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Abstract 

The focal locus Cx of an affine variety X is roughly speaking the 
(projective) closure of the set of p ~ i n t s  O for which there is a smooth 
point x E X and a circle with centre 0 passing through x which os- 
culates X in x. Algebraic geometry interprets the focal locus as the 
branching locus of the endpoint map E between the Euclidean normal 
bundle Nx and the projective ambient space ( E  sends the normal vec- 
tor 0 - x to its endpoint O ) ,  and in this paper we address two general 
problems : 

1) Characterize the "degenerate" case where the focal locus is not 
a hypersurface 

2) Calculate, in the case where Ex is a hypersurface, its degree 
(with multiplicity) 

Copyright 0 2000 by Marcel  Dekker, Inc. 
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6018 CATANESE AND TRIFOGLI 

1 Introduction 
The goal of the present paper is to introduce a general theory of focal loci of 
algebraic varieties in Euclidean space. 

The theory of focal loci was classically considered only for plane curves 
and surfaces in 3-space ( cf. [Coolidge] , [Salmon-Fiedler]), and Hilbert him- 
self lectured in the Winter Semester 1893-94 a t  the University of Gottingen 
on the focal loci of curves and surfaces of degree two in 3-space. 

Recently the t,heory was corisidered in ([Fantechi], ,[Trifogli]) for the re- 
spective cases of plane curves and hypersurfaces. 

We would like to first briefly present the relevant concepts. 
Usually the focal locus of a submanifold X ( cf. [Milnor], 6, pp. 32-38, 

or also [D-F-N], vol. I1 11, sections 2-3) is defined in Euclidean differential 
geometry as either the locus of centres of principal curvatures, or ,  more geo- 
metrically, as the locus where the infinitely near normal spaces intersect each 
other. Equivalently, the focal locus can also be defined as the complement 
of the set of points p such that  the square of the distance function from p 
induces a local Morse function on X ,  or also as the union of the singular 
points of the parallel varieties to X. 

To make the definition algebraic, one picks up the second geometrical 
definition, where the notion of length is not needed, just the notion of or- 
thogonality is sufficient. 

To explain this in more detail, let us consider (complex) affine space as 
the complement of a hyperplane ( the "hyperplane at  infinity") in projective 
space. In the hyperplane a t  infinity P,, we give a non degenerate quadric 
Qm.  

These da ta  allow , for each projective linear subspace L to define the 
orthogonal LLz to L in a point x as the join of x with the "orthogonal 
direction" to L ( this is the subspace of P, given by the polar of L O P ,  
with respect to Q,). 

Given now an irreducible algebraic variety X$ C Pm, of dimension n and 
degree d and not contained in the hyperplane a t  infinity , for each smooth 
point 17: E X - P, we define the normal space Nx(X) as the orthogonal in 
x of the projective tangent space to X a t  x. The condition that  x is a point 
in affine space ensures that  iV,(X) has the correct dimension m - n. 

The norrnal variety f i  is then defined as the irreducible algebraic set in 
P"' x Pn ' .  closiire of the set Nyd consist,ing of the pairs (x, y) where z is a 
smooth point of X ,  x E -71 - P, and y E l?J,(X). 

Clearly, is a projective variety of dimension m and the second projec- 
tion induces a map T whose image is the closure of the union of the norrnal D
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FOCAL LOCI OF ALGEBRAIC VARIETIES. I 6019 

spaces to the smooth points of X - P,. Observe moreover that N Y d  is 
a projective bundle over X - P, - Sing(X), in particular N $ ~ ~  is smooth 
of dimension m : therefore we can consider the ramification locus Y,Td of 
T : N Y d  + P m ,  and we define the ordinary ramification locus as the closure 
Y x  of y y d .  

Defining the good focal locus as xyd = T ( I / x s ~ ~ ~ ) ,  and the focal locus 
Ex as the closure of ~ g , " " ~  ( thus EX is contained in the branch locus of 
T : Nx -, P m ) ,  we have a priori at least four cases: 

1 )  .ir : N x  -, P'" is not dominant : in this case we say that the variet,y X 
is isotropically focally degenerate (for short : isotropically degenerate), 
and observe that the focal locus EX of X is then simply the image of 
.ir ( whence, C x  is an irreducible variety in this case!). 

2) T : Nx -, Pn"s dominant , but the focal locus C x  (respectively, 
the branch locus of T : Nx + Pm) has dimension at most m - 2 : in 
this case we say that X is strongly focally degenerate ( respectively, 
completely strongly focally degenerate). 

3) T : Nx -+ Pm is dominant , whence surjective , and the focal locus 
Ex "is not a hypersurface", in the sense that not every component 
Z of the ordinary ramification divisor Yx (closure of y Y d )  maps to 
a hypersurface. In this case we shall say that X is weakly focally 
degenerate. We shall moreover say that we have the vertical case if Z 
does not dominate X. 

4) When none of the above occurs, in particular T : N.y + P'" is 
surjective , and the focal locus Cx is a hypersurface, we shall say that 
X is focally non degenerate. In this case, defining the focal hypersurface 
as a divisor, corisisting as the image of the ramification divisor Y x  with 
multiplicities (if  Yx = E,=l, kn,Y, , and d, := degree(k; -+ T(Y,) , $  then, 
setting C, := n(Y,), we get Ex := C,=l,. kd,n,C,), the main problern is 
to describe EX. 

The first main result of this paper consists in calculating the degree (with 
multiplicity) of the focal hypersurface under a certain hypothesis upon X ,  
which we call of being "orthogonally general", and which ensures that X is 
focally non strongly degenerate if it is not a linear subspace. This concept 
is iniportant because, if X is smooth and not a linear subspace, then for a 
general projectivitg g the translate g(X) of X by g satisfies this condition 
whence it is not focally strongly degenerate and we have a divisor E x .  The 
hypothesis that X be "orthogonally general" is indeed very easy to verify 
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6020 CATANESE AND TRIFOGLI 

since it sirnply airior~lit s to three requirenients: the snloot hness of X! plus 
the two geiieral position properties t,liat X be traiisversal to P,, respectively 
to Q X .  

More precisely, we have !,he followiiig Tlieoreni 

Theorem 1 Let X c P'" he n 11nrzety nf dinacnszon 7 1  > 1 ~ i h z c h  is or- 
fhogoi~,nll!g g e n ~ m l .  T h e n  dint Cx < rn - 1 e X i . c  n linear space. I f  X is n 
h e a r  .space, Cx zs n lanear space of d z m e i ~ s ~ o i ~ ,  e q d  to  codin!, X - 1 .  

One can ask 111 the above theorein whether one can replace the  cond~t ion 
d17n Ex < 7n - 1 (1 e , that X be strongly focally degenerate) by the weaker 
c o n d ~ t ~ o n  that X be focally degenerate 

As a torollary of the full descr~ptlon given in Theorem 3 of the focally 
clcgcnerate vaiietles ~t tllrns out that if X is an orthogonallv grneral and 
focally drgenrrate varwtv, then e~ the r  X or X, slio111tl he a de\.elopal)le 
vmcty  rather explicitly descrlhed, but we ha\,e riot yet liad the t ~ m e  to look 
at tlie ex~rtence quest~on for such very specla1 var~etler, 

It 1s ratliei clear ( c g , from the case of plane c11rve4) that the cond~t ion 
of being orthogonally geil~ral  is a suffic~ent but not necessary condition in 
order that  X be non focally strongly degenerate When X is non orthogonally 
general, but  focally non degenerate, what happens 1s that tlie tirgree of the 
focal d ~ n r o r  can drop ( 111 t l i ~ s  case, for plane curves we have Plucker type 
fornilllac., cf [Fanteclil]) 

Nnt~uallv,  what Tve h a w  s a d  insofar oprils a sc~ les  of prohlerns To wrrie 
of th tm nr glvc ~111 answer in the prcsciit pnper to qoine others n c  hope to 
rrt 11111 111 a ~ 1 1 1 ~ 1  to t h ~ s  pilppr 

1) Tr) to c o~riplrt cly t laisif\ tlit focal1 ~ s o t ~ o p i t  allv tlrgmri atc 1 a1 I- 
ctlcs In w t ~ o i i  7 n c  glvr a s t r ~ l t t ~ l i e  T11eorc111 ( Throreiii 4 )  statiiig 
that the ~sot ropira l l~  foc~l lv  tlcgenerate h\ peis~lrfaces ale exact l\ t ~ I C  

isotrop~c~lll\ drvclopa1)lc Iivpers~~rfaccs LL'c o l ~ ~ e r \ ~ t  tl111s that tllrie are 
p l e n t ~  of Intrlgwng examples already 111 the case of sllrfaces 111 :3-4pace' 
these are obt amed as t l ip  t arigerit~al developable wrface of any space 
ctlrve whose tangent c111ection 1s a l ~ v a ~  s an   so tropic VP( to1 \Ve g i ~ ~ e  
iliorco\c~r a tIesrr1pt1011 111 sec ti011 8, TI~eorein 5. of tlir gcnc~ral case. in 
tcrlils of thr  IiiverSe focal construction applied to  the focal variety C 
and to a n  algel)ra~c f l l l i c  tlon T. OII C \\'e get t1111s an iiiipl~( it classifi( a- 
tlon of t liesc v,irlr>ties as drve1opat)le vallet~es, b11t for tli15 n e  need to 
start with n varicty C \vliosc. ~iorinal spaces are totally isotropic. and 
t l i v  f l~llr t io~l I. nillst also satisfy a sllitahlc cmrlition. 
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FOCAL LOCI OF ALGEBRAIC VARIETIES. I 602 1 

2) Try to  classify the weakly and the strongly focally degenerate vari- 
?ties. 111 section 6 we give a complete classification for the weakly focally 
degenerate varieties, showing in Theorem 3 how they can be divided 
into sornenprimitive" classes ( cases I ) ,  2), G ) ,  7)) and some "derived" 
classes (cases 3) ,4) , 5 ) ) ,  related for instance by sonie tangential con- 
ditions to some primitive focally degenerate varieties. The prirnit,ive 
focally degenerate varieties car1 be described starting from fibrations 
in spheres or in affine spaces "around" the degenerate component C of 
the focal locus. 
The question of classifying tlie strongly focally degenerate varieties 
seems harder. 

0 3) Determine whether for a general projective tleforrnatiori of X tlie 
focal hypersurface is reduced of degree equal to the virtual degree, and 
moreover answer Inore specific questions such as : 

3a) can we also obtain that  for a general deformation the focal hyper- 
surface has generic Lagrangian singularities ? 

0 3b) can we obtain the above good properties for tlie focal hypersurface 
C g x  of a general translate gX of X by a general projectivity g ? 

Concernirig the first problpni, the situation seems t o  us  rather hard (al- 
t,liough quite interesting) as soon as tlie tliinrlision of tlie anhient space 
grows: for instance, whereas a focally isot,ropically degenerate plane curve C 
is nrwssarily a line through a cyclic point j these are the tn.0 points of Q, , 
satisfying tlie equations z = x2 + y2 = 0 ), in the case of a surface in 3-spare 
we obtain the tangential developable of a space curve C which is "isotropic" 
in the followirig sense: C is just a curve such that an), of its tarigerit ilries 
L has the property t,hat L intersects P, in a point of 4,. Therefore, if we 
write the point of the curve C as a vector function x ( t )  of a t .  we 
just liave to solve the differential equation 

Q , ( d ~ / t i t )  = 0. 
Tlius such a curve C yields a curve r in Q, parametrizing the projective 

tarigent liries to C, and t,lie question reduces to: for which r can one filicl 
an algebraic integral ? (however, since tlie ring of polynoniials ill t is stahle 
by d / d t  , the  above observation easily allows us to colistruct a lot of focallj. 
isotropically degenerate surfaces, which are taligential surfaces of rational 
space curves, cf. Example 10). 

In higher dinicnsion, as rvc alrwdy rmiark(3ti. Tlit~orcm 5 partially rcdrlcrs 
the clu('st t o  thc scwrcli of varieties with totally isotropic riorniai spaws. 
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6022 CATANESE AND TRlFOGLl 

T,u ning to the other problems, the situat ]on is clear for the plane curves 
(cf. [Fantechi]) : the only focally degenerate plane curves, which are not lines, 
are the circles (conics through the two cyclic points), and moreover, for an 
irreducible plane curve C the map of C to the focal curve Cc is non birational 
exactly for a well classified class of curves (by the way, Fantechi shows tha t  
this class is non empty, contrary to a statement made in [Coolidge]). 

