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ABSTRACT. — Given a smooth complex surfade and a compact connected global normal crossing divisor
D = J; D;, we consider the local fundamental group(T \ D), whereT is a good tubular neighbourhood
of D.

One has an exact sequences1KC — I' := 71 (T — D) — II := w1(D) — 1, and the kerne{ is normally
generated by geometric loopsaround the curvd;. Among the main results, which are strong generalizations
of a well known theorem of Mumford, is the nontriviality of in I" = 71(T — D), provided all the curve®);
of genus zero have self—intersectiml? < —2 (in particular this holds if the canonical diviséfs is nef onD),
and under the technical assumption that the dual graghisfa tree.
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1. INTRODUCTION

In his first mathematical papef [Mub1l] David Mumford solved the conjecture of
Abhyankar showing that, over the complex humb&rsa normal singular poinP of an
algebraic surfacd is indeed a smooth point if and only if it is topologically simple: more
precisely, if and only if the local fundamental gropioc(X, P) is trivial.

He derived from this result the interesting corollary that the local @agp of a normal
singular point is factorial if and only if eitheP is a smooth point, ofr1 joc(X, P) is the
binary icosahedral group, and the singularity is then analytically isomorphic to

(6, 9,20 €C3 124+ x3+y°=0}

(a shorter independent proof of this corollary was later found by Shepherd-Barron, cf.
[S-B99]; this proof is similar in spirit to the one by Lipman |n [Lip69]).

Since the local fundamental group is the fundamental group’ of {P} whereU
is a good neighbourhood d@f in X, Mumford considered the minimal normal crossing
resolution of the singularity, and derived the above theorem from the following.

Let D = | J; D; be a compact connected normal crossing divisor on a smooth algebraic
surfaceS, such that the intersection matri®; - D;) is negative definite. Then the local
fundamental group aroun#, i.e., the fundamental group := 71(T — D) whereT is a
good tubular neighbourhood @, is trivial if and only if D is an exceptional divisor of
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the first kind (i.e.,D is obtained by successive blowing-ups starting from a smooth point
of another algebraic surface).
Our purpose here is threefold:

1) First, we want to show that the theorem has more to do with a basic concept
appearing in surface classification rather than with singularities; i.e., that the crucial
hypothesis is not that the matritD; - D;) be negative definite, but that the canonical
divisor K5 of S be nef onD (this happens for a minimal model of a nonruled algebraic
surface). For a nonexpert: the condition tiigat be nef onD means that, ig; is the genus
of the smooth curvd;, then Z; — 2 > Dl? for eachi.

As a matter of fact, this condition will only be needed for the curbe®f genus zero,
for which it readsD? < —2.

2) Second, since the structure of the grougD) is very well understood and there
is an obvious surjection” = 71(T — D) — IT := m1(D), we want to study in general
how big the kernelC of this surjection is. Then the result is that under the above nefness
hypothesis each standard generatd€opf.e., each simple loop; around a compone?;,
is nontrivial int1 (T — D).

More precisely, we would like to show that, apart from a well described family of
exceptions, this generatgy has infinite order.

It is rather clear that, in order to have a very simple formulation, the hypothesis that
K5 be nef onD is necessary.

In fact, if we letD be a line inP?, the local fundamental group arouitis trivial and
we haveKp2D = —3; similarly if we take a(—1)-curve (a smooth rational curve with
self-intersection-1, hence withKgD = —1).

A slightly more complicated example, obtained by blowing up the central point of
a string of four(—2)-rational curves, shows that the local fundamental group may be
nontrivial, yet some; may be trivial, if we do not use the nefness assumption.

The simplest results we have in the direction explained above are the following
Theorems A, B, C.

Among these, Theorem A is the simplest to state:

THEOREM 1 (Weak Plumbing Theorem A).et D = | J; D; be a connected compact
(global) normal crossing divisor on a smooth complex surfScé\ssume that the dual
graphgG of D is a tree. LetY be the boundary of a good tubular neighbourhddaf D,

T = J; T;. The generatoy; of the kerneE Z of w1(T; — D;) — m1(D;) has a nontrivial
image in1(X) = 71(T — D) under the assumption that the canonical divisgy of the
surfaces is nef on the components bfof genud), i.e., KsD; > 0for eachi such thatD;
has genus zero.

REMARK 1. Observe that we do not ne§do be compact: this hypothesis would entalil,
by the index theorem, that the positivity index of the matiix - D;) is < 1. Therefore, our
result concerns all the 3-manifolds which are boundaries of complex surfaces obtained
by plumbing smooth compact complex curves.

More generally, we have the more precise

THEOREM 2 (Strong Plumbing Theorem Bl.et D = | J; D; be a connected compact
(global) normal crossing divisor on a smooth complex surfAcéssume that the dual
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graphgG of D is a tree. LetX be the boundary of a good tubular neighbourhdoaf D,
T = |J; T;. Then the generatoy; of the kernel= Z of n1(T; — D;) — m1(D;) has a
nontrivial image inl" := n1(X) = 71(T — D) if

() Disminimal,i.e., itis not obtained by blowing up a (global) normal crossing divisor
D', and moreover either
(ii-1) after successively blowing down all the rationatl)-curves we get a divisob’
contained in a smooth complex surfaand such thaK g is nef on the components
D corresponding taD; of genus zero, or
(ii-2) if D; has genus zero, then its self-intersection is negative.

3) Our motivation for studying these questions came from the study of topological
characterizations of the existence of fibrations on algebraic surfaces, especially in the
noncompact case, where (¢f. [Cdt00]) one has to consider the fundamental group at infinity,
which is a disjoint union of local fundamental groupST — D).

