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ABSTRACT. — Given a smooth complex surfaceS, and a compact connected global normal crossing divisor
D =

⋃
i Di , we consider the local fundamental groupπ1(T \ D), whereT is a good tubular neighbourhood

of D.
One has an exact sequence 1→ K → Γ := π1(T −D) → Π := π1(D) → 1, and the kernelK is normally

generated by geometric loopsγi around the curveDi . Among the main results, which are strong generalizations
of a well known theorem of Mumford, is the nontriviality ofγi in Γ = π1(T − D), provided all the curvesDi

of genus zero have self-intersectionD2
i

≤ −2 (in particular this holds if the canonical divisorKS is nef onD),
and under the technical assumption that the dual graph ofD is a tree.
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1. INTRODUCTION

In his first mathematical paper [Mu61] David Mumford solved the conjecture of
Abhyankar showing that, over the complex numbersC, a normal singular pointP of an
algebraic surfaceX is indeed a smooth point if and only if it is topologically simple: more
precisely, if and only if the local fundamental groupπ1,loc(X, P ) is trivial.

He derived from this result the interesting corollary that the local ringOX,P of a normal
singular point is factorial if and only if eitherP is a smooth point, orπ1,loc(X, P ) is the
binary icosahedral group, and the singularity is then analytically isomorphic to

{(x, y, z) ∈ C3
| z2

+ x3
+ y5

= 0}

(a shorter independent proof of this corollary was later found by Shepherd-Barron, cf.
[S-B99]; this proof is similar in spirit to the one by Lipman in [Lip69]).

Since the local fundamental group is the fundamental group ofU − {P } whereU

is a good neighbourhood ofP in X, Mumford considered the minimal normal crossing
resolution of the singularity, and derived the above theorem from the following.

Let D =
⋃

i Di be a compact connected normal crossing divisor on a smooth algebraic
surfaceS, such that the intersection matrix(Di · Dj ) is negative definite. Then the local
fundamental group aroundD, i.e., the fundamental groupΓ := π1(T − D) whereT is a
good tubular neighbourhood ofD, is trivial if and only if D is an exceptional divisor of
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the first kind (i.e.,D is obtained by successive blowing-ups starting from a smooth point
of another algebraic surface).

Our purpose here is threefold:

1) First, we want to show that the theorem has more to do with a basic concept
appearing in surface classification rather than with singularities; i.e., that the crucial
hypothesis is not that the matrix(Di · Dj ) be negative definite, but that the canonical
divisor KS of S be nef onD (this happens for a minimal model of a nonruled algebraic
surface). For a nonexpert: the condition thatKS be nef onD means that, ifgi is the genus
of the smooth curveDi , then 2gi − 2 ≥ D2

i for eachi.
As a matter of fact, this condition will only be needed for the curvesDi of genus zero,

for which it readsD2
i ≤ −2.

2) Second, since the structure of the groupπ1(D) is very well understood and there
is an obvious surjectionΓ = π1(T − D) → Π := π1(D), we want to study in general
how big the kernelK of this surjection is. Then the result is that under the above nefness
hypothesis each standard generator ofK, i.e., each simple loopγj around a componentDj ,
is nontrivial inπ1(T − D).

More precisely, we would like to show that, apart from a well described family of
exceptions, this generatorγj has infinite order.

It is rather clear that, in order to have a very simple formulation, the hypothesis that
KS be nef onD is necessary.

In fact, if we letD be a line inP2, the local fundamental group aroundD is trivial and
we haveKP2D = −3; similarly if we take a(−1)-curve (a smooth rational curve with
self-intersection−1, hence withKSD = −1).

A slightly more complicated example, obtained by blowing up the central point of
a string of four(−2)-rational curves, shows that the local fundamental group may be
nontrivial, yet someγi may be trivial, if we do not use the nefness assumption.

The simplest results we have in the direction explained above are the following
Theorems A, B, C.

Among these, Theorem A is the simplest to state:

THEOREM 1 (Weak Plumbing Theorem A).Let D =
⋃

i Di be a connected compact
(global) normal crossing divisor on a smooth complex surfaceS. Assume that the dual
graphG of D is a tree. LetΣ be the boundary of a good tubular neighbourhoodT of D,
T =

⋃
i Ti . The generatorγi of the kernel∼= Z of π1(Ti −Di) → π1(Di) has a nontrivial

image inπ1(Σ) ∼= π1(T − D) under the assumption that the canonical divisorKS of the
surfaceS is nef on the components ofD of genus0, i.e.,KSDi ≥ 0 for eachi such thatDi

has genus zero.