As we said, we characterize (cf. Theorem 3) the weakly focally degenerate 
~rarietiec distinguishing six essentially different cases : 

0 two vertical cases, where the exceptional component R of Yx does not 
dominate X ,  but is instead the restriction of the  normal bundle Nx to 
a divisor X". In both cases, X" is focally degenerate, and the focal 
degeneracy of X is dctermined by the first order neighbourhood of X 
along X" (see Theorem 3 for more details). 

0 the case where X consists of a family of (m- 1 -a)-dimensional spheres 
paramet,rized by the a-dimensional degenerate component C of the focal 
locus: this family is moving according to a simple differential equation 
which can be explicitly solved, and it turns out that  we get a family of 
spheres each obtained as the intersection of the big sphere with centre 
0 E C with an affine subspace orthogonal to the tangent space to C in 
0. 

0 The case whcre X is a "transversal" divisor in a focally isotropically 
ilcgrncrate variety. 

0 The asymptotic case, i.e., the case where C lies at infinity, and then X 
is a developable variety whose intersection X, with the hyperplane a t  
infinity "is" t,he dlual variet,y of C in P,. In this case there is another 
simple proccss, called the "asymptotic inverse focal construction", de- 
scribing X in terms of the data  of C and of an algebraic function ~ ( s )  
on C. 

0 The ~sotropcallv a5vmptotic casr. mllrre C lies at  irifiliitj, and conipo- 
I I P I I ~  A of X, 1s projcc t~vel~ ~sotroplrally d ~ g m c r a t e  T h ~ s  case 1s char- 
acter~zed I)v t h ~  propertv that A c X, 1)c ohtamed via the i io t rop~c 
project~ve mverse focal constr~iction, startmg from C, ~ ( s )  satisfying 
suitable cond~tioris 

The characterization given in Theorem 3 (where also the case of the fo- 
cally isotropically degenerate varieties is considered) is expressed in terms of 
the "inverse focal construction1', which, starting from a variety C of dimen- 
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FOCAL LOCI OF ALGEBRAIC VARIETIES. I 6023 

sion a ,  'and an algebraic function ~ ( s )  on C,  considers the union S' of the 
family of spheres each obtained as the intersection of the big sphere with cen- 
tre 0 E C and radius equal to the square root of ~ ( s )  with an affine subspace 
orthogonal to  the tangent space to C in 0,  arid whose position is determined 
by the differential of the function r (s ) .  

It turns out that for the focally isotropically degenerate varieties the 
above spheres degenerate to  affine spacesland X equals X', whereas in the 
case where these spheres have the right dimension m - 1 - a X' is focally 
degenerate. 

For hypersurfaces in higher dimensions the second author ( [Trifogli]) 
showed that  the focal hypersurface of a general hypersurface is reduced (in- 
deed tha t  this holds for a general diagonal hypersurface, i.e., for a translate 
of the Fermat hypersurface by a projectivity in the diagonal torus). 

Concerning problem 3a), this is a global problem which is however re- 
lated to a local problem which has been extensively studied: the theory of 
Lagrangian singularities. In fact the Normal variety f i  is a Lagrangian va- 
riety for the symplectic form on the product Am x Am which is associated to 
Q,, namely txQ,y - t  yQ,x, and the second projection is also Lagrangian 
( cf. [Arnold et  al.]). 

Partial results concerning problem 3a) have been obtained by the second 
author for surfaces in 3- space( [Trif2]). 

2 Notation 
V' := a fixed vector space of dimension m 

V := the vector space V = V' $ C 
P ( V )  = Pm := the projective space whose points correspond to the 1- 

dimeusionai vector subspaces of V 
P(V1)  = P, C P ( V )  (g P m - l )  the co~riplerrient of the affine ,space 

P ( V )  - P, V'. 
,Y: c Pm a quasi-projective algebraic variety of dimension n and degree 

d which does not lie a t  infinity , i.e., 
x,. P p, 
Q, := a non degenerate quadratic form on V', yielding an isomorphism 
Q : V' 4 (V1)" .  
By slight abuse of notation, the corresponding quadric 
ax? c p,. 
W := a vector subspace of V', 
Ann(W) := the vector subspace of V' which is the orthogonal space of 

TI/' with respect to the quadratic form Q, 
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6024 CATANESE AND TRIFOGLI 

L' := P(IC') a linear subspace a t  infinity 
L" := P ( A n n ( W ) )  , the polar subspace of L' , also called the orthogonal 

d~rection to L' 
L c P ( V )  := a projective linear subspace , L P, the direction of L 
L I Z  := the orthogonal to L in x, defined as the smallest linear subspace 

containing x and the orthogonal direction of L ( i.e., the polar of L n P,) 

3 "Normal Bundle" in Euclidean Setting 
In this sectkm, we shall consider a smooth quasi- projective variety X," c Pm 
and we shall define its projective normal variety Nx c Pm x Pm, and its 
Euclidean Normal sheaf N,y. 

Under sorne assumptions that we are going to specify, the first projection 
of the normal variety Nx t o  X yields a projective bundle over X ,  which is 
the projectivization of t h ~  E~~c l idean  Normal sheaf : 

N ,  = P ( N x )  c P ( V @ O x )  c P ( V @ O p m )  =P1lL x Pm. 
Start  from the Euler sequence 

setting .C = Ox(- I ) ,  the r~st~rict ion to X of the Euler sequence and the 
inclusion of the tmigent buntile of X in the restricted tangent bundle of Pm 
define thc bundle T,Y(-l) whose projectivization is the projective tangent 
buridle t u  S.  

We get thus two exact sequences, the second included into the first: 

Assumption0 = smoothness: X is smooth, whence Tx and Px are sub- 
bundles. 

Recalling that, V = V' $ C,we state the further 
Assumptzon 1 ( = transversality of the intersection X n P, with the hy- 

perplane a t  infinity) : T, := V' n Tz is a hyperplane in TZ Vs E X .  

This means that  we have two more exact sequences 
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FOCAL LOCI OF ALGEBRAIC VARIETIES. I 6025 

At this stage we can define the bundle of normal directions J U ~ ;  as a twist 
of the annihilator of Tx. 

We define it through the exact sequence 
(4)  o -+ N;(-1) --+ V ' B  2 (V')" @ Ox -+ jTx(-1))" -+ o 

In order to obtain a projective normal bundle from the bundle of normal 
directions we need a last 

A s s u m p t i o n  2 ( = transversality of X with Q,) : The natural map 
C $ N$ (- 1) -+ V @ Ox is a bundle embedding, thus its image Nx (- 1) 

is a subbundle of V @ Ox, isomorphic to C $ M i ( - 1 )  

We notice thus that if assumption 2) holds, then n/x 2 Ox @& 

Definition 1 X is  said to be orthogonally general i f  i t  satisfies Assumptions 
0 - 2 above. 

Remark 1 For every algebraic variety X C Pm which is  not  contained i n  
the hyperplane at infinity there is  a maximal  nonempty  Zariski open set U 
of X which is orthogonally general (U obviously contains the open set X - 
P, - S i n g ( X ) ) .  

Remark 2 The  sztuatzon can be sltghtly geneialzzed as jollozlrs , let Z be a 
szngular p~ojectzue varzety, let 2' be zts nomalzzatzon,  and let X be the open 
sct of Z' - S i n g ( Z t )  wl~e lp  the nnfurol m o ~ p h i s m  to  P"' hos moc~nr(i l  ronk 
171 tills cnsr, restr?rt?ons of hundlcs have to hr understood as pull hacks If 
lnstcorl one  u w l f s  to gencinlzte to  the case whew X is the reso1uf1o.n of Z ,  
monlj thznqs chnnye substnntzally because one does not get bundle mops  am/ 
1071 qc7 

Thus lve can give the following definition 

Definition 2 Lei X be a n  algebra~c varzety, not contazned zn the hyperplane 
nt znfinity, U a Zar?sk? open set o f X  whzch zs orthogonally general, and nTri 
the projcrtzve n o m n /  h7indlc of U Thrn  the pro7ectzve normnl ~ m r ~ f f y  ivy 
of *Y is defined ns the Zarzskz closure of A'" 

Wc can easily verify that the above definition is indeed independent of 
the choice of U. 

Assume now that X is orthogonally general: in particular, X is smooth 
and we have a vector bundle (locally free sheaf) & on X, which is called 
the EUCLIDEAN NORMAL BUNDLE of X. 
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6026 CATANESE AND TRIFOGLI 

Remark 3 The Euclidean Normal Bundle diflers from the usual Normal 
Bundle (of a smooth subvariety X C Pm) defined in  algebraic geometry( cf. 
[Hartshorne]): the reader may in  fact notice that their respective ranks difler 
first of all b y  1.  However, as we shall shortly see in  the forthcoming example, 
they are somehow related to each other. 

We can therefore compute now the total Cherr, class of N,y: 

c ( N x )  = c ( N j , )  and c ( N x ( - 1 ) )  = c(C)c(Tx(-1)") : '  by ( 4 ) .  
But (3) yields c ( T x ( - 1 ) )  = c ( T x ( - 1 ) )  which by ( 2 )  equals c(C)c(T,y(-1)) .  

Thus 

Let us verify this formula for a hypersurface of degree d. Then we have 

and c ( R b ( 1 ) )  = c(O(1)) - '  

So, for a hypersurface, the rank 2 bundle Nx has 

( indeed, the previous formulae show NX O x  $ O x ( - ( d  - 2 ) ) ) .  
In general we have an exact sequence 

where N,: is Ihe usual conormal bundle of X. 
Hence, c ( N x ( - 1 ) )  = c(C)c(-C)-'c(N;(l))c(-C), and we obtain the 

F I N A L  F O R M U L A :  c ( N x )  = c(N,;(2)). 

Corollary 1 If X is a general complete intersection of degrees d l , .  . .dm-,, 
then C(N ,~)  = ni(l - (di - 2 ) H ) ,  where H is the hyperplane divisor. 

We recall once more the definition of the Focal Locus Cx of X 
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FOCAL LOCI OF ALGEBRAIC VARIETIES. I 6027 

Definition 3 Continue to assume that X i s  orthogonally general, let Nx c 
Pm x Pm b e  the projectivization of the Euclidean Normal Bundle,  and let 
IT = p2 : Nx -+ Pm be the second projection. Denote then  by YZy the rami-  
fication locus of n  (recall: Nx is smooth and d i m  Nx = m ) .  Clearly, if X 
is  projective, Yx # 0, since r k  Pic(Nx) >_ 2,  and therefore n  cannot be a n  
isomorphism. W e  define i n  general the focal locus as E x  := n(Yx).  

Definition 4 Let now Z be any projective variety, possibly singular. Let X 
be a maximal  orthogonally general open set of the normalization Z' of Z (cf.  
remark 2): then  the focal locus C Z  is defined as the closure of E x .  

Remark 4 I n  order to  verify whether the definitzon would be the same when 
one u~ould replace X by any  orthogonally general open set of Z, i .e . ,  indepen- 
dent of the chosen open set X ,  we m a y  observe: 

0 For X orthogonally general, the projective normal bundle Nx has a 
canonical section, provided by the diagonal of X ,  and correspo2iding t o  
the tautological sheaf L c A&(--1). 

I n  a neighbourhood of the canonical section, the morphism n is  of max-  
imal  rank if and only if N& ( - 1 )  and (Tx  (- 1 ) )  yield a direct sum,  i .  e. ,  
(Tx ( - 1 ) )  contains n o  isotropic vectors. 
W e  shall say that a point x E X is totally n o n  isotropic if the above 
situation occurs. 

I t  follows that,  i n  the open set of totally n,on isotropic points, the ramification 
divisor c m n o t  contain the fibre of the  projection to  X .  Therefore, i n  this 
locus, the ramzfication divisor is  the closure of its restriction to  the inverse 
image of a n  open set i n  X .  

Instead, when there is a divisor D of isotropic points of X ,  the inverse 
image of D m a y  yield a component of the ramification divisor, as happtns i n  
the following example. 

Consider the plane curve C given, in a standard system of Euclidean 
coordinates, by the parametrization ( t ,  i t  + t3) .  

