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SYMMETRY AND VARIATION OF HODGE STRUCTURES ∗

I. C. BAUER† AND F. CATANESE†

This article is dedicated to Yum Tong Siu’s 60-th birthday

0. Introduction. The Torelli theorem (cf.[Tor13], [Andr58], [Weil-57]) states
that two algebraic curves are isomorphic if and only if their Jacobian varieties are
isomorphic as polarized abelian varieties.

André Weil ([Weil-CPII]) set up a program for doing arithmetics on K3 surfaces,
based on a Torelli type theorem, which was later proven through the effort of several
authors (for this long story and related references we refer to Chapter VIII of the
book [BPV]). This result is crucial for answering questions about the existence of K3
surfaces or families thereof possessing certain curve configurations.

The general Torelli question, as set up by Griffiths ([Grif68], [Grif70], cf. also
[Grif-Schmid], [Grif84]), is to associate to each projective variety X of general type
its Hodge structure of weight n = dim(X), and ask whether the corresponding ”period
map” ψn is injective on the local moduli space (or Kuranishi space of X).

It was known since long time that, as soon as the dimension is at least two,
there are families of varieties without Hodge structures, which are not rigid. Surfaces
of general type with q = pg = 0 were constructed in the 30’s by Campedelli and
Godeaux ([Cam32], [God35]), and for instance, in the case of the Godeaux surfaces,
the Kuranishi family has dimension 8.

A natural question which arises is: under which hypothesis on X is a local Torelli
theorem valid for the Hodge structure of weight n = dimX?

In other words, when is the local period map ψn a local embedding?
The question is already quite open in dimension n = 2, and the hypothesis of

requiring X to be simply connected only made the search of counterexamples more
complicated (cf. e.g. [Cat84] for a brief account of these examples).

On the other hand, Lieberman, Peters and Wilsker (cf. [L-P-W77]) made clear
that, thanks to Griffiths’ interpretation of the derivative of the period map as a cup-
product (cf. further below in the introduction), the infinitesimal Torelli theorem
(injectivity of the derivative) would follow from the vanishing of a certain Koszul
cohomology group.

This approach was later developed by several authors (cf. e.g. [Gren84], [Gren85],
[Flen86], [Cox87]) who essentially proved that, given a construction involving some
degree d (taking hypersurfaces of degree d in some fixed manifold, or complete inter-
sections), then infinitesimal Torelli holds for d sufficiently large. In some sense, results
of this kind parallel Serre’s vanishing theorem B(n), and it would be beautiful to give
precise geometrical conditions which would ensure the validity of the infinitesimal
Torelli theorem, e.g. for varieties of general type with ample canonical bundle.

Certainly it has been up to now an open question whether the condition that the
canonical system be very ample is sufficient for this purpose (the condition was not
holding for all hitherto known counterexamples). Note that, if the canonical bundle is

∗Received August 12, 2003; accepted for publication October 29, 2003.
†Mathematisches Institut der Universität Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Ger-
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ample but not very ample, the infinitesimal Torelli theorem already fails in dimension
1, as the case of hyperelliptic curves already shows.

Unfortunately, we show in this paper that this condition might not be sufficient,
indeed we provide a series of examples of surfaces of general type for which the in-
finitesimal Torelli theorem fails on the whole moduli space in the worst possible way,
namely, the period map has all fibres of positive dimension. This holds in spite of the
fact that the canonical system is generally quasi very ample (i.e., we prove that it is
a birational morphism which yields a local embedding on the complement of a finite
set).

Our examples do not rule out the possibility that for very ample canonical system
the period map may be generically finite. Indeed, in our examples one recovers the
”missing” Hodge structure from the geometry of the singular locus of the canonical
image.

We raise therefore the question: what geometric properties are required, for a
variety with very ample canonical system, for the validity of the infinitesimal Torelli
theorem? For instance, in terms of the geometry of the canonical image?

We proceed now to a more detailed information, introducing the standard nota-
tion and our situation.

Let X be a smooth algebraic variety over the complex numbers, which for sim-
plicity we assume to have ample canonical bundle KX . Then KX defines a natural
polarization on X and we know from the Kodaira - Spencer - Kuranishi theory (cf.
[K-M], [Kur65]) that there exists a semiuniversal deformation p : X −→ (Y, y0)
of X. In particular, the tangent space TY,y0 of Y in y0 is naturally isomorphic to
H1(X,TX) and the dimension of Y in y0 is at least dim H1(X,TX)−dim H2(X,TX).

For each k ∈ {1, . . . , dimX} we have a corresponding variation of Hodge structure

(HZ = Rkp∗(Z),Hp,q(y), Q),

where p + q = k, HZ ⊗ C =
⊕

p+q=kH
p,q(y), and the polarization Q is a quadratic

form on HZ for which the subspaces Hp,q(y) are pairwise orthogonal. To this variation
of Hodge structure there is associated a holomorphic map Φ : Y −→ D, where D is
the classifying domain of polarized Hodge structures of type (hk,0, hk−1,1, . . . , h0,k)
and hp,q = dimHp,q(y) (cf. e.g. [Grif-Schmid]).

The infinitesimal Torelli theorem is said to hold for X if and only if the differential
dΦ of Φ is injective on TY,y0 .

In the late sixties P. Griffiths ([Grif68], [Grif70]) showed that the differential dΦ
of the period map is given by the map below, induced by cup product

dΦ : H1(X,TX) −→
⊕

p+q=k

Hom(Hp,q(X),Hp−1,q+1(X)).

Classically, for a smooth curve C the infinitesimal Torelli theorem holds iff
g(C) = 1, 2 or iff g(C) ≥ 3 and C is not hyperelliptic.

P. Griffiths posed the problem to determine the class of varieties with KX

(sufficiently) ample for which infinitesimal Torelli holds. Even if there are several
counterexamples to the infinitesimal Torelli theorem known, there is still the hope
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that for projective manifolds with sufficiently ample canonical bundle the result
should be true.

The simple underlying idea of this paper is the following: assume that X is the
quotient of a smooth variety Z by the free action of a finite group G. Then, in the
Griffiths cup product map, if we replace Z by X, we must replace each cohomology
group by the subspace of G-invariants.

However, even if infinitesimally Torelli holds for Z, it does not need to hold
for X any longer, by the simple algebraic observation that the tensor product of
invariants is much smaller than the subspace of invariants in the tensor product of
G-representations.

A similar philosophy was used by S. Usui ([Usui81]) to justify failure of infinitesi-
mal Torelli for varieties Z with automorphisms, and in [Cat89] to produce generalized
examples of everywhere non reduced moduli spaces (in the latter paper one needed
the action not to be free, whereas in the former one had no restriction, but the ”bad”
varieties Z with special automorphisms were not generic in the moduli space).

So, we shall study here the situation for quotients of projective manifolds by
a free action of a finite group and it will turn out that there are examples of sur-
faces having quasi very ample canonical bundle and for which infinitesimal Torelli fails.

The most natural candidates, however, do not suffice for our purposes: quotients
of a hypersurface Z ⊂ P

3 of degree d by the action of a finite group G of order
m. The first example is given by the classical Godeaux surfaces (d = m = 5), for
which however there is no Hodge structure, and the second simplest example, with
d = m = 7, satisfies already local Torelli at the general point (it does so at the
quotient of the Fermat surface).

For this reason we have to resort to quotients of products of curves, the so called
surfaces isogenous to a (higher) product, whose moduli spaces were thoroughly inves-
tigated in [Cat00] (cf. also [Cat03]).

The simplest examples will be the ones where the group G is cyclic. When G
has order two, we will get positive dimensional fibres of the period map which are
relatives of the positive dimensional fibres of the Prym map (cf. [Nara96]). This case
however is not fully satisfactory because we want KX to be quasi very ample.

The following will be one of our main results.

Theorem 0.1. For any natural number k ≥ 2 there exists a family of surfaces
Sk of dimension 3k + 2 such that the following hold:
1) for each Sk ∈ Sk the infinitesimal Torelli map

dΦ2 : H1(Sk, TSk
) −→ Hom(H2,0(Sk),H1,1(Sk))

has a kernel of dimension at least two, i.e., the period map Φ2 belonging to the Hodge
structures of weight 2 has fibres of dimension at least two over each point.
2) for a general Sk ∈ Sk the canonical divisor KSk

is quasi very ample, i.e., it gives a
birational morphism which yields a local embedding on the complement of a finite set;
3) h1(Sk, TSk

) = 3k+2; in particular Sk is a generically smooth irreducible connected
component in the moduli space.

We emphasise once more here the important fact that the surfaces we are consid-
ering all have unobstructed local moduli spaces (i.e., the basis of the Kuranishi family
is smooth, and indeed an open set in H1(S, TS)).
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After preliminaries in section 1, the above main theorem will be shown in sections
2 and 3.

In section 4, however, we just take the opposite point of view and ask the converse
question: since the Torelli theorem holds for curves, may it be that one can completely
characterize the case where a global n-tuple Torelli theorem does not hold for varieties
isogenous to a product of curves?

Here, n-tuple Torelli means that we can reconstruct the variety from all of its
Hodge structure (i.e., we do not restrict only to weight n = dim(X)).

The question looks interesting in general, but rather complicated already for
surfaces. For this reason we content ourself with giving sufficient conditions for the
validity of double Torelli for surfaces isogenous to a product (theorem 4.4). In proving
this result, we establish some intermediate technical results which may be of indepen-
dent interest (lemma 4.6., proposition 4.5.). These results concern the eigenspaces for
the action of a cyclic group on an algebraic curve C inside the space of holomorphic
differentials on C.

