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Q.E.D. FOR ALGEBRAIC VARIETIES

FABRIZIO CATANESE

Abstract

We introduce a new equivalence relation for complete alge-
braic varieties with canonical singularities, generated by birational
equivalence, by flat algebraic deformations (of varieties with canon-
ical singularities), and by quasi-étale morphisms, i.e., morphisms
which are unramified in codimension 1. We denote the above
equivalence by A.Q.E.D.: = Algebraic—Quasi—Etale— Deformation.

A completely similar equivalence relation, denoted by C-Q.E.D.,
can be considered for compact complex spaces with canonical sin-
gularities.

By a recent theorem of Siu, dimension and Kodaira dimension
are invariants for A.Q.E.D. of complex varieties.

We address the interesting question whether conversely two al-
gebraic varieties of the same dimension and with the same Ko-
daira dimension are Q.E.D. - equivalent (A.Q.E.D., or at least
C-Q.E.D.), the answer being positive for curves by well known
results.

Using Enriques’ (resp. Kodaira’s) classification we show first
that the answer to the C-Q.E.D. question is positive for special
algebraic surfaces (those with Kodaira dimension at most 1), resp.
for compact complex surfaces with Kodaira dimension 0,1 and
even first Betti number.

The appendix by Sonke Rollenske shows that the hypothesis
of even first Betti number is necessary: he proves that any sur-
face which is C-Q.E.D.-equivalent to a Kodaira surface is itself a
Kodaira surface.

We show also that the answer to the A.Q.E.D. question is pos-
itive for complex algebraic surfaces of Kodaira dimension < 1.

The answer to the Q.E.D. question is instead negative for sur-
faces of general type: the other appendix, due to Fritz Grunewald,
is devoted to showing that the (rigid) Kuga-Shavel type surfaces
of general type obtained as quotients of the bidisk via discrete
groups constructed from quaternion algebras belong to countably
many distinct Q.E.D. equivalence classes.
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1. Introduction

The purpose of the present article is to define some new and broad
equivalence relations, called Q.E.D.; in the classification theory of alge-
braic varieties and compact complex spaces, and to pose some problems
concerning invariants for Q.E.D. equivalences.

To briefly explain the prehistory of the question, let me first recall
that, in order to make the study of algebraic varieties possible, it is
customary to introduce some equivalence relation. The most classical
one is the so-called birational equivalence (respectively, one considers
the bimeromorphic equivalence for complex spaces)

Since moreover quite often the construction of algebraic varieties de-
pends upon parameters, Kodaira and Spencer introduced the notion
of C-deformation equivalence for complex manifolds: they ([K-S])
defined two complex manifolds X', X to be directly deformation
equivalent if there is a proper holomorphic submersion 7 : & — A of
a complex manifold = to the unit disk in the complex plane, such that
X, X’ occur as fibres of 7. If we take the equivalence relation generated
by direct deformation equivalence, we obtain the relation of complex
deformation equivalence, and we say that X is a complex deformation
of X’ in the large if X, X’ are complex deformation equivalent.

These two notions extend to the case of compact complex manifolds
the classical notions of irreducible, resp. connected, components of mod-
uli spaces.

My first main motivation for introducing Q.E.D.-equivalence is the
following: to explain the Kodaira classification in the case of algebraic
curves, one has to say that a curve has Kodaira dimension 1 iff it has
genus g > 2, and then to recall that all curves of a fixed genus g are
deformation equivalent.

The simple but key observation is that for each g > 2 there is a curve
of genus g which is an étale (unramified) covering of a curve of genus 2.
Therefore all the curves with Kodaira dimension 1 are equivalent by the
equivalence relation generated by deformation and by étale maps (the
same holds of course for curves of Kodaira dimension 0, resp. —00).

More remarkable is the consideration of the (complex) algebraic sur-
faces of Kodaira dimension 0: the Enriques surfaces have an étale double
cover which is a K3-surface, and the hyperelliptic surfaces have an étale
cover which is a torus (indeed, the product of two elliptic curves). So, in
this case, we should link tori and K3’s by étale maps and deformations.
This is obviously not possible, because tori are K (m,1)’s while K3’s are
simply connected.

That’s why the solution is to divide the torus by multiplication by —1,
obtaining the (singular) Kummer surfaces, and then take a smoothing
of the Kummer surface to obtain a smooth K3 surface. The small
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price to pay is to allow morphisms which are not étale, but only étale
in codimension 1, and moreover to allow singularities, ordinary double
points in the case of surfaces. This singularity is a very special case
of the Rational Double Points, which are the canonical singularities of
dimension 2 (cf. [Reid1], [Reid2]).

This remark helps to justify the following definition:

Definition 1.1. The relation of algebraic quasi-étale deformation is
the equivalence relation, for complete algebraic varieties with canonical
singularities defined over a fixed algebraically closed field, generated by

(1) birational equivalence,

(2) flat proper algebraic deformation 7 : X — B with base B a con-
nected algebraic variety, and with all the fibres having canonical
singularities,

(3) quasi-étale morphisms f : X — Y, i.e., surjective morphisms
which are étale in codimension 1 on X (there is Z C X of codi-
mension > 2 such that f is étale on X — Z),

and denoted by A.Q.E.D. ( X ~aqQEDp. Y).
Note that we have a completely analogous C — Q.F.D. -equivalence
for compact complex spaces with canonical singularities generated by

(1) bimeromorphic equivalence,

(2) flat proper complex deformations 7 : X — B with connected base
B, and with all the fibres having canonical singularities,

(3) quasi-étale morphisms f: X — Y.

One may of course restrict the latter equivalence relation to algebraic
varieties, and to Kéhler manifolds and spaces.

Finally, we define a compact complex space to be standard if it is
C — Q.E.D. -equivalent to a product of curves, and similarly define
the concept of an A. standard = algebraically standard algebraic
variety.

Remark 1.2. By Siu’s recent theorem ([Siu]), not only dimension,
but also the Kodaira dimension is an invariant for A.Q).FE.D. -equivalence
if we restrict ourselves to consider projective varieties with canonical sin-
gularities (defined over C). It is conjectured (ibidem, cf. also [Siu2])
that the deformation invariance of plurigenera should be true more gen-
erally for Kéhler complex spaces (with canonical singularities).

Question 0: Is Kodaira dimension also an invariant for C-Q.E.D.
equivalence of algebraic varieties and compact Kéahler manifolds?

We begin with the following two theorems:

Theorem 1.3. Let S and S’ be smooth Kdhler surfaces which have

the same Kodaira dimension I < 1. Then S and S’ are C — Q.E.D.-
equivalent.
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Corollary 1.4. Let S and S’ be smooth compact complex surfaces
with even first Betti numbers and which have the same Kodaira dimen-
sion I € {0,1}. Then S and S’ are C — Q.E.D.-equivalent.

The next theorem is not a special case of the previous, since we only
consider projective deformations:

Theorem 1.5. Let S and S’ be smooth complex algebraic surfaces
which have the same Kodaira dimension K < 1. Then S and S’ are
A.Q.E.D.-equivalent.

The ingredients of the proof of 1.3 are, beyond the Enriques-Kodaira
classification and a detailed knowledge of the deformation types of el-
liptic surfaces, the notion of orbifold fundamental group of a fibration,
and the following very simple devise.

Main Observation: Assume that we have two effective actions of
a finite group G on algebraic varieties X, resp. Y (effective means that
no element g € G acts trivially). Then the product action of G on the
product X x Y yields a quasi - étale map X xY — (X xY)/G: hence,
if both X xY and (X x Y)/G have canonical singularities, they are
Q.E.D.-equivalent.

A couple of words concerning A.Q.E.D. equivalence: in the case of
Kodaira dimension 1 we have to face the problem that algebraic de-
formation is not completely understood for elliptic surfaces, and, even
more, the determination of quasi-étale maps on models with canonical
singularities requires a rather deep understanding of the configuration
of curves allowed on some deformation of a given elliptic surface. Such
a study, as it is the case for K3 surfaces, is related to a systematic in-
vestigation of the period map for elliptic surfaces (this investigation was
started for Jacobian elliptic surfaces, i.e., elliptic surfaces admitting a
section, by Chakiris in [Chak1, Chak?2]).