The goal is to get new and simpler variants of the characterizations of the Zariski open
sets which are complements of unions of fibres of a fibration containing all the singular
fibres. These were given i [Cal00, Theorem 5.7] for constant moduli fibrations, and in
[Cat03, Theorem 6.4] in the general case.

Indeed, in these theorems there is one condition pertaining to the fundamental group
at infinity, namely that, given a certain group homomorphism, eaghaps to a certain
element of infinite order.

So, a natural question is: when does egchave infinite order int1 (T — D)?

We have some partial result concerning this question, which we hope to be able to
improve in the future:

THEOREM 3 (Plumbing Theorem C)Let D = |J; D; be a connected compact (global)
normal crossing divisor on a smooth complex surfacsatisfying the assumptions of
Theorem A (for instance, the dual graghof D is still assumed to be a tree). Define
D to beelementary infinite if either

1) Gis alinear tree and there is a curve of positive genus, or

2) D is acomb (i.e., G contains only one vertex of valen8y and there is a curve of
positive genus, or all curves are of gertiydbut we are not in the exceptional cag¥a)
and(Vb) of Theoren®.

Let X, I', y; be as in the previous theorems. Then egchas infinite order inl” if there

is a sequence of moves, consisting in successively removing dyrwésch intersect two

or more other curves, such that in the end one is left with a bunch of disjoint elementary
infinite pieces.

Actually, since it can happen that the normal crossing configuration is not minimal, it
would certainly be interesting to give general necessary and sufficient conditions also for
the nontriviality of eachy; (this might be very complicated, we fear).

For the applications mentioned above, however, we need to treat the general case and
we cannot restrict ourselves to the situation where the dual graph is a tree, which is treated
in this article.

As a matter of fact, at some point we thought we could easily reduce the case where
the dual graph is not a tree to the difficult case where we have a tree: but about five years
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ago, when we were writing up a first version of the article, we realized that this reduction
argument was not correct.

One reason why we have now written down the tree case is because this article owes
much to Guido Zappa. When | started to think about these questions, | received a kind letter
of Zappa, which was somehow related to my election as a corresponding member of the
Accademia dei Lincei, and it was only natural to ask him some question in combinatorial
group theory. Zappa not only answered, providing a result which is included in the article
(cf. Propositioni #), but he was very kind to continue to read and answer my letters.

Thus this article is particularly appropriate for this special issue of the Rendiconti
Lincei, dedicated to Guido Zappa. | am indebted to him, to his wife Giuseppina Casadio
and also to Antonio Rosati for orienting my choice towards mathematics. Giuseppina
Casadio ran some afternoon seminars in the Liceo Ginnasio ‘Michelangelo’ in the last
year of my (classical studies) high-school. There I learnt such basic things as, for instance,
congruences, and | was encouraged to take part in the Mathesis competitions first and
the mathematical Olympics later. Rosati incited me over the summer to read parts of
Courant and Robbins’ book ‘What is mathematics’, and to apply for admission to the
Scuola Normale Superiore di Pisa.

In Pisa the education was very analysis oriented, but later on in my life | discovered in
myself something of an algebraist’'s soul which was longing to learn more.

For this part of my soul Zappa was a reference figure, and | was later quite happy
to have finally a chance, during the Meetings of the Accademia, to discuss mathematical
questions with him.

Another reason to write this article now is to take up the problem again, with the
hope of finding soon the solution to the general case, and, even more, to propose further
investigation of these three-manifold fundamental groups.

For instance, other general interesting questions are in our opinion:

1) How big is the kernek of 71(T \ D) — m1(D) ?
2) What properties doek enjoy, for instance when is it not finitely generated (cf.
[Cat03, Definition 3.1 and Lemma 3.4])?

2. A PRESENTATION OF THE LOCAL FUNDAMENTAL GROUP

Let us first of all set up the notation for our problem. We have a smooth complex sS§tface
and a compact connected global normal crossing diviset | J; D; contained inS; thus
eachD; is a smooth curve of genys and has a good tubular neighbourhdGdvhich is

a 2-disk bundle oveD;.

T; \ D; is homotopy equivalent to its bounda®y;, which is ans*-bundle over the
compact Riemann surfade;, and is completely classified by its Chern class, i.e., by the
self-intersection number dd; in S, as we are going to briefly recall.

Denote bym; the opposite of the self-intersection numbepf so thatDl.2 = —m.

Let now ¢ be a point of D;. Then the bundleX; — D; is trivial over D; \ {g},
and also over a neighbourhodd of ¢q. The respective trivializations are clear if we
identify topologically the associated line bundle as the line bundle corresponding to the
divisor —m;gq.
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Since(D; — ¢) N V is homotopy equivalent t61, and the glueing map ofi! x §*
reads (we choose the trivialization ovlr \ {g} in the source, and the one ovErin the
target)

(z, w) = (z, 27 "w),

from the first van Kampen theorem (cf. e.p. [dR69]) we derive a presentation for the
fundamental group ok, which determines the central extension

1— Zy; » m(X;) —» m1(D;) —> 1

provided by the homotopy exact sequence ofShdundle.

In fact, in the inverse image d; \ {¢}, homeomorphic taD; \ {g}) x S, we take
the lifts of some standard generators of the free greu(@; — ¢); we use for these lifts
the usual notatiomy (i), b1(i), . .., a,, (i), bg, (i) (recall thatg; is the genus o;), and
moreover we let; be the generator of the fundamental group of the fibtewith the
standard complex counterclockwise orientation.