Finally, in section 5, we discuss another series of examples where we are not able
to show global double Torelli, but where the local period map is injective.

1. Symmetry imposes failure of Torelli type theorems. As already
mentioned, in this paper we exploit the above main idea as a simple tool for providing
generic counterexamples to Torelli theorems. A similar observation was made (in a
different direction, however, cf. [Usui81]) to show that often the failure of Torelli
theorems (especially infinitesimal Torelli) is due to the presence of symmetry on the
variety under consideration.

Our situation is more specific: we assume that G is a finite group acting freely
on a smooth algebraic variety Z of dimension n. Let X be the quotient Z/G.

Then the infinitesimal Torelli theorem for the periods of holomorphic n-forms
holds for Z if and only if we have surjectivity of

Hn−1(Z,Ω1
Z) ⊗H0(Z,ΩnZ) −→ Hn−1(Z,Ω1

Z ⊗ ΩnZ).

We remark that for n = 2 infinitesimal Torelli for the periods of 2-forms holds if
and only if infinitesimal Torelli for weight 2 Hodge structures holds, i.e.

dΦ2 : H1(Z, TZ) −→
⊕

p+q=2

Hom(Hp,q(Z),Hp−1,q+1(Z))

is injective.
Whence, if infinitesimal Torelli for the periods of n-forms holds for Z, we have

surjectivity also of the map

(Hn−1(Z,Ω1
Z) ⊗H0(Z,ΩnZ))G → (Hn−1(Z,Ω1

Z ⊗ ΩnZ))G = Hn−1(X,Ω1
X ⊗ ΩnX).

For simplicity of notation assume that G is abelian (a quite similar fact holds in
the general case, we shall however concentrate ourselves on the more tractable case
where G is abelian): by Schur’s lemma we have

(Hn−1(Z,Ω1
Z) ⊗H0(Z,ΩnZ))G =

⊕

χ∈G∗
Hn−1(Z,Ω1

Z)χ ⊗H0(Z,ΩnZ)χ
∗
.
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In order to get counterexamples for the infinitesimal Torelli theorem for periods
of n-forms, we have to look for situations where, although

⊕

χ∈G∗
Hn−1(Z,Ω1

Z)χ ⊗H0(Z,ΩnZ)χ
∗ → (Hn−1(Z,Ω1

Z ⊗ Ωn−1
Z ))G

is surjective, still

Hn−1(Z,Ω1
Z)G ⊗H0(Z,ΩnZ)G → Hn−1(Z,Ω1

Z ⊗ Ωn−1
Z )G

fails to be surjective.

The first case where this occurs is the one of a classical Godeaux surface. This is
the quotient of a smooth quintic Z in P

3 on which G := Z/5 acts freely. In this case
however H0(Ω2

Z)G = 0, whence there is no period map.

We tried to cook up other examples as quotients, e.g. of complete intersections in
projective space, but the examples which worked best were the cases of quotients of
products of curves. For these we will produce examples where the canonical bundle
remains ample or even quasi very ample, but infinitesimal Torelli fails.

2. Surfaces isogenous to a product. Let us recall the notion of surfaces
isogenous to a higher product (prop. 3.11 of [Cat00] ensures that the following two
properties 1) and 2) of a surface are equivalent).

Definition 2.1. A surface S is said to be isogenous to a higher product if and
only if, equivalently, either

1) S admits a finite unramified covering which is isomorphic to a product of curves
of genera at least two, or
2) S is a quotient S := (C1 × C2)/G, where the Ci’s are curves of genus least two,
and G is a finite group acting freely on Z := (C1 × C2).

We have two cases: the mixed case, where the action of G exchanges the two
factors (and then C1, C2 are isomorphic), and the unmixed case where G acts via a
product action.

We shall assume throughout that we have such a surface and that we are in the
unmixed case, thus we have a finite group G acting on two curves C1, C2 with genera
g1, g2 ≥ 2, and acting freely by the product action on Z := C1 × C2. We will now
examine the infinitesimal Torelli map of the quotient S := C1 × C2/G.

In the following theorem we shall use the standard notation: given a finite group
G, we let G∗ be the set of characters of irreducible representations of G, and, for
χ ∈ G∗ and V a G-representation, we denote by V χ the χ-isotypical component.
Finally, for χ ∈ G∗, χ∗ denotes the character of the dual irreducible representation.

Theorem 2.2. Let G, C1, C2 and S be as above, and assume that G is abelian.
Then the infinitesimal Torelli theorem holds for S, i.e., we have the surjectivity

of the following linear map

dΦ∗
2 : H1(S,Ω1

S) ⊗H0(S,Ω2
S) −→ H1(S,Ω1

S ⊗ Ω2
S),

if and only if the two maps
⊕

χ∈G∗:H0(C2,Ω1
C2

)χ �=0

H0(C1,Ω1
C1

)χ ⊗H0(C1,Ω1
C1

)χ
∗ −→ H0(C1,Ω1

C1
⊗ Ω1

C1
)G
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and
⊕

χ∈G∗:H0(C1,Ω1
C1

)χ �=0

H0(C2,Ω1
C2

)χ ⊗H0(C2,Ω1
C2

)χ
∗ −→ H0(C2,Ω1

C2
⊗ Ω1

C2
)G

are both surjective.

Proof. Let Z := C1 × C2 and denote the two projections to C1 resp. C2 by p1,
resp. p2. Then Ω1

Z = p∗1Ω
1
C1

⊕ p∗2Ω
1
C2

. Therefore we obtain

H1(S,Ω1
S) = H1(Z,Ω1

Z)G = H1(Z, (Ω1
C1

� OC2) ⊕ (OC1 � Ω1
C2

))G =

(H1(C1,Ω1
C1

) ⊗H0(C2,OC2)) ⊕ (H0(C1,OC1) ⊗H1(C2,Ω1
C2

))⊕

⊕

χ∈G∗
(H0(C1,Ω1

C1
)χ ⊗H1(C2,OC2)

χ∗
) ⊕

⊕

χ∈G∗
(H1(C1,OC1)

χ ⊗H0(C2,Ω1
C2

)χ
∗
).

Here, we use the convenient notation for the external tensor product of coherent
sheaves

F � G = p∗1F ⊗ p∗2G.
We remark that the above holds by Künneth’s formula and Schur’s lemma. Moreover,
we use that H1(C1,Ω1

C1
) and H1(C2,Ω1

C2
) are automatically invariant, since every

automorphism of Ci maps the fundamental class to itself.
Again, using Schur’s lemma we get

H0(S,Ω2
S) = H0(Z,Ω2

Z)G = H0(Z,Ω1
C1

� Ω1
C2

)G =

⊕

χ∈G∗
H0(C1,Ω1

C1
)χ ⊗H0(C2,Ω1

C2
)χ

∗
.

Moreover, we have

H1(S,Ω1
S ⊗ Ω2

S) = H1(Z,Ω1
Z ⊗ Ω2

Z)G =

H1(Z, (Ω1
C1

)2 � Ω1
C2

)G ⊕H1(Z,Ω1
C1

� (Ω1
C2

)2)G =

(H1(C1, (Ω1
C1

)2) ⊗H0(C2,Ω1
C2

))G ⊕ (H0(C1, (Ω1
C1

)2) ⊗H1(C2,Ω1
C2

))G

⊕(H1(C1,Ω1
C1

) ⊗H0(C2, (Ω1
C2

)2))G ⊕ (H0(C1,Ω1
C1

) ⊗H1(C2, (Ω1
C2

)2))G.

Using now the fact that

H1(Ci, (Ω1
Ci

)2) = 0, H1(Ci,Ω1
Ci

) = H1(Ci,Ω1
Ci

)G for i = 1, 2

we obtain the simpler expression

H1(S,Ω1
S ⊗ Ω2

S) =



SYMMETRY AND VARIATION OF HODGE STRUCTURES 369

(H0(C1,OC1(2KC1))
G ⊗H1(C2,OC2(KC2))⊕

⊕(H1(C1,OC1(KC1)) ⊗H0(C2,OC2(2KC2))
G).

By the non-degeneracy of the Serre duality, ∀χ ∈ G∗ such that H0(Ci,Ω1
Ci

)χ �= 0,
H0(Ci,Ω1

Ci
)χ ⊗H1(Ci,OCi

)χ
∗ → H1(Ci,Ω1

Ci
) is onto, whence we conclude that the

dual Torelli map

dΦ∗
2 : H1(S,Ω1

S) ⊗H0(S,Ω2
S) −→ H1(S,Ω1

S ⊗ Ω2
S)

is surjective if and only if the two maps
⊕

χ∈G∗:H0(C2,Ω1
C2

)χ �=0

H0(C1,Ω1
C1

)χ ⊗H0(C1,Ω1
C1

)χ
∗ −→ H0(C1,Ω1

C1
⊗ Ω1

C1
)G

and
⊕

χ∈G∗:H0(C1,Ω1
C1

)χ �=0

H0(C2,Ω1
C2

)χ ⊗H0(C2,Ω1
C2

)χ
∗ −→ H0(C2,Ω1

C2
⊗ Ω1

C2
)G

are both surjective.

We assume now that G is a cyclic group of order d. Let C1 and C2 be smooth
curves such that

1) G acts freely on C1,

2) G acts on C2 in such a way that C2/G ∼= P
1.

Then G acts freely on Z := C1 × C2.

Proposition 2.3. Assume that C1, C2 are as above, and let C ′
1 := C1/G.

For G = Z/d the infinitesimal Torelli theorem does not hold for S := (C1 × C2)/G,
if, g′ being the genus of C ′

1,
• d = 2 and 2 ≤ g′ ≤ 5
• d = 3 and g′ = 3
• 3 ≤ d ≤ 5 and g′ = 2.