Our solution to prove the Q.E.D. statement for Kodaira dimension
1 is to try to reduce to the case of no multiple fibres: this is done via
the orbifold fundamental group of a fibration and works easily except
for elliptic surfaces over P! with one or two multiple fibres. For these,
the simplest approach (deformation to constant moduli) fails to work.
In this case, however, the result follows by showing the existence of an
algebraic deformation of such a surface to another one possessing two
(resp. : one) Dy fibres: after contracting the non central —2 curves we
get a singular surface with a large orbifold fundamental group, and we
again reduce to the case of no multiple fibres.

Another purpose of this article is to pose the following

Main Question: Which are the Q.E.D. equivalence classes of sur-
faces of general type and of special varieties in higher dimension?
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Let us try to separate the two issues. Our proof that Kodaira dimen-
sion and C-Q.E.D. equivalence coincide for special surfaces is somehow
related to the Def = Diff problem ( cf. [F-M1], but compare also [F-M],
205-208). We know that two special surfaces Sy, So are orientedly dif-
feomorphic if and only if either they are deformation equivalent, or S}
is deformation equivalent to the complex conjugate of Ss.

It was recently shown ( [Man], [K-K],[Catl], [C-W]) that for alge-
braic surfaces of general type (for these, C-Q.E.D. and A.Q.E.D. equiv-
alence coincide) diffeomorphism or symplectic equivalence are not suffi-
cient criteria to guarantee complex deformation equivalence. Moreover,
we observe that almost all (cf. Question 8) the known counterexamples
are known to be in the “standard” Q.E.D. equivalence class, i.e., dis-
tinct connected components of the moduli space of surfaces of general
type are simply obtained via surfaces which are Q.E.D. -equivalent to
products of curves.

This observation leads to the second main motivation for introducing
Q.E.D. equivalence: quasi- étale maps have for long time been an ace of
diamonds in the sleeves of algebraic geometers in order to produce very
interesting counterexamples (we shall point out other examples later).
Our philosophy here is that quasi- étale maps are a fact of life which in
classification theory should be considered more as the daily rule rather
than the exception.

The main questions that we want to pose can then be summarized
as:

Question 1: Are there more (effectively computable) invariants for
Q.E.D. equivalence, than dimension and Kodaira dimension?

Question 2: Is it possible to determine the Q.E.D. equivalence
classes inside the class of varieties with fixed dimension n, and with
Kodaira dimension k?

For curves and special algebraic surfaces over C we saw that there
is only one A.Q.E.D. class, but in the first appendix Fritz Grunewald
shows, considering some Kuga-Shavel type surfaces of general type con-
structed from quaternion algebras according to general lines suggested
by Shimura (cf. [Shav]):

Corollary 5.10. There are infinitely many Q.FE.D. -equivalence
classes of algebraic surfaces of general type.

The above surfaces are rigid, but the Q.E.D. -equivalence class con-
tains countably many distinct birational classes. We can then pose a
more daring

Question 3: Are there for instance varieties which are isolated in
their Q.E.D.-equivalence class (up to birational equivalence, of course)?
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Remark 1.6.

e Singularities play an essential role here. Note first of all that (as
we will show in the next section), without the restriction on these
given in (2), we obtain the trivial equivalence relation for algebraic
varieties of the same dimension (does this also hold for compact
Kéhler manifolds?).

e Assume that a variety X has the following properties of being
1) rigid,

2) smooth with ample canonical bundle,
3) with a trivial algebraic fundamental group,
4) with a trivial group of automorphisms.

Then any variety X’ birational to X and with canonical singu-
larities has X as canonical model, and since X has no deforma-
tions, and there is no non trivial quasi-étale map ¥ — X the only
possibility, to avoid that X be isolated in its Q.E.D.-equivalence
class, would be that there exists a quasi-étale map f: X — Y.

If f is not birational, however (cf. section 3 for more details)
the Galois closure of f yields another quasi-étale map ¢ : 2 — X.
Since ¢ must be birational, it follows that f is Galois and we have
a contradiction to Aut(X) = {1}.

Is it possible to construct such a variety X with properties 1)—
4)7

The analysis of the Q.E.D. equivalence classes for Kuga-Shavel sur-
faces is based on similar ideas, except that smooth ball quotients, or
polydisk quotients, have a residually finite fundamental group. The key
result due to Grunewald is then:

Theorem 5.9. Let k be a real quadratic field, and let A be the in-
definite division quaternion algebra corresponding, by Hasse’s theorem,
to a choice of S made as in 5.7.

Define F.4 to be the family of subgroups A C PSL(2,R) x PSL(2,R)
commensurable with a subgroup T' associated to a mazimal order R C A.

Each A € Fy4 acts freely on H?, and denote by Sa := H?/A the
corresponding algebraic surface.

Then the family of surfaces {SA|A € Fa} is a union of Q.E.D. equiv-
alence classes.

The interesting corollary is that, varying k£ and A, we obtain count-
ably many Q.E.D. equivalence classes.

Question 4: Do there exist for each n > 2 varieties obtained as ball
quotients, and which yield non standard varieties of general type?

In the complex non Kéahler world, things get complicated already in
dimension 2 for special surfaces. In fact, a compact complex surface
with odd first Betti number is non Kéhler, and in an appendix Sonke
Rollenske shows:
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Theorem 6.1. Let S be a minimal Kodaira surface. Then a smooth
surface 8" is Q.E.D. equivalent to S if and only if S’ is itself a Kodaira
surface. Thus Kodaira surfaces constitute a single Q.E.D. equivalence
class.

Recall moreover that Kodaira dimension is known not to be deforma-
tion invariant for compact complex manifolds which are not Kéahlerian
(due to some examples originating from the work of Blanchard, cf.
[Ue80], [Ue82] Section 5, and also Section 5 of [Cat02] for a more
general description).

On the other hand, recently Claire Voisin ([Voil], [Voi2]) has given a
negative answer to the so-called Kodaira’ s question whether a compact
Kahler manifold is always a deformation of a projective variety.

Her counterexamples, however, leave open the following more general
question (which may in turn also have a negative answer)

Question 5: Is a compact Kéhler manifold always C-Q.E.D. equiv-
alent to an algebraic variety?

We leave aside here the study of A.Q.E.D. equivalence classes for al-
gebraic surfaces of Kodaira dimension < 1 defined over an algebraically
closed field of positive characteristic; we hope to be able to address this
question in the future.

There is perhaps a reason why Q.E.D. equivalence may be more mean-
ingful for algebraic varieties defined over C. One should in fact keep in
mind that every projective variety over C is an algebraic deformation of
a projective variety defined over Q: this follows since Hilbert schemes
are defined over Z. Thus, the study of algebraic varieties defined over
Q could play a key role for the Q.E.D. problem (cf. the next sections
for more questions).

A final observation is that also the classical questions of unirational-
ity can be seen through a different perspective if we adopt Q.E.D. -
equivalence: for instance, the classical counterexamples to the Liiroth
problem are (cf. Remark 7.1) Q.E.D. -equivalent to projective space.

Acknowledgement. The main results on C-Q.E.D. of Kéahler surfaces
were announced in the Luminy G.A.C. Conference in December 2001,
and at other conferences (cf. the Abstracts of the Fano Conference,
Torino october 2002). I thank G. Laumon for convincing me of the
importance of checking also A.Q.E.D. equivalence, Thomas Peternell
for a useful suggestion concerning Proposition 3.5, Igor Dolgachev for
a useful discussion on logarithmic transformations, Ciro Ciliberto for a
useful discussion, and especially Fritz Grunewald and Sonke Rollenske
for their contribution and for several critical remarks.

The research of the author was performed in the realm of the SCHW-
ERPUNKT “Globale Methoden in der komplexen Geometrie”, and of
the EAGER EEC Project.
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2. The trivial equivalence relation

In this section we show, as already mentioned, the necessity, in defin-
ing the Q.E.D. equivalence, to put some restriction on the singularities
of the varieties that we consider.

Definition 2.1. The t-equivalence relation for Algebraic Varieties is
the one generated by

e birational equivalence,
e flat deformation with connected base.

Theorem 2.2. Two (irreducible) algebraic varieties are t-equivalent
if and only if they have the same dimension.

