then there is a closed quasi-Abelian sub- 
variety X '  of  X such that the natural map of X"  x X ~ to X is onto and with 
finite kernel. 

Proof Let X = V / F , X " =  V"/F", and let V' be the orthogonal to V" with 
respect to a positive definite Hermitian form representing cl (L). Since F"  spans 
V" as a real vector space, if we set F'  = F f) V', F' equals to the orthogonal 
to F" with respect to cl(L). H being positive definite on V", the rank of F" 
plus the rank of F' add up to the rank of F, thus F/F' + F" is finite and our 
assertion is proven. Q.E.D. 
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Example 2.4 Let X be a generic C*-extension of the product of two elliptic 
curves, and consider the projection f : X --~ E, where E is the second elliptic 
curve. Then 

(i) X is a quasi-Abelian variety 
(ii) X "  = k e r ( f )  is a Cousin quasi-toms, whence quasi-Abelian 

(iii) f does not split 
(iv) if L' is a line bundle of  degree 1 on E, and L is the pull-back of L, then 
h~ = 1. 
(v) X is not isogenous to X '1 • E. 

Proof We can assume that X = C 3 / 1  ", where l '=Z3|  
7Z(d,0,z) t. Then f is induced by the third coordinate function in C 3. By 
pulling back a polarization on E' • E, we get a linearized bundle whose Her- 
mitian form is positive definite on the maximal complex subspace F o f  IRF 
(spanned by the imaginary parts of the last two vectors of the given ba- 
sis of F). Whence, (i) and (ii) are verified if both X, and X "  are Cousin, 
which follows (cf. e.g. [C-C, 1.5]) if b and z ~ are linearly independent 
over ~ .  

(iii) If f would split, then there would be two vectors in F whose third 
coordinates would respectively equal 1, z, and which should be C-linearly 
dependent. In particular, there should exist integers m, m ~, n, n ~ such that mzb + 
n'z --- n + d + bm ~, which can be excluded by assuming z, 1, b, zb, d to be Q- 
linearly independent . 

(iv) Follows now from (ii) since L is trivial on the fibres of f (isomorphic 
to X ' ) ,  and every holomorphic section is constant on the fibres of f ,  whence 
every section of L pulls back from a section of L' on E. 

(v) Otherwise X is isogenous to X "  x E" where the elliptic curve E"  C X 
is a finite covering of E, and then there would exist an integer h and two 
vectors in F, whose third coordinates would respectively equal h, hz, which 
should be C-linearly dependent. We proceed as in step (iii). [] 

The preceding example shows moreover (by (iv)) that in the next proposition 
neither the result of 2) can be improved, nor can be relaxed the hypothesis of 
positivity in 3). 

Proposition 2.5 Let D be the divisor o f  a linearized line bundle L on a quasi- 
dbelian variety. Then 

1) i f  D is reducible as Dll + ... + D~r, then there is another divisor & IDI 
reducible as DI + ... + Dr, with Di the divisor of  the linearized bundle Bi 
associated to D~. 

2) I f  IDI = {D}(h~ = 1 ), then there is a principally polarized Abelian 
variety (X  ~, D ~), and a holomorphic map f : X ~ X ~ with connected fibres 
such that D is the pull back o f  D ~. 

3) I f  D is positive and IDI has a fixed part, then the polarization (X,D) 
is reducible with one factor being a principally polarized Abelian variety. 
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Proof 1) If D~ is the divisor of a bundle Li, then (cf. [C-C], pp. 64-65), there 
is a semi-positive definite Hermitian form Hi of maximal rank, representing the 
first Chern class of Li, such that the image / ' i  of /" into V/kerHi is discrete. 
Then, if X / =  (V/ker Hi)/Fi, Li pulls back from a positive bundle L~ on X~' (the 
pair (X/,L~) is called the reduction of Li): the same holds for its linearization 
Bg, which therefore has a non zero section, whose divisor we choose as D~. 

2) As in 1), consider the reduction (X',U) of L. L t is linearized and 
positive, and with h~ ') = 1, therefore (Xt, U) is a principally polarized 
Abelian variety. Assume that the projection f of X to X'  has disconnected 
fibres. Then (the fundamental group of X t being Abelian) f factors through 
an Abelian variety Y which is a finite covering of X'  of positive degree. This 
contradicts h~ ) = I. 