Proof. As we have seen in theorem 2.2 it suffices to show that

Φ :
⊕

χ∈G∗:H0(C2,Ω1
C2

)χ �=0

H0(C1,Ω1
C1

)χ ⊗H0(C1,Ω1
C1

)χ
∗ −→ H0(C1,Ω1

C1
⊗ Ω1

C1
)G

is not surjective.

Let us fix an isomorphism of G with the group of d-th roots of unity, and let us
then denote by H0(C1,OC1(KC1))

i the eigenspace of H0(C1,OC1(KC1)) belonging to
the character i ∈ (Z/d). We have

H0(C1,OC1(KC1))
i = H0(C ′

1,OC′
1
(KC′

1
) ⊗ Li),
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where L ∈ Pic(C ′
1) is an element of precisely d - torsion, whence

dim H0(C1,OC1(KC1))
i = g′ − 1.

Therefore we have

dim Φ (
⊕

χ∈G∗:H0(C2,Ω1
C2

)χ �=0

H0(C1,Ω1
C1

)χ ⊗H0(C1,Ω1
C1

)χ
∗
) =

dim Φ (
⊕

χ�=0

H0(C1,Ω1
C1

)χ ⊗H0(C1,Ω1
C1

)χ
∗
) ≤ (

d

2
− 1)(g′ − 1)2 +

g′(g′ − 1)
2

,

for d even and

dim Φ (
⊕

χ�=0

H0(C1,Ω1
C1

)χ ⊗H0(C1,Ω1
C1

)χ
∗
) ≤ d− 1

2
(g′ − 1)2,

for d odd.
Observe now that

dim H0(C1,OC1(2KC1))
G = h0(C ′

1,OC′
1
(2KC′

1
)) = 3g′ − 3.

From this we see immediately that

dim Φ (
⊕

χ�=0

H0(C1,Ω1
C1

)χ ⊗H0(C1,Ω1
C1

)χ
∗
) < dim H0(C1,OC1(2KC1))

G

for
• d = 2 and 2 ≤ g′ ≤ 5
• d = 3 and g′ = 3
• 3 ≤ d ≤ 5 and g′ = 2.

We see here that the infinitesimal Torelli theorem fails simply for reasons of
dimension. Also it is obvious from the formulae that we cannot get such an easy
failure as soon as g′ and d become bigger.

Remark 2.4. We have now constructed a series of counterexamples to the
infinitesimal Torelli theorem. Of course we are now interested to see whether it is
possible to obtain that KS be very ample. If d = 2 there is no hope, since Z/2
induces on C2 the hyperelliptic involution, so that the canonical map of S is of degree
≥ 2: whence we obtain that KS is ample, but not very ample, or quasi very ample.
Therefore we will concentrate on the second and third case.

Before constructing a concrete family of examples, we recall some of the notations
and results from Pardini’s article on abelian covers ([Pa91]):

Let π : X −→ Y be a (finite) abelian cover with group G, where Y is smooth and
X is a normal variety. Then π is flat and the action of G induces a splitting

π∗OX =
⊕

χ∈G∗
L−1
χ ,
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where G acts on L−1
χ via the character χ. The invariant summand L0 is isomorphic

to OY . We denote by D the branching divisor of π.
We denote by S the set of cyclic subgroups of G and for each H ∈ S we denote by
SH the set of generators of the group of characters H∗. Then we can write

D =
∑

H∈S

∑

ψ∈SH

DH,ψ,

where DH,ψ is the sum of all components of D having inertia group H and character
ψ.
We recall that the inertia group H of a component T of the ramification divisor R is
defined by

H = {h ∈ G : hx = x, ∀x ∈ T}.

Moreover, we associate to T a generator ψT of H∗, in fact there is a parameter t of
OX,T such that the action of H is given by

ht = ψT (h)t, ∀h ∈ H.

Now, if S is a component of D, then all the components of π−1(S) have the
same inertia group and isomorphic representations on the cotangent space at the
corresponding points of X (since G is abelian). So it makes sense to associate to
every component of D a cyclic subgroup H of G and a generator ψ of H∗.

For every pair of characters χ, χ′ ∈ G∗, for every H ∈ S and for every ψ ∈ SH
we can write

χ|H = ψiχ , χ′|H = ψiχ′ , iχ, iχ′ ∈ {0, . . . ,mH − 1},

where mH is the order of H. One sets εH,ψχ,χ′ := 0, if iχ + iχ′ < mH and = 1 otherwise.

Definition 2.5. Let π : X −→ Y be an abelian cover with group G. Moreover,
assume that X is normal and Y smooth. Then the sheaves Lχ, χ ∈ G∗, and the
divisors DH,ψ are called the building data of the covering.

Now we are ready to formulate the following result of R. Pardini (cf. [Pa91],
theorem 2.1).

Theorem 2.6. (Pardini) Let G be a finite abelian group.
1) Let π : X −→ Y be a covering with group G, where X is a normal variety and
Y is smooth and complete. Then the building data of π satisfy the following linear
equivalences:

Lχ + Lχ′ ≡ Lχχ′ +
∑

H∈S

∑

ψ∈SH

εH,ψχ,χ′DH,ψH
.

2) Given any set of data Lχ, DH,ψ satisfying the above linear equivalences, there is a
unique (up to isomorphisms of Galois covers) abelian cover
π : X −→ Y such that Lχ, DH,ψ are its building data, if X is normal.

Sometimes, however, we shall also specify an abelian cover through the normal-
ization of a singular abelian cover.
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For instance, let P1, . . . , P5 be five pairwise different points in P
1 and let L be a

divisor on P
1 such that

3L ≡ P1 + P2 + P3 + P4 + 2P5 ≡ OP1(6).

Then there is a unique Z/3− covering π : C2 −→ P
1 with branch locus P1 +P2 +P3 +

P4 + 2P5. We remark that by Hurwitz’ formula the genus of C2 has to be 3.
We calculate now the decomposition of H0(C2,Ω1

C2
) into eigenspaces according to the

characters of G. We denote the characters of G = Z/3 simply by 0, 1, 2.
Using the above theorem we can now calculate Lχ. First of all, L0 = OP1 and
L1 = OP1(2). Using the above formula we obtain L2 = L1 + L1 − P5 = OP1(3). By
[Pa91], prop. 4.1, we know that

(π∗Ω1
C2

)χ = Ω1
P1 ⊗ Lχ−1 .

Therefore we conclude that

H0(Ω1
C2

) = H0(Ω1
C2

)0 ⊕H0(Ω1
C2

)1 ⊕H0(Ω1
C2

)2 =

H0(Ω1
P1) ⊕H0(Ω1

P1 ⊗O(3)) ⊕H0(Ω1
P1 ⊗O(2)) =

H0(P1,O(1)) ⊕H0(P1,O).

Theorem 2.7. Let C ′
1 be a general curve of genus 3 and let C1 be a connected

unramified covering of degree 3. Moreover, let C2 be as above. Then the following
holds:
1) G := Z/3 operates freely on C1 × C2;
2) infinitesimal Torelli fails for S := C1 × C2/G;
3) KS is quasi very ample, i.e., it gives a birational morphism which is a local em-
bedding on the complement of a finite set.

Proof. We observe that, by proposition 2.3, we only have to show part 3).
For this we remark that H0(C1,Ω1

C1
)0 has dimension 3 while h0(C1,Ω1

C1
)1 =

h0(C1,Ω1
C1

)2 = 2.
Let η be a 3 - torsion element in Pic(C ′

1) corresponding to the unramified covering
C1 → C ′

1.
Let s1, s2 ∈ H0(C1,Ω1

C1
)1 = H0(C ′

1,KC′
1

+ η) and t1, t2 ∈ H0(C1,Ω1
C1

)2 =
H0(C ′

1,KC′
1
+ 2η) yield respective bases of these vector spaces.

Let furthermore σ1, σ2 ∈ H0(Ω1
C2

)1, resp. σ3 ∈ H0(Ω1
C2

)2 yield respective bases
of these vector spaces. It is easy to see that the divisor of zeroes of σ3 is the sum
Q1 +Q2 +Q3 +Q4, where Qi is the point lying over Pi.

Instead the linear series cut by |λ1σ1 + λ2σ2 = 0| has Q5 as base point, and then
yields residually the g1

3 which gives the triple covering of P
1. It follows immediately

that the curve C2 is not hyperelliptic, whence its canonical system is very ample.
Observe then that

{s1 ⊗ σ3, s2 ⊗ σ3, t1 ⊗ σ1, t2 ⊗ σ2, t1 ⊗ σ2, t2 ⊗ σ1}
is a basis of H0(S,O(KS)).
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We will use the following

Lemma 2.8. Let C ′
1 be a generic, (in particular, non hyperelliptic) curve of genus

3 and let η be a non trivial 3- torsion element of Pic(C ′
1). Then

1) the linear system |KC′
1
+ η| is base point free,

2) the morphism f : C ′
1 → P

1×P
1 induced by the product of the two pencils |KC′

1
+

η| and |KC′
1

+ 2η| is birational onto its image, which is a curve Γ of bidegree (4, 4)
having exactly 6 ordinary double points as singularities, on the set M := {(x, y)| x �=
y, x, y ∈ {0, 1,∞}}.

Let’s postpone the proof of the lemma and infer from it the quasi very ampleness
of the canonical system of S.
We observe first of all that the canonical system KS is base point free.