Proof. Let Z™ be an irreducible algebraic variety of dimension n: then
Z™ is birational to a projective hypersurface V' C P"*! (cf. [Hart],
I, Prop. 4.9). In turn, by varying the coefficients of the polynomial
of degree d defining V', we see that V' is deformation equivalent to
the cone CVV;_1 over a projective variety Wg_l C P™. Since CW;‘_I
is birationally equivalent to P! x W;il, and we can easily show that
X ~ XY ~; Y implies X x Y ~; X' x Y’, we infer by induction
that our variety Z is t-equivalent to P"~1 x Ccll, where Cé cP’isa
plane curve of degree d. Obviously CC} is deformation equivalent to a
rational nodal curve C’ Cll C P?, which is birational to P'. Whence, Z
is t-equivalent to P™. Conversely, it is clear that t-equivalence respects
the dimension. q.e.d.

Remark 2.3. Actually, the proof holds more generally if we consider
connected algebraic varieties (i.e., reduced and pure dimensional).

3. Elementary properties of quasi-étale morphisms

For the reader’s benefit, recall that (cf. [Reid2]) a variety X has
canonical singularities iff:

1) X is a normal variety of dimension n.

2) Ky is Q-Cartier, i.e., there is a positive integer r (the minimal such
integer is called the index of X) such that the Weil divisor r Ky is
Cartier. This means that the following holds: letting i : Xg — X
be the inclusion of the nonsingular locus of X, then Zariski defined
the canonical sheaf Ky as i.(Q%,), and we want that i.(Q% ")
be invertible on X.

3) If p: Z — X is a resolution of singularities of X,

T’KZ = p*(TK_){) + ZajEj,
J
where the Ej’s are the exceptional divisors, and the a;’s are non
negative integers (a; > 0).
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It follows directly from the definition that, Vm > 0, there is a nat-
ural isomorphism between H®(X,mrKyx) := H"(X, (Q%,)¢™) and
HY(Z,mrKyz).

Given f : X — Y a quasi-étale morphism between varieties with
canonical singularities, of degree d, let » be a common multiple of the
indices of X,Y.

By definition there is an open set X° such that X — Y0 is étale,
and X — XY has codimension > 2. Without loss of generality we shall
assume always that X° C X, and obviously then Y? C Yj. Since
Xo — XY and Yy — Y? have both codimension > 2, H(X, mrKx) =
H(X°, (Q%,)®"™) and the same holds for Y. Then X and Y have the
same Kodaira dimension since

HY(Y,mrKy) c H*(X,mrKx) c H(Y,dmrKy).

Remark 3.1. Assume that Y is smooth: then a quasi-étale mor-
phism f: X — Y with X normal is étale.

Proof. In fact, m (YY) 2 w1 (Y), thus there is an étale covering W —
Y such that X% and W0 are isomorphic. E.g. by Zariski’s main theorem,
the birational map induces a morphism f : X — W. Moreover, cf.
Theorem 7.17 of [Hart], and Exercise 7.11 (c), p. 171, X is the blow
up of an ideal sheaf Z C Oy such that supp (Ow /Z) has codimension
> 2 and contained in W — W9, But then, since the pull back of T is
invertible, we contradict cod (X — X%) > 2 unless Z is equal to Oy,
that is, X =2 W. q.e.d.

Proposition 3.2. Let f : X — Y be a quasi-étale morphism (of
normal varieties) and let fog: W — X — Y be the Galois tower
of f. Le., over C, we let W0 — X — YO be the sequence of étale
coverings corresponding to the biggest normal subgroup contained in
Im(m1(X%) — 71 (Y?)), and let g = W — X be the corresponding fi-
nite normal ramified covering.

It is clear that W — Y is quasi-étale, and we claim that if X,Y have
canonical singularities, then also W does.

Proof. Ky is Q-Cartier since r Ky |W° = ¢g*(rKx|X°) for each pos-
itive integer r, thus r Ky = ¢*(rKx) as Weil divisors, and it suffices to
take r such that rKx is Cartier.

Let moreover mx : X' — X,y : W/ — W be respective resolutions
such that g o my, factors as mx o ¢’ for some morphism ¢’ : W/ — X':
then we have

Ty (rEw) = mjyg"(rKx) = (¢') % (rKx)

— (¢)" (rKXf—ZajEj) = <T(KW’ - R)—Z aj(gl)*Ej>7

J J
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where a; > 0 and R is the ramification divisor (an effective divisor):
whence condition 3 is satisfied. q.e.d.

Corollary 3.3. Let f : X — Y be a quasi-étale morphism, with X
smooth and'Y mnormal. Then there is an étale covering W of X and an
action of a finite group G on W, free in codimension 1, such that'Y is
a birational image of W/G under a small contraction.

Moreover, if Y has canonical singularities, then also W/G has canon-
ical singularities.

Proof. Let g : W — X be as in the previous proposition; thus g is
étale.

Letting G be the Galois group of f, we obtain a birational morphism
¢:W/G — Y such that fog=¢op, p: W — W/G being the quotient
projection.

Now the birational morphism ¢ induces an isomorphism W%/G —
Y?, i.e., outside an algebraic set of codimension > 2 in WY/G, which
means that the contraction is small.

It is clear that G acts freely in codimension 1, whence it follows that
Ky is Q-Cartier, and since ¢*(Ky) = Kyy¢ we obtain that property
3 is satisfied. q.e.d.

The importance of the previous corollary lies in the fact that the
conditions that W be smooth, and W /G have canonical singularities,
impose restrictions on the actions of the stabilizers G, for w € W.

Remark 3.4. By a well known lemma by H. Cartan, if a finite group
H acts on a smooth germ (C™,0), then we may assume, up to a biholo-
morphism of the germ, that the action is linearized, i.e., H C GL(n,C).

The assumption that H acts freely in codimension 1 is equivalent to
the condition that H contains no pseudoreflections.

The condition that the germ C"/H has canonical singularities (cf.
[Reid2], Exercise 1.10, p. 352) is easily characterized only for n = 2:
this happens iff H C SL(2,C).

The analytic singularities C2/H, H C SL(2,C), are precisely the
Rational Double Points.

Concerning the varieties with Kodaira dimension K = —oo, it is con-
jectured that they are precisely the uniruled varieties (cf. e.g., [Kol]
1.12, p. 189), i.e., the varieties X of dimension n such that there exists
a dominant (and separable if char # 0) rational map ¥ x P! — X,
where dimY = n — 1. The current status of the conjecture is as fol-
lows: the main result of Boucksom, Demailly, Paun and Peternell in
[BDPP] is that X is uniruled if and only if Kx is not pseudo-effective
(a divisor is said to be pseudo-effective if it is in the closure of the cone
of effective divisors, and the crucial result of [BDPP] is that the cone
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of pseudo-effective divisors is dual to the cone of ‘movable’ curves, i.e.,
curves which cover X).

In the context of the Q.E.D. problem, observe first that, by a result
of Fujiki and Levine (cf. [Fuj], [Lev], and cf. also Chapter IV of [Kol]),
the class of uniruled varieties is stable by deformation, at least over C.

Then the following proposition (whose proof uses a precious sugges-
tion by Thomas Peternell) ensures that the family of complex uniruled
varieties is stable by Q.E.D. equivalence:

Proposition 3.5. Let f : X — Y be a quasi-étale morphism, with Y
uniruled. Then, if X,Y have canonical singularities, also X is uniruled.

Proof. By the theorems of Miyaoka and Mori, resp. Miyaoka ([M-M]
and [Miya2], cf. also [Kol], Thm. 1.16, page 191), if we have a smooth
projective variety Z of dimension n, then Z is separably uniruled if and
only if there is a covering family of curves Cy,t € T, with C; - Kz < 0.

Let first Z = Y be a resolution of Y. Then, if Y is uniruled, there
is such a family of curves Cy on Z = Y: let us push down this family
to a covering family of curves D; on Y. By property 3 of canonical
singularities, we obtain that D, - Ky < 0.

Let I'y be the family of proper transforms of the curves D; on X: since
f is quasi- étale, it follows from the projection formula that I'y- Kx < 0.

Let us consider a resolution X’ of X; then by [BDPP] it suffices to
show that K is not pseudoeffective.

Otherwise, if L is an ample divisor on X, then for m, N > 0 the linear
system |N(mKx: + 7*L)| is effective and big (yields a birational map).
In particular, if we denote by A; the proper transform of a general Iy,
the intersection number (mKxs + 7*L) - Ay > 0.

This is, however, a contradiction, since for m sufficiently divisible
and by the projection formula it follows that |N(mKx/ + n*L)| =
7| N(mKx + L)|. Whence, by the projection formula, (mKxs + 7*L) -
A; = (mKx + L) -T';. However, this last number is negative for m > 0,
a contradiction. q.e.d.