Then the normal vector is proportional to the vector (i+3t2, -1 )  and the 
endpoint map .rr associates to ( t ,  A) the point 

x = t + A(i +3t2) 
y = it + t3 - A ,  
and the Jacobian determinant equals 
,I = - ( 1  + 6tX) - ( i  + 3t2)' = -3t(2X + 2it + 3 t3 ) .  D
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6028 CATANESE AND TRIFOGLI 

Thus the focal locus  consist,^ of the evolute E ( image of the curve X = 
-it  - 3 / 2 t 3 )  and of the isotropic line { ( x ,  y)lix - y = 0 ) .  

& is here the parametrical curve (2 t  - 9/2 i t3  - 9 / 2 t 5 ,  2it  + 5 / 2 t 3 ) .  
The previous remark and example justify the following 

Definition 5 Let now Z be any projective variety, possibly singular. W e  
say that a n  open set X of Z is excellent if X is orthogonally general and 
X is  contained i n  the set of totally n o n  isotropic points . If there exists a n  
excellent open set X ,  then the strict focal locus C i  zs defined as the closure 
of  Ex. 

W e  define instead the large focal locus Ei as the branch locus of the 
second projection .rr from Nz, c Z' x P m  to  P m ,  where as before Z' is  the 
normalization of Z .  

Obviously one has inclusions C$ c Cz C Ci. 

Example 1 I n  the case of a plane curve C ,  the strict focal locus is precisely 
the evolute of the curve C, as i n  [Fantechi]. Whereas, even if all the points 
are totally n o n  isotropic, the large focal locus can be larger, as we shall n o w  
see i n  the case where the curve has as a singularity a higher order cusp. 

Let our curve C be locally given by ( t Z ,  t 5 ) ,  with respect to some standard 
Euclidean coordinates; then the normal vector is , for t # 0 ,  proportional to 
( -5 t4 ,  2 t ) ,  i.e., to ( -5 t3 ,  2 ) ,  and thus the large focal locus is provided by the 
image of the jacobian determinant of the map 

x = t 2  - 5t3X,  
y = t 5  + 2X. 
The equation of the Jacobian determinant equals therefore 
t ( 4  - 30tX - 25t6)  = 0 ,  whence the large focal 
locus co~isists of tile evolute plus the h e  obiairled for i = 6, namely the  

y- axis. 

Remark 5 Assume now that Z is any projective variety and assume that 
there is a n o n  empty excellent open set X C Z .  I f  C i  has dimension < m-2, 
then  7r is  a birational morphism,  since then  n , ( P m  - C i )  = (1). Thus if Z 
i s  not  isotropically focally degenerate and d i m  C i  < m - 1 + NdY is rational 
+ Z is  unirational, and indeed stably rational. 

Example 2 If X is  a smooth hypersurfuce o f  uegree d and C i  has dimen- 
s ion 5 m - 2,  then d < m. 

Example 3 I f X  is a smooth complete intersection ofmultidegree ( d l , .  . . , dm-,), 
and C$ has dimension 5 m - 2,  then C d,  < m. 
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Remark 6 Let X' C P"' be a smooth variety not necessarily satzsfying the 
non degenera-cy conditions, i.e., Assumptions 1 and 2. Then 3g E P G L ( m +  
1) such that X = gX' satisfies the non degeneracy conditions. 

Proof 
The non degeneracy conditions are equivalent to (1') X is transversal to P, 
and (2') X, := X nP, is transversal to Q,. By Bertini's theorem, we can 
find a hyperplane H and a smooth quadric Q C H such that X '  is transversal 
to H and X '  H is transversal to Q. Then choose h, k, E P G L ( m  + 1) such 
that ,hH = P, and kP, = P,, khQ = Q, and set g = kh. 

Let us continue now to assume that X is orthogonally general. Moreover, 
we shall from now on assume that X is indeed projective. Then we can cal- 
culate deg Ex deg .irl\i, (notice that .ir is a morphism) by working in the Chow 
(or rohomology) ring of Nx. 

Observe that,  by the Leray-Hirsch theorem, the cohomology algebra of 
the projective normal bundle is generated by H * ( X )  and the relative hyper- 
plane divisor H z ,  and holds 

We denote by II the first projection II : Nx -+ X ,  and for commodity we 
also set p := T. 

Let H I  = FI*(hyperpEa,ne), and observe that, since Nx (-1) is a subbundle 
of V @I Ox, we have Hz = p* (hyperplane). 

Moreover, setting N = iVx, we have also the ramification formula 

Y = K N  - p*(Kpm) = KN + (m + 1)H2.  
In order to determine the canonical divisor KN of A' = &, we wfite as 

usual 

where KNlx can be calculated through the Euler exact sequence for the 
relative tangent bundle TNlx of N 

whence 
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6030 CATANESE AND TRIFOGLI 

In the end we obtain: 

K N  = 2n 'Kx  - ( m - n + 1 ) H z + ( n + 2 ) H 1  
thus we get the 

C L A S S  - FORMULA:  Yx = 2TI*Kx + nHz + (n + 2)H1, 

and the  

D E G R E E  - FORMULA: 

In the sequel ( section 5) we shall see how the above cited Leray-Hirsch 
Theorem allows to make the degree formula more explicit. 

4 Non degeneracy of Focal Loci 
Throughout this section we assume that  X is projective and orthogonally 
general, i.e., the non degeneracy conditions 0 - 2 above are satisfied, in par- 
ticular we have that  N = Nx is a bundle . Our aim is then to determine for 
which X it is possible that  is degenerate, that  is, has dimension strictly 
less than m - 1. It is easy to  see tha t ,  if X is a linear space, then Cx is 
degenerate and is a linear space of dimension equal to codim X - 1. In what 
follows, we shall prove that  if X is orthogonally general also the converse 
holds, i.e., if Cx is strongly degenerate, then X is a linear space. 

Lemma 1 dimp-'(y) = 0 Qy E Cm 

Proof 
After identifying P - ' ( ~ )  with the set r = {x E X : y E N,), it is easy to  see D

ow
nl

oa
de

d 
by

 [U
ni

ve
rs

ita
et

sb
ib

lio
th

ek
 B

ay
re

ut
h]

 a
t 0

9:
56

 1
0 

M
ar

ch
 2

01
5 



FOCAL LOCI OF ALGEBRAIC VARIETIES. I 603 1 

that r has einptj intersection with the liyprrplaiie P ,  Iiidrecl. if  r E X,, 
t l l ~ l l  I\'~ C P ,  

Corollary 2 If C 2s a component of the focal locus, zmoge of a component  
I' of the dzzllsor \> and d l rn  C < m - 1, t h ~ n  
( I )  1' c I Y ~  ( 5 1 7 1 ( ~  Vy E C dzin I ) - ' ( ? / )  > 0) 
( 7 1 )  C C# P ,  ( h e n u  C zs d e p ~ e r a t e )  
( 1 1 1 )  z f  for ellery component  C of  the focal loelis holds drnl C < rn - 1, t h rn  
p . I V ~  + Cm zs a n  zsomolphlsm 

Remark 7 T h e  divisor N, splits as Arlx, l.J N', where !V' = P(N,k)  

Let us first consider the case where X is a curve ( for this case we shall 
give a different proof in the sequel, showing that  then either C is a line: or C 
is a circle, what contradicts the hypothesis that  C be orthogonally general). 

CASE: X = C curve. 

Let C be an irreducible ( and orthogonally general) curve of degree d. 
Then Nlc, consists of d distinct copies of P,, p : qCm + P ,  is a finite 
map, and by the transversality of C to P,, the divisor f i  does not contain 
any component of !Vlcd 

Therefore we get 

Corollary 3 If C zs a n  trredziczhlc ( ond orthogonally general) clii?le and 
d l i n  Cc- < m - 1 t h e n  1;. = N' (set-theor~tzcally) 

Proof 
Indeed, Yc c N,, but no component of NIC, is contained in ITclc. Thus 
Yc C N'. We can conclude since dim Yc = dim N' and N' is irreducible 
(being a projective bundle on the curve C) .  0 

Proposition 1 A s s u m e  again that  C i s  a n  irreducible ( and orthoyonally 
general) curve . T h e n  (I)  dim C < m - 1 @ (2)  C is  a line. 
(3) I n  this case C i s  a linear space of d imens ion  m - 2 = codim C - 1. 

Proof 
(1) -+ (2) being clear, let's prove the other iniplication (1) + (3): 
Let iVh be the fibre of A" over p E C ,  which is a hyperplane in P,. Now 
& = p(:lr') is irreducible, lias diinerlsiori < ,rl - 1 a d  c.oiitains .%. wliich D
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6032 CATANESE AND TRIFOGLI 

has dimension equal to m - 2.  Therefore, Cc = NJ, and N i  = Ni  Vp, q E C. 
This implies T,C n P, = T&' n P, Vp, q E C .  

~h i s ' c l ea r ly  implies tha t  C is a line, since then for each point p E C the 
projective tangent line T,C is the join of p and of a fixed point p, (whence 
one can find then m - 1 independent linear forms vanishing on C) .  
0 

CASE: d z m X  = n > 2 
Since X, is smooth, by Bertini's theorem X, is irreducible. Therefore also 
NIX, and N' are irreducible. 
We have 

Lemma 2 If n 2 2 and d imCx < m - 1, then 
(i) Yy = N'  set-theoretically. 
(zi) [YX] = [nN'] in P i c ( N ) .  
(iii) 2(Kx + ( n  + l ) H )  = 0 in P i c ( X ) ,  where H = HI is the hyperplane 
divisor on X .  

Proof 
Since p is surjective, we have one and only one of the following two cases: 
( a )  p(Nlx,) C# P,; (b) p ( N f )  C# P,. But (a) cannot hold. Indeed, since 
[ H I ]  = [Nlx,] in P i c ( N ) ,  (a) implies [Y] = [aH1] for some a > 0. But then 
from the class forniula (*) Yx = 211*Kx + n H 2  + (n + 2)H1, it follows that  
2FI* K x  + 7 2 H 2  + (n $ 2  - a) HI = 0, contradicting the Leray-Hirsch T'heorem. 

Therefore, (b) holds and hence Y = N' set-theoretically. (ii) and (iii) 
follow immediately from the class formula (*), because Hz = HI + [N'] in 
Pzc(N) .  0 

From point (iii) it fol!ows that 

Corollary 4 If dim Cx < 7n - 1, then X is a linear space. 

Proof 
Let C = X H,  n Hn-l be a srriooth curve. By successive applicat~ons 
of the ad l~~nc t ion  formula ( 1 1 1 )  y i ~ l d s  2(Kr  + 2 H )  = 0. Extracting degrees, 
we get 2(29(C) - 2 + 2 deg(C)) = 0, whlcll is eq~uvalent to g ( C )  = 0 and 
deq(C) = 1 0 

We can conclude 

Theorem 1 Let X C Pm be a projective variety of dimension n > 1 which 
is  orthogonally general. Then dim C x  < m - 1 H X is a linear space. In  
this case, Cx is a linear space of dimension equal to codim X - 1. 
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5 The Degree of the Focal Locus of a Surface 
Let X 2  = S  C Pm be a surface and assume that  S  satisfies the non- 
degeneracy conditions Setting n = 2 in the Degree-Formula given in Section 
1, we get ( recall H = H 1 )  

( F l )  deg Cs  degp lys  = 2H,"-'(Ks + Hz + 2 H )  

Our first aim in this section is to  express the r ight~hand side of ( F l )  in 
terms of the Chern classes c l ( S ) ,  c 2 ( S )  and of the hyperplane divisor H  of 
s .  