Since the fundamental group of a Cartesian product is a direct product, it follows, as
already mentioned, that commutes with all other generators.

From the glueing map we get a single further relation:

8i
[ Jlant). b)) = v,
h=1
If we now take a good tubular neighbourho®dof D which is the union of thd;'s,
we may assume moreover (by shrinking thés, and by the implicit function theorem),
that the intersectioff; N 7; is biholomorphic to

{(z1,22) | lz2z2] <1, |zi| < 2},

wherez; = 0, zo = 0 are the respective local equationsTf 7; at the pointp;; :=
D; N D;.

In eachD; let us consider a path; homeomorphic to a segment and going through all
the pointsp;; and let us mark a point; € L; different from all thep;;'s. We may assume
that we thus get a linear trde with the above points as vertices. Set= | J; L;, SOL is
naturally a graph.

It is important to notice that’ has a natural projection ontB such that outside the
points p;; we have a fibre bundle with fibig!, whereas the fibre over; is = st x St.

In fact, the local picture is given by

TiNT; ={(z1,22) | lzazel =1, |zi| < 2},
thus locally
T ={G122) | lnz2l =1 Jul <2 = S x ' x[1/2,2],

where the homeomorphism is given by the map sending») to (z1/1z1l, z2/1z2l, |1z1])-

The projection sends! x § x {1} to (0, 0), whereas e.g. the observation ti§&t< ST x
[1/2, 1) is anSt-bundle overs? x [1/2, 1) = punctured disk in the plane, allows us to
define the projection farz| > 1 as sendingz1, z2) to (0, z2(|z2| — 1)), and symmetrically
for |z1] > 1.
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It is quite easy to see then that we can find a sectiaB|gf — L, so we think ofL as
contained in¥|,..

Since the restriction of the fibratio®; — D; to L; is trivial, we see that, up to
homotopy equivalencey |, — L is obtained from the manifolds® x $* (L being a
tubular neighbourhood df; in D;) as follows.

We replace the produdt’ x S* (B, being an open 2-dimensional ball aroupg in
D) by a productAl?j x St (Al?j being a 2-dimensional annulus aroupd in D;, Al?j x~
§* x [1/2, ). Then we glue together the piecag x S* andAJ?i x ST identifying the
(inner) boundaries?® x S*.

We now make another arbitrary choice for our presentation, namely, since thelgraph
is connected, we may take a connected suhtfeg L containing all the points;.

We let one of them, sayp, be the base point. For eaghwe get a canonical path &Y
from ¢ to ¢;, whence a canonical basis ®f(L) is given by the loops.;;, for p;; & L',
obtained by going fromgg to ¢; along the canonical path, then goingig insideL;, then
to g; insideL;, then back t@o again along the canonical path.

The above description makes it clear that, exchanging the roles of the two indjces
we gethj; = Al.;l.

Let y; be the positively oriented generator of the infinite cyclic fundamental group of
(L0 s1y U L'. Then we find immediately the following presentation for the fundamental
group of ¥ restricted oL (L° = ; L?).

Generators

e y; for eachi,
° )\,’j for Dij & L.

In order to get the relations, set, for eggh € L,

o vij =y forp;; e L,

o vij = hijyihy; for pij ¢ L,

with the above convention thaf; = Ai‘jl. Then we get the
Local commutation relations: [y;, y;;] = 1 (for eachp;; € L).

To complete the presentation of (X), we use several times the first van Kampen
theorem (cf. [[dR69]), adding-|p,_r, to X restricted toL°. Note that thes*-bundle
X; — D is trivial on LY, and also orD; — L;.

The corresponding fundamental group is obtained as the amalgamatin xyZu;
of the free product of the following two groups: the direct prodiigt x Zy; (F2,, = free
group on 2; generators) and the cyclic grodjy;.

Here,; maps on the one side to the standard relation for the fundamental gfgup
of a compact curve of genys, and on the other side t;@m

Now, ; is no longer trivial inr1 (L), so we get the following extra

Generators a1 (i), bi(i), ..., ag (i), bg, (i) for eachi,

Main relations:
l_[[ah(l) ba(i)] = Hy,,
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Moreover, since we have a direct prodiiet, x Zy;, we should not forget the obvious
relations:

Global commutation relations: [a;, (), i1 = [vi, br ()] = 1.

3. PRESENTATION OF A SIMPLIFIED GROUP

Summarizing the result of the previous section, we have obtained the finitely presented
group” with:

Generators

e y; for eachi,

° )\ij for Dij ¢ L',

o ai(i), b1(i), ..., ag (i), by, (i) for eachi.
Relations

o [an(D), vi] = [yi. bn(D)] = 1 for eachi, i,
o [Tiiilan(), ba)] = v, ™ [1; vij for eachi,
e [vi, vij] = 1 (for eachp;; € L), where

(1) yij =y, forpjj e L,
(||) Vij = kij)/j)\i_jl for Dij & L,
() xji =255

REMARK 2. The projectionp : ¥ — D induces a surjection of fundamental groups
I' — m1(D) with kernel  normally generated by thg's. In fact, setting in the above
presentatiory; = 1 for all i, we get a free product of the fundamental groap&D;) with
the free group generated by thg’s (observe that;; = Afjl, whence the rank of this free
group is equal to the first Betti number bj.