4. Proof of the main theorems 1.3 and 1.5

Proof of Theorem 1.3. We must show that, if S and S’ are smooth
Kaéhler surfaces which have the same Kodaira dimension K < 1, then S
and S’ are C — Q.E.D.-equivalent.

We proceed distinguishing the several cases, according to the value
of the Kodaira dimension K.

K= —o0.

In this case S is projective algebraic (since by the Kahler assumption
bt > 0, pg(S) = 0 implies that there is a positive line bundle) and it
suffices to show that S is A.Q.E.D. - equivalent to P! x P!,
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But S is birational to a product ¢’ x P!, and the curve C’ is defor-
mation equivalent to a hyperelliptic curve C. Let ¢ be the hyperelliptic
involution, and let j : P! — P! be the involution such that j(z) = —z.

We have an action of Z/2 on C x P! provided by ¢ x j, which has
only isolated fixed points. Set X := (C x P!)/(Z/2): there is a fibration
f:X — C/(Z/2) = P! with fibres = P!, thus by Noether’s theorem X
is birational to P x P*. q.e.d.

Remark 4.1. More generally, let C7,Cy be hyperelliptic curves, so
that we have an action of (Z/2)% on C; x C3, and let us consider the
diagonal embedding of (Z/2) C (Z/2)%. Set X := C; x Cy, Y :=
(C1 x C2)/(Z/2) and observe that (C; x Co)/(Z/2)? = (P* x P).

We have f : X — Y,p:Y — P! x P!, and Y has only nodes as
singularities, while f is quasi-etale, so that X is A.Q.E.D. equivalent to
Y. On the other hand, the branch locus B’ consists (if we denote by g;
the genus of C;) of the union of (2¢; + 2) vertical lines with (2g2 + 2)
horizontal lines.

Let S be a double cover of (P! x P!) branched on a smooth curve
B of bidegree (2g1 + 2,292 + 2): since B is a deformation of B, S is a
deformation of Y, and hence it is A.Q.E.D. equivalent to X.

Observe that the composition of the double cover S — (P! x P!) with
the second fibration yields a fibration of hyperelliptic curves of genus
g1-

For g1 = go = 1 we get a particular case of the A.Q.E.D. equivalence,
via Kummer surfaces, between Abelian surfaces and K3 surfaces (here,
K3 surfaces which are a double cover of (P! x P')).

We proceed now with the proof of the next cases:

K= 0.
Recall that a minimal compact complex surface with Kodaira dimen-
sion 0 is either

a) a complex torus,
b) a K3 surface,

c¢) an Enriques surface,

d) a hyperelliptic surface,

e) a Kodaira surface.

Cases a)—d) consist of Kéhler surfaces, while in case e), b1(S) = 3 if §
is primary, b;(S) = 1 if S is secondary, and a fortiori a Kodaira surface
is not Kahler.

In cases ¢) and d) S is projective and it has a finite étale covering
f:8" — S where:

c) If S is Enriques, deg (f) = 2 and S’ is a K3 surface.
d) If S is hyperelliptic, deg(f)|12 and S’ is a product of elliptic
curves.
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By virtue of the previous remark 4.1 the proof is concluded since it
is well known that all complex tori are deformation equivalent, and Ko-
daira proved ([Kod64]) that every K3 surface is deformation equivalent
to a smooth quartic surface in P3. q.e.d.

K=1.

Recall that a complex surface of Kodaira dimension 1 is properly
(canonically) elliptic, i.e., it admits a (pluri-) canonical elliptic fibration
f:8—B.

Step I) We show first, replacing S by a finite unramified covering,

that we may assume that S has an elliptic fibration without multiple
fibres, unless we are in the following

EXCEPTIONAL CASE*: f:S — P! has at most two multiple
fibres, with coprime multiplicities, and S is simply connected.

Proof of I. We use (cf. [CKO], Lemma 3 and Theorem A for a
similar idea, and also e.g., [Cat4, 4.1, 4.2]) the orbifold fundamental
group sequence

T (F) 2 22 — my(S) — 7" (f) — 1

where F is a smooth fibre F, := f~1(b), Fy,,...F,, are the multiple
fibres of respective multiplicities my, . .. m,, and 7™ (f) is defined as the
quotient m (B — {by1,...by})/ < 4", ... > of m(B — {b1,...b})
by the subgroup normally generated by the respective m;-th powers of
simple geometric loops 7; around the respective points b;.

Note that the image of ; inside ﬂ'frb( f) has order precisely m; unless
we are in the exceptional case where B = P! and r < 2 (for r = 1 the
group is trivial, else for r = 2 it is cyclic of order = G.C.D.(m1,mg2)).

It is also known (cf. [CKOJ, loc. cit.) that, if we are not in the
exceptional case, there is a finite quotient G of 7§*"(f) where the image
of each «; has order precisely m;. To this surjection corresponds an
unramified covering such that the normalization of the pull back of f is
an elliptic fibration without multiple fibres.

In the exceptional case with two multiple fibres we may take a cyclic
cover P! — P! of order = G.C.D.(my,m3), branched on the two points
corresponding to the multiple fibres, so that the normalization S’ of
the pull-back has two multiple fibres whose multiplicities m/, m} are
coprime, whence 7™ (f') is trivial, and Z2 — 71(S’) is surjective. Since
we assume the first Betti number to be even, and since by [Dolg],
Theorem on page 137, wfrb( f) contributes here to the torsion subgroup
of H'(S,7Z), we infer that also S’ has even b1(S’). But if b1(S") = 2
S’ is a trivial fibration, contradicting Kod(S) = 1. Thus m(5’) is
finite abelian and passing to the universal cover we find ourselves in the
EXCEPTIONAL CASE* (actually, one can indeed show that S’ is itself

simply connected).
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Step II) Let g be the irregularity of S: if ¢ = g(B) + 1, where g(B) is
the genus of B, then S is a product B x F', where F' is a smooth fibre,
and B is a curve of genus g > 2. Thus we have only one A.Q.E.D.-
equivalence class, to which we shall show that all the other cases are
C-Q.E.D. equivalent.

Step III) Consider now any two numbers g, ¢ with g > 2¢: then there
is a ramified double covering j : B — C where B has genus g and C has
genus g . Consider then a product B x F' as before, and use the trick
of 4.1, to obtain an elliptic surface without multiple fibres S — C with

q(S) =q,py(S)=9g—-q>q.

Step IV) Assume that S is an elliptic surface without multiple fibres
and with topological Euler number ¢(S) = 0: then, by the Zeuthen-
Segre theorem (cf. [BPV], 11.5, p. 97), all the fibres of S — C are
smooth. It follows then that the j-invariant is constant, since j : C' —
C is holomorphic; thus all the fibres are isomorphic and we have a
holomorphic fibre bundle.

In this case the Jacobian elliptic surface J associated to .S has an étale
cover which is a product (cf. e.g., [BPV], (2) p. 143, since there is an
étale cover of C' which pulls back a principal bundle with a section, cf.
also [F-M], Section 1.5.4) and by Theorems 11.9 and 11.10 of [Kod63]
(cf. also Theorem 11.1 of [BPV]) it follows that, since b;(S) is even,
then S is a complex deformation of J: hence S is in the C — Q.E.D.
class II).

Step V) We may then assume that, if the elliptic surface S has no
multiple fibres, then it has topological Euler number e(S) > 0: by
the Noether formula 12x(Og) = K2 + e(S), and since K% = 0 (S is
minimal), this means that py(S) > ¢(S5).

We use now Theorem 7.6 of [F-M], asserting that two complex elliptic
surfaces without multiple fibres, with e(S) > 0, and with the same ¢, p,
are complex deformation equivalent.

By Step III, it then follows that such a surface is C — Q.E.D.-
equivalent to a product B x F, and we have therefore shown that there
is only one C — Q.E.D. class, unless possibly if we are in the EXCEP-
TIONAL CASE*, which we treat next.

Step VI) Assume now that S is simply connected, and that f : S — P!
has multiple fibres, and at most two, of coprime orders 1 < mj < mao.
A further invariant of f is the geometric genus py(S) = t5e(S) — 1.

Two such surfaces with the same invariants p,(.S), m1, ms are known
to be complex deformation equivalent (cf. [F-M], Theorem 7.6).