In fact, we can apply Lemma 2.8 twice, for η and for 2η, so that, given a point
(x, y) ∈ C1 × C2 we may assume (after a change of basis) s2, t2 not to vanish on the
image of x in C ′

1. And since the quotient of C2 is rational, H0(C2,Ω1
C2

)0 = 0 thus,
the canonical system of a curve being base point free, for each choice of y there is a
section σj , for some 1 ≤ j ≤ 3, which does not vanish on y.

Let us now take two points (x, y), (x′′, y′′) ∈ C1 × C2 representing two distinct
points in S, and let us assume that they are not separated by the canonical map of
S.

If x = x′′, then the two points are separated since σ1, σ2, σ3 yield the canonical
map of C2, which is non hyperelliptic.

If y = Q5 and the two points are not separated, it must be also y′′ = Q5, since
the last 4 coordinates are then equal to zero.

But then (s1(x) : s2(x)) = (s1(x′′) : s2(x′′)), which means that x′′ and x map
to respective points z′′ and z such that z′′ + z is contained in a divisor of |KC′

1
+ η|.

Since we have two distinct points of S, z′′ �= z. We get therefore a singular line in the
canonical image φK(S), which is a quadruple line.

Assume now y = Qj , 1 ≤ j ≤ 4 : then it must also be y′′ = Qi, 1 ≤ i ≤ 4 since
the first two coordinates are zero. If however i �= j, then we may assume without loss
of generality σ1(Qj) = 0, σ1(Qi) �= 0, a contradiction.

It follows that y′′ = y = Qj , 1 ≤ j ≤ 4, and we conclude as in the previous case
that x′′ and x map to respective points z′′ �= z such that z′′, z have the same image
point under |KC′

1
+ 2 η|. We get thus 4 more quadruple lines in the canonical image

φK(S).
We assume now that y′′, y are no ramification points (y′′, y �= Qj , 1 ≤ j ≤ 5). We

may assume also as before that σ1(y) �= 0, σ2(y) = 0. We infer then immediately that
y′′ is in the G-orbit of y.

Thus, without loss of generality, and by the first step, we may assume y′′ = y and
that the respective image points z, z′′ of x, x′′ in C1 are distinct.

Since σ1(y) �= 0, σ3(y) �= 0, it follows that it must be f(z) = f(z′′). Fix then one
of the 54 pairs of points x, x′′ with the property that z �= z′′, but f(z) = f(z′′).

We ask whether for y ∈ C2 the points (x, y), (x′′, y) are not separated. Again
after a change of basis, since f(z) = f(z′′), we may assume s1(x) = s1(x′′) = t1(x) =
t1(x′′) = 0. Then the question is whether (s2(x) : t2(x)) = (s2(x′′) : t2(x′′)). In other
words, the question we must answer is whether the subseries of the canonical system
of C1, given by the 4 sections s1, s2, t1, t2 separates the two points x, x′′.

We use here the fact that the point f(z) = f(z′′) is an ordinary double point,
i.e., with distinct tangents. There are local coordinates (u, v) on P

1 × P
1 such that
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f(z) = f(z′′) corresponds to the origin. We show in the proof of lemma 2.8 that
locally the triple cover is obtained by extracting the third root of u/v, w3 = u/v.

Accordingly, the 4 sections s1, s2, t1, t2 are locally expressed by 1, u, w,wv. If
w(x) = w(x′′), then we would have (u/v)(z) = (u/v)(z′′), a contradiction.

We have thus proven that for C ′
1 generic the canonical system of S yields a

morphism which is injective except for the curves images of C1 × {Qj} , 1 ≤ j ≤ 5.
There remains to prove that the canonical map is a local embedding except at

finitely many points.
Lemma 2.8 shows that for a general curve C of genus 3, the mapping f : C →

P
1 ×P

1 , corresponding to the sum of the two linear systems |KC + η| and |KC + 2η|,
is everywhere a local embedding.

We will prove that the canonical system |KS | separates tangent vectors at a point
corresponding to (x, y) ∈ C1 ×C2, unless y is a ramification point for the triple cover
of P

1, and x is a ramification point for one of the two g1
4 ’s |KC + η| and |KC + 2η|.

Without loss of generality we may then take a point (x, y) ∈ C1 × C2 and we
assume s1, t1 to vanish on x and s2, t2 not to vanish on x.

We look for two sections yielding two curves which are smooth at (x, y) and have
distinct tangents.

If we have that s1 vanishes of order exactly 1 at x and σ3(y) �= 0, we are done,
since there is always a section σi vanishing simply at y, and s1σ3, s2σi give two curves
with vertical, respectively horizontal tangent.

Similarly, if t1 vanishes of order exactly 1 at x, and y �= Q5, then we may assume
σ1(y) �= 0, and σ2 to vanish simply on y, unless we are in a branch point Qi. For
i ≤ 4, however, σ3 vanishes simply and we are therefore done. for Theorem 2.7

Proof of lemma 2.8. The moduli space of curves of genus 3 has dimension 6
and the hyperelliptic curves form a five dimensional algebraic subset. Hence we can
suppose that C ′

1 is not hyperelliptic. Therefore C ′
1 is canonically embedded as a plane

quartic in P
2. Let η be an element of Pic(C ′

1)3. We note that P is a base point of
the linear system |KC′

1
+ η| if and only if

H0(C ′
1,O(K + η)) = H0(C ′

1,O(K + η − P )).

Since dimH0(C ′
1,O(K + η)) = 2 this is equivalent to

dimH1(C ′
1,O(K + η − P )) = 1.

Since H1(C ′
1,O(K + η−P )) ∼= H0(C ′

1,O(P − η))∗, it follows that there is a point P ′

such that P − η ≡ P ′. Therefore 3P ≡ 3P ′. By Riemann - Roch we have

dimH0(C ′
1,O(K − 3P )) =

deg(K − 3P ) + 1 − g(C ′
1) + dimH1(C ′

1,O(K − 3P ) = 1 + 1 − 3 + 2 = 1,

and there is a point Q such that Q ≡ K − 3P ≡ K − 3P ′.

Geometrically this means that, considering C ′
1 as a plane quartic, C ′

1 has two
inflection points P , P ′, such that the tangent lines to these points intersect in Q ∈ C ′

1.
Let now p, q, p′ be three non collinear points in P

2. Then the dimension of the group
of automorphisms of P

2 leaving the three points fixed has dimension 2. The quartics
in P

2 form a linear system of dimension 14. Imposing that a plane quartic contains
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the point q is one linear condition. Moreover, the condition that the line containing p
and q is a tritangent to the quartic gives further three linear conditions as well as the
condition that the line containing p′ and q is a tritangent to the quartic. Therefore
the linear subsystem of quartics C having two inflection points P , P ′, such that the
tangent lines to these points intersect in Q ∈ C has dimension 14− 2− 3− 3− 1 = 5,
whence they are special.

Part 1) is therefore proven and we set for convenience of notation C := C ′
1. By

1) we may assume that both linear systems |KC + η| and |KC + 2 η| are base point
free.

Even if not strictly needed for our purposes, we try to describe how one reaches
the conclusion that the curve C must be birational to a curve Γ ⊂ P

1 × P
1 enjoying

the properties stated in 2).
More generally, for L ∈ Pic0(C), L general, we obtain a morphism fL : C →

P
1 × P

1 corresponding to the sum of linear systems |KC + L| and |KC − L|.
Set Γ := fL(C). Then either Γ is a curve of bidegree (4, 4), or deg(fL) = 2 and

Γ is a curve of bidegree (4, 4), since if deg(fL) = 4 then L ≡ −L and L is thus of
2-torsion.

We will assume that fL is birational, else C is either hyperelliptic, or a double
cover of an elliptic curve, which is then special because it is branched in 4 points, and
we get only a family of dimension 5 in the moduli space.

Let P1, . . . Pm be the (possibly infinitely near) singular points of Γ.
Then, H1, H2 being the respective divisors of a vertical, and of a horizontal line

in P
1 × P

1, Γ ∈ |4H1 + 4H2 − Σi=1,...mriPi|.
By adjunction, the canonical system of C is cut by the series |2H1 + 2H2 −

Σi=1,...m(ri − 1)Pi|.
Since C has genus 3, we obtain Σi=1,...mri(ri − 1) = 12. Whence, either Γ has

just an ordinary 4-uple point or all the multiplicities are at most 3.
In the former case, however, we take local coordinates (u, v) at the 4-uple point

and see that the canonical map is given by (u2v : v2u : u2v2) = (u : v : uv) and the
curve C is hyperelliptic.

In the latter case, we observe that Γ lies on a regular surface, whence we have
that the bicanonical system is obtained as the restriction of the linear system |4H1 +
4H2 −Σi=1,...m2(ri− 1)Pi| (in fact on the blown up surface X, we have (−1) divisors
Ei and H1(OX(−Σi=1,...m(2 − ri)Ei)) = 0 since ri ≤ 3, by Ramanujam’s vanishing
theorem).

We exploit at this point that H1 pulls back to KC +L, H2 pulls back to KC −L,
thus there is a subseries of the bicanonical series cut by H1 + H2. We infer the
existence of a curve G ∈ |3H1 + 3H2 − Σi=1,...m2(ri − 1)Pi|.

Assuming that G is reduced, we see that G has geometric genus g(G) = 4 −
Σi=1,...m(2ri − 3)(ri − 1)Pi ≤ −2, and indeed g(G) ≤ −5 if there is a triple point for
Γ. Yet, G has at most 6 components, thus g(G) ≥ −5, and if equality holds, G consists
of 3 vertical and 3 horizontal lines, in particular it has no points of multiplicity 4.

It follows then that all the ri = 2, and G has three components, which are rational.