DEFINITION 1. The associated finitely presentsidhplified groupl™ is the group with:
Generators:

e y; for eachi,

° )\ij for Pij =4 L,

e a;, b; for eachi such thatg; > 1;
Relations:

(Global commutation relationgy;, v;] = [vi, bi] = 1 for eachi,

(Main relations)[a;, b;] = y;"" [1; vi; for eachi,

(Local commutation relationd);, y;;] = 1 (for eachp;; € L) where, as above;;; = y;
for p;; € L', else (keeping in mind;; = Ai_jl) Yij = /\ijyjki_jl.

REMARK 3. We can restrict ourselves to proving our results for the simplified groups
I, which are also obtained from a plumbing procedure, replacing the (smooth) curves of
genus> 2 by genus 1 curves.
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In fact, the simplified groug™ is a homomorphic image df, obtained by imposing
the further relations
ap(i) =bp(i)=1 forh > 2.

Thus, if y; is nontrivial, respectively of infinite order, in the simplified grofipit is so a
fortiori in the groupl”. Moreover, observe that our hypotheses only concern the nullity or
positivity of the genus oD;, and not its precise value.

For instance, the minimality ab in the category of normal crossing divisors amounts
to the nonexistence of rational curves with self-intersectidn and meeting at most two
other curves each in at most one point. Thus, we see easily that hypothesis (i) of Theorem B
is still satisfied for the simplified group, and likewise for the hypothesis of Theorem A.

However, the canonical divisat’ of the simplified surface may not be nef, since if
there is a componem; with genus> 2, in the new configuratiof we get a corresponding
C; with genus 1 an&'C; = —C? = —D? = —(2g(D;) — 2) + K D;, which may become
negative.

The proof of the main theorems follows by a reduction procedure which we examine
in the next section.

4. REDUCTION TO THE CASE OF A GRAPH OF RATIONAL CURVES

Recall that we are working in the simplified group.

In the case where we get a component of genus 1, we will be able to simultaneously
remove the generatosg, b;, and replace the number; by an arbitrary integet; (in fact,
one could say that we can harvg = oo, meaning that the corresponding main relation
disappears).

If we can achieve this, certainly the nefness condition will continue to hold for the new
configuration. To this end, fix the indgx write

aj'=a, bj:=b, y =y,

and consider the grou@g with generators

e y; for eachi,
e q;, b; for thei's such thatg; > 1 andi # j,

and with relations

e [ai, vi] = [y, bi] = 1 for eachi # j,
o [ai, bi] =y, " [, vin for eachi # j,
e [, yin] = 1 (for eachp;, € L).

The groupl” is obtained fromG by adding generatos, b, and relations
e [a,y] =y, b] = 1 wherey := y; is an element o,

o [a,b]=y™" nh Yih-

We may rewrite the last relation simply as

o [a,b] =y".

Note that, in the grou, [y, y”] = 1, sincey commutes with each;,.
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We now use:

PrROPOSITION4. Given a groupG and elementy, y” € G such thafy, y”’] =1, letI"
be the quotient of the free product@fand a free group on two generata#sb, obtained
by imposing the following relations:

[a.y] =[y.bl=1 [a,b] ="
Then the natural homomorphism@finto I” is injective.

PROOFE We consider the quotient grow of I" obtained by adding the commutation
relations i, y"] = [y”, b] = 1. An equivalent way to describ is the following.

Let H be the Heisenberg group with generators, ¢ and relationsd, b] = ¢, [a, ¢] =
[b, c] = 1. ThenH is a two-step nilpotent group with infinite cyclic centre generated,by
and with abelianization free of rank 2. The element&igan be uniquely written as words
ab'ck, wherek, m, n are integers.

Then we can define as the quotient of the free product &f and G modulo the
relations

y'=c¢ layl=Ily.bl=1

At this point we are not able to give a unique representation for the elementsooft we
follow an idea of Guido Zappa.
Namely, we observe that every elementt€an be written as a product

h = goam(l)bn(l)glam(Z)bn(Z) . gr_lam(r)bn(r)gr,

where each pair of exponent& (), n(j)) is # (0, 0), go, ..., g are elements of; and
we can assume that, ..., g,—1 do not belong to the subgroup generated by, y” in
G (whereago andg, could even be trivial).

It remains to see when two such products yield the same eleméitice that the
conditionthatgy, ..., g-—1 do not belong ta3 follows from the property that be minimal.

We claim thatr is uniquely determined, and that the only allowed transformations of
the minimal representation are obtained by letting facgors” commute witha, resp.b.

More precisely, we claim that we get an equivalent minimal product iff:

e we replace eaclg; (i = 1,...,r — 1) by multiplying it by an elemeng € B, and
correspondingly:

e if g; is replaced by; g, theng, 1 is replaced by ~1g; 1,

e if g; is replaced byg;, theng;_1 is replaced by, _1g 7.

This means that, for ea¢hthe exponentén (), n(j)) are uniquely determined; moreover,

the double coseBg; B is uniquely determined, and finally the prodyet - - g, is uniquely

determined. In particular, it follows that our element igGriff » = 0, and in this case the

representation is unique, which is precisely the assertion of the proposition.

To establish our claim, consider the equivalence classes of the praddetscribed
above. It suffices to show that we have an action of the generators of the grainich
satisfies the defining relations far. This is clear for the elements of the groGpand also
for the generators, b, and an easy verification shows that the relations are satisfiedl
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REMARK 4. Notice that if we fix an integet; and in the groug> we add the relation
1=y " l;[ Yihs

we obtain the fundamental group of the graph of curves where the elliptic €yrweth
self-intersection—m;) has been replaced by a smooth cugvé! with self-intersection
(—nj). We can therefore by induction reduce to the case of a graph of rational curves.