Therefore it suffices to find, for each choice of p,(.S), m1, mg as above,
one such exceptional elliptic fibration f : S — P! which is QED-
equivalent to one without multiple fibres.
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To this purpose it suffices to find a divisor D contained in a finite
union of fibres and which is a disjoint union of (connected) (-2)-curve
configurations Dy, ... Dy, such that the open surface S := S — D has
now at least three multiple fibres. In fact there exists then a birational
morphism 7 : § — X contracting the configurations D1, ... Dy, to Ra-
tional Double Points pi,...pk, and a fibration f : X — P! with three
multiple fibres.

Consider the orbifold fundamental group exact sequence for the open
surface S° := S — D, as in [CKO]J: then there exists an unramified
covering S’ O of SO which yields an elliptic fibration without multiple
fibres.

As S0 is the complement of a finite set of Rational Double Points in
the surface X, similarly S’ 0 is the complement of a finite set in a surface
Y with Rational Double Points, mapping in a quasi-étale way to X.

We are then able to conclude as in Step I) that S is C — QED-
equivalent to the minimal resolution S’ of Y, which has an elliptic fi-
bration without multiple fibres.

Let us show the existence, for given py(S), m1,ma, of an exceptional
elliptic surface with those invariants and moreover with two singular
fibres (only one suffices indeed if m; > 1) whose extended Dynkin dia-
gram is of type Dy, n > 4 (also type E,,n=6,7,8 would do).

Observe that the value of py(S) is determined by e(S), and that
logarithmic transformations do not change e(.5).

We are then reduced to show the existence of a simply connected el-
liptic fibration (over P!) with at least two singular fibres whose extended
Dynkin diagram is of type Dy.

As in Remark 4.1, let us consider a double cover of P! x P! branched
on a divisor B of bidegree (2g + 2,4). If B is smooth we get a simply
connected elliptic surface S with p,(S) = g. If g > 1 it is easy to show
that we may obtain a branch curve B’ with two ordinary triple points:
then the double covering surface S’ gets two singular fibres of type Di.

If g = 0 we obtain B’ as the union of four divisors: L1, Ly of bidegree
(0,1) and Dy, D2 of bidegree (1,1).

Viewing in fact P! x P! as a smooth quadric in P3, letting L1, Lo be
two disjoint sections, and fixing P; € L1, P, € Lo, we choose Dy, Dy as
two general plane conic sections through P;, P>. The proof of Theorem
1.3 is complete. q.e.d.

Proof of Theorem 1.5. We essentially rerun the proof of 1.3, mutatis
mutandis.

For = —oo the Kéhler surfaces are algebraic and the proof is al-
ready there.

For I = 0 we simply have to observe that:
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1) any abelian surface is an algebraic deformation of a product of
elliptic curves,
2) two algebraic K3 surfaces are algebraic deformations of each other.

Statement 1) is easy, in any dimension n, since Abelian varieties with
a polarization of type (di,ds,...d,) are parametrized by a quotient of
the Siegel upper halfspace, and a product of elliptic curves clearly admits
such a polarization.

The case of K3 surfaces is similar and requires the Torelli theorem
([PS-Shaf], cf. also [K3], expose’ XIII): again we have an irreducible
subvariety parametrizing the projective K3 surfaces with a (primitive)
pseudopolarization of degree d, and inside this family we find the special
Kummer surfaces, i.e., more precisely, the K3 surfaces obtained as the
minimal resolution of the Kummer surface of a product of elliptic curves.

Let’s consider now the case I = 1.
Steps I, 11, III are identical.

Step IV: Assume e(S) = 0; then f : S — C' is a holomorphic bundle
and there is (cf. [BPV], p. 143) an étale covering of the base C' such
that the pull back is a principal holomorphic bundle with cocycle &
whose cohomological invariant ¢(§) = 0 (else, by [Kod60] Theorem
11.9, cf. also [BPV] Prop. 5.3, p. 145, b1(S) = 1(mod 2), contradicting
the algebraicity of ).

Let F be the fibre of f: then (cf. also [F-M] p. 92) there is a finite
homomorphism 71 (C') — F classifying f, and taking the associate étale
cover C’, we obtain an étale covering S’ — S which is indeed a product.

Step V: Recall that a Jacobian elliptic surface is algebraic. As shown
by Seiler (cf. [Sei|, and also [Kas] or [Mir] for an introduction to the
subject) all Jacobian elliptic fibrations which are not a product and
have the same invariants ¢(5), py(S) belong to an irreducible algebraic
family.

Therefore, any Jacobian elliptic surface is an algebraic deformation
of some Jacobian surface with constant invariant j obtained from con-
struction 4.1 as in Step III).

Let us use the fact that the base space of a maximal family of algebraic
elliptic surfaces is a finite covering of the corresponding base space of
the corresponding family of Jacobian elliptic surfaces (cf. [Sei], and also
[F-M] Prop. 5.30, p. 93). This is derived from Kodaira’s theorem 11.5
of [Kod60] asserting that if S is an algebraic elliptic fibration without
multiple fibres, then the corresponding cohomology class n is torsion,
and conversely.

We conclude that an algebraic elliptic fibration without multiple fi-
bres f : S — C is algebraic deformation of one with constant moduli
and with multiplication by +1. Whence, a double étale covering of the
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base yields a double étale covering of S which is a holomorphic bundle.
We are done by Step IV.

Step VI): We are in the exceptional case where f : S — P! has
multiple fibres, of coprime multiplicities m1, mo with 1 < mq < ms.
We are done once we can show the validity of the following:

Claim. Assume that we have an algebraic exceptional elliptic surface
S — P! ie., with € {1,2} multiple fibres, of coprime multiplicities
m1, mg with 1 < mj < ms. Then there exists an algebraic deformation
of S yielding a surface S’ with 3 — r singular fibres of type Di.

Proof of the claim. We argue as in Step VI of the previous Theorem
1.3, using the characterization of algebraicity of logarithmic transforms
given in [F-M], Lemma 6.13, p. 106, and which is a translation in com-
plex geometry of the theory of Ogg-Shafarevich (cf. [Shafl], [Dolg]).

Let us then consider an algebraic exceptional elliptic surface ¢ : S —
P!, and let ¢ : X — P! be its Jacobian fibration. By doing the inverse of
logarithmic transformations, we obtain an elliptic fibration f : Y — P!,
whose Jacobian fibration is X.

The following is the content of the cited Lemma 6.13 of [F-M].

Remark 4.2. Let f' : Y’ — B be another elliptic surface whose
Jacobian fibration is X, and let ¢/ : S’ — B be obtained from Y’ via
the same logarithmic transformations as the ones constructing S from
Y (i.e., at the fibres over the same points, and with the same associated
torsion bundles): then S’ is algebraic if and only if the difference of the
corresponding elements in the classifying group H! (P!, O(X*)) (O(X*)
is Kodaira’s sheaf of groups of local holomorphic sections) is torsion.

Arguing as in Step VI of 1.3, there is an algebraic 1-parameter family
of Jacobian elliptic surfaces X¢,t € T, containing the given X and a
special Xo which has 3 — r singular fibres of type Dj.

Let us treat now the case 3—r = 1. Let us consider the elliptic surfaces
Y} w, w € Wy, without multiple fibres having some X; as Jacobian elliptic
surface and the family of single logarithmic transforms of the surfaces
Y} ¢ this family is parametrized by a complex variety Z where Z — W
has pure and irreducible 1-dimensional fibres.

Inside this family we consider the subfamily of the algebraic elliptic
surfaces: these form a countable union of subvarieties fibred over our
irreducible curve T, whence, up to replacing T' by an irreducible finite
covering of it, we may find, given our initial S, a l-parameter com-
plex family Sy containing S and such that the corresponding family of
Jacobian surfaces is X;.

This shows that we have such a complex family of algebraic surfaces.
In order to show that we have an algebraic family we only need to
observe that our elliptic surfaces all have a multisection D of a fixed
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degree, whence for very large n,m € N |[nD + mF| is very ample on
each surface, and we get a non trivial complex curve in a Hilbert scheme
of projective surfaces. We only need to remark that if two points of a
Hilbert scheme are joined by a complex curve, they are also joined by
an algebraic curve.

The argument for the case 3 —r = 2 is entirely similar, whence our
claim is proven, together with Theorem 1.5. q.e.d.

5. Appendix due to Fritz Grunewald:
Q.E.D. classes constructed from quaternion algebras.

As in [Shav] (cf. also [Shim], Chapter 9) we consider a division
quaternion algebra A with centre a totally real number field k. For
simplicity, we may further assume k to be a real quadratic field.