REMARK 1. Observe that we do not needS to be compact: this hypothesis would entail,
by the index theorem, that the positivity index of the matrix(Di ·Dj ) is≤ 1. Therefore, our
result concerns all the 3-manifoldsΣ which are boundaries of complex surfaces obtained
by plumbing smooth compact complex curves.

More generally, we have the more precise

THEOREM 2 (Strong Plumbing Theorem B).Let D =
⋃

i Di be a connected compact
(global) normal crossing divisor on a smooth complex surfaceS. Assume that the dual
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graphG of D is a tree. LetΣ be the boundary of a good tubular neighbourhoodT of D,
T =

⋃
i Ti . Then the generatorγi of the kernel∼= Z of π1(Ti − Di) → π1(Di) has a

nontrivial image inΓ := π1(Σ) ∼= π1(T − D) if

(i) D is minimal, i.e., it is not obtained by blowing up a (global) normal crossing divisor
D′, and moreover either

(ii-1) after successively blowing down all the rational(−1)-curves we get a divisorD′

contained in a smooth complex surfaceS′ and such thatKS′ is nef on the components
D′

i corresponding toDi of genus zero, or
(ii-2) if Di has genus zero, then its self-intersection is negative.

3) Our motivation for studying these questions came from the study of topological
characterizations of the existence of fibrations on algebraic surfaces, especially in the
noncompact case, where (cf. [Cat00]) one has to consider the fundamental group at infinity,
which is a disjoint union of local fundamental groupsπ1(T − D).

The goal is to get new and simpler variants of the characterizations of the Zariski open
sets which are complements of unions of fibres of a fibration containing all the singular
fibres. These were given in [Cat00, Theorem 5.7] for constant moduli fibrations, and in
[Cat03, Theorem 6.4] in the general case.

Indeed, in these theorems there is one condition pertaining to the fundamental group
at infinity, namely that, given a certain group homomorphism, eachγi maps to a certain
element of infinite order.

So, a natural question is: when does eachγi have infinite order inπ1(T − D)?
We have some partial result concerning this question, which we hope to be able to

improve in the future:

THEOREM 3 (Plumbing Theorem C).Let D =
⋃

i Di be a connected compact (global)
normal crossing divisor on a smooth complex surfaceS satisfying the assumptions of
Theorem A (for instance, the dual graphG of D is still assumed to be a tree). Define
D to beelementary infinite if either

1) G is a linear tree and there is a curve of positive genus, or
2) D is a comb (i.e., G contains only one vertex of valency3) and there is a curve of

positive genus, or all curves are of genus0, but we are not in the exceptional cases(Va)
and(Vb) of Theorem9.

Let Σ , Γ , γi be as in the previous theorems. Then eachγi has infinite order inΓ if there
is a sequence of moves, consisting in successively removing curvesDi which intersect two
or more other curves, such that in the end one is left with a bunch of disjoint elementary
infinite pieces.

Actually, since it can happen that the normal crossing configuration is not minimal, it
would certainly be interesting to give general necessary and sufficient conditions also for
the nontriviality of eachγi (this might be very complicated, we fear).

For the applications mentioned above, however, we need to treat the general case and
we cannot restrict ourselves to the situation where the dual graph is a tree, which is treated
in this article.

As a matter of fact, at some point we thought we could easily reduce the case where
the dual graph is not a tree to the difficult case where we have a tree: but about five years
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ago, when we were writing up a first version of the article, we realized that this reduction
argument was not correct.

One reason why we have now written down the tree case is because this article owes
much to Guido Zappa. When I started to think about these questions, I received a kind letter
of Zappa, which was somehow related to my election as a corresponding member of the
Accademia dei Lincei, and it was only natural to ask him some question in combinatorial
group theory. Zappa not only answered, providing a result which is included in the article
(cf. Proposition 4), but he was very kind to continue to read and answer my letters.