By the Leray-Hirsch theorem HF-' = -cl ( N s ( - 1 ) )  H ~ - ~ - C ~ ( N S ( - ~ ) )  H F - ~  
Using this relation, the right-hand side of ( F l )  becomes 

Recall that  c ( N S ( - 1 ) )  = c ( C ) c ( N B ( l ) ) ,  where C = O s ( - 1 )  and .Ui is 
the conormal bundle of S. Thus, 

Using the normal-bundle seqt lmce wr get 
cl (ni,.) = c, ( S )  - ( m  + 1) H  

( 2 )  c 2 ( N i )  = -cq(S) + $ m ( m +  1 ) H 2  + c l ( S ) c ~ ( , V i )  = 
- c 2 ( S )  + i m ( m  + 1 ) H 2  + CI(S) '  - (m + I ) H c I ( S )  

and substituting in ( I ) ,  we get 

c l ( N s ( - 1 ) )  = -4H + c l ( S )  
(3) c 2 ( N s ( - 1 ) )  = 9H2 - 5 H e , ( S )  + c ; ( S )  - C Z ( S )  

Hence (*) becomes 

(a*)  2 ~ ~ - ' ( 1 5 ~ ~  + c:(S)  + q ( S )  - (3Hcl ( S ) )  

We recail that  Hz = [N'] + H ,  so that  (**) can be rewritten as 

(* * *) 2 [ 1 V ' ] ~ - ~ ( 1 5 H ~  + c?(S) + c 2 ( S )  - 9Hcl ( S ) )  D
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6034 CATANESE AND TRIFOGLI 

Finally, since [N'];"F;"F' = 1,  where F is a fibre of .rr : N -+ S ,  we conclude 

( D F )  deg Cs degplys = 2(15H2 + c:(S)  + c z ( S )  - 9 H c l ( S ) )  = 2(15d -t 
c ? ( S )  + c2(S )  - g H c i ( S ) ) ,  

where d  = deg(S ) .  

By Noether's formula, we can also write 

We can express also our formula in terms of the sectional genus T of our 
surface S  ( recall that  27r - 2  = H z  - H c l ( S ) )  as 

( D F " )  deg CS degpjyS = 2(18(7r - 1) + 6d + 12x(Qs) )  

Example 4 For m = 3, we have c l ( S )  = (4  - d ) H  and 
c 2 ( S )  = 6 H 2  - d(4  - d )  H z .  Thus 

Example 5 For 771 = 4 ,  uie hove thr  form~ilo c z ( S )  = cl (S) '  - 5 H c l ( S )  + 
100' - d2 [Hnrtshor7le,p.434], or , rqu~valent ly ,  

d2 - 5d + 2 ( 6 ~ ( C ? s )  - c ~ ( S ) ~ )  = 1 0 ( ~  - 1)  
whzch gzves 

deg Cs degplys  = 2/5(9d2 - 15d + 1 6 8 ~ ( C ? s )  - l 8 ~ 1 ( ~ ) ~ )  

6 Weakly focally degenerate varieties 
In this section we shall first consider the case of a hypersurface X of dimension 
n , and we shall characterize the case where X is weakly focally degenerate. 
The characterization of the hypersurfaces X which are isotropically focally 
degenerate will be given in the next section. 

Later on in this section we shall deal with focally degenerate varieties of 
any codimension. 

We shall essentially use very classical tools such as the implicit function 
theorem, dimension counts and the standard method of obtaining new equa- 
tions by differentiating old ones . 
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Let F ( x l ,  ... xn+l) = 0 be the affine polynomial equation of a hypersurface 
X .  We shall in this section be mostly interested about a birational description 
of X ,  whenceforth we might, by abuse of notation, not distinguish between 
a projective variety and its affine part (or any nonempty Zariski open set of 
it). 

In this case the gradient V F  of F gives a trivmlization of the Normal Bnn- 
dle Nx at tlie smoot 11 points of X ,  and the second project ion T : Nx -, PnS1 
coincides with the endpoint map 

E(X, X )  = x + XVF(x),  
where x = (x l ,  . . .  xn+l) is a point of X, and X is a scalar coordinate 

= X1/Ao , ( A o ,  XI) being homogeneous coordinates on P1. 
As a warm up, let us investigate when does i t  occur that  the endpoint 

map is not finitp. That is, let us assume that r is a curve in AT,y which is 
nlnpped to a point 0 h y  tlie endpoint map E ,  and that this point does not 
lie at infinity. 

Choosing a parameter t for T, we have functions x( t ) ,  X(t) such that  
1) F ( s ( t ) )  - O 

l l ) x ( t )  + X(t)VF(x(t))  -- 0. 
If x(t)  is a smooth point of X ,  then the gradient VF(x( t ) )  d o ~ s  lmt 

vanish, whence x ( t )  is not constant: thus a t  a general point of r we may 
assume that  the derivative x( t )  := dx( t ) /d t  is non vanishing. 

Let us use the scalar product <, > associated to the quadratic form Q,, 
and le i  us choose affine coordinates such that  <, > is the standard scalar 
product ( i.e., the matrix of Q, is the identity matrix); since 

2) s ( t )  - 0 r -X(t )VF(x( t ) )  , and < VF(x( t ) ) ,  ~ ( t )  >= 0 we infer that  
3) < ~ ( t )  - 0. ~ ( t )  - 0 >= constant. 
Therefore, tile basis curve y C X = {XI F ( x j  = O j  is a curve contained in 

a sphere with centre the point 0 ( note tha t  the sphere may also have radius 
zero !). 

Conversely, if we have such a spherical curve y meeting X and with the 
property that  the  two vectors x( t )  - 0, V F ( x ( t ) )  are proportional, then we 
find X(t) so that  11), 1) hold, whence we find I' which is mapped to  the point 
0 by the endpoint map ( and moreover it follows from 1) tha t  y is contained 
in X).  Finally. since r is mapped to a point, it is obviously contained in the 
ramification divisor Y of the endpoint map. 

We have therefore the  following 

Proposition 2 Given a smooth afine hypersurface X , the positive dimen- 
sional irreducible components of the fibres ~ ~ ' ( 0 )  of the map to the afine 
part of the Focal LOCUS correspond exactly to the subvarieties Q, contained in 
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6036 CATANESE AND TRIFOGLI 

a sphere S with centre 0,  and such that X is everywhere tangent to S along 
a. 

Proof 
Let 8 be a component of the fibre ;.r-'(0). Then consider tha t  8 is the union 
of the curves r contained in it : each of these projects to y c X contained 
in a sphere S, with centre 0 and radius c. But the image of 9, call it a, 
is irreducible, whence all the radii are equal, and we get the desired sphere 
S .  Conversely, the tangency condition provides a rational function X on 
whose graph is the  required variety 8 .  0 

I t  is rather clear tha t  the previous proposition allows easily t o  construct 
examples where the map .ir : Y --+ E x  is not finite. 

Remark 8 If imtead the point 0 is at znfinity, let's identzfy it with one 
vector in  V ' ,  then we get the equation 

0 r X ( t ) V F ( x ( t ) ) ,  whence 
< 0, x ( t )  >- constant . 
So, i n  this case, the positive dimensional irreducible components of the 

fibres ;.r-'(0) correspond exactly to the subvarieties contained in a hyper- 
plane H with normal direction 0, and such that X is everywhere tangent to 
H along @. 

We can push the previous calculations to describe the weakly focally 
degenerate hypersurfaces. 

Let us thus assume that  X = { x l F ( x )  = 0) is weakly focally degenerate. 
This simply means that  there is a component C of the focal locus which has 
dimension 

d z m z  = o < n .  
Arguing as before, we notice tha t  C will simply be any maximal. irre- 

ducible variety such that  its inverse image in N x  has a dominating component 
Z of dimension n .  We can analogously treat the case where this dimension is 
bigger than n ,  i.e., when Z = N x ,  or equivalently X is isotropically focally 
degenerate : in this case we may also allow dzmC = n. 

We have thus an irreducible component Z of the ramification divisor, 
with T ( Z )  = C. 

To start  with, let us assume that  C @ P,. 
Therefore, a t  the general point of Z we can choose local coordinates 
S =  (s , ,  .... ,s ,)  and t = (tl,..t,-,) ( v = n o r  n + 1 )  

such that  the fibres of ;.r are locally given by setting s = constant, in 
other words we have functions 
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x ( s ,  t ) ,  X(s, t )  parametrizing the points of Z  , 
and a function O ( s )  parametrizing the image n ( Z )  = C of the end-point 

map. This means that the following equations hold : 
1") F ( x ( s ,  t ) )  r 0 

2") X ( S ,  t )  - O ( S )  E - - X ( S ,  t ) V F ( x ( s ,  t ) )  , 
differentiating 1 " )  with respect to both sets of variables s ,  t ,  we infer that 
< V F ( x ( s ,  t ) ) ,  ( d x ( s ,  t ) /d t , )  >- 0 as well as 
< V F ( x ( s ,  t ) ) ,  ( d x ( s ,  t ) /ds , )  >r 0.  

We argue as we did before : 
since x ( s ,  t )  - O ( s )  is proportional to V F ( x ( s ,  t ) )  , we obtain that x ( s ,  t )  - 

O ( s )  is orthogonal to all the partial derivatives of x ( s ,  t ) .  
Since however ( d x ( s ,  t ) / d t i )  = ( d ( x ( s ,  t )  - O ( s ) ) / d t i ) ,  it follows that there 

is a function r ( s )  such that 
3") < x ( s , t )  - O ( s ) , x ( s , t )  - O ( s )  >= r ( s ) .  
What we have done insofar is to write down the family of spheres con- 

taining the projections X, to X of the fibres over O ( s )  € C. 
On the other hand, we can use t,he other partial derivatives ( d x ( s ,  t ) / d s j )  

in order to obtain a complete description of X,. 
In fact, let us calculate the partial derivatives ( d r ( s ) / d s j )  
They are = 2 < x ( s ,  t )  - O ( s ) ,  ( d ( s ( s ,  t )  - O ( s ) / d s j )  > 
= -2 < X ( S ,  t )  - o(s), (ao(~) /a~, )  >. 
We have therefore established 
4") ( a r ( s ) / d s , )  = -2 < x ( s ,  t )  - O ( s ) ,  ( d O ( s ) / d s j )  >, 
whose geometric meaning is the following: if O ( s )  is a smooth point of 

C, whence all the partial derivatives ( d O ( s ) / d s j )  are linearly independent, 
then X, is contained in the intersection of the sphere given by 3") with the 
codimension a  afine subspace given by 4").  

If this intersection has the expected dimension n - a,  then it has the same 
dinlension as X, and if it is moreover irreducible it will coincide with X,. 

Lemma 3 Consider an af ine  subspace L = {XI < x  - 0, vj  >= cj for 
j = 1, ..a} of codintension a  and assume that L is contained in  the sphere 
S ( O ,  r112) = {XI < x  - 0, x  - 0 >= T ) .  Then 

(*) the direction W of L is an isotropic subspace for <, >, and there exists 
z o  E L such that xo - 0 zs orthogonal to LV ( equivalently, 14' is isotropic 
and L c O  + IV1). 

Observe moreover that the orthogonal W1 is the vector space U generated 
by the vectors v,. D
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6038 CATANESE AND TRIFOGLI 

Also the converse holds, in  the sense that i f  (*) is verified, then there 
exists a constant R such that L is contained in the sphere S(0, ~ ' 1 ~ ) .  

Proof 
Let xo E L and write L = xo + W .  Since < x - 0, x - 0 >= r for x E L, we 
get 

< xo - 0, xo - 0 > +2 < w, xo - 0 > + < w, w >- T for each vector 
w E W. 

Thus the quadratic polynomial < w, w > is identically zero on W , what 
amounts to say that  the subspace W is isotropic; the vanishing of the linear 
form yields the desired orthogonality of xo - 0 to W. 

Conversely , < x - 0, x - 0 >-< xo - 0, xo - 0 > and L is contained 
in the sphere 

{ x )  <x-0,x-0 >= R )  once weset  R=< xo - 0 , ~ ~ - 0  >. 0 

Lemma 4 Con,sider a n  a f i n e  subspacc L = {zl < x - 0, zl, >= c j )  as in 
the previous lemma 3,  and assume that the afine quadric L n S(0, r1I2) is 
reducible. Then either 

(i) dim(W/CV n W') = 1 and there exists xo E L such that xo - 0 is 
orthogonal to W and < xo - 0, xo - 0 ># r or 

(ii) d i m ( W / W  n WL) = 2 and there exists xo E L such that xo - 0 E I.VL 
and < xo - 0, xo - 0 >= r 

Proof 
As before , for each choice of xo E L we can write L = xo + I V .  Since the 
equation of our affine quadric is 

< so -0,xo - 0 > $2 < W,XO - 0 > + < W,W >= r for each vector 
w E W, and we impose the condition that  the quadric be the union of two 
affine hyperplanes, it follows that  the quadratic form < w, w > on W has 
rank either 1 or 2. 