We assume further that A is totally indefinite: this means that, for
each of the two embeddings j : K — R, A does not ramify, i.e., A®; R =
M(2,R) := Mat(2 x 2,R).

As usual, denoting by Oy the ring of integers of k, and by kp the
local field which is the completion of the localization Op of the ring Oy
at a prime ideal P, one considers the set of primes where A ramifies,
i.e., the subset

S(A) := {P € Spec (O)|A®}, kp is a skew field }.

By the classical results of Hasse (which are exposed for instance in
the book [Weil], cf. especially Th. 2 of Chapter XI-2, and Theorem 4,
Section 6 of Chapter XIII) we know that (cf. also [Shim)], Section 9.2,
pp. 243-246):

s-1) The cardinality of S(A) is finite and even (and nonzero since A is
a division algebra),

s-2) A is completely determined by its centre k and by S(A),

s-3) for each choice of k and of a set S C Spec(Oy) with even cardi-
nality, there is a quaternion algebra over k with S(A) = S.

Remark 5.1. Usually one also considers inside S(A) the places at
infinity (embeddings of k into R), and the result holds more generally.
Since, however, we assume the quaternion algebra to be totally indefi-
nite, there are no ramified places at infinity.

Now let R C A be a maximal order (an order, cf. [Weil], Def. 2, p.
81, is a subring which is a Q-lattice for .A) and consider the group

I'(1) :={a € R| nr(a) =1},

where nr denotes the reduced norm ([Weil], IX-2).
The following facts are also well known (cf. [Shav], Section 1, and
[Shim], 9.2).
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Remark 5.2.

1) If k is a quadratic field, and j1, jo are the two embeddings k — R,
then T'(1) 2 (j; x j2)(I'(1)) € SL(2,R) x SL(2,R).

2) The image I" of I'(1) in PSL(2,R) x PSL(2,R) is isomorphic to
(1) /{£1}.

3) T operates properly discontinuously with compact projective quo-
tient on the product H? of two upper -halfplanes (H := {z €
C|Im z > 0}).

4) The action of I' on H? is irreducible; whence, if the action of I is
free, then the projective surface X := H?/I" is strongly rigid (cf.
[J-Y], and also [CatO0]), i.e., every surface S with the same Euler
number as X and with isomorphic fundamental group m(S) =
m1(X) is either biholomorphic to X or to the complex conjugate
surface X.

5) Assume the quotient X := H?/T to be smooth: then its first Betti
number equals zero (Proposition 2.1 of [Shav], which follows by
the theorem of Matsushima and Shimura), and by Hirzebruch’s
proportionality principle, we have e(X) = 2 + bo(X) = 4(1 +
pg(X)).

Lemma 5.3. Let I C T'(1) be a finite index subgroup. Then the
Q-linear span of I equals A .

Proof. Replacing I by a subgroup of finite index (since I'(1) is
finitely generated), we may assume that I is a normal subgroup of
I'(1) and invariant by the involution of 4 sending an element to its
conjugate (it has k as set of fixed points).

As a first step, let’s now prove that

i) the Q-linear span G of I'” contains k =k - 1.

In order to show this, let us consider an element o € k subject to the
conditions:

e « is totally positive,

o k(\/a)®g kp is a field for every P € S(A),

e there is a finite place Q ¢ S(A) of k such that kg is an extension
field of degree 2 over the corresponding completion of Q and such
that « is not a square in kg,

and set
L:=k(y)., (4 =a).
The existence of such an « is guaranteed by the weak approximation
theorem (cf. 18.3 Exercise 2, p. 351 of [Pie]) which says that k is dense
when diagonally embedded into the direct product of any finite subset
of the set of its completions. Note also that the set of non-squares is
open in any completion of k.
The field L has the following properties:
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e [ is totally real,
e [ is isomorphic to a subfield of A,
e the only subfield of L which is of degree 2 over Q is k.

The second condition follows from the second condition on «, cf. Prop.
4.5 of [Shav].

Then we have a chain of degree 2 extensions A D L D k, and k is the
only quadratic subfield of L; in fact the Galois group of the splitting
field of L over Q is either cyclic of order 4 or is the dihedral group Djy.

Now, consider I N L: we claim that I N L contains a nontrivial
infinite cyclic subgroup generated by a unit e.

In fact, the maximal order R of A intersects L in an order B of L, and
by Dirichlet’s Theorem (cf. e.g., Theorem 5 of Section II, 4 of [B-S],
p. 113) the group of units in B has rank 2; since by the same theorem
the group of units in B Nk has rank 1, the group of units of norm 1
in B contains an infinite cyclic group, which in turn intersects I' in an
infinite cyclic group.

Note that € ¢ k, since for elements of k£ the norm is just given by the
square, and € # +1.

Thus €,€ ¢ k but, clearly, (e+€) € GNk and we claim that (e+€) ¢ Q.

Otherwise, if (e +€) € Q, since €-€ = 1 it follows that ¢, € belong to a
quadratic extension of Q. But this quadratic extension, being contained
in L, would then equal k, contradicting our previous assertion.

We conclude then that (¢ +€) € k\ Q, thus G contains k.

ii) Now that we know that the Q-linear span G of I contains k - 1,
we can show that G is a field. In fact we observe that G is a ring, which
is invariant by the involution of A: thus if G contains x, it contains also
rt=z-rn(z)"L.

iii) Set d := dimg(G): then d|4, and if d = 4 there is nothing to prove.
If instead d < 2, then G is commutative, hence also I'” is commutative.

This gives however two contradictions:

1) since we know that there exists a finite index subgroup of I which
is infinite, operates freely on H?, and has a quotient X having a finite
homology group,

2) since we know that I'” is Zariski dense in SL(2,R) x SL(2,R), by
5.4. q.e.d.

Lemma 5.4. Any finite index subgroup T of T'(1) is Zariski dense
in SL(2,R) x SL(2,R). A* := A\ {0} is Zariski dense in GL(2,R) x
GL(2,R).

Proof. The first assertion is a special case of a general theorem by
Armand Borel (cf. [Bor]). In fact I'” has the Selberg property since
the quotient H2 /T is compact, hence I'" is not contained in any proper
subgroup having a finite number of components.
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The second assertion follows immediately since I'(1) is Zariski dense in
SL(2,R)xSL(2,R) and A D k. We would also like to give an elementary
proof of the Zariski density in GL(2,C) x GL(2,C), as follows.

Define A% := A* N (GL(2,C) x {1}), and A} similarly (where A*
denotes the Zariski closure).

We observe that if A7 = GL(2,C), then by extending to C the Ga-
lois automorphism of k, we see that also A5 = GL(2,C), thus there is
nothing left to prove.

Else, both A} and A} are proper algebraic subgroups of GL(2,C),
thus they are both solvable. Each of the respective projections p;(A*) C
GL(2,C) is surjective (by two reasons: if it would yield a proper sub-
group it follows that A* is solvable, a contradiction; or, just use that
A®; C=GL(2,C)).

Again by extending to C the Galois automorphism of k£ we also see
that k equals the centre C* x C*, and that A* contains a commutative
subgroup of dimension equal to 4.

Thus, A* contains the direct product T} x Tb of two respective max-
imal tori of GL(2,C). Since A* projects onto GL(2,C) by the first
projection, it contains also the union of the conjugates of 77 x {1};
thus, being closed, it also contains GL(2,C) x {1}. Similarly, it con-
tains {1} x GL(2,C) and we are done. q.e.d.

Lemma 5.5. Let A C PSL(2,R) x PSL(2,R) be a subgroup com-
mensurable with I': then “A C A”, more precisely A C (Pj1 x Pja)(A).

Proof.

Consider the inverse image A(1) of A inside SL(2,R)xSL(2,R): then
A(1) is commensurable with I'(1) and there is a finite index subgroup
I € T'(1) such that each § € A(1) normalizes I'".

Thus 0 normalizes the k-linear span of I' inside M (2,R) x M(2,R).
By the previous lemma, the Q-linear span of I'” a fortiori equals A.

It follows then that § normalizes A, and by the Skolem-Noether The-
orem (cf. e.g., [Blan|, Theorem III-4, p. 70) it follows that there is an
element v € A such that conjugation of A by ¢ equals the inner auto-
morphism associated to 7. Therefore we obtain that ¢y~ centralizes
A.