5. THE CASE OF A TREE OF SMOOTH RATIONAL CURVES

Here we have a presentation with
Generators

e y; for eachi;

Relations

o 1=y "I, v for eachi,
e [y, ;] = 1(for eachp;; € L).

We first show the necessity of the nefness hypothesis in Theorem A.

ExampPLE 1. Consider a diagram of typ&,, i.e., a linear tree with vertices. Then our
group, as we shall shortly see, is generategihyy . ., y, with relations

2 2 2 2 2
V]_ =Y2, )/2 = Y173, )/3 =Y2v4, ..., Vn,1 = ¥Yn—-2Vn Vn = VYn-1-

Therefore, the group is cyclic, generatedyby= y1 with "1 = 1, and we have; = y'.
Letn = 4, and let us now blow up the central point of intersection betw&eandCs.
We then obtain a new generatar(the loop around the exceptional curve) and the relation

Y =y2-y3, butnowy’ =y y3=1!

We recall that, for a tree of rational curves on a complex surface, the condition that the
divisor K s is nef reads

1) D? < 2.
If we are on an algebraic surface, the index theorem says that
2) the intersection matrikD; - D;) has positivity index™ < 1.

An easy example where 1) holds ut = 1 is provided by a tree of rationé-2)-curves,
where all curves meet a central one (the dual graph is a star).
In fact, if Dg is the central curve, we then have

(mDo + D1+ -+ + Dy)? = 2(—=m? + mn — n),

which is positive for 1< m < n — 1.
Then the group is generated by, . . ., y,, § with relations

vi=8, =2 .
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In this case the abelianization is the direct sum of cyclic groups of respective
orders 2n — 4), 2, ..., 2, with generators induced by the respective residue classes of
Y1, yflyg, ce, y{lyn_l, whence our standard generators even have a nontrivial image in
the maximal abelian quotient.

We now proceed to analyse the different cases.

5A. Case of a linear tree of rational curves

LEMMA 5. Assume that we have a linear tree iofsmooth rational curves with self-
intersection(—m;), wherem; > 2. Setinductively1 := 1, az := m1,a;j+1 ‘= m;a; —a;—1.
Then

Va1 > a;;
2) our group ! is a cyclic group of ordet, 1, generated by
3) the elemeny; equalsy;”, and is not trivial.

PROOFE We can write our relations amona, . . ., y,, as
mi my—
VIE=Y2 Vel =YY e Vi S ViclVidls oo Vo1 = Ya—2Vn, V" = Va1

We then easily obtain

-1_m; —ai-1, aim; __ di+l

Yit1 =Y, Vi =M Vi 1Z

which proves the first part of assertion 3); on the other hand, the last relation yields
yl”'"“ =1, which proves assertion 2).
Notice that

ait1—a =mia; — a1 —a; = (m; —Da; —a;_1 >0

sincem; > 2 and since by induction; > a;_1.
Hence, assertion 1) is proved, and simultaneously we have shown thate&ch
nontrivial. m]

REMARK 5. The proof of the above lemma shows that in any case the local fundamental
group of a tree of rational curves is cyclic, of ordgr, 1 if a,,11 is nonzero.

Assume now that all the numbers are strictly positive. Then, if;; = 1, we obtain
¥ = ¥i—1¥i+1, and since the group is abelian, we may rewrite the relgt{on' = y;_oy;

mi_1—1 P mi mip1—1 .
asy; 1" " = vi—2vi+1, and similarlyy, [ = y;y; 2 becomes; |t = yi_1yi42. This

has the obvious geometrical meaning that we can blow down alHhg-curves, and then
if at the end of the proceds remains nef, our remaining elememsare not trivial.

REMARK 6. Assume that we lek; — oo. Then alsaz; 11 — o0, hencea, 1 — oo,
whereasz; remains constant fof < i. Hence, ordy;) — oo for j < i. Changing the
linear order of the linear tree to its inverse, we see thatgyd— oo also forj > i.
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5B. Reduction to the case of a comb of rational curves

LEMMA 6. LetG1, G2 be groups and let; be nontrivial elements iy; fori = 1, 2 such
that moreover:; has infinite order inG». If I" is the quotient of the free produét; « G2 by
the relationaiaz = 1, then the natural homomorphism@f in I is injective. Moreover, if
a1 does not generat€é; anda, does not generat€,, thenI" is always an infinite group.

PrROOFE The desired claim follows if we show that the elementsiare represented by
elements of the sét of equivalence classes of “good” words

w = g1(1) - g2(1) - g1(2) - - - g1.(k) - g2(k) - g1(k + 1),

whereg>(i) does not belong to the subgroup generatedbior 1 < i < k, andgi(j)
does not belong to the subgroup generatedibfpr 2 < j < k, andw is equivalent tav’
if and only if the following conditions hold:

1) k=K,
2) there exist integers £" for right, “ 1" for left) r1, A2, r2, A3, ..., rr, Ak+1 Such that the
word w’ equals

(g1(Dayt) - (astga(Daz?) - (a2 g1(2ay?
(@ gr(alk) - (@ ga(k)ay ™ty - (@ gk + 1)).

We let the elements df' operate by left multiplication as follows:

o forys € Gyrweletyyw = (y181(1)) - g2(1) - g1(2) - - - g1(k) - g2(k) - ga(k + 1),
e for y» € G2 notin the subgroup generated ywe let

vow =-e1-y2-g1(D) - g2(1) - g1(2) - - - ga(k) - g2(k) - g1(k + 1),

(e; being the identity element a¥;), while we set
o ayw =a; w.