Thus this article is particularly appropriate for this special issue of the Rendiconti
Lincei, dedicated to Guido Zappa. I am indebted to him, to his wife Giuseppina Casadio
and also to Antonio Rosati for orienting my choice towards mathematics. Giuseppina
Casadio ran some afternoon seminars in the Liceo Ginnasio ‘Michelangelo’ in the last
year of my (classical studies) high-school. There I learnt such basic things as, for instance,
congruences, and I was encouraged to take part in the Mathesis competitions first and
the mathematical Olympics later. Rosati incited me over the summer to read parts of
Courant and Robbins’ book ‘What is mathematics’, and to apply for admission to the
Scuola Normale Superiore di Pisa.

In Pisa the education was very analysis oriented, but later on in my life I discovered in
myself something of an algebraist’s soul which was longing to learn more.

For this part of my soul Zappa was a reference figure, and I was later quite happy
to have finally a chance, during the Meetings of the Accademia, to discuss mathematical
questions with him.

Another reason to write this article now is to take up the problem again, with the
hope of finding soon the solution to the general case, and, even more, to propose further
investigation of these three-manifold fundamental groups.

For instance, other general interesting questions are in our opinion:

1) How big is the kernelK of π1(T \ D) → π1(D) ?
2) What properties doesK enjoy, for instance when is it not finitely generated (cf.

[Cat03, Definition 3.1 and Lemma 3.4])?

2. A PRESENTATION OF THE LOCAL FUNDAMENTAL GROUP

Let us first of all set up the notation for our problem. We have a smooth complex surfaceS,
and a compact connected global normal crossing divisorD =

⋃
i Di contained inS; thus

eachDi is a smooth curve of genusgi and has a good tubular neighbourhoodTi which is
a 2-disk bundle overDi .

Ti \ Di is homotopy equivalent to its boundaryΣi , which is anS1-bundle over the
compact Riemann surfaceDi , and is completely classified by its Chern class, i.e., by the
self-intersection number ofDi in S, as we are going to briefly recall.

Denote bymi the opposite of the self-intersection number ofDi , so thatD2
i = −mi .

Let now q be a point ofDi . Then the bundleΣi → Di is trivial over Di \ {q},
and also over a neighbourhoodV of q. The respective trivializations are clear if we
identify topologically the associated line bundle as the line bundle corresponding to the
divisor−miq.
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Since(Di − q) ∩ V is homotopy equivalent toS1, and the glueing map onS1
× S1

reads (we choose the trivialization overDi \ {q} in the source, and the one overV in the
target)

(z, w) 7→ (z, z−mi w),

from the first van Kampen theorem (cf. e.g. [dR69]) we derive a presentation for the
fundamental group ofΣi , which determines the central extension

1 → Zγi → π1(Σi) → π1(Di) → 1

provided by the homotopy exact sequence of theS1-bundle.
In fact, in the inverse image ofDi \ {q}, homeomorphic to(Di \ {q}) × S1, we take

the lifts of some standard generators of the free groupπ1(Di − q); we use for these lifts
the usual notationa1(i), b1(i), . . . , agi

(i), bgi
(i) (recall thatgi is the genus ofDi), and

moreover we letγi be the generator of the fundamental group of the fibreS1, with the
standard complex counterclockwise orientation.

Since the fundamental group of a Cartesian product is a direct product, it follows, as
already mentioned, thatγi commutes with all other generators.

From the glueing map we get a single further relation:

gi∏
h=1

[ah(i), bh(i)] = γ
−mi

i .

If we now take a good tubular neighbourhoodT of D which is the union of theTi ’s,
we may assume moreover (by shrinking theTi ’s, and by the implicit function theorem),
that the intersectionTi ∩ Tj is biholomorphic to

{(z1, z2) | |z1z2| ≤ 1, |zi | ≤ 2},

wherez1 = 0, z2 = 0 are the respective local equations ofTi, Tj at the pointpij :=
Di ∩ Dj .

In eachDi let us consider a pathLi homeomorphic to a segment and going through all
the pointspij and let us mark a pointqi ∈ Li different from all thepij ’s. We may assume
that we thus get a linear treeLi with the above points as vertices. SetL =

⋃
i Li , soL is

naturally a graph.
It is important to notice thatΣ has a natural projection ontoD such that outside the

pointspij we have a fibre bundle with fibreS1, whereas the fibre overpij is ∼= S1
× S1.