Since, however (cf. lemma above), A is Zariski dense in M (2,R) x
M(2,R), it follows that the element dy~! lies in the centre {£1} x
{£1} of SL(2,R) x SL(2,R), whence the image of § inside PSL(2,R) x
PSL(2,R) lies in the image of A. q.e.d.

Lemma 5.6. Let § € A\ {1} yield a transformation of H? which has
a fized point: then the subfield Ks := k[d] C A is a cyclotomic extension
k[Cm] where m € {3,4,5,6,8,10,12}.

The proof of the above lemma is contained in [Shav|, Prop. 4.6, and
in the considerations following it. The main idea is that if § has a fixed
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point, then it has finite order, whence Kj is a cyclotomic extension: but
then the degree of the extension Q C Q[(,,] divides 4, and one concludes
calculating the m’s for which the Euler function ¢(m) divides 4.

Definition 5.7. Consider the greatest common multiple 120 of the
integers appearing in the previous lemma, and let K be the cyclotomic
extension k[(120]-

For each intermediate field K’, k¥ € K’ C K, choose a prime ideal
P’ C O such that P'Og is not primary. Such an ideal exists for
each such K’ by the density theorem (cf. [Lang]. VII, 4, p. 168) and
guarantees that kp @5 K’ is not a field (indeed, it is not an integral
domain).

Let 8’ := {P’} C Spec (Oy), and take S C Spec (Oy) as a set of even
cardinality containing S’.

Theorem 5.8. Let k be a real quadratic field, and let A be the in-
definite division quaternion algebra corresponding, by Hasse’s theorem,
to a choice of S made as in 5.7.

Then any subgroup A C PSL(2,R) x PSL(2,R) commensurable with
the subgroup T' associated to a mazimal order R C A acts freely on H?.

Proof. Assume that § € A is a nontrivial element which does not act
freely. We have shown that § € A, and that K is an intermediate field
K’ between k and K := k[(120]-

By our choice of P’, it follows that A®y, kp: is a division algebra; but
on the other hand we have that A®y kps contains K5®y kpr = K' @y kpr
which is not an integral domain. This is a contradiction. q.e.d.

Hence follows

Theorem 5.9. Let k be a real quadratic field, and let A be the in-
definite division quaternion algebra corresponding, by Hasse’s theorem,
to a choice of S made as in 5.7.

Define F.4 to be the family of subgroups A C PSL(2,R) x PSL(2,R)
commensurable with a subgroup T' associated to a mazximal order R C A.

Each A € Fy4 acts freely on H?, and denote by Sa := H?/A the
corresponding algebraic surface.

Then the family of surfaces {SA|A € Fa} is a union of Q.E.D. equiv-
alence classes.

Proof. Assume that a surface S is Q.E.D. -equivalent to Sa: then it
is Q.E.D. -equivalent to Sr, whence it corresponds to a subgroup A’
commensurable with I'. q.e.d.

Corollary 5.10. There are infinitely many Q.E.D.—equivalence
classes of algebraic surfaces of general type.

Proof. It suffices to observe that the fundamental group A of Sa
has, by the cited theorem of Jost-Yau, at most two embeddings inside
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SL(2,R) x SL(2,R) with isomorphic image acting freely and cocom-
pactly.

These two are conjugates of each other, and for both one sees by
5.3 that the Q-linear span of A equals the Q-linear span of T', which is
indeed the embedded quaternion algebra A.

Since A determines its centre k and its set of primes S(A), we see
that to surfaces of the same Q.E.D. class corresponds the same pair

(k,S).
Since there are countably many choices for k and for §, we conclude
that there are infinitely (countably) many Q.E.D. classes. q.e.d.

6. Appendix by Sonke Rollenske: Q.E.D. for Kodaira
surfaces

The aim of this appendix is to study the Q.E.D. equivalence relation
for Kodaira surfaces. More precisely we want to prove the following

Theorem 6.1. Let S be a minimal Kodaira surface. Then a smooth
surface S” is Q.E.D. equivalent to S if and only if S’ is itself a Kodaira
surface. Thus Kodaira surfaces constitute a single Q.E.D. equivalence
class.

The only if part of the theorem is mostly an adaptation of notes of
F. Catanese regarding the Q.E.D. equivalence for Hopf surfaces. Let us
begin with some preliminary considerations.

The surfaces of Kodaira dimension zero which are not Ké&hler are
called Kodaira surfaces. The minimal surfaces fall in the following two
classes of which Kodaira gave an explicit description (cf. [Kod64],
[Kod66] and [BPV]).

A minimal surface S of Kodaira dimension zero is called a primary
Kodaira surface if one of the following equivalent conditions holds:

e The first Betti number b; = 3.

e S is a holomorphic principal bundle of elliptic curves over an el-
liptic curve, which is not topologically trivial.

e S is isomorphic to a Quotient C?/G where G is a group of affine
transformations generated by

1,...

gi = (21,22) = (21 + i, 20 + @21 + By), i
with
(*) ay,ap =0, B1Ba — B2 # 0,
a3ty — by = mfy # 0,

where m is a positive integer. The global holomorphic forms on S
are given by scalar multiples of (the classes of) dz; and dz; A dzs.
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Sometimes a primary Kodaira surface admits a finite group of fixed
point free automorphisms such that the quotient is an elliptic quasi-
bundle over P!. Such a surface has by = 1 and is called a secondary
Kodaira surface.

A smooth surface S of Kodaira dimension zero is bimeromorphically
equivalent to a Kodaira surface if and only if b;(.5) is 1 or 3. From this
we get immediately the following:

Corollary 6.2. Assume that we have a flat family FF : X — A
over the unit disk with special fibre a compact complex surface X with
canonical singularities, and with another fibre which is a smooth Kodaira
surface S. Then X is bimeromorphic to a Kodaira surface.

Proof. By Tyurina’s result ([Tyu]) the minimal resolution Z of the
singularities of X is a surface diffeomorphic to S and so has uneven
Betti number. By Theorem S7 of [F-M] (p. 224) it also has Kodaira
dimension zero and thus Z is a Kodaira surface. q.e.d.

Now let us analyse the automorphisms of minimal Kodaira surfaces
by making use of the above description. Here we closely follow Kodaira:
Let T be a finite group of automorphisms of S = C/G. By pulling back
to the universal covering we get an extension of finite index

1-G—-T"'->T—>1

where I" is a group of automorphisms of C?. Now let ¢ = (¢1, ¢2) be in
I". The linear action of I on H?(S, Q%) becomes

¢*dz1 = dpy = odz,
@*(dz1 Ndze) = dpy AN dpe = kdz1 N\ dzg = odzy A dpa

with o,k € C and consequently there exist a function h(z1) and a con-
stant hg such that

¢1 =021 + hg and ¢9 = SZQ + h(Zl)

Since G is a normal subgroup of finite index in I', we have ¢" € G
so o is a root of unity and for every generator of G there exists an
element g;(z1, 2z2) = (21 + a4, 22+ a;21 +b;) € G such that pog; = g; 0.
Calculating both sides we get oa; = a; and also - after deriving the
second part with respect to z;:
h'(zl) — h’(21 + Oéi) = qQ; (E — O’5’> = Q; (E — 1) .
o o

Now h”(z1) is constant because it has two linear independent periods
as, a4 and consequently

—h"(zl)ai = (E — 1) , 1=3,4

2

o= (51)-
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Hence we have

v = (5 1) ()= ()

Now assume that an automorphism ¢ € I' has fixed points. We take
a lift ¢ € T and can assume (by multiplying by an element of G if
necessary) that ¢ itself has a fixed point. By (1) this is the case iff the
equation

=[5 ) -6 DI E) )= 9 )+ ()

has a solution. Clearly the same arguments work for secondary Kodaira
surfaces.

Since an automorphism maps rational curves to rational curves and
therefore covers a unique automorphism of the corresponding minimal
model we have shown the first part of the following

Proposition 6.3. If an automorphism of finite order of a Kodaira
surface has fixed points, it has fixed points in codimension one. In par-
ticular if S is a Kodaira surface and f : S — X is a quasi-étale map
where X has canonical singularities, then f is étale and X is in fact a
smooth Kodaira surface.

Proof. By Corollary 3.3 there is a Kodaira surface W and a finite
group G acting freely in codimension 1 on W such that X is a birational
image of W/G by a small contraction. But the first part implies that
the action of G is free, hence the quotient is smooth, W/G = X and f
is itself étale. q.e.d.