3) Let H be a positive definite Hermitian form corresponding to the 
linearized bundle of  L. 

By Proposition 2.8 of  [C-C], there exist lattices F', F ' ,  whose intersection 
is F, such that the imaginary part of H is integral on those lattices. It follows 
that there are projections of X to polarized Abelian varieties X ~ (resp.: X " )  
such that L is a pull-back of the respective polarizations. Let O be the fixed 
part of IDI . By 1), 19 is a linearized divisor and if p : X ~ Y is the reduction 
of O, then, by 2), Y is a principally polarized Abelian variety. 

Since p factors through both projections to X', resp. X",  it follows by the 
decomposition theorem (cf. [L-B], pp.77 and loll.), that there are splittings of 
both the projections rr' :X '  ---+ Y, n" : X "  ~ Y. 

Write X = V/F, Y = W/A : then these splittings give an isomorphism of W 
with the H-orthogonal of V~ ~ being the tangent space to Z = ke rp )  and 
this isomorphism carries A into the intersection of F' with F". 

Whence, we have obtained a splitting Y ~ X of p, giving an isomorphism 
of X with Z x Y. So L is a tensor product of two pull backs of linearized 
bundles from the two factors. The second one must be the given principal 
polarization, whence 3) is proven. Q.E.D. 

Theorem C l f  L is a positive line bundle, then the sections of H~ z) 9ire a 
projective embeddin9 of  X if and only if the linearized bundle B associated 
to L does not yield a polarization (X,B) which is reducible with one factor 
(XI,LI ) bein9 a principally polarized Abelian variety. 

Remark 2.6 The corresponding result for Abelian varieties was proved by 
Ohbuchi ([O], cf. also [L-B], p. 88). 

Proof of  theorem C We can write L = B | JV', where B is linearized and 
positive and Y is a topologically trivial line bundle. 

Thus, if .s = jff  2,L2 = (B | .~) | B, and H~ | s H~ +-O. More- 
over, by our assumption, both spaces have dimension at least 2 (infinite in the 
non compact case). 

We let D' be the divisor of a generic section of H~ | c~), and D the 
divisor of  a generic section of H~ 
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By our usual argument, for fixed x and generic a in F ,  x does not belong 
to D + a (neither to D t + a). 

Step I Let x and y be distinct points of  X. If  x and y are not separated by 
the sections o f  H~ then, for every a in F,  and D,D ~ as above, it follows 
that if  D + a contains x, then either 
(i) D ~ -  a contains y, or 

(ii) D + a contains y. 

Sublemma 2.7 Let A be a k-dimensional linear system o f  divisors c [D[, where 
k >= 1, and let F be as usual the maximal complex subspace o f  IRE. Then 
t f  A = {(D, a)lD + a contains x} C A x F, A is irreducible if  A restricted to 
x + F has a base locus ~ which contains no divisor. 

In any case, A contains a unique irreducible component A h~ mappin9 onto 
F. 

Proof  A is a Ipk-l-bundle over F - ~ .  Let ~ be the base locus of  A and 
set ~x = F N (x - ~ ) .  Since A is a divisor in A • F ,  the only possibility that 
A is reducible is that ~x has a component which has codimension 1 in F. 

In this case, though, where 5~ N (x § F ) =  ~P contains a divisor, we let 
A h~ be the closure o f  the above IPk-l-bundle over F - ~ 

There are only two cases: 

Case A. A is irreducible. 

Case B. A is reducible and the analytic Zariski closure of  N~ in X does not 
contain a divisor (else, ID[ would have a fixed part, contradicting 3) of  Propo- 
sition 2.5). 

In both cases, either (i) holds for each pair (D,a)  in A h~ or (ii) does. (i) 
is absurd, since then y -  a belongs to the base locus of  IDa[ for each a, and 
this base locus should be the whole of  X, a contradiction. 

We can thus assume that (ii) holds for each pair (D,a)  in A h~ In 
Case A, this means that for each D in ]D I, if x - a is in D, then also y - a is 
in D. Equivalently, translation by (y  - x) carries D O (x + F )  to D N (y  + F) .  
By Lemma 2.8. both sets are analytically Zariski dense in D. Therefore, any 
such divisor D is (y  - x) periodic. As we saw in Claim III of  Theorem B, this 
is impossible. 