We obtain a homomorphism of each into the groupS(WV) of permutations ofV, and
moreover the transformation associated4a@, is by definition the identity, whence we get
a homomorphism of” into S(W).

Moreover, I acts transitively on/. Representing each element bf by a good
word w, we see that ifv is the identity this implies thdt = 0, andg1(1) = es.

Thus the action omn; establishes a bijection betwe&hand)V; in particular, since the
words withk = 0 correspond to the elements Gf, G1 injects intoW, whence intol".
Notice finally that ifay generatesG, then G1 is isomorphic tol”, and similarly if a;
generates;.

On the other hand, i#; does not generaté; for i = 1, 2, thenk can be arbitrarily
large, whencd™ is surely infinite. O

COROLLARY 7. LetGy,...,G, be groups and let; fori = 1,...,r be a nontrivial
element inG;. If I" is the quotient of the free produci; = --- * G, by the relation
a1 ---a, = 1, then forr > 3the natural homomorphism @f1 in I" is injective. Moreover,
if r > 4, then the groug™ is infinite.
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PrROOF Apply Lemma[®, considering that, - - -a, is an element of infinite order in
Gy * --- % G,. In the case > 4, apply the lemma t6/; * G2 andG3 * - - - * G, taking
into consideration that both are infinite and not cyclic. O

With the aid of the foregoing corollary we are able to reduce the proof of our main
results to a very special case.

PROPOSITIONS. Lety; be one of our generators of the grodip in the case where the
hypotheses of Theorem B are satisfied. Theis nontrivial except possibly if the tree is
nonlinear and the curv®; is the only one which intersects at least three other irreducible
components ob (we shall then say that the tree iscamb, and thatD; is the rim of the
comb).

PROOF The case where the tree is linear was already dealt with. So, assume that there
exists a curveD; with i # j such thatD; intersects at least three other irreducible
components ofb. Consider the grou; obtained as the quotient df by the relation
v =1

If D — D; (the difference of divisors, and not of sets) hasonnected components
D), ..., D(r), we see immediately that is the quotient of the free produ6ty *- - -G,
by the relationa; - - -a, = 1, whereGy, is the fundamental group of the boundary of a
good tubular neighbourhood dd (%), anda, is the loop around the unique irreducible
component ofD (k) meetingD;. By our corollary, and since by induction we may assume
that eachy;, i = 1,...,r, is nontrivial, we conclude that eahy, injects intoG, and a
fortiori into I".

Hence, all elementg; with i # j are nontrivial. O

5C. The rim of a comb of rational curves

Assume that we have a unique cu®gsuch thatD — D; hasr > 3 connected components
D), ..., D(r), each being a chain of smooth rational curves. Set for convenience
y = yj. We shall then say as before that we haxamb with rim D; and withstrings
D), ..., D).

Then, for each chai (), we can order the generators in such a way that we obtain
the relations

mi

my m; my_—1
Vi =Y2, Vo =V1V3, -, ¥y =VYi-1Vi+l, VY,_1 = Yn-2Vn-
Proceeding as in Section 5A, we infer that= y;", wherea,, > 0 is defined inductively

as there.
Finally, letting(—m) be the self-intersection dp;, we obtain a relation

d d
y’n:ﬂll"'ﬂrr»

where theg,,’s are loops, for each chaib (i), around the end opposite 12;.
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We are left with the following

THEOREMY9. LetI'(m,b1,...,b,;ds,...,d,), forintegersm > 2andb; > d; > 1, be
the group with

(i) generatorsy, B1, ..., B, and relations
@iy y = ﬂi’l =...= ,Bf’ (recall that the integer$,, are > 2), and

d d,
@iy y™=p1" B

Then the (central) elememtis nontrivial insidel” and indeed of infinite order unless we
are in the following exceptional cases with= 3, and wheree = 1,2and1 <t <n — 1:

(Va) (b1,b2,b3) = (2,2,n),n > 2, (d1,d2,d3) = (1, 1, 1),
(Vb) (b1,b2,b3) =(2,3,n),3<n <5,(d1,d2.d3) = (1, ¢c,1).

PROOFE STEPI. We may assume that G.C@®;, d;) = 1 for eachi. This is a conse-
quence of the following Logical Principle Lemma of combinatorial group thery.

LEMMA 10 (Logical Principle Lemma)Let G be a finitely presented group

G=(f1r..... B | Ri(p) =--- = R;s(B) = 1).

Then, setting8; = B*, i.e., taking the new grous” = G = Z/{({f187%)), we get
ordg»(B) = k - ordg (B1), while, for j > 2, ordg»(8;) = ordg (8;).

PROOFE The situation is a particular case of Lemﬁa 6 with= 1 anda, = B~*. The
injectivity of the mapG — G” implies the desired assertion. O

Clearly, ifc; = G.C.D(b;, d;) and A is the groupl" (m, by/c1, ..., by /cr;d1/c1, ...,
d,/c;), an iterated application of the Logical Principle shows that the order isf the
same inl” and inA.

Step Il. Let T:=T(@m,b1,...,b;d1,...,d,) be the quotient of the group
r'(m,by,..., b d1,...,d) by the central cyclic subgrou@(y) generated by . Then
by Step I,T is isomorphic to the polygonal group(bs, . . ., b,) with generatorsy, .. ., §,
and reIationsSi’1 =...= (Sf’ =681---8, = 1.

InfactT (m, bs, ..., by; d1, ..., d,) is the quotient of the free product of cyclic groups
of respective orders; by the relatior)Bf1 e ,85’" = 1. But, since GQC.D.(b;, d;) = 1, each

,Bl.d" := §; is a generator of the respective cyclic group.