Lemma 6.4. Assume that f : X — Y is a quasi étale morphism,
where Y has canonical singularities and is bimeromorphic to a smooth
Kodaira surface S. Then X is bimeromorphic to a Kodaira surface.

Proof. Without loss of generality, we may assume that 7 : S — Y is
the minimal resolution of the singularities of Y, and that S is the blow
up p: S — Z of a minimal Kodaira surface Z.

By definition, there are finite sets ¥y C Y, X x C X such that X —
Yx — Y — Yy is a finite unramified covering.

By pull back, we obtain a finite unramified covering of S — 771 (Zy).
Now, 7~ 1(Zy) consists of a finite set plus a finite union of smooth
rational curves with self intersection —2.

But there is no rational curve on a minimal Kodaira surface Z, the
universal covering being C?, whence 7~ (Xy) maps onto a finite set on
Z, and X is bimeromorphic to a quasi étale covering W of Z. Since Z
is smooth, W is a finite unramified cover of Z; in particular it is not
Kabhler.

Every minimal Kodaira surface admits a volume form, which remains
invariant under the action of the complex structure, so this is also
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true for W. Kodaira classified surfaces with volume-preserving com-
plex structure completely in ([Kod66], Theorem 39) and by his results
W is covered either by a K3 surface, a complex torus or a primary Ko-
daira surface. Since W covers S only the third case occurs and W is
itself a Kodaira surface. q.e.d.

Proof of the Theorem. First let S be a minimal Kodaira surface. We
want to show that every surface Q.F.D. equivalent to S is a Kodaira
surface. By 6.2 and 6.4 it suffices to show that if we have a quasi -
étale morphism p : X — Y where X, Y have canonical singularities and
X is bimeromorphic to S, then Y is also bimeromorphic to a Kodaira
surface.

By taking the normal closure and applying 6.4 we may assume that
p: X — Y is the quotient map by the action of a finite group G. Now
Y is bimeromorphic to S/G, which is a Kodaira surface by Proposition
6.3.

It remains to show that all Kodaira surfaces are Q).E.D. equivalent.
Let So = C%/Gyp be the primary Kodaira surface given by (x) with
O1=a3 =1, B =204 = 2i and 3 = B4 = 0. We have the relation
azay — agaiy = P2 and thus the fundamental group of Sy is isomorphic
as an abstract group to F/R where F is the free group on generators
fi,..., fa and R is the subgroup generated by the relations

fo 1=3,j=4 .
i fil = 1<i< g <A4.
fi f]] {0 otherwise =tsJ=

It clearly suffices to show that every primary Kodaira surface is
Q.E.D. equivalent to Sp. First consider an arbitrary S = C2/G with
G as in (x). By changing a3 to a5 = <2 we get another group G, a
surface S’ = C2/G’ and finite covering maps

S —— C/{as,aq)

| |

S" —— C/{ah, au).

We have the relation aj0u — asdy = B2 and thus m(S") = G’ is iso-
morphic to F/R. By Corollary I1.7.17 of [F-M] it follows that S is
deformation equivalent to Sy or to Sgonj = C2?/Gy with the conjugated
complex structure. But an easy calculation shows that Go = G, thus
Sp = Sg™™ and consequently S is Q.E.D. equivalent to Sy, which con-
cludes the proof. q.e.d.

The last part of the proof can also be obtained using the description
of the moduli space obtained by Borcea in [Borc].
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7. Open problems and final remarks

We want in this section to add more questions, and some comments
regarding some of the questions previously posed in the introduction.

It is not clear whether the following question should have a positive
answer:

Question 6: If a variety X (we assume canonical singularities
throughout) has Kodaira dimension K = —o0, does there exist a quasi-
étale morphism f : Z — X’ where Z is birationally ruled and X’ is a
deformation of X7

Remark 7.1. Observe that a smooth cubic threefold X c P?* is
unirational but not rational, and that a smooth quartic threefold Y C P*
is unirational but not rational. By Lefschetz’ theorem they are both
simply connected (as Kollar appropriately reminded me), whence they
have no nontrivial quasi-étale cover. However, we can deform X to a
cubic threefold X’ with a double point, respectively Y to Y’ with a
triple point. Both X', Y’ have canonical singularities and are rational,
whence a positive answer to the above question in this special case.

The above two classes of smooth Fano manifolds are stable by defor-
mation only if we restrict ourselves to the condition that the fibres be
smooth and projective.

Already for conic bundles it is not clear whether question 6 has a
positive answer.

The second remark above shows that the following stronger question
has a negative answer: if a variety X has Kodaira dimension K = —o0,
is there a quasi-étale morphism f : Z — X’ where Z is ruled, Z and X’
are smooth, and X’ is a deformation of X?

This question is somehow related to a stronger version of a well known
conjecture by Mumford:

Quasi-étale unirationality question: let X be a smooth projec-
tive variety of dimension n. Then does

HO((Q%)®™) =0, ¥Ym > 0,

imply that X is quasi-étale equivalent to P and unirational?
Observe however that even the invariance of the condition

H((QY)®™) =0, Vm > 0,
under deformation of smooth projective varieties is not yet established.

Remark 7.2. Kolldr constructed (see e.g., Chapter V, Section 5 of
[Kol], p. 273 and foll.) examples of complex Fano varieties (these are
rationally connected) which are not ruled. Are these counterexamples
to Question 67
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Reduction to varieties over Q can be thought of as the distinguishing
feature between algebraic and Kéhler varieties. In fact, if we have a
smooth projective variety X C PZ, we get a corresponding point [X] of
a Hilbert Scheme H. Since H is defined as a closed algebraic set in an
appropriate Grassmannian G by rank equations of certain multiplica-
tion by monomials, H is defined over Z, and an irreducible component
containing [X] contains a dense set of points defined over Q, whence
we obtain a smooth projective variety Y C P, where Y is defined over
Q and is an algebraic deformation of X. Assume that Y is defined
over a number field K: then the theory developed so far suggests to
consider the quasi-étale generalization of Grothendieck’s fundamental
group, which should play an important role (in case of canonical models
of varieties of general type, i.e., of varieties X with canonical singu-
larities with Kx ample, this is exactly the Grothendieck fundamental
group of the smooth locus of X).

It would be also interesting to enlarge our equivalence relation as to
include, for varieties defined over a number field, also the action of the
absolute Galois group (thus for instance considering a variety over C
and its complex conjugate as equivalent).

Question 7: For which classes of algebraic varieties is A.Q.E.D.-
equivalence the same as the weaker C-Q.E.D. equivalence?

In the case of uniruled varieties the Q.E.D. question is strictly related
to the question of “generic” splitting of normal bundles for the curves
of a covering family of rational curves (here, “generic” stands not only
for the generic curve of the family, but also for a general deformation of
the given variety).

Question 8: What is the t-equivalence of compact complex mani-
folds? (This is hard since for instance we do not know all the compact
complex surfaces.)

Question 9: Assume that S = B2/T is a compact minimal smooth
surface which is a ball quotient (equivalently, by Yau and Miyaoka’s
theorem, cf. [Yau] and [Miyal], K2 = 9x(Ogs)). Does there exist, as
in the case of Kuga-Shavel surfaces, a group I" such that every group I'”
commensurable with I" is either torsion free (it acts freely), or it has a
fixed point z where the (finite) stabilizer I'/ has a tangent representation
not contained in SL(2,Z)?

Fritz Grunewald suggested that such examples should indeed exist,
more precisely that there are such groups I' such that every group I'”
commensurable with I' equals I', and such examples should be found
among the ones of Deligne-Mostow (cf. [D-M]).

Question 10: (Lucia Caporaso) Which are the Q.E.D. equivalence
class of Kodaira fibrations?
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Note 1. Asremarked by Frederic Campana in the footnote to [Cam)],
the equivalence relation introduced by him is only apparently similar to
ours, but indeed quite different, cf. Section 5 of [Cam] and our main
theorems for special surfaces.

Note 2. Claire Voisin pointed out that the decision to use also
the notion of K-equivalence (introduced in [Voi3]) might lead to other
interesting equivalence relations preserving the Kodaira dimension.

[BPV]

(K3]

[Blan)]
[Bom)]

[B-H]

[Borc]

[Bor]

(B-]

[BDPP]
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[Cat0]
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[Cat02]
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