In Case B, the above holds if  we replace D O (x + F )  by D n (x + F )  - .N~. 
But, since the analytic Zariski closure o f  ~ does not contain a divisor, this 
smaller set is again Zariski dense in D. [] 

Step H Assume that the sections o f  H~ 2) do not give a projective embedding 
of  X at x, and let v be a tangent vector at x which is in the kernel of  the 
differential. Since for generic D ~ and a, D ~ + a does not contain x, it follows 
that for all a in F in Case A, for all points in F - Mx in Case B, it holds that 
if D contains x - a, then v is tangent to D at x - a. But since we have thus, as 
we saw, a Zariski dense set in D, it follows that D is invariant by translation 
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by the subgroup exp(v). This should hold for any D in the linear system [D[. 
But since D is linearized, it suffices to take a divisor D which is a pull back 
o f  a positive divisor on an Abelian variety to derive a contradiction. Q.E.D. 

L e m m a  2.8 I f  D is an irreducible divisor in a quasi-Abelian variety, then 
D N (n(F)) is analytically Zariski dense in D (whence the same conclusion 
holds for every divisor). 

Proof The proof  will be carried out in three steps. 

Step 1 D O ( r t (F))  is not empty. 

Step 2 I f K  is the maximal compact subgroup ofX, K = IRF/F,D n (zt(F)) is 
dense in D N K. 

Step 3 I f  D N K is not empty, its analytic Zariski closure is a divisor, whence 
it equals D (by irreducibility). 

1) It suffices to show that the volume of  F OTz-l(D) is infinite. To this 
purpose, we consider the line bundle L associated to D, and we consider a 
corresponding cocycle in HI(F, ~ , )  given in Appell-Humbert normal form 

(i ) 
kr(z ) = p(?)  e ~-~-[H(z,?) + H(? ,? ) ]  + 0r(z) . 

D is the divisor of  a section of  L, i.e., o f  a function f ( z )  solving the functional 
equation f ( z  + 7) = kr(z)f(z). 

The existence of  a non zero section f implies that the Hermitian form 
is semi-positive definite and non zero on the maximal complex subspace F 
contained in IR | F C IE" (cf. e.g. [C-C], Theorem 3.20). In particular, the 
trace o f  a Hermitian matrix representing the restriction of  H to F is strictly 
positive. 

We choose now (cf. [C-C], p. 49) apt linear coordinates (u, v) in IE ", i.e., 
such that F is the subspace {u = 0} ,]RF = {Im u = 0}, and F = 7l"--m| 
f27/2m, with the matrix f2 = (12~, p t ) t  such that I2v defines a lattice in F.  

We let, for q in (zZm)2m,p(q)C F to be the fundamental parallelotope 
I2v �9 q �9 (Q), Q being the unit cube. 

F N r~- l (D)  is defined by the equation f(O,v) = 0, and i f P '  is a parallelo- 
tope, the function w(P') = vol(P '  n F N n - l ( D ) )  is calculated, by the Poincar6 
Lelong equation, by 

1 ~m--l) 
(2.9) w(P') = (~n i )  f ep , (d log( f )  A 

r/ being the standard K~ihter form on F.  
Now, call Fk the k-th initial face of  P = P(q), and Fik the codimension 2 

initial face of  P (that is, the image of  the points of  Q where the i-th and k-th 
coordinates are zero). 

We can split the integral w(P) as a sum over the corresponding initial and 
final k-th faces o f  P, Fk and F[ (they differ by translation by f2v . qk = (Tk)v). 
We can actually find a ?k in F such that ?k = ((?k)u, 12v �9 qk, with (Tk)u in the 
unit cube. 
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We can write our volume as follows 

w(P)= ~ ~ - + (dlog ( f l A  ~m-~) 
k=l,..2m 

and the individual integrals can be written as 

( 1. ']  f ( d l o g  ( f(O,v+12vqk)-dlog ( f (0 ,  v))A ,m--l). 
ZT~l .l Fk 

Whence, rewriting the last integral as 

(L) + + 
ZT~l , I  irk 

+{d l o g f ( - ( y k ) , ,  v) - dlogf(0,  v)}) A ,m-t , 

We see (as in [Cou]) that the second term is bounded by a constant times the 
volume of F,  times the diameter of Fk times the norm I(?*)~t (this follows by 
the functional equation and uniform continuity on the unit cube). Whereas, by 
the functional equation, the first term equals 