STEPSIII-V. We thus have a central extension
1—-C(y)—> T'(m,b1,...,by;d1,...dy) > T(b1,...,b;) —> 1,

where C(y) is the cyclic central subgroup generated py and the quotienI’ =
T (b1, ..., b,) is the polygonal group defined above.
Our strategy will consist in proving that either

(I the image ofy is nontrivial in@Q-homology (i.e., in the abelianization &f tensored
with @), whence a fortioriy has infinite order in”, or
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(IV) HY(I', Q) = 0; however, then, in the nonexceptional cagesffers from T because
it has cohomological dimension 3 instead of 2, and thus in any gasa&s infinite
orderinr".

(V) then treats the exceptional cases using integral homology and matrix representations.
Steprlll. The above odd looking alternative is a consequence of the following

PrROPOSITION11. Let I be the above groug™(m, ba, ..., b;d1,...,d,). Then the
image ofy in H1(I", Q) is a generator, and it is nonzero if and onlyif £ > . d; /b;.

PROOF Let [y], [B:i] be the respective images of 8; in Hi(I", Q). Then they generate
it and the only relations are

8] = Q/eoly). (=Y di/bi)ly] =0.
Hence, ] generatedd1(I", Q), andH1(I", Q) # O ifand only ifm = ), d; /b;. O

STEPIV. Assume now thatH1(I", Q) = 0, and observe that, because of our plumbing
construction,I” is the fundamental group of an orientable 3-maniféld := X. In
particular, H1(M, Q) = H1(I',Q) = 0, and by Poincd duality and ordinary duality
HY(M,Q) = H(M,Q) = 0, while H3(M, Q) = Q. Let N be the universal covering
of M. Then we have a spectral sequer@¢é(I", H(N, Q)) converging to the graded
module associated to a suitable filtration/f+4 (M, Q), for each ringQ (Q = Z or Q
in our application).

Clearly, HY(N, Q) = 0, henceH?(M, Q) = 0 impliesH?(I", Q) = 0.

We can moreover apply (cf._[Weid4, 6.8.2]) the Lyndon—Hochschild—Serre spectral
sequence associated to the exact sequence

1-Cly)—>T:=I(m,b1,...,by;d1,...,d,) > T — 1,

whose E> term is HP (T, H1(C(y), Q)) and which converges to a graded quotient of
HPT(T, Q).

Now, if y had finite order, thed#’ (C(y), Q) = 0 for eachi > 1, whenceH!(I", Q) =
H (T, Q) for eachi > 0.

We get therefore an obvious contradiction in the case whHeé@', Q) # 0.

Observe that the polygonal group is a quotient of the groupgl with generators
B1, ..., B and with relationgy --- 8, = 1. IT is the fundamental group d?%: minus
r points, andT is the orbifold fundamental group of the maximal Galois co@eof
P! branched at these points with respective ramification multiplicities exactly equal to
br—1,...,b — 1.

If T is infinite, thenC is not compact, otherwis€ = P!, by the Riemann mapping
theorem. Hence it is infinite, thenH2(PL, Q) = Q = H(T, Q) and we have found the
required contradiction.

Otherwise,T is finite, andC — P! has a finite degreg. As is well known, by the
formula of Hurwitz, then 2- 2/d = ", (1 — 1/b;), which implies that < 3, and since
r > 3wegetr =3and) ;(1-1/b;) > 1, aninequality which leads us to the exceptional
cases folb1, by, b3), corresponding to the Platonic solids and to the Klein groups
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(Va) (2,2,n),n > 2(d =2n),(d1,d2,d3) = (1,1, 1),
(Vb) (2,3,n),3<n <5(d =1224,60),(d1,d2,d3) = (1, ¢, 1)

(herec =1,2and 1<t <n —1).

STEPVA. Assume we are in the exceptional case (Va). We shall explicitly prove that the
group[ is finite, find a faithful matrix representation, and find that the period efjuals
exactly 2p, wherep := (m — 1)n — t. Thus, the order of is always> 2.
In fact, we can change the presentation of the group, eliminaztileugﬁé73 = p3 and
obtaining the relatio” " = B182. ThenpiBz = B3~ = p2p4, whenceBz = 1.
Setting for simplicitya := B1, b := B3, we get the presentation

I''=(a,b|a®=>b" =ab’ab").

Sincea? = abPab?, we getb—? = abPa~1, whenceb=?" = abP"a~1 and sinceu
commutes with” = a2, finally b=P" = bP",i.e.,b?"" =1 = a*’.

It follows that the order of the group' is at most 4n, and that equality holds if the
period ofa is exactly equal to 4.

In order to show that the period afis exactly equal to A4 we use the representation
p . I' — GL(2, C) such that

0 §4p é‘2”17 0 )
= , b) = _
pla) (§4p 0 ) p (D) ( 0 u§2n117
whereg;, ;= exp(2zi/h), andu is a p-th root of 1 such that” = ¢, (recall that, since we

assumed &.D.(n, 1) = 1, also GC.D.(p, n) = 1).
One can indeed verify that(a?) = p(b") = p((abP)?) = ¢z, - 1d, as claimed. O

STEPVB. Assume that we are in the exceptional case (Vb).
In this case, we shall first try to show that the imager of the abelianizatior; of I”
is nontrivial.
Eliminatingy we getg; = g3"~'B, ¢, thusI™ is generated by := B2 andb := g3
with relations
a3 — bt = bp+na7cbp+na7c’

wherep :=n(m — 1) — ¢, as above.
Letting A, B be the respective images@fb in the abelianization of ", we obtain

3A—nB=0, 2cA=2p+n)B.