I n  the l a t t ~ r  case. since the rank of the complete quadric eqt~als the rank 
of the quadratic form, acting with a translation on LV, we can kill the terms 
of lower dcgrce. 

In the former case, if the linear part of the equation would not belong to 
the image under Q ,  of W / W  n WL, the rank would be a t  least 3. Whence, 
acting with a translation on W ,  we may kill the linear part and then the 
consta~it  must be non zero. 
0 
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FOCAL LOCI OF ALGEBRAIC VARIETIES. I 6039 

We have therefore found that the projection of Z is contained in the incus 
X' given by 

3"") { ~ 1 3 s ,  < x - O ( s ) , x  - O ( s )  >r r ( s )  
4"" )  (dr ( s ) /ds , )  = -2 < x - O ( s ) ,  (dO(s ) /ds , )  >). 
If moreover Z surjects onto X and X' is irreducible, then X' equals X 

unless we are in the exceptional case where (cf. Lemma 3) for each point 
O ( s )  the (vector) tangent space V,  to C at O ( s )  satisfies the condition that 
V ,  contains its orthogonal W, := Vb ,  and moreover then ( x ( s ,  t )  - O ( s ) ) ,  for 
each t belongs to the subspace V, := W:. 

The locus X' ,  as written, is the projection of the locus 
2' c Pm x C defined as 
3"')  { ( x ,  s)l < x - O ( s ) ,  x - O ( s )  >- r ( s )  
4"') (ar ( s ) /ds , )  = -2 < x - O ( S ) ,  (aO(s ) /ds , )  >). 
If we calculate the tangent space to 2' at the point ( x ,  s )  we obtain that 

it is contained in the hyperplane: 
5"') { ( < , a ) ( 2  < X - O ( s ) , <  > -2 < x-O(s ) ,  ( d O ( s ) / d a )  > - ( d r ( s ) / d o )  = 

0 )  = {(E,a)12 < x - O ( s ) , E  >= 0) 
(since ( x ,  s )  is a point of 2'). 
By Sard's lemma, X' has dimension at most n: whence, if we assume 

that the component Z dominates X ,  and thus X c X ' ,  we conclude that 
X = X' ( in the exceptional case, or if X' is irreducible) or at least that X 
is a coniponelit of X' .  

llre are now in the position to explain the main constructions which are 
underlying the characterization of the focally degenerate varieties. 

Definition 6 THE INVERSE CONSTRUCTION T O  FOCAL DEGENER- 
ACY.  

Start fivm t h e  following data : 
2) Let C be an irreducible aBne variety of dimension a , and let C* be an 

irreducible subvariety of the product C x C which is the graph of an algebraic 
ftLfl~ti071 r 071  C. 

Proceed constructing an algebraic set X' as follows: 
ii) The subuwiety C* d~jtrles a family of sy11e1.e~ 
Z* c C"' x C x C defined as 
3"') { ( x , O , r ) 1 ( 0 , r )  E C*,  < x - 0 , x  - 0 >= r } .  
iii) Consider in  Cm x C the tangent space to C' at a point (0, r ) ,  and its 

orthogonal with respect to the quadratic form Q ,  $ 1 :  under the embedding 
of C'" in C"' x C sending x to ( x  - 0 , 1 / 2 ) ,  its pull back is precisely an afine 
space given by an equation as 4" ' ) .  We can in this way define a bundle (zf C 
is smooth) of afine spaces 
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6040 CATANESE AND TRIFOGLI 

A* c C"' x C*, 
A* = { ( r , o . r ) ( O , r )  E C', (7 - O >  112) E TE{~,~, '}. 
iv) define 2' as the zntersection Z* n A* ( a dzvzsor in A*)  
v) define X'  as the projection of Z' on the first factor Cln; 
vi) obserue that, by the argument uie gave above, d imX'  5 7n. - 1. 
vii) asslme fincdly that C, I .  are admissible,  which amounts to the re- 

quirement th,at 2' dominate C. 

R e m a r k  9 The condition that C,  r be admissible is o,bviously satisfied un- 
less 2' is a union offibres of the projection A* --+ C. This means, unless the 
quadratic function < x - O ( s ) ,  x - O ( s )  > is constant on th,e afine spaces 
A;.  Therefore, the pair C ,  r is admissible unless we are in  the situation of 
Lemma 3 , whence < x - O ( s ) ,  x - O ( s )  >- R ( s )  on A:, but R ( s )  $ r ( s ) .  

There remains however to see what happens in the case where C lies a t  
infinity . 

In this case, we derive (cf. remark 8) the following equations, where O ( s )  
is a V' -valued function leading to a parametrization of C : 

6 )  < s ( s ,  t ) ,  O ( s )  >= r ( s )  
7 )  ( d r ( s ) / d s , )  =< x ( s , t ) .  (dO(s ) /as , )  > , f o r ]  = 1, ... n .  

In this case, i f  O ( s )  is a srnootli point of C ,  tlien the o + 1 vectors 
O ( , ~ ) , ~ l O ( , ~ ) / t l . ~ ,  arp I i ~ m r l y  indq)(w(Ie~it i111d 6) i11id 7)  iiiiply that Xs is 
col~tiliricd in tlic afl iuc space 

8) Xi = {.rl < s. O(s) >= ~ ( s ) ,  
(&(s) / i3sJ)  -< s, ( a O ( s ) / d s J )  >, f orj = 1, . . .  a } .  

Since C lies at infinity , X is not isotropically focally degenerate, whence 
Z has dimension 7n - 1 : it follows that X,, X i  have the same dimension 
m - 1 - a, whence they coincide. 

Iloreover, Z rliust dorriinate X,  else a whole fibre of lYx -+ X is conf ained 
ill Z, and tl~erefore its projection cannot lie at  infinity (remember that X is 
liere s~ipposcd to 11c affiiie). 

Therefore, it follows that X eq~lals XI, the closure of the union of the XI,. 
U'e are therefore led to the following 

Defini t ion 7 THE ASI'AfPTOTIC INVERSE CONSTRUCTION T O  IVEAK 
FOCAL DEGENERACY. 

Start from the followi7~g data : 
i )  Let C be an irreducible variety of di~nension a , contained zn P,, c m r l  

let C* be an i17~ducible subva7~zety of the product C x C which zs the yruph of 
an alyebrazc section r of O c ( l ) .  
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FOCAL LOCI OF ALGEBRAIC VARIETIES. I 604 1 

T h e n  consider the algebraic set X' which is the closur-e of the un ion  of 
the family o f a f i n e  spaces XL defined by 8). 

Remark 10 The  attentive reader will find a slight abuse of notat ion above, 
which can be explained as follows : i n  the case where C does not lie at infinity, 
since we /lave a privileged a f i n e  chart = P m  - P,, we consider r ( s )  just as 
a n  algebraic function o n  C. If however C c P,, then there is  n o  favourite 
standard a f i n e  chart and we make clear that r is not really a function, but 
a section of Oc(l) (possibly rnultivalued and with poles!). 

Remark 11 Consider a variety X = X' obtained from the asymptotic in- 
verse focal construction. 

T h e n  i ts  part X, = X n P, consists of the points 

{x E P,I < x, O ( s )  >= r ( s ) ,  
( a r ( s ) / a s , )  =< x, ( a O ( s ) / d s j )  >, f o r j  = 1, ... a ) .  

If we therefore identify P ,  with its dual space via the quadratic f o r m  Q,, 
it  follows t l ~ a t  X ,  is  the d u d  variety of  C ! 

Observe moreover, that if X is a lznear space, then Cx equals XA. 
I n  this case the section ~ ( s )  is just induced by a linear form o n  C x  (i.e. ,  

a vector i n  (V ' )") .  

We observe now that  we have insofar proved the following 

Theorem 2 Let X be a focally degenerate hypersurface i n  Cn+' and let C 
be a conlpo,nent of the strict focal 1oczl.s ( i e . ,  we are i n  the n o n  vertzcul case 
and the c o ~ ~ r e ~ p o n d z n g  co7t~ponerit Z of projects onto X ) .  T h e n  

ezther C zs contazned zn P ,  and X zs obtazned froin C , r  uza t h e  as- 
yrnptotzc znveise focal conai~ U L ~ L V ~ Z  ussoczated lo a n  algebruzc s e~ t zun  ). 
of ('dl) 
or-, C 1 s  not contolnrd 111 P, ar~d there is url u l y d r ~ ~ c  fur~ctzorl r ( s )  oil 
C such that,  applyzng the znve7,se constmc~tzon to focal degeneracy, we 
get a hypersurfice X' such that X I S  a component of X ' .  

C o n v ~ r s c l y ,  start from any admzsszble pazr ( C ,  r ) ,  and assume that a n  
vreduczble h y p r s z ~ r f a c e  zs a component of the algebrazc set X' obtazned from 
the Inverse constructzon or from the asymptotzc znzlerse constructzon . then  
X IS a focally degenerate hypersurface 

Proof 
T l i r r ~  rrnlairis onlv to  show that if X is an irreducible hypersurface, compo- 
nent of the algebraic set X' obtained from an inverse construction : then C 
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6042 CATANESE AND TRlFOGLI 

is a coniponent of the focal locus of X. This follows since, by 5 " ' ) ,  x - O ( s )  
is a normal vector to X I ,  respectively since O ( s )  is a normal vector to X I ;  
moreover, 2' dominates C by the assumption that r be admissible. 

However, the inverse constructions, as we are going to see, work more 
generally also in the case where X' has smaller dimension than the expected 
dimension m - 1. 

We have in fact the following 

Theorem 3 Let X be a focally degenerate variety of dimension n i n  CnL and 
let C be a component of  the focal locus of dimension a 5 m - 1 ,  projection 
of a component Z of Yx. T h e n  C determines birationally a n  irreducible 
subvariety C* of  C x C corresponding to  a n  algebraic section r ( s )  of  Oc(l) 
and,  applyin,g the appropriate inverse construction to focal degeneracy, ~ u e  
get a n  algebraic set X '  which is focally degenerate, and indeed isotropically 
focally deyenw-ate in the case where C is 71ot con,to.zned i n  the h,yperplme at 
zn,finity P ,  and d i m Z '  = rn ( in  this case the fibres XA of 2' -t C are a f i n e  
spaces). 

There w e  ,seven cases : 

1 )  X I S  ~ s o f r o l ~ i ~ a l / y  focally degenerate . t h ~ n  X = X', d17nZ' = n7 and 
fhr> fibips X, o j  NA -+ C are a f i n e  spaces, h f o ~ e o v e r ,  here C zs not  
contozncd 17) P,. 

0 2) ?j Cis not contained i n  P ,  , Z projects onto X a,nd Xi is n,ot zsotrop- 
 call?^ focally degenerate: then X is a conaponen,t of Xi 

,?) Z pro,y( ts  onto X ,  X' is zsotropicnlly forally degencmfr ,  b u t  X 7s 
no? z s o t r o p ~ ~ a l l ? ~  focally degrnerate: th,en X C X' is o dw?.sor. Z i.s thc 
~ ~ ' s t r ~ r ? ? m  ?O X qf the no77nal  band!^ ATx,, and C zs the focal 10~21s of 
Xi (ngain here C is not contained zn P,) 

0 4 )  C zs not contazned zn P ,  , Z projects onto a dz~lzsor X" C X. X" 
zs a co7nponent of X ' ,  X "  zs focally degenerate, wzth a component 2" 
of the ~ c ~ r n z j i c a t ~ o n  locus Yx whzch zs a subb~mdle  of Nx . then  the 
tangent bundle to  X around X "  zs annzl1zlated by the gzven subbundie 
Z " 

0 5 )  Z prvjects orlto a divisor X" C X which is  focally degenerate, X" 
is a divosor of X '  and X' is  isotropically focally degenerate (again here 
C is not contazned i n  P,). T h e n  X and X' are tangent along X " .  

0 G) C is  contained i n  P,, Z projects onto some a f i n e  point o f  X , 
whence it  dominates X and X = X' is  obtained via the asyrnptotzc 
invewe  focal constructzon. 
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FOCAL LOCI OF ALGEBRAIC VARIETIES. I 6043 

0 7) C is contained i n  P,, Z projects onto a component A of  X,. I n  this 
case Z zs the restriction of  Nx to  A, the second projection to  P ,  is  not 
surjective. This case is  characterized by the property that A c X ,  be 
projectively isotropically degenerate, which is  equivalent to  the property 
that A be obtained via the isotropic projective inverse focal construction 
(this case will be treated separately i n  the next proposition). 