General case. G = q1 ∪ q2 ∪ q3, where qj is of bidegree (1, 1), the curves qi and qj
meet transversally in 2 points Pi,j , P ′

i,j .
Fixing these three conics qj , one takes a general curve Γ ∈ |4H1+4H2−Σi,j2(Pi,j+

P ′
i,j)|.

Let X be the blow up of P
1 × P

1 in these 6 points, and let G̃, Γ̃ be the proper
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transforms of G, resp. Γ. By the exact sequence

0 → OX(H1 +H2) → OX(Γ̃) → OG̃(Γ̃) → 0

we obtain dim |Γ̃| = 4 + 3 − 1 = 6. Since we have moreover 3 + 3 + 3 moduli for
the 3 conics qj , after subtracting 6 moduli for the automorphisms of P

1 × P
1, we

obtain a family of dimension 9 = 6 + 3, which is the expected dimension, since 6 is
the dimension of the moduli space of curves of genus 3, and 3 = dim Pic0(C).

3 - Torsion case. Assume now that L = η is a non trivial 3-torsion divisor:
then 3Hi ≡ 3KC , whence we expect curves ∆1 ∈ |6H1 + 3H2 − Σi=1,...m3(ri − 1)Pi|,
∆2 ∈ |3H1 + 6H2 − Σi=1,...m3(ri − 1)Pi|. Intersecting on X the proper transform of
∆i with the proper transform of each component qj of G we get intersection number
9 − 12 = −3, thus G should be contained in ∆i.

But then Λ1 := ∆1−G, Λ2 := ∆2−G provide divisors in |3H1−Σi=1,...m(ri−1)Pi|,
respectively in |3H2−Σi=1,...m(ri−1)Pi|. Again, the intersection number of the proper
transforms ofG and Λi are negative = 6−12 = −6, thus we conclude thatG = Λ1+Λ2,
and that each qj is reducible.

The curve Γ has 6 double points which lie on these 6 lines, but since the bidegree
of Γ is (4, 4) there are at most 2 singular points on each line, and without loss of
generality, since we assumed G to be reduced, we may assume that the 6 points
are as in the statement of the lemma, namely, they are the points of the set M :=
{(x, y)| x �= y, x, y ∈ {0, 1,∞}}.

Claim 1. The general element Γ ∈ |4H1 + 4H2 − M| is irreducible and has only
ordinary double points as singularities.

Proof of claim 1. The general element has only double points as singularities,
since we may just consider the subsystem G + |H1 +H2|. Since the selfintersection
of the proper transforms on X of the curves in the linear system equals 32 − 24 = 8,
the system is not composed of a pencil, and the general member is irreducible. for
claim 1.

Claim 2. For any curve Γ ∈ |4H1 + 4H2 − M| we get an unramified cyclic triple
cover Y of the normalization C of Γ by taking as Y the normalization of the inverse
image of Γ in the cyclic triple cover W of P

1 × P
1 branched on G, and such that Λ1

is the divisor D1 in Pardini’s notation, Λ2 is the divisor D2.

Proof of claim 2. G intersects Γ only in the double points. Once we pull back the
triple covering to C, for each point p lying over a double point, the point p appears
in the branch divisor with multiplicity 1 − 1 = 0. Thus Y → C is unramified. for
claim 2.

Final Observation. The linear system |4H1 + 4H2 −M| has projective dimension
equal to 6, as previously indicated. We get therefore a 6 dimensional family, which is
therefore dominant onto the moduli space of pairs (C, η) as above.

Remark 2.9. The family of surfaces considered in Theorem 2.7 has dimension
8.

We observe that the canonical image φK(S) has S as its normalization. The
inverse images of the singular curves of φK(S) are exactly the curves C1 × {Qj}, 1 ≤
j ≤ 5.
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Therefore, the geometry of the canonical image φK(S) recovers C1, which is the
”missing” Hodge structure.

Replacing now the curve C2 by a triple cover of P
1 ramified in more points than

in the previous example, we can produce an infinite series of examples of surfaces
having quasi very ample canonical bundle for which the infinitesimal Torelli theorem
fails. The construction goes as follows.

Let k be any natural number bigger or equal to two and let P1, . . . , P3k−2, P3k−1

be pairwise different points in P
1. We consider the triple cover Ck of P

1 ramified
along

P1 + . . .+ P3k−2 + 2P3k−1.

Then the genus of Ck is equal to 3k−3. Using Pardini’s formulae we can calculate the
decomposition of H0(Ω1

C2
) into eigenspaces according to the characters of G = Z/3.

We get: L0 = OP1 , L1 = OP1(k) and L2 = OP1(2k − 1) and therefore

H0(Ω1
Ck

) = H0(Ω1
Ck

)0 ⊕H0(Ω1
Ck

)1 ⊕H0(Ω1
Ck

)2 =

H0(Ω1
P1) ⊕H0(Ω1

P1 ⊗O(2k − 1)) ⊕H0(Ω1
P1 ⊗O(k)) =

H0(P1,O(2k − 3)) ⊕H0(P1,O(k − 2)).

Using the same argument as in theorem 2.7 (note that we only use that the curve C2

is not hyperelliptic and that C2/G = P
1) we obtain the following

Theorem 2.10. Let k be any natural number bigger or equal to 2 and let C ′
1 be

a general (non hyperelliptic) curve of genus 3 and let C1 be a connected unramified
covering of C ′

1 of degree 3. Moreover, let Ck be as above.
Then the following hold:
1) G := Z/3 operates freely on C1 × Ck;
2) infinitesimal Torelli fails for Sk := C1 × Ck/G;
3) KSk

is quasi very ample.

3. Torelli fibres. In this section we want to analyse the above series of examples
in the following sense. We know that the infinitesimal Torelli map fails to be injective
for reasons of dimension of the eigenspaces, but we want to calculate the dimension
of the kernel of the infinitesimal Torelli map.

We start by computing the respective dimensions of H1(Sk,Ω1
Sk

), H0(Sk,Ω2
Sk

)
and H1(Sk,Ω1

Sk
⊗ Ω2

Sk
), and end counting the dimension of the moduli space of the

surfaces Sk.

Let k be any natural number bigger or equal to two and let P1, . . . , P3k−2, P3k−1

be pairwise different points in P
1. We consider the triple cover Ck of P

1 ramified
along

P1 + . . .+ P3k−2 + 2P3k−1.

Then we define: Sk := (C1 × Ck)/G, where G := Z/3Z. We prove the following

Proposition 3.1. Under the above hypotheses we have:
1) h0(Sk,Ω2

Sk
) = 6k − 6,
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2) h1(Sk,Ω1
Sk

) = 12k − 10,
3) h1(Sk,Ω1

Sk
⊗ Ω2

Sk
) = h1(Sk, TSk

) = 3k + 2.

Remark 3.2. In particular, it follows from the above proposition that the
infinitesimal Torelli theorem does not fail for reasons of dimension of the vector spaces
in question, but only because of the imposed symmetry.

Proof. For the dimensions of the eigenspaces of H0(Ω1
C1

), resp. H0(Ω1
Ck

), we
have the following:
a) H0(C1,Ω1

C1
)0 = C

3,
b) H0(C1,Ω1

C1
)1 = C

2,
c) H0(C1,Ω1

C1
)2 = C

2,
d) H0(Ck,Ω1

Ck
)0 = 0,

e) H0(Ck,Ω1
Ck

)1 = H0(P1,O(2k − 3)) = C
2k−2,

f) H0(Ck,Ω1
Ck

)2 = H0(P1,O(k − 2)) = C
k−1.

Using the decomposition of the cohomology groups of Zk := C1 × Ck into
eigenspaces corresponding to the characters of G we obtain

(H0(C1,Ω1
C1

)1 ⊗H0(Ck,Ω1
Ck

)2) ⊕ (H0(C1,Ω1
C1

)2 ⊗H0(Ck,Ω1
Ck

)1) = C
6k−6,

which proves 1).

Moreover,

( H1(C1,Ω1
C1

) ⊗H0(Ck,OCk
) ) ⊕ ( H0(C1,OC1) ⊗H1(Ck,Ω1

Ck
) )⊕

⊕

χ∈G∗
(H0(C1,Ω1

C1
)χ ⊗H1(Ck,OCk

)χ
∗
) ⊕

⊕

χ∈G∗
(H1(C1,OC1)

χ ⊗H0(Ck,Ω1
Ck

)χ
∗
) =

C
2 ⊕ (H0(C1,Ω1

C1
)1 ⊗H1(Ck,OCk

)2) ⊕ (H0(C1,Ω1
C1

)2 ⊗H1(Ck,OCk
)1)⊕

⊕(H1(C1,OC1)
1 ⊗H0(Ck,Ω1

Ck
)2) ⊕ (H1(C1,OC1)

2 ⊗H0(Ck,Ω1
Ck

)1) =

C
2 ⊕ C

4k−4 ⊕ C
2k−2 ⊕ C

2k−2 ⊕ C
4k−4 = C

12k−10,

and this proves 2).

Finally, we see that

H1(Sk,Ω1
Sk

⊗ Ω2
Sk

) =

⊕

χ∈G∗
(H0(C1,OC1(2KC1))

χ ⊗H1(Ck,OCk
(KCk

))χ
∗
)⊕

⊕

χ∈G∗
(H1(C1,OC1(KC1))

χ ⊗H0(Ck,OCk
(2KCk

))χ
∗
).
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Since H1(C1,OC1(KC1)) and H1(Ck,OCk
(KCk

)) are automatically invariant under
G, we get that

H1(Sk,Ω1
Sk

⊗ Ω2
Sk

) = (H0(C1,OC1(2KC1))
G ⊗H1(Ck,OCk

(KCk
)))⊕

⊕(H1(C1,OC1(KC1)) ⊗H0(Ck,OCk
(2KCk

))G).