In fact, the local picture is given by

Ti ∩ Tj = {(z1, z2) | |z1z2| ≤ 1, |zi | ≤ 2},

thus locally

Σ = {(z1, z2) | |z1z2| = 1, |zi | ≤ 2} ∼= S1
× S1

× [1/2, 2],

where the homeomorphism is given by the map sending(z1, z2) to (z1/|z1|, z2/|z2|, |z1|).

The projection sendsS1
×S1

×{1} to (0, 0), whereas e.g. the observation thatS1
×S1

×

[1/2, 1) is anS1-bundle overS1
× [1/2, 1) ∼= punctured disk in thez2 plane, allows us to

define the projection for|z2| ≥ 1 as sending(z1, z2) to (0, z2(|z2|−1)), and symmetrically
for |z1| ≥ 1.
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It is quite easy to see then that we can find a section ofΣ |L → L, so we think ofL as
contained inΣ |L.

Since the restriction of the fibrationΣi → Di to Li is trivial, we see that, up to
homotopy equivalence,Σ |L → L is obtained from the manifoldsL0

i × S1 (L0
i being a

tubular neighbourhood ofLi in Di) as follows.
We replace the productB2

ij × S1 (B2
ij being an open 2-dimensional ball aroundpij in

Di) by a productA2
ij × S1 (A2

ij being a 2-dimensional annulus aroundpij in Di , A2
ij

∼=

S1
× [1/2, 1)). Then we glue together the piecesA2

ij × S1 andA2
ji × S1 identifying the

(inner) boundariesS1
× S1.

We now make another arbitrary choice for our presentation, namely, since the graphL

is connected, we may take a connected subtreeL′
⊂ L containing all the pointsqi .

We let one of them, sayq0, be the base point. For eachqi we get a canonical path inL′

from q0 to qi , whence a canonical basis ofπ1(L) is given by the loopsλij , for pij 6∈ L′,
obtained by going fromq0 to qi along the canonical path, then going topij insideLi , then
to qj insideLj , then back toq0 again along the canonical path.

The above description makes it clear that, exchanging the roles of the two indicesi, j ,
we getλji = λ−1

ij .
Let γi be the positively oriented generator of the infinite cyclic fundamental group of

(L0
i × S1) ∪ L′. Then we find immediately the following presentation for the fundamental

group ofΣ restricted toL0 (L0
=

⋃
i L0

i ).

Generators:

• γi for eachi,
• λij for pij 6∈ L′.

In order to get the relations, set, for eachpij ∈ L,

• γij = γj for pij ∈ L′,
• γij = λijγjλ

−1
ij for pij 6∈ L′,

with the above convention thatλji = λ−1
ij . Then we get the

Local commutation relations: [γi, γij ] = 1 (for eachpij ∈ L).

To complete the presentation ofπ1(Σ), we use several times the first van Kampen
theorem (cf. [dR69]), addingΣ |Di−Li

to Σ restricted toL0. Note that theS1-bundle
Σi → Di is trivial onL0

i , and also onDi − Li .
The corresponding fundamental group is obtained as the amalgamation byZγi × Zµi

of the free product of the following two groups: the direct productF2gi
× Zγi (F2gi

= free
group on 2gi generators) and the cyclic groupZγi .

Here,µi maps on the one side to the standard relation for the fundamental groupΠgi

of a compact curve of genusgi , and on the other side toγ mi

i .
Now, µi is no longer trivial inπ1(L

0), so we get the following extra

Generators: a1(i), b1(i), . . . , agi
(i), bgi

(i) for eachi,
Main relations:

gi∏
h=1

[ah(i), bh(i)] = γ
−mi

i

∏
j

γij .
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Moreover, since we have a direct productF2gi
× Zγi , we should not forget the obvious

relations:

Global commutation relations: [ah(i), γi ] = [γi, bh(i)] = 1.

3. PRESENTATION OF A SIMPLIFIED GROUP

Summarizing the result of the previous section, we have obtained the finitely presented
groupΓ with:

Generators:

• γi for eachi,
• λij for pij 6∈ L′,
• a1(i), b1(i), . . . , agi

(i), bgi
(i) for eachi.

Relations:

• [ah(i), γi ] = [γi, bh(i)] = 1 for eachi, h,
•

∏gi

h=1[ah(i), bh(i)] = γ
−mi

i

∏
j γij for eachi,

• [γi, γij ] = 1 (for eachpij ∈ L), where

(I) γij = γj for pij ∈ L′,
(II) γij = λijγjλ

−1
ij for pij 6∈ L′,

(III) λji = λ−1
ij .