Since 3— 2¢ = +1 (according to the respective cages 1, ¢ = 2), we get the relation
+A + 2pB = 0, thusG is cyclic with generatoB.

Moreover, the relation B = 3A = —(+6p B) shows thatB has periodf :=n + 6p.

Now, if m > 2, thenp > 0, thus ifc = 1 thenf > n, whencenB # 0, as we wanted
to show.

If insteadm > 2 andc = 2, then the absolute value of the period equals6n =
n[6(m — 1) — 1] = 6¢, which is clearly> n as soon as: > 3.
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Ifinsteadm = 2, the absolute value of the periodisn iff 4n > 6¢, which holds unless
%n <t <n-1,i.e.,unless =n—1.Butinthiscaseonehgs=51—-6(n—1) = 6—n,
thusnB = 0 since 6— n dividesn.

Similarly, if m = 1 andp = —t, we havef = £6¢ —n, andnB # 0 if ¢ = 2, whereas
if ¢ = 1 we can reach this conclusion unlesis a multiple of @ — n, that is, unless = 1
andn = 3,4, 5.

We are then left with two cases to consider, the first whete 2, the second where
¢ = 1. For the latter case, we use directly a result which goes back essentially to Felix
Klein ([Klein]), and is clearly stated by Milnor in [Mil75]:

Given a triangle grouf™ := T(1, b1, b2, b3; 1, 1, 1) which is elliptic, i.e., such that
> 1/b; > 1, itsinverse imagé in SU(2, C) has the presentation

T = (y,B1, B2, B3 | y = B2 = B2 = BS = B1BaBa).

It follows that7" is isomorphic to our group’, thus we have a nontrivial central extension
of T by the central element of order two.
In the former case, we have the presentation

[ =(y,61,82,83 |y =062 =563 =62, y2=061580"1).
Again here we use the extended triangle grdypsetting
d1:=p1, & =p, = ﬂg,_l-

Then we see that we get a homomorphic imagé ofvherey maps onto an element of
order 2 (that we still denote by).
We are finished with (Vb). O

6. PROOFS OF THE MAIN THEOREMS

PROOF OFTHEOREM A. By RemarK 3 we may replacE by its homomorphic image
given by the simplified group, i.e., we may assugpe= 1 or O.

If gi > 1, by Remark}4, we may again take a homomorphic image obrresponding
to changingg; to 0 and makingn; arbitrarily large (i.e., making the self-intersection
extremely negative).

Thus we may assume that we have a tree of rational curves, wiere< —2 for all ;.

If the tree is linear, the statement follows by Lemma 5.

If we have a comb of rational curves, apdcorresponds to the rim of the comb, then
the nontriviality ofy; follows by Theoremi 9 and by the subsequent Steps IIl, IV, V; else, it
follows by Propositiofi B.

The remaining cases are taken care of again by Propofs|tion &]

PROOF OFTHEOREMB. Observe that if (ii-1) holds, angi = 0, then if D/ is a curve
we haveKg - D] > 0, hence als&s - D; > 0.

Thus we see that all the curv®s with g; = 0 have self-intersectioD,? =-m; < -1,
therefore (ii-1) implies (ii-2) and we proceed with assumption (ii-2), without forgetting the
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other assumption of minimality in the GNC category. This implies that i= 0 and
Dl.2 = —1, thenD; meets at least three other components.

We can then use exactly the same strategy used for Theorem A, since the case of a
linear tree follows automatically, and curves with self-intersectidnoccur only as rims,
and in this case the possibility = 1 is handled in Theorefi} 9 and in the subsequent Steps
I, 1V, V. O

PROOF OFTHEOREMC. We again follow the strategy of proof of Theorem A.

If we have a linear tree, and there is a curve of positive genus, then we may conclude
that eachy; has infinite order by Remafk 6.

If we have a comb, then we know by Theorgn 9 that the geneyatmrresponding
to the rim has infinite order apart from the exceptional cases (Va), (Vb). Let morgover
belong, say, to the strin®(1). Then we have shown in 5A (cf. Lemrﬂa 5) that= yf"
andy;, = yf", where 1< a; < a,. Hence, alsg/; andy; have infinite order in the
nonexceptional cases.

Similarly we are done if we have a comb and there is a cdyv®f positive genus,
since we may then reduce to the case where all the genera aren, iswrbitrary, hence
we are not in the exceptional cases.

So our statement is proven for elementary infinite pieces, and the rest follows easily by
induction, since we may apply Lemrph 6 and Corol[gry 7. O

NOTE. When | presented these results at the AMS Meeting in NY, November 3-5,
2000, Walter Neumann mentioned that our presentation of the local fundamental group
of neighbourhoods of divisors in complex surfaces is similar to the methaod of [Neu81] of
solid tori decompositions for 3-manifolds, in turn based on the methods earlier introduced
by Waldhausen [([Wald67],_[Wald68]), who studied the problem whether such manifolds
are determined by their fundamental groups.

We would also like to mention that Wagreich ([Wa@71]) and Karras ([Klar75])
determined the cases whdbecomes from a singularity and the grodipis solvable.

ACKNOWLEDGEMENTS | would like to express my indebtedness to Guido Zappa, for a precious suggestion
and for the letter exchange | had with him, and also to Nick Shepherd-Barron, for another precious suggestion
that came out during our train conversation, in June 98 near Oberwolfach. Thanks to Igor Dolgachev for kindly
pointing out the relevance of reference [Mil75].
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