Using

H0(C1,OC1(2KC1))
G = H0(C ′

1,OC′
1
(2KC′

1
)) = C

6

and

h1(C1,OC1(KC1)) = h1(Ck,OCk
(KCk

)) = 1,

we see that we have proven 3) as soon as we have shown that

H0(Ck,OCk
(2KCk

))G = C
3k−4.

This will be done in the following lemma.

First we recall the definition of almost simple cyclic coverings (cf. [Cat89], page
309). Let Y be an algebraic manifold and let L = OY (F ) be the invertible sheaf which
is the sheaf of sections of a line bundle L on Y . Assume that there are given reduced
effective divisors ∆0, ∆∞ on Y , which are disjoint and it holds ∆0 ≡ ∆∞ + nF .

Definition 3.3. The almost simple cyclic cover associated to (Y,L,∆0,∆∞) is
the subvariety X ⊂ P(L ⊕ CY ) defined by the equation zn1 δ∞ = δ0z

n
0 , where δ∞, δ0

are sections defining ∆∞, resp. ∆0, and z1, z0 are respective linear coordinates on
the fibres of L, resp. the trivial line bundle CY .

We have the following :

Lemma 3.4. Let π : X −→ Y be an almost simple cyclic covering of degree n
with smooth branch divisors ∆0,∆∞ and set G := Z/n. Then:

H0(X,OX(2KX))G = H0(Y,OY (2KY + ∆∞ + ∆0)).

Proof. X sits in the projective bundle P := P(L⊕CY ) = Proj(L−1 ⊕OY ) and is
linearly equivalent to nH + p∗∆0, where H is the hyperplane divisor H = div(z0).

The canonical divisor of P equals, by the relative Euler sequence, −2H+p∗(KY −
F ). Thus, by adjunction, KX is the restriction of the divisor

(n− 2)H + p∗(KY − F + ∆0).

If we set Ei := div(zi), we may write

2KX ≡ (n− 2)E0 + (n− 2)E1 + p∗(2KY + ∆0 + ∆∞).

It suffices to show that each invariant section of H0(X,OX(2KX)) vanishes on Ei
of multiplicity n− 2 and after being divided by (z0z1)n−2 yields an invariant section
of H0(X,OX(p∗(2KY + ∆∞ + ∆0))).



380 I. C. BAUER AND F. CATANESE

This follows by a local calculation, since, if we have that y0 = 0 is a local equation
of ∆0, we have that z1/z0 := x0 is a local equation for the ramification locus E1, and
we can complete y0 to local coordinates (y0, y1, . . . ) on Y .

Note that π is locally given by an equation xn0 = y0, hence (x0, y1, . . . ) are local
coordinates on X.

A differential form f(x0, y1, . . . )(dx0 ∧ dy1 ∧ . . . )2 is G - invariant if and only if
f(x0, y1, . . . ) = xn−2

0 γ(y0, y1, . . . ).
Hence

f(x0, y1, . . . )(dx0 ∧ dy1 ∧ . . . )2 = γ(y0, y1, . . . )xn−2
0 (dx0 ∧ dy1 ∧ . . . )2 =

= (n)−2γ(y0, y1, . . . )xn−2
0 (dy0∧dy1∧. . . )2 1

x2n−2
0

= (n)−2(dy0∧dy1∧. . . )2·γ(y0, y1, . . . )
y0

.

The same calculation holds for ∆∞ and we are done.

In our particular case this implies immediately:

Corollary 3.5. Let k be any natural number bigger or equal to two and let
P1, . . . , P3k−2, P3k−1 be pairwise different points in P

1. We consider the triple cover
Ck of P

1 ramified along

P1 + . . .+ P3k−2 + 2P3k−1.

Then we have

H0(Ck,OCk
(2KCk

))G ∼= C
3k−4.

Proof. Here ∆0 = P1 + . . . P3k−2 and ∆∞ = P3k−1 and we get

H0(Ck,OCk
(2KCk

))G = H0(P1,OP1(2K + ∆0 + ∆∞)).

H0(P1,OP1(−4 + 3k − 1)) = H0(P1,OP1(3k − 5)) = C
3k−4.

We calculate now the dimension of the fibres of the infinitesimal Torelli map.

Lemma 3.6. Let k ≥ 2 be a natural number and consider the surfaces Sk as
above. Then the fibres of the period map Φ2 have (at each point) dimension at least
two.

Proof. We know that

dimΦ(
⊕

χ∈G∗:H0(Ck,Ω1
Ck

)χ �=0

H0(C1,Ω1
C1

)χ ⊗H0(C1,Ω1
C1

)χ
∗
) ≤

dim(H0(C1,Ω1
C1

)1 ⊗H0(C1,Ω1
C1

)2) = 4,

whereas dimH0(C1,Ω1
C1

⊗Ω1
C1

) = 6. By the structure of the infinitesimal Torelli map
(cf. proof of theorem 2.2) our claim is proven.
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Remark 3.7. Let k ≥ 2 be a natural number and let Sk be the family of
surfaces we have constructed above, which give an irreducible connected component
of the moduli space of surfaces of general type by theorem C of [Cat00].

Observe that the number of moduli of Sk is equal to the sum of the number of
moduli of C1 (C1 is a curve of genus three, hence has 6 moduli) and of the number
of moduli of the triple cover Ck → P

1 (it is ramified in 3k − 1 points, whence it has
3k − 1 − 3 = 3k − 4 moduli). From this we conclude that dimSk = 3k + 2.
In particular, since by proposition 3.1, 3) h1(Sk, TSk

) = 3k + 2, the family Sk yields
a generically smooth moduli space, and a smooth base of the Kuranishi family.

We can summarize our results now in the following theorem.

Theorem 3.8. For any natural number k ≥ 2 there exists a 3k+ 2- dimensional
family Sk of surfaces such that the following holds:
1) for each Sk ∈ Sk the infinitesimal Torelli map

dΦ2 : H1(Sk, TSk
) −→ Hom(H2,0(Sk),H1,1(Sk))

has a kernel of dimension at least two, i.e., the period map Φ2 has all fibres of dimen-
sion strictly positive and ≥ 2.
2) for a general Sk ∈ Sk the canonical divisor KSk

is quasi very ample;
3) h1(Sk, TSk

) = 3k + 2; in particular, Sk yields a generically smooth irreducible
connected component of the moduli space.

Remark 3.9. We observe that, since our examples are irregular surfaces, there
is still another period map Φ1 associated to the weight one Hodge structure on Sk.
The differential of this map is given by

dΦ1 : H1(Sk, TSk
) −→ Hom(H1,0(Sk),H0,1(Sk)),

and its injectivity is equivalent to the surjectivity of

dΦ∗
1 : H0(S,Ω1

S) ⊗H1(S,Ω2
S) −→ H1(S,Ω1

S ⊗ Ω2
S).

Using again the explicit description of Sk as in the proof of theorem 2.2, we see that
dΦ∗

1 is surjective if and only if the two maps

ϕi : H0(Ci,Ω1
Ci

)G ⊗H0(Ci,Ω1
Ci

)G −→ H0(Ci,Ω1
Ci

⊗ Ω1
Ci

)G

are surjective. Since Ck2 is a triple cover of P
1 the above map for i = 2 is obviously

not surjective. On the other hand ϕ1 is given by the natural map

H0(C ′
1,Ω

1
C′

1
) ⊗H0(C ′

1,Ω
1
C′

1
) −→ H0(C ′

1,Ω
1
C′

1
⊗ Ω1

C′
1
)

and this map is surjective if and only if C ′
1 is not hyperelliptic.

In the case that C ′
1 is hyperelliptic, the cokernel of ϕ1 has dimension 1 (in general

g − 2) and is transversal to the cokernel of Φ2.

4. Global double Torelli for surfaces isogenous to a product. Recall that
the global Torelli theorem for algebraic curves says that the isomorphism class of
a curve C is completely determined by the isomorphism class of the datum of the
integral cohomology algebra H∗(C,Z) together with the Hodge decomposition

H1(C,Z) ⊗Z C = H1,0(C) ⊕H0,1(C),
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where H1,0(C) = H0(C,Ω1
C) and H0,1(C) = H1,0(C).

We shall shortly say that C is determined by its integral Hodge structure.
A fortiori, C is determined by its topological type given together with its Hodge

decomposition.
In this section we want to address the question: when does global double Torelli

hold for S = C1 × C2/G ? “Double” means that the datum of the respective Hodge
structures of weight one and two of S, together with the oriented topological type,
should determine the isomorphism class of S.

To be more precise and explicit, we first observe the following:

Lemma 4.1. Let G be a finite group acting on a Riemann surface C of genus
g ≥ 2. Then the pair consisting of the orbifold group exact sequence and of the Hodge
structure of C

(1 → π1(C) → πorb1 → G→ 1, H0(Ω1
C) ⊂ H1(C,C) = H1(π1(C),C))

determines the holomorphic action of G on C.

Proof. Inner conjugation on π1(C) of a lift of an element γ ∈ G provides an
inclusion of G in the mapping class group G → Out(π1(C)) = Mapg of C, which,
together with the natural orientation provided by the half line H0(Ω1

C))∧ H0(Ω1
C)) ⊂

H1(C,R), determine the oriented topological type of the action. The Hodge structure
determines the complex structure on the curve which makes theG-action holomorphic.

Assume now that S is a surface isogenous to a product and not of mixed type:
by [Cat00], p. 25/26 it follows that π1(S) determines the exact sequence

1 → Πg1 × Πg2 → π1(S) → G→ 1

which in turn determines the two orbifold π1- exact sequences

1 → Πgi
→ πorb1 (C ′

i −B,m′′
i ) → G→ 1.