Conversely, start from any admissible pair of a variety C not contained 
i n  P,, and of a n  algebraic section r ( s ) .  Consider the, algebraic set XI ob- 
tained f rom the znverse construction : then  X' is focally degenerate ( i f  i t  
has two coinponents, this means that each of t h e m  is focally degenerate) and 
isotropically focally degenerate iff the fibres of Z' + C are a f i n e  spaces of  
dimension m - d i m C  (then Z' = ATx,) . 

All the isotropically focally degenerate varieties X are gotten by the in- 
verse coilstruction as such a n  X ' .  

I n  case 6), where C is a component of the strict focal locus contained 
i n  P,, all such weakly focally degenerate varieties are obtained from the 
asyinptotrc inverse focal construction. 

Let us  consider the remaining cases where C is  not contained i n  P,. 
The,n the weakly focally degenerate varieties i n  the n o n  vertical case ( i .e . ,  

when Z dornmites  X )  are gotten ezther 
(2) as u component of such an  X', or 
(zi) as u d~uzsor  in (111 isotiupically focally degenerate variety XI: u d ~ i c h  2s 
trar~sversal to the general fibres .Yl of -, Ex! and where dim Ex! 5 m -2. 

Insteon', rn the wrtzcnl case, thc wenkljl focnll?y degenerde 1nrietie.s ore 
qiucn, a,? ~ ~ n r z r t i e s  rontnin,iny a focally n'egeiiwate dwisor X" such that e ~ t h e r  
( i )  ,Y" its n componc~it  o f ,Y f ,  with, a conaponent 2'' of the mmificotzon locus 

which. ~ l s  n .subh~mdle of N,y,,, and such that the tnngent bundle of X 
along X" is  giuen b y  the nnnihilator of the subbundle Z" or 
( i i )  X" is a diuisor o j X ' .  XI is isotropzco,llyfocally degenerate with dim E x (  2 
771 - 2 ,  X "  is tmnmcrsn l  to  the fibres X: of A;; --+ E x / ,  and X and X '  are 
tangen,t a,lonq *Y" . 

Proof 
IVe discuss first of all the case where C is not contained in P, (whence Z 
does not project to P, under the first projection) . 

Around each smooth point of X there are a Zariski open set U of Cm 
and polynom~als F l ( x ) ,  .... F,,-,(x) such that X r l  U = { x  E UI FI(x)  = 
.. .F,-,(x) = 0 )  and such that X n U cons~sts of smooth points. 

Therefore, the gradients of the polynomials Fl ( r ) ,  .... F,,-,(I) yield a - - , . -  
framing of the Euclidean normal bundle on X n U, and t,he endpoint map is 
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6044 CATANESE AND TRIFOGLI 

locally given by 
E ( X ,  XI, ..Xm-n) = x + Ct=l, m-nXtVFl(~),  
We choose as we dld before a component Z of the ramification locus f i  

which maps onto an irreducible variety C of dimension n 5 m-2 (respectively 
a < m - 1 in the focally isotropically degenerate case) and local coordinates 

s = (s , ,  ...., s,) for the points of C and t = ( t l ,  .t,-,) for the fibres of 
T,  where v equals m - 1 in the non focally isotropically degenerate case, 
otherwise m = v and Z = N x .  

Whence, we have local functions ~ ( s ,  t ) ,  X(s, t )  parametrizing the points 
of Z , 

and a function O(s)  parametrizing the image T(Z)  = C such that 

1") F,(x(s,  t ) )  = 0 V i  

Differentiating 1") with respect to both sets of variables s ,  t ,  we infer that 
< VF,(r(s ,  t ) ) ,  ( a r ( ~ ,  t)/dt,)  >-< VFJ(r ( s ,  t ) ) .  ( ~ x ( s ,  t)/ds,,) >= Otll,~, h.  
By 2" ) ~ ( s ,  t )  - O(s)  is a normal vector, whence 
3") < x(s ,  t )  - O(s) ,  x(s,  t )  - O(s) >- r (s) .  
and 
4") (i)r,(s)/Ds,) = - 2  < ~ ( s ,  t )  - O(s) ,  (dO(s)/ds,) >. 

Therefore, for fixed s, the projection X ,  of the fibre 2, (generally a man- 
ifold of dirrier~sion v - a )  is contained in the intersection XL of a sphere S, 
of centre O(s)  and radius r(s)'/' with an affine space IS, of codirnension a 
(since at  the general point we can assume dO(s)/dsl),  ... dO(s)/ds,) to be 
linearly independent). 

Thus, the manifold XA has dimension either mn - 1 -a or m - a ( but in the 
latter case, by Lernnia 3, the orthogonal to TCo(,) is contained in TCb(,)).  

Consider as before the locus X' given as the projection of the locus 
2' c P'" x C defined as 
3"') {(x, s)l < x - O(s) ,  .c - O(s) >f T(S) 
4"') (&.(s)/ds3) = -2 < x - O(S), (dO(s)/ds3) >}. 

Lemma 5 Z' c Nxt 

Proof 
We must prove that the vector x - O(s) is normal to X' .  This follows from 
the calculatiori of the tar~gent space to 2' at the point (x, s )  that we have 
done above (cfr. 5"'). 
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Corollary 5 Each  component of X' zs focally degenerate and mdeed zsotrop- 
zcally focally degenerate zf l  XL = II, (whence, zn the latter case, X'  zs also 
zrreduczble). 

Proof 
If XL = n,, then 2' is irreducible and dzmZ' = d z m  Nxl = m so that 
Z' = Nx, and X' is irreducible and isotropically focally degenerate. 

If dzm X i  = m - 1 - a (in this case a 5 m - 2), then Z' is a divisor in 
Nxt arid hence C is contained in Ex,. Either C is a component of Cxo, for 
each compone~it X 0  of X', or there is a component X 0  of X' which is focally 
isotroplcally degenerate. 

Assume that the latter holds: then, for general O(s) E C ,  Xt is a divisor 
of the fibre of ATxo -+ Cxo, whence by dimension reasons C = Cxo. 

Since the direction of fl, is the vector subspace LI' = TC&,), and C = 
C,,O, it follows that N X ;  = II,. 

hlnieovcr. Imng X0 isotropicallv focally degenerate, by lemma 3 follows 
that ll '  is totally isotropic, whence the quadratic function < x - O(s),  x - 
O ( s )  > 1s then constant on II,, contradicting the fact that for general s XL 
is a iionerripty and proper divisor in II,. 

If X is focally isotropically degenerate, the projection X, of Z, has dimen- 
sion nl - a, whence it equals XA, and it follows immediately that X equals 
X'. 

Slippose then tha t  X is not isotropically focally degenerate, and let X" 
he the projection of Z, that is the closure of U,X,. Thus X" c X and 
X" c X' .  
Aswme first that dzmX; = dzm X, = m - 1 - a. Therefore, X" is a com- 
ponent of X '  and Z equals a component Z" of 2' .  It follows that either 
X" = X and case 2) of the theorem occurs, or X'' C X would be a divisor 
and Z would be the restriction to X" of the normal bundle N x ,  a subbundle 
of the normal bundle Nx,t. 

Whence, X" is focally degenerate, with a component Z = 2" of the ram- 
ification locus wh~ch is a projective subbundle of Nx.3, and case 4)  occurs. 
Any variety Ad containing X" as a divisor, and with tangent bundle annihi- 
lated by the given subbundle would be a weakly focally degenerate variety 
with C in the focal locus. 

In other words, in the vertical case, the inverse focal construction can by 
no means reconstruct X ,  but only the first order neighbourhood of X along 
X". 

Finally, there remains the case where d7m X, = m - 1 -a, drmX; = m - a ,  
in which case X '  is isotropically focally degenerate. Then Z is a divisor in 
2' = nrx,. 
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6046 CATANESE AND TRIFOGLI 

Assume X "  = X' : since then X'  C X ,  but X' # X since X is not 
isotropically focally degenerate, we get that Z = Nxlxj C Z' = Nx!, and we 
are again in case 4). 

Thus we may consider the remaining cases where X" is a divisor of X'. 
Furthermore, either X" = X or X" is a divisor in X .  If X = X" ,  then Z is 
the restriction of Nxl to X ,  and case 3) occurs. If X" is a divisor of X ,  we 
have that Z = Nx(x-  = Nxllx,, so that X and X' are tangent along X"  and 
case 5) occurs. Conversely, let X' be a isotropically focally degenerate variety 
and let X be a divisor inside X'; since Nx!Jx c Nx is a divisor, it follows 
immediately that. setting Z = N x ~ l x ,  the image of Z is contained in Ex,.  If 
moreover, as it should be, the divisor X is transversal to the fibres XA, then 
its image equals Ex!, whence Z will make X weakly focally degenerate if and 
only if d z m  5 m - 2. hlore generally, if A4 is any variety containing X 
as a divisor and such that A l  and X' are tangent along X I  then hl is weakly 
focally degenerate. 

Let us tlien consider case 6) : tlien, analogously to the case of hypersur- 
faces we can find a parametrization O(s) of C in homogeneous coordinates 
such tliat 

O(s)  - -&=I, , , , -J , (s ,  t)VF,(x(s,  t ) ) .  

Then < ax(s ,  t)/at , ,  O(s) >E< ax(s ,  t)/ds,, O(s)  >r 0. 
;Fro111 the first equalities we conclude that there exists a local function 

r ( s )  such that 
6) < x ( s , t ) ,O( s )  >- r (s) .  
One nlonient's reflection, since the vector O(s) gives homogeneous coor- 

dinates for C, shows that indeed ~ ( s )  globalizes to a (possibly multivalued 
and with poles) section of Qc(1). 

Fro111 the second equalities follows also 
7) (dr(s)/ds,)  E< x(s , t ) ,  (dO(s)/ds,) >, f o r j  = 1, ... a.  

Thus an entirely similar argurnent yields that X is gotten fro111 tlie as- 
ymptotic inverse focal coiistruction, and conversely if X is obtained in this 
way then X is weakly focally degenerate and we are in case 6). 
0 

Let us discuss case 7) ,  ~vllere tlie whole condition of degeneracy bears on 
X,, and tells tliat, O(s)  being the I/'- vector valued function giving local 
honiogeneous coordinates around a sniootli point of C as usual, tlirre is a 
local function X(s, t )  and a local parametrization x(s ,  t ) ,  of X, this time, 
arid giving homogeneous coordinates, such that 
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FOCAL LOCI OF ALGEBRAIC VARIETIES. I 6047 

X(s, t ) x ( s ,  t )  - O(s) is a normal vector to X ,  at  the point x i s ,  t ) ,  in the 
sense that  

< X(s, t ) z ( s ,  t )  - O ( s ) ,  x i s ,  t )  >- 
< a x ( ~ ,  t ) / a t i ,  X ( S ,  ~ ) x ( s ,  t )  - O ( S )  >= 
< a+, t )  /as , ,  X ( S ,  ~ ) x ( s ,  t )  - O ( S )  >S 0. 

At t,he points where X(s, t )  is not vanishing we can replace the  parame- 
t,rization x ( s ,  t )  by X(s, t ) x ( s ,  t ) ,  so with these new homogeneous coordinates 
we have 

I )  < s ( s , t )  - O ( s ) ,  x ( s ,  t )  >= 
IT)  < a x ( s ,  t ) / d t i ,  x ( s ,  t )  - O ( s )  >E 
111) < a x ( s ,  t ) /ds , ,  x ( s ,  t )  - O ( s )  >= 0. 

Deriving equation I )  with respect to d l&,  and using 11) we obtain 
I V )  < a x ( s ,  t ) / d t , ,  x ( s ,  t )  >= 0 
whereas, applying a l a s j  t o  I )  and using 111) we get 
V )  < d x ( s ,  t ) / d s , ,  x ( s ,  t )  >E< a O ( s ) / d s j ,  X ( S ,  t )  > . 
IV) yields 
A) < x ( s ,  t ) ,  x ( s ,  t )  >=< O ( s ) ,  x ( s ,  t )  >= r ( s )  which implies, together 

with V) : 
B )  < dO(s) /ds , ,  z ( s ,  t )  >= 1 / 2 d r ( s ) / a s j .  
Since we chose a smooth point of C the n + 1 vect,ors 
O ( s ) ,  d O ( s ) / d s , ,  .. . dO(s ) /as ,  are linearly independent, and it follows 

that  the vectors x ( s ,  t )  , for s fixed, vary in an  affine space X " ,  of dimension 
m - I - a .  