_ (1_1_~ f([dlogk_~,k((O,v + Ovqk)] A .,.-1 
\ 2rti / F k 

~ - - - ( ~ ) F f k k d H ( ( O , I ) " ~ ( ' k ) v ) , ' k ) A "  m - '  ) 

= (1~ fdH((O,u),~)k) A ,m-l). 
\ q'7~ .l Fk 

In turn, we can use again Stokes' theorem and write the last integral as a sum 
on the codimension 2-faces of Fk, thus we get 

i =l= k,i= l ,.,2" 

We multiply now the matrix q by an integer h, and we look at the asympotic 
behaviour of the volume w(P(hq)). 

Then, since by the density of ~(F) the lim in fo f  [(Tk),[ is zero, the second 
term is such that its lim inf is o(h2m). Whereas the leading part of the first 
term is asymptotic to 

( 1 )  H((O,(Ti)v),(O,(Tk )v)) v~ )h2m " 
i aF k,i,k = 1 ,..2" 

The leading part is homogeneous in the vectors (7i)v, and semipositive definite 
being a volume calculation (minus a lower degree term, when we take the 
liminf). 
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We only need to show that it is not identically zero. But if  it were so, then 
it would be identically zero for all choice of  2m vectors (vi) in F.  In particular, 
we choose an orthonormal basis (vi) (for the Euclidean metric on F )  which 
diagonalizes the symmetric bilinear form S given by the real part o f  H.  In this 
particular case, our expression reduces t o  ~'~i,k,i,k=l,..2m(l)n((oi), (1)k)), whose 
real part is just the trace of  the symmetric semidefinite form S. 

But since H is non zero, also S is non zero, whence this trace is strictly 
positive. [] 

2) Assume that we have a point o f  D N K. By changing the u-coordinates 
up to translation, we assume this point to be (0,0). Since f ( 0 ,  v) is not iden- 
tically zero, by the Weierstrass preparation theorem we can assume that f 
is a pseudopolynomial  around the origin ( v ' = ( v l  . . . .  Vm-I)), f(u,v): 
van+ ~ ai(u, v')vd~ -i, with the ai(u, vt), s vanishing at the origin. 

By the density of  7z(F) in K, there are points xv = (Uv, Vv) in n ( F )  tending 
to (0, 0), i.e., locally at the origin the subspaces {u = uv} belong to n(F) .  

Fix now any uv, and v': since f is monic in Vm, there is a root which tends 
to 0 as soon as u,,, and v' tend to zero. 

But this proves that our point in D n K belongs to the closure of  ~z(F) N D. 
3) Take a point in D N K, notation being as above. Let 6(u,v s) be the 

discriminant o f  f (u,  v) with respect to Vm. 
Since D is reduced, 6 is not identically zero, whence it is not identically 

zero for u real and v' arbitrary. 
Assume that 9(u, v) is holomorphic and vanishes on D N K. We know that, 

modulo ( f ) , 9  is equivalent to a pseudopolynomial r of  degree < d - 1. Now 
r is identically zero on D N K, but for generic u real, v' arbitrary, f has d 
distinct roots: whence r is identically zero. This shows that the analytic Zariski 
closure of  D N K contains an open piece of  D, and thus the whole of  D being 
D irreducible. 

Problem 2.9 Given a positive line bundle L on a quasi-Abelian variety, does 
there exist a section of  L whose divisor of  zeroes is aperiodic? 

Problem 2.10 Let (X, L) be an irreducible polarized non compact quasi-Abelian 
variety . Do the sections o f  H~ give a projective embedding o f  X?  Or, at 
least, a generically injective map? 

Remark The last problem is motivated by recent interesting work of  Debarre 
et al [DHS] concerning polarizations of  type (1 , . . l ,d )  on Abelian varieties. 
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