Therefore the double Torelli question reduces to the following:
Does the Hodge structure on S determine the Hodge structures on C1 and C2?

Remark 4.2. Let ∆ : G ↪→ G×G be the diagonal inclusion.
Then, since G is Abelian, G = G × G/∆(G) acts on the cohomology algebra

H∗(S) and we get the following decompositions according to the characters (here,
χ∗ denotes the character of the dual representation, i.e., χ∗ is the inverse of χ, and
χ∗ = (χ)−1 = χ):
H1(S,Z), which is a free Z- module, contains as a submodule of finite index
H1(C1 × C2,Z)G = H1(C1,Z)G ⊕H1(C2,Z)G;

H0(S,Ω1
S) = H0(C1,Ω1

C1
)G ⊕H0(C2,Ω1

C2
)G;

H1(Ci,C) =
⊕

χ∈G∗
H1(Ci,C)χ =

⊕

χ∈G∗
(H0(Ci,Ω1

Ci
)χ ⊕H0(Ci,Ω1

Ci
)χ∗) =

=
⊕

χ∈G∗
(H0(Ci,Ω1

Ci
)χ ⊕H1(Ci,OCi

)χ);
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H0(S,Ω2
S) =

⊕

χ∈G∗
(H0(C1,Ω1

C1
)χ ⊗H0(C2,Ω1

C2
)χ

∗
).

We will use in the sequel the following quite elementary but very useful result.

Lemma 4.3. Let 0 �= U ′ ⊂ U and 0 �= V ′ ⊂ V be complex vector spaces and set
L := U ′ ⊗ V ′ ⊂ U ⊗ V . Then the subspace L of U ⊗ V determines U ′ and V ′.

Proof. Let � denote the contraction operator � : (U ⊗ V ) × V ∨ → U. Then
L � V ∨ = U ′. Similarly we get L � U∨ = V ′.

We will see that global double Torelli holds for a huge class of surfaces isogenous to
a product of curves, but nevertheless there are also lots of potential counterexamples.
Our first result is the following:

Theorem 4.4. Let G be a finite abelian group acting on two curves C1, C2 of
respective genera g1, g2 ≥ 2 and acting freely by the product action on Z := C1 ×
C2. Double global Torelli holds for S := C1 × C2/G., i.e., the Hodge structure of S
determines the Hodge structures of C1 and C2, under the following hypothesis:

A) Ci/G, for i = 1, 2, has either genus ≥ 2 or it has genus 1 but there is no
nontrivial subgroup H of G such that C/H has genus 1.

Proof. Since every automorphism leaves the fundamental class of Ci invariant,
we have H2(Ci,C) = H2(Ci,C)G = H1(Ci,Ω1

Ci
)G = H1(Ci,Ω1

Ci
).

Therefore the proof reduces to the following problem:
We know that H1(Ci,C) =

⊕
χ∈G∗ H1(Ci,C)χ and we have to recover the decompo-

sition

H1(Ci,C)χ = H0(Ci,Ω1
Ci

)χ ⊕H0(Ci,Ω1
Ci

)χ∗

for each χ ∈ G∗.
Obviously, if for χ ∈ G∗ one of the two above summands is zero, we are done for this
χ, once we know which of the two summands is equal to zero.

Therefore, let χ be a character such that H0(Ci,Ω1
Ci

)χ �= 0 and H0(Ci,Ω1
Ci

)χ
∗ �=

0.
Using

H0(S,Ω2
S) =

⊕

χ

(H0(C1,Ω1
C1

)χ ⊗H0(C2,Ω1
C2

)χ
∗
)

and

H1(Ci,C)χ = H0(Ci,Ω1
Ci

)χ ⊕H0(Ci,Ω1
Ci

)χ∗

we see that the contraction

H0(S,Ω2
S) � H1(C2,C)χ −→ H0(C1,Ω1

C1
)χ

is surjective, if H0(C2,Ω1
C2

)χ∗ �= 0. Using that g(C/G) ≥ 1 implies H0(C,Ω1
C)χ �= 0

(cf. following proposition) we are done.

Proposition 4.5. Let C be a smooth algebraic curve of genus at least 2 and
suppose we have an effective action of G := Z/d on C.
1) Let χ ∈ G∗: if g(C/G) ≥ 2, or g(C/G) = 1 and χ is a primitive character (mod d),
then H0(C,Ω1

C)χ �= 0.
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2) Let Gχ be the subgroup which is the kernel of a character χ and suppose that
g(C/Gχ) ≥ 2: if g(C/G) = 1, then H0(C,Ω1

C)χ �= 0. If g(C/G) = 0 then either
H0(C,Ω1

C)χ �= 0 or H0(C,Ω1
C)χ∗ �= 0.

Clearly, if χ �= 0, and g(C/Gχ) = 0, then H0(C,Ω1
C)χ = H0(C,Ω1

C)χ∗ = 0. If instead
g(C/Gχ) = 1 and |G/Gχ| ≥ 3, either H0(C,Ω1

C)χ = 0 or H0(C,Ω1
C)χ∗ = 0.

3) If g(C/G) = 0, then, assuming that the number of branch points is at least 4, the
cardinality of the set {χ ∈ G∗ : H0(C,Ω1

C)χ = 0} is strictly smaller than d−1
2 .

Proof. 1) Let P1, . . . , Pr ∈ Y be the branch points of the map C → C/G =: Y .
After we fix a generator for the group G, thus also for the group of characters

G∗, each Pi determines an isotropy subgroup Hi
∼= d

d′i
Z/dZ ⊂ Z/dZ and a character

of the representation of Hi on the tangent space TC,Qi
, Qi being any point lying over

Pi.
As we shall see later, representing this character by an integer ai (mod d′i), with

(ai, d′i) = 1, we obtain m′
i by the equation aim′

i ≡ 1(mod d′). We then obtain natural
numbers 1 ≤ mj ≤ d− 1 setting mj := m′

j
d
d′j

and we have

dL ≡
∑

mjPj =: B̂.

Let σj be the unique section of OY (Pj) vanishing on Pj : then the equation zd =
∏
σ
mj

j

in L defines a singular covering p : X → Y (such that C is the normalization of X).
We have

p∗ωX = ωY ⊕ ωY (L) ⊕ . . .⊕ ωY (Ld−1).

A local generator of ωY (Li) is given by dx · z−i and at Pj we have (setting m := mj ,
x = σj) the local equation zd = xm for X ⊂ L.

We will investigate now when is ϕ(x)dx · z−i regular on C.
Let r be the greatest common divisor of d and m, and write m = rm′, d = rd′. Then
the equation zd = xm decomposes in

∏

εr=1

(zd
′ − εxm

′
) = 0.

We choose a point on the normalization C of X and let t be a local coordinate of
C around this point. Then the cyclic group Hj

∼= {ζ|ζd′ = 1} acts locally by sending

z → ζz, t→ ζat.

Moreover, the equations

z = tm
′
ε

1
d′ ,

x = td
′

give a parametrisation of the branch of C over Pj . Then ϕ(x)dx · z−i (on Y ) pulls
back to

ϕ(td
′
)d(td

′
)(tm

′
ε

1
d′ )−i = d′td

′−1ϕ(td
′
)dt · t−im′ · ε−i

d′ ).

This is regular iff ϕ(x)x · x− im′+1
d′ has order at least 0, i.e. iff ordϕ + 1 ≥ im′+1

d′ ,
or, equivalently, �y� := −[−y] denoting the round up of a real number y, iff ordϕ ≥
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� im′+1
d′ � − 1 = � im+r

d � − 1.
Therefore we have been able to compute the eigenspace for the i− th character as:

H0(C; Ω1
C)i = H0(Y,Li),

where

Li = ωY (iL−
∑

j

(� imj + rj
d

� − 1))

is a line bundle of degree

2g(Y ) − 2 +
∑

j

(
imj

d
− (� imj + rj

d
� − 1)).

We remark that

imj

d
− (� imj + rj

d
� − 1) =

im′
j

d′
− (� im

′
j + 1
d′

� − 1) =
im′

j

d′
+ 1− ([

im′
j

d′
] + 1) = { im

′
j

d′
}.

I.e., we obtain that the summands provide exactly the fractionary part { imj

d } of imj

d ,
in other words, the remainder class of imj(mod d), divided by d.

Therefore if g(Y ) ≥ 2 we see that degLi ≥ 2g(Y ) − 2 ≥ 2, whence we get
h0(C,Ω1

C)i ≥ g(Y ) − 1 �= 0.
If instead g(Y ) = 1 and χ is a primitive character, then the G.C.D. between i

and d is 1, whence { imj

d } > 0 for each mj �= 0: we conclude since, the genus of C
being ≥ 2, there is at least one mj �= 0.

2) If χ is a non primitive character, we simply observe that χ yields a primitive
character χ′ of G/Gχ, and H0(C,Ω1

C)χ is the pull back of H0(C/Gχ,Ω1
C)χ

′
, so that

the first assertion is a direct consequence of 1).
Assume now that g(C/Gχ) ≥ 2 and g(C/G) = 0. We apply the basic estimate we

used in the proof of 1): i.e., we have a primitive character and then H0(C,Ω1
C)χ �= 0

if
∑
j{ imj

d } ≥ 2.
Without loss of generality, since we have a primitive character, we may assume

i = 1. H0(C,Ω1
C)χ �= 0 unless

∑
jmj = d. But our assertion holds since the dual

character corresponds to d − 1, and H0(C,Ω1
C)χ∗ �= 0 unless

∑
j(d −mj) = d. This

is a contradiction, since then 2d =
∑
j(d − mj + mj) = d(

∑
j 1), there are exactly

r = 2 branch points, whence g(C/Gχ) = 0.