Since however X, is assumed to have dimension exactly equal to  m- 1 -a ,  
it follows that  X, = X",, where X " ,  is defined by the equations 

A') < O ( s ) ,  ,x >- r ( s )  
B')  < ~ o ( s ) / ~ s , .  >=. 1/2ar(s) /as , .  
However, also the equality < x ,  x >- r ( s )  m m t  be satisfied on X ,  = X u , ,  

thus by  Lenmia 3 we get an affine linear subspace with direction IV which is 
tot,ally isotropic, and is cont,ained in t,he orthogonal IV1 t o  Mi. 

The conclusion is that the project,ive t,angent space to C a t  any smooth 
point has a totally isotropic annihilator . 

Definition 8 Let C be n projective subuarrety of the projective space P ( V 1 )  = 
P, associntcd to n uector space V '  of diitien,szon 7n endowed with a noia 
degenerate quadlatic form Q,, such th,at any point O ( s )  of C th,e projectille 
tangen,t space to C at O ( s )  (a vector subspace of V ' )  has a totally isotropic 
annih,ilator. 

Let r ( s )  he an n l g ~ b l n i c  section of Oz(1) and consider the dewlopahle 
~ln71cty X"  defincd by the union oftlte subspaces X " ,  definwd by the equations 
A ;) m d  B') .  
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6048 CATANESE AND TRIFOGLI 

Assume moreover that r be admissible i n  the sense that the local functzon 
(constant O T L X " ~ )  

< x ( s ,  t ) ,  x ( s ,  t )  >= R ( s )  be equal to r ( s ) .  
Then  we shall say that X "  is projectively isotropically degenerate and that 

X"  is obtained via the isotropic projective inverse focal construction from the 
admissible pair ( C ,  r )  . 
Proposition 3 Assume that X is weakly focally degenerate and that a com- 
ponent C of the focal locus is contained i n  P,, with the corresponding com- 
ponent Z of Yx projecting onto a component A of X ,  ( case 7 )  of theorem 
3). In  this case Z is the restriction of Nx to A, A is projectively isotropically 
degenerate. Conversely, zf A is obtained via the isotropic projective inverse 
focal construction , then X is weakly focally degenerate and we are i n  case 
7 )  of theorem 3. 

Proof 
I f  X is as in case 7) of theorem 3, then we have already seen that A c X, 
is projectively isotropically degenerate. 

It remains to prove the converse, which follows since A ' ) ,  B') and our 
assuniption R ( s )  = r ( s )  imply A),  B )  by which irnrnediately follow I) ,  11). 
arid 111) ,  whence x ( s ,  t )  - O ( s )  is a normal vector to X,. Since X" = A 
anti X " ,  has dimerision rn - 1 - a we get a component Z of dirnerision 712. - 1 
projecting onto the a-dimensional variety C contained in the hyperplane at 
ir~firlity and we are done. 

0 

Remark 12 It follows from the previous theorem that any variety C is a 
component of some focal locus. 

Moreover, i n  the asymptotic inverse constructzon, we see immediately that 
the tangent space at a point of X ,  depends only upon s , so that then bur X 
is developable. 

In  particular, if r n  = 3 we get either a linear subspace or a developable, 
whence sinyular, surface. 

Observe finally that if X is orthogonally general and projective, then only 
cases 6) or 7) can a priori occur. 

For case G ) ,  start choosing X ,  as a smooth and transversal variety to 
Q,, apply then the asymptotic inverse focal construction : then we yet a 
~inraety X ~uhtch will be ortho,qon,ally gmernl exactly iff X is smooth. B I L ~  the 
snloothness of X ,  as we h,av~ just seen, is the m,ain obstructiorz. 
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Example 6 Let m = 3, and let C be the line at infinity parametrized as 
O ( s )  = ( 0 ,  O,1, s ) ,  a,nd set, in these afin,e coordinates, r ( s )  = s 2 / 2 .  
Then an easy computa.tion for the asymptotic inverse focal construction 

yields the quadric cone 
X = {xlxox:! - s$'2 = O), whose vertex lies at infin,ity. 
If instead we choose O ( s )  = (0, l , s , s 2 ) ,  and r ( s )  - 1, X will be the 

quadric cone 
X = { x ( 4 ( ~ 1  - x0)x3 - x: = 0 ) ,  whose vertex does not lie at infinity. 

Example 7 Let us now consider the most classical example, namely the ro- 
tational torus X obtained rotating a circle of radius, say, 1 around the point 
with coordinates (2,O). This is the example of a strongly focally degenerate 
variety. 

The equation F of X ,  in affine coordinates ( x ,  y, z )  for which Q, yields 
the standard Euclidean scalar product,, is then given, setting 

qjx ,  y, a)  = ( x 2  + y2 + z2 + 3) ,  or , in homogeneous coordinates ( x ,  y, z ,  w), 
q ( x ,  y, t ,  w) = ( x 2  + y2 + z2 + 3w2),  b y  

(*) q2 - 16(x2 + y2)w2.  
The  intersection with the plane at  infinity is precisely our conic Q, = 

{q  = 11' = 01, which is a double ctlr\,e for the q ~ ~ a r t i c  surface X. kloreover, 
S i n g ( X )  consist,s of Q ,  and of the t,wo points {P, P') = { q  = x = y = 0) = 
{ ( a 2  + 3 . ~ 1 ~ )  = R. = y = 0). 

Now, a classical and easy forniula for a rotation surface of a curve C 
= r ( s ) ,  z ( s )  parametrized by arclength, 

Z ( S ,  8 )  = r(s)co.s(H) 
y(s .  8 )  = r(.s)sin (0)  
z ( s ,  8 )  = Z ( S )  

is that  the two principal curvatures equal k(s) , z ' ( s ) / r ( s ) .  
In this case, r ( s ) ,  a ( s )  = (2  + cos(s),  sin ( s ) ) ,  whence k =- 1 and z l ( s ) / r ( s )  

= 1 - 2/7.(s). 
These formulae are easily rationaliz~d on our surface X since q2 = 16(x2+ 

? j 2 ) ,  ml~ence r = 914. Therefore the critical points are obtained by t,aking the 
multiples of the unit normal by the opposi t~s  of their inverses, i.e., -1 and 
-q/ (q  - 8 ) .  Finally, tlie unit normal is obtained by the gradient of F 

V F  = (4x (q  - 8 ) ,  4y(q - 8 ) ,  4qz) upon dividing by its norm, which equals 
I V F J  = 4 ( ( q  - 8)'(x2 + y2) + q 2 z 2 ) 1 / 2  = 
(lG(q - 8)' (:c2 + g 2 )  + 16q2z2)1/2= q( (q  - 8)2 + 16z2) '1'. But since 
z2 = q - 3 - g2/16 , we get q(64 - 48)'12 = 4q, 
and the focal locus is obtained for the values X = - 1/49, X = - l / 4 ( q  - 8 )  

as the irnaee of tlie enduoirit inau (x:u. zl + XVF(x .u .  z ) .  D
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6050 CATANESE AND TRIFOGLI 

For X = - l / 4 ( q  - 8 )  we get the points ( O , O ,  z (8 /q  - 8 ) )  , for X = - 1/49 
we get the points (8x /q ,By /q ,  0 ) .  

The conclusion is that the focal locus consists of the z-axis and of the 
circle z = 0 ,  x2 + y2 = 4. That is, our surface is strongly focally degenerate, 
and we can indeed see geonletrically the two families of circles corresponding 
to the two components of the focal locus. 

We end this protracted example by observing that the rotation surface is 
clearly a rational surface. Indeed, we can say more, since a smooth model is 
obtained by blowing up the singular conic Q, and the two points PI  P'. 

Let R and El E' be the respective exceptional divisors in the blow-up P 
of P3: the first is a ruled surface P ( O p l  $ Op1(2) )  , the other are two P2's. 

Let S be the strict transform of X: it belongs to the linear system 14H - 
2 R  - 2 E  - 2EtI,  whereas the canonical system of P equals I - 4H + R+ 2 E  + 
2E'I. Thus S belongs to ( - K - RI , and by the exact sequence 

0 -+ 0, ( - S )  -+ 0, -t -, 0 
we infer h l ( O s )  = h'+'(OF ( K  + R) = h2-'(OF (-R) = 0, since R is 

irreducible. S is clearly then rational, and the anticanonical effective divisor 
has self-intersection 4. 

Example 8 More generally, for a rotation surface (r (s )cos(O) ,  r ( s ) s in (O) ,  ~ ( s ) )  
the unit n o m a l  is given by ( z ' ( s ) cos (Q) ,  z ' (s)sin(O),  r l ( s ) )  , therefore we 

see easily that the focal locus consists of the z-axis and of the rotation surface 
obtained by rotating the evolute of the plane curve C = { r ( s ) ,  z ( s ) )  we were 
starting with. 

Therefore, general rotation surfaces provide examples of weakly but not 
strongly focally degenerate varieties. 

Example 9 This last example shows the important role of the alyebraicfunc- 
t2071 T ( s ~ .  

Let C be the line {(O,O, s )  E C3) : then i j  we take the f ~ ~ n c t i o n  r ( s )  - R, 
where R E C is a constant, the inverse construction yields a cylinder X'. 
Instead, if we ch.oose r ( s )  E R + s2,  uie obtain as X' simply a circle i n  the 
plane z = 0 .  

7 Isotropically focally degenerate hypersur- 
faces 

In the  preceding section we gave a characterization, in terms of the inverse 
focal construction, of the focally isotropically degenerate varieties. However, 
in general such a construction yields a hypersurface, which is only weakly 
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FOCAL LOCI OF ALGEBRAIC VARIETIES. I 605 1 

degenerate, and although in the next sertion we shall write down conditions 
which characterize the focally isotropically degenerate case, in the  case of 
hypersurfaces, we can give an easier characterization for tlie isotropically 
degenerate case with a direct proof. 

Let thus F(x1,  .. x,+l) = 0 be the polynomial equation of an  affine hyper- 
surface X, which we may assume, without loss of generality, t o  be irreducible. 

Again the gradient V F  of F gives a map of the  Normal Bundle Nx, 
T : Nx -+ Pn+' which we will also call the endpoint map 

~ ( x ,  A) = x + XDF(x). where x is a point of X ( thus, for X = 0 we 
reobtain the points of X) .  

Proposition 4 Let X be a p m y c f i v e  h v p ~ r s w f a ~ e  . t h ~ n  X i s  focolly zsotrop- 
trolly degcnemte ?f and onl?/ ?fX coznczdes tuith tts focal locus Ex. 

PI oof 
In t h s  case the focal loci~r ecl~ials the lrnage Ex of the map T Xu -+ Pn+'. 
and since X may be awumed to be ~rreduclble, iVx 13 ~rreducllde, whence C y  
1s also ~rreduclble But X IS contamed In C,u and has not lesser dlmens~on, 
thus equal~ty  holds 

Rernark 13 1I;e dtv.17~ t h ~  f l ~ e  t g ~ ~ n l ~ f y  
F(.r + XCF(:r ) )  = O VX. 
I n  p n r f ~ r u l n i  (tl/clX)F(.r i- X T F ( . r ) )  - 0, ond. for X = 0. w r  g r ?  
(7) < Y'F(.r),  C F ( s )  >r 0. 
By tlie previous propositiori the general fibre of .ir has dirriension 1, and 

for each xo E X. X o  E C there exists a curve 
( 1 1 )  z ( t ) ,  X( t )  such tliat ~(0) = :r0, X ( O )  = X o ,  wliicli is a f i lm of T .  