3) Assume finally g(Y ) = 0, i.e. Y = P
1. Obviously H0(C,Ω1

C)0 = H0(Y,Ω1
Y ) =

0. For i > 0 we have, by our previous calculation:

H0(C,Ω1
C)i �= 0

if and only if

∑

j

{ imj

d
} ≥ 2.

Then the assertion follows from the following lemma.
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Lemma 4.6. Let r, d,m1, . . .mr be natural numbers such that r ≥ 4 and m1 +
. . .mr = d. We define for each 1 ≤ i ≤ d− 1 a natural number λ(i) by the equality

im1 + . . . imr = λ(i)d,

where 0 ≤ z ≤ d− 1 denotes the remainder modulo d of a natural number z. Then

�{i : λ(i) = 1} < d− 1
2

.

Proof. Assume that r > 4. Then we set Mr−1 := mr−1 +mr and it follows

λr(i)d = im1 + . . . imr ≥ im1 + . . . iMr−1 = λr−1(i)d.

Therefore without restriction we can assume r = 4. For d = 4 we have m1 = m2 =
m3 = m4 = 1 and the claim is obvious. Let now d+1 > 4 and d+1 = m1 + . . .+m′

4.
Without restriction we can assume that m′

4 > 1, hence we write m′
4 = m4 + 1. Then

m1 + . . .+m4 = d and by induction we get
∑
j imj

d
= λ′(i)d and �{i : λ′(i) = 1} <

d−1
2 .

We write for 1 ≤ j ≤ 3:

imj = ajd+ imj
d

= bj(d+ 1) + imj
d+1

and

i(m4 + 1) = γd+ im4
d

+ i = c(d+ 1) + i(m4 + 1)
d+1

.

Then

i(m4 + 1)
d+1

= im4
d

+ (γ − c)d+ i− c,

whence

λ(i)(d+ 1) = im1
d+1

+ . . .+ i(m4 + 1)
d+1

=

= im1
d

+ . . .+ im4
d

+ (a1 − b1)d+ . . .+ (a3 − b3)d+ (γ − c)d+ i− b1 − b2 − b3 − c.

We remark that

id = (a1 + a2 + a3 + γ)d+ λ′(i)d.

Therefore λ′(i) = 1 implies that a1 + a2 + a3 + γ = i − 1. Analogously λ(i) = 1
implies that b1 + b2 + b3 + c = i− 1.

Assume that λ(i) = 1: then

λ′(i)d+ (a1 − b1)d+ . . .+ (γ − c)d+ 1 = d+ 1.

Since a1 − b1, . . . , γ − c ≥ 0 we see that the above equality implies that λ′(i) = 1.
Therefore �{i ≤ d− 1 : λ(i) = 1} < d−1

2 and we are done if we show that λ(d) �= 1.
Since

λ(d)(d+ 1) = dm1
d+1

+ . . .+ d(m4 + 1)
d+1

,

if λ(d) = 1 we get

2(d+ 1) = m1 + . . .+ (m4 + 1) + dm1
d+1

+ . . .+ d(m4 + 1)
d+1

=

= (m1 + dm1
d+1

) + . . .+ ((m4 + 1) + d(m4 + 1)
d+1

) = 4(d+ 1),

which is absurd.
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5. Another series of examples. In the following we will construct a series
of examples of surfaces isogenous to a higher product, for which we are not able
to prove global double Torelli using theorem 4.4 or proposition 4.5. It turns out
nevertheless that for these surfaces the local period map is injective.

It seems therefore an interesting problem to decide whether global double Torelli
holds for this class of surfaces (or for similar classes).

We consider for any natural number d ≥ 3 the group G = Gd = Z/d⊕ Z/d. Let
π : C1 −→ C1/G = P

1 be the covering branched in P , P ′ (with local monodromy
given by (1, 0), respectively (−1, 0)) and in P1, . . . Pd (with (0, 1) as local monodromy).

C1 is then the curve in the weighted projective plane P(1, 1, d) with coordinates
(x0, x1, z) defined by the equation (homogeneous of degree d2)

zd =
d∏

j=1

(xd1 − αjx
d
0).

π is given by π(x0, x1, z) := (xd0, x
d
1). We set for convenience x := x1/x0, u := xd,

u0 := xd0, u1 := xd1.
Then the canonical sheaf of C1 is OC1(d

2 − d − 2) and it is easy to see that, in
affine coordinates, the space of holomorphic 1-forms can be written as follows, where
the Fj(x)’s are polynomials of degree ≤ j:

H0(C1,Ω1
C1

) = {Fd−2(x)
dx

z
+ F2d−2(x)

dx

z2
+ . . .+ Fd(d−1)−2(x)

dx

zd−1
}.

Accordingly, the canonical map is given by Φ(x0, x1, z) = (zixh0x
r
1), where 0 ≤ i ≤

d− 2, h+ r + di = (d2 − d− 2).
We can now write the cohomology table of C1, where we write in the place (a, b)

the dimension of the eigenspace of H0(C1,Ω1
C1

) belonging to the character (a, b), i.e.
dimH0(C1,Ω1

C1
)(a,b), noting that dx·xi

zj belongs to the character (−j, i+ 1).

a = 0 a = 1 a = 2 a = 3 . . . a = d− 1
b = 0 0 0 1 2 . . . d− 2
b = 1 0 1 2 3 . . . d− 1
. . . . . . . . . . . . . . . . . . . . .
b = d− 2 0 1 2 3 . . . d− 1
b = d− 1 0 1 2 3 . . . d− 1

We take now the covering ϕ : C2 −→ C2/G = P
1 branched in P , P ′ (with local

monodromies (1, 0) and (−1, 0)) and in Q,Q′ (with local monodromies (0, 1), (0,−1)).
We may assume without loss of generality that the points P , P ′ are the respective

points v = 0, v = ∞, whereas the points Q,Q′ are the respective points v = 1, v = −λ.
We see easily that C2 ⊂ P

1 × P
1 is given by the equation

wd1(yd1 + λyd0) = wd0(yd1 − yd0),

ϕ((y0, y1)(w0, w1)) := (yd0 , y
d
1) and in affine coordinates C2 is the fibre product of two

cyclic coverings:

yd = v,
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wd =
v − 1
v + 1

.

We see immediately that

H0(C2,Ω1
C2

) = {F≤d−2,≤d−2(w, y)
dy

wd−1(yd + 1)
} = {F≤d−2,≤d−2(w, y)

wdy

v − 1
}.

Therefore we have the following cohomology table:

a = 0 a = 1 a = 2 a = 3 . . . a = d− 1
b = 0 0 0 0 0 . . . 0
b = 1 0 1 1 1 . . . 1
. . . . . . . . . . . . . . . . . . . . .
b = d− 2 0 1 1 1 . . . 1
b = d− 1 0 1 1 1 . . . 1

In order to have G operating freely on the product C1 ×C2 we have to twist the
action of G on C2. We assume for simplicity that d is a prime number. Let now r �= 0
and �= 1. Then twisting the action of C2 by the automorphism of Z/dZ⊕Z/dZ given
by

(1, 0) �→ (1, 1), (0, 1) �→ (r, 1),

we see that the stabilizers of the twisted action on C2 are now < (1, 1) > and
< (r, 1) >, whence G acts now freely on C1 × C2 and the cohomology table of C2

becomes now:
a = 0 a = 1 a = 2 a = 3 . . . a = d− 1

b = 0 0 1 1 1 . . . 1
b = 1 1 0 ∗ ∗ . . . ∗
. . . . . . . . . . . . . . . . . . . . .
b = d− 2 1 ∗ ∗ ∗ . . . ∗
b = d− 1 1 ∗ ∗ ∗ . . . 0

I.e., the diagonal is zero and the remaining zeroes are at the places (nr, n), where
0 ≤ n ≤ d− 1. In particular we see that e.g.

H0(C1,Ω1
C1

)(1,1) �= 0 �= H0(C1,Ω1
C1

)(d−1,d−1)

whereas

H0(C2,Ω1
C2

)(1,1) = 0 = H0(C2,Ω1
C2

)(d−1,d−1).

Therefore we cannot reconstruct H0(C1,Ω1
C1

)(1,1) as well as H0(C1,Ω1
C1

)(d−1,d−1)

from the Hodge structure of S.

By theorem 2.2 we can now easily verify that the infinitesimal Torelli map is
injective. In fact, H0(Ci,OCi

(2KCi
))G = H0(P1,OP1(−4+ri), where ri is the number

of branch points of Ci → P
1.

For i = 2 we get a space of dimension 1, therefore it suffices to observe that there
is a non zero summand in

⊕

χ∈G∗:H0(C1,Ω1
C1

)χ �=0

H0(C2,Ω1
C2

)χ ⊗H0(C2,Ω1
C2

)χ
∗
.
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For i = 1 we must obtain all monomials of degree d − 2 in (u0, u1), and for this
purpose it suffices, since the pairing is non degenerate, to find a character space
H0(C1,Ω1

C1
)χ of dimension d− 1 such that the character space H0(C1,Ω1

C1
)χ∗ is non

zero, and such that likewise H0(C2,Ω1
C2

)χ �= 0.

We omit here to prove the following

Proposition 5.1. The canonical system of S has base points, and the canonical
map is birational onto its image.

Acknowledgement. We would like to thank Gerard van der Geer for providing
numerical evidence for Lemma 4.6 when we conjectured it.
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