Since a fibre intersects a ~iorrtinl line :ro x C in at most one point, it follows 
tliat up to a I~irutional transformation we can take (xo, t )  as coordinates or1 
Kx by taking the curves rc(.ro, t ) ,  ,\(lo, t )  satisfying ( 1 1 )  for Xu = 0, arid 
assunie that  the curve . I : ( X ~ ,  t )  is a rion constant curve iri X satisfjilig 

( 111 )  s ( x o ,  t )  + A(x0, t ) V F ( x ( x o ,  t ) )  E so. 
bfTe argue as in the preceding section : 
Z ( Q ,  t )  - xo s - X ( Z ~ ,  t ) V F ( x ( x ~ ,  t ) ) ,  
thus by ( I )  our usual function ~ ( 2 0 )  -- 0 and 
(IV) < z (xo ,  t )  - xo, x ( x o ,  t )  - xo >z 0. 
In this case we also grt ,  if s  = ( s l ,  ...., s,,) are local coordi~iates for xo E X ,  

that  ( d r ( s ) / d s j )  = 0 and 
(V) O = -2 < .c (ro(s) ,  t )  - S O ( $ ) ,  ( d x g ( s ) / d s I )  > for each s ,  t .  
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6052 CATANESE AND TRIFOGLI 

Since tlie tangent space to X a t  xo has dimension n ,  we infer tha t ,  fixing 
s and varying t ,  we obtain a curve x(xo ,  t )  which moves on the line through 
xo with direction V F ( x o ) .  

We can thus write 
( V I )  ~ ( ~ 0 1  t )  = xo + cl(x0, t ) V F ( x o ) ,  
and then ( V I )  and (111) cornbine to  yield 
( V I I )  X(xo, t ) V F ( x o ,  t )  s - - ~ ( z o ,  t ) V F ( x o ) .  
Since the function X(xo, t )  is non zero, it follows that  not only the line 

through xo with direction V F ( x o )  is contained in X ,  but  also that  the normal 
direction stays coristantly proportional to V F ( x o )  on it. 

We have thus proven the following 

Theorem 4 A hypersurface X is isotropically focally degenerate if and only 
if it is isotropically developable, i.e., for each point the normal line is con- 
tained in  X ,  and along this line the tangent space to X does not vary. 

We would like now to give some examples and show where lies the  dif- 
ficulty in the fine classification of isotropically focally degenerate hypersur- 
faces. 

It is classically known that in 3-space the analytical surfaces which are 
developable are only cones, cylinders, and tangential developable surfaces. 

Proposition 5 Assume X zs an ~sotiop~coll~l dewlopnhle surfice. Then . ~f 
X o cylmdw t l m  X I S  o plonc If X rs a cone , zt zs the cone over Q, 1~2th 
I K ~ ~ F T  171 o pomf of offine spoce 

Proof 
I f  X is a cylintlcr, then tlie gentrat,rices are the normal lines, therefore the 
~icirnial dirrctioii is coiistaiit oil the whole su r fxe  and the surface is a jilaile. 
If X is a cone, with vertex, say, at the origin, then the vectors x and V F ( x )  
are proportional, 

but tlie wctor V F ( x )  is alwa,ys isot,ropic, whence < x, .r >= 0 011 X ,  
q.e.d. 

Let us now discuss the tangential surface X of a curve C. 
We write as usual X parametrically as 
x ( s ,  t )  = o ( s )  + tcul(s), 
so that  tlie tangent plane is generated by the two vectors 
cul(s), cul1(s). 
Up to  local analytic reparametrization we can assume that  one and only 

one of the following two possibilities occurs: 
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(I) < crl(s), a i ( s )  >EE 0 
(U)  < cul(s), o l ( s )  >r 1. 

In both cases follows that  
(*) < (rl(s), N"(s) >? 0. 
In the isotropic case (I) ,  then clearly a l ( s )  is a normal vector to X ,  con- 

stant on the generatrices, and our X is thus isotropically det,elopahle. 
We could stop our discussion here, since the   so tropic ruling, in the situa- 

tion we are interested in, is obtained by fixing s and varying t ,  which means 
that  we are in principle through with our discussion. Nevertheless, for cu- 
riosity, we analyze also the unitary case which we could avoid to consider 
in view of the assumption that  our surface is not only developable, but also 
isotropically developable. 

Lemma 6 Th,e unita.r?p case (U) occurs onhp if fh,e c ~ ~ l a e  C is a plane curve, 
thus its tan ,gmtzal  szuface is a plane. 

Proof 
In the unitary case ( U ) ,  the nor~rial vector rnllst he proportional to d i ( s ) ,  
whence X is isotropically degenerate if and only if 

(**) < al'(s), al'(s) >+ 0. NOW, by taking derivatives of (*) arid (**), 
arid using (**), we obtain 

(***) < N"(s), CYf'l(3) >5 0 
< N'(s), ~ " ' ( s )  > 0 

from wliich it follows that a l" (s) ,  cuI1(s) are proportional vectors, whence 
also 

< alI1(s), CkII1(s) >z 0. 
By induction, we sliow that  for each integer n 
(*n*) < al1(s) ,  a(")(s)  > 0 

< Q'(s), Q ( ~ ) ( s )  > Z i  0 

whence al '(s), d n ) ( s )  are proportional and thus also 
< d l L )  (s) , dn) (s) > 5 0.  
Consider now the Taylor development of a ( s )  a t  any point : from the fact 

that  all higher derivative vectors are proportional follows that  cu(s) yields a 
plane curve. 

But this means that  its tangential surface is a plane. 
0 

It is now clear that  in order to classify the non-trivial isotropically de- 
velopable surfaces in 3-space we would need to classify the isotropic space 
curves C ( i.e., those whose tangent vector is always an isotropic vector,that 
is, (I) holds). 
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Now, the condition that C is algebraic is an obstacle! 
Indeed, C will be tlie birational image of a smooth curve B , given through 

4 sections ( s o ,  s l ,  sz, s3 )  of a line bundle on B: the isotropicity condition 
arnouiits to the following equation ( where ' represents the derivative with 
respect to a local parameter on B )  

( E )  C1=1,2,3(s:s0 - sbsJ2 = 0. 

Example 10 It is rather easy to give examples of rational curves which are 
isotropic. 

It sufices, chosen an a f ine  coordinate t on C ,  to set so - 1 and let 
( s l ,  s2, s 3 )  be polynomials i n  t such that their derivatives satisfy 

C,,1,2,3(s:)2 -- 0. 
In other words ,(s',, s',, 3;) give a rational parametrization of the conzc Q, 

and ( s l ,  s2, s3 )  are taken to be the integrals of the three polynomials (si, s',, s ; ) .  
I n  tlri.9 way we see more generally that, up to translation, our curve C zs 

determin,ed by our map B + Q,. 
Using in  our particular case of the rationml curves fixed isom,orphisms of 

P1 1~1ith B and with Q,, we obtain that our isotropic rational curves are 
pa,rarnetrized by a pair of polynomials f o ( t ) ,  f ( t )  . 

primitit~e (doe,$ nmt factor through an internediate cover), e.g. it could be a 
cyclic Galois cover of prime order p .  

If the map ( s l ,  s2, s3 )  would n,ot be biration,al onto its image, then the 
tangent map from C to Q ,  would be a birational isomorphism. 

But,  i n  the example we gave above, fo( t )  = 1 ,  f l ( t )  = tP, we see immedi- 
ately t !~at  ( s ; ,  sa, 5 3 )  are not polynomials In tP. 

8 Isotropically focally degenerate varieties and 
further examples 

In tlie previous section we have given a classification, and concrete exaniples 
of isotropically focally degenerate hypersurfaces. 

It  is easy to obtain concrete examples in higher codimension by the fol- 
lowmg simple device : consider varieties M C C m ,  W C C w  arid corisider 
the product variety X = A l  x W in the orthogonal direct slim C m  $' C w  = 
Cm+w 

It is immediate to see that in this case the normal bundle of X is a 
product, likewise the endpoint map. 
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Remark 14 If thus M c Cm and W c Cw are zsotropzcally focally degen- 
erate, then X = M x W c Cm+" zs also uotropzcally focally degenerate, 
and Ex = Cbf x CCw In partzcular, we obtazn zn thzs way Cx of arbztray 
codzmenszon. 

W e  obtazn also, by lettzng M be an zsotropzcally developable hypersurface, 
and W general, an example of a vanety X of arbztrary codzmenszon whzch zs 
zsotropzcally focally degenerate, and whose Cx as a hypersurface. 

We now finally observe that the inverse focal construction gives a char- 
acterization of the isotropically focally degenerate varieties in terms of their 
focal variety Ex. 

Theorem 5 Let C be a projective variety of dimension a ,  and let r ( s )  be an  
algebraic function on its a f ine  part. Assume moreover that 

1) at any point O ( s )  of C the vector tangent space to C at O ( s )  (a vector 
subspace of V ' )  has a totally isotropic annihilator. 

Then, if X is gotten from ( C ,  r )  via the inverse focal construction, and 
moreover 

2) the algebraic function r ( s )  satisfies the conditions 
2.1) d r ( s )  E Irn(Tc,, -+Qm-+ TV c ,J  
2.2) given J with Im(J) = df , then 114 < <, J >= r ( s )  
then X is isotropically focally degenerate and C = Ex. 

Proof 
This follows irnrnediately from Lemma 3, since conditions 1)  and 2.1) imply 
that on the affine space given by equations 4"")  the quadratic function Q ,  
is constant, and 2.2) guarantees that this constant equals r ( s ) ,  whence also 
3"") is satisfied and thus the sphere X,, fibre over the point O ( s ) ,  is then an 
affine space of dirnerision m - a. 

Remark 15 The above theorem immediately implies the characterization 
given i n  the previous section of the isotropically focally degenerate hyper- 
surfaces. Because in the cuse of hypersurfaces we noticed that X = Ex, 
and then the tangential condition on Ex reads out as the condition that the 
normal vector is isotropic, moreover by the inverse focal construction X is 
developable, and the fibre di7nension equals ~n - a = m - (rn - 1 )  = 1 .  Thus 
X is developable with the ruling by lines given by the normal direction. 

M'e end by showing an explicit example of the situation considered in case 
3) of Theorern 3. 
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Example 11 Consider first X '  C C6 obtained as the product X'  = iZI x 1.V 
of two isotroyically developable surfaces : 

thus X '  has a parametrization 
( a ( s )  + t a l ( s ) ,  P ( a )  + T P ' ( a ) ) .  
Inside X '  we consider th,e divisor X obtnin,ed by setting T = t .  
Whence X has a parametrization 
( 4 s )  + t a l ( s ) ,  P(o) + tP'(u)),  
and, rem,embering that crl(s),  ~ ( c J )  are isotropic vectors it  follows that the 

normal space to X is  spanned, at the smooth points of  X , by the three vectors 
( a l ( s ) l O )  , (0, P 1 ( a ) )  and 

(- < p"'(u), p l ( a )  > [ail'(s) + taU ' ( s ) ] ,  < a l " ( s ) ,  a l ( s )  > [P1'(o) + t y ( a ) ] ) .  
Th,e endpoint map is  g i ~ ~ e n  by 
( Q ( s )  f ~ c Y ' ( s )  + X 1 a l ( ~ )  - X 3  < p l l ) ( ~ ) ,  P (u )  > [Q"(s) + ~ Q " ' ( s ) ] ,  @(a )  + 

t P 1 ( a )  + X2P1(u) + X 3  < crl"(s), a l ( s )  > [ p y a )  + t p t f t ( a ) j )  
thus i ts  image equals the image of the map 
( a ( s )  + X l a l ( s )  - X 3  < y ( a ) ,  @ ( a )  > [a l ' ( s )  + t a l ' ' ( s ) ] ,  P ( a )  + XZ@(U)  + 

X 3  < a l " ( s ) ,  ail(s) > [p l l (u)  + t p l " ( u ) ] ) .  
To simplzfy the discussion we may  assume < crl'(s), a l ' ( s )  >- -1,  and 

similarly < /3"(0),  P1'(a) >= -1, therefore our formula simplifies to 
( a ( s )  + X1a l ( s )  - X3[a1'(s) + tcr'"(s)], P ( a )  + XzLY(a) + X3[p1'(u) + t P ( a ) ] )  
and we see that the image of the normal bundle Nx will i n  general be 

dominan.t. 
Th,ercfow X is  tireakly foc011~ de,qen.erate, n,ot focally isotropically degen,- 

erate, but the inwerse ford construction reconstructs only the isot~ropically 
focally degenerate fourfold X I .  
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