REMARK 2. The projectionp : Σ → D induces a surjection of fundamental groups
Γ → π1(D) with kernelK normally generated by theγi ’s. In fact, setting in the above
presentationγi = 1 for all i, we get a free product of the fundamental groupsπ1(Di) with
the free group generated by theλij ’s (observe thatλji = λ−1

ij , whence the rank of this free
group is equal to the first Betti number ofL).

DEFINITION 1. The associated finitely presentedsimplified groupΓ ′ is the group with:

Generators:

• γi for eachi,
• λij for pij 6∈ L′,
• ai, bi for eachi such thatgi ≥ 1;

Relations:

(Global commutation relations)[ai, γi ] = [γi, bi ] = 1 for eachi,
(Main relations)[ai, bi ] = γ

−mi

i

∏
j γij for eachi,

(Local commutation relations)[γi, γij ] = 1 (for eachpij ∈ L) where, as above,γij = γj

for pij ∈ L′, else (keeping in mindλji = λ−1
ij ) γij = λijγjλ

−1
ij .

REMARK 3. We can restrict ourselves to proving our results for the simplified groups
Γ ′, which are also obtained from a plumbing procedure, replacing the (smooth) curves of
genus≥ 2 by genus 1 curves.
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In fact, the simplified groupΓ ′ is a homomorphic image ofΓ , obtained by imposing
the further relations

ah(i) = bh(i) = 1 for h ≥ 2.

Thus, ifγj is nontrivial, respectively of infinite order, in the simplified groupΓ ′ it is so a
fortiori in the groupΓ . Moreover, observe that our hypotheses only concern the nullity or
positivity of the genus ofDj , and not its precise value.

For instance, the minimality ofD in the category of normal crossing divisors amounts
to the nonexistence of rational curves with self-intersection−1, and meeting at most two
other curves each in at most one point. Thus, we see easily that hypothesis (i) of Theorem B
is still satisfied for the simplified group, and likewise for the hypothesis of Theorem A.

However, the canonical divisorK ′ of the simplified surface may not be nef, since if
there is a componentDi with genus≥ 2, in the new configurationC we get a corresponding
Ci with genus 1 andK ′Ci = −C2

i = −D2
i = −(2g(Di) − 2) + KDi , which may become

negative.

The proof of the main theorems follows by a reduction procedure which we examine
in the next section.

4. REDUCTION TO THE CASE OF A GRAPH OF RATIONAL CURVES

Recall that we are working in the simplified group.
In the case where we get a component of genus 1, we will be able to simultaneously

remove the generatorsaj , bj , and replace the numbermj by an arbitrary integernj (in fact,
one could say that we can havenj = ∞, meaning that the corresponding main relation
disappears).

If we can achieve this, certainly the nefness condition will continue to hold for the new
configuration. To this end, fix the indexj , write

aj := a, bj := b, γ := γj ,

and consider the groupG with generators

• γi for eachi,
• ai, bi for thei’s such thatgi ≥ 1 andi 6= j ,

and with relations

• [ai, γi ] = [γi, bi ] = 1 for eachi 6= j ,
• [ai, bi ] = γ

−mi

i

∏
h γih for eachi 6= j ,

• [γi, γih] = 1 (for eachpih ∈ L).

The groupΓ is obtained fromG by adding generatorsa, b, and relations

• [a, γ ] = [γ, b] = 1 whereγ := γj is an element ofG,
• [a, b] = γ −m

∏
h γjh.

We may rewrite the last relation simply as

• [a, b] = γ ′′.

Note that, in the groupG, [γ, γ ′′] = 1, sinceγ commutes with eachγjh.
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We now use:

PROPOSITION4. Given a groupG and elementsγ, γ ′′
∈ G such that[γ, γ ′′] = 1, let Γ

be the quotient of the free product ofG and a free group on two generatorsa, b, obtained
by imposing the following relations:

[a, γ ] = [γ, b] = 1, [a, b] = γ ′′.

Then the natural homomorphism ofG into Γ is injective.

PROOF. We consider the quotient group∆ of Γ obtained by adding the commutation
relations [a, γ ′′] = [γ ′′, b] = 1. An equivalent way to describe∆ is the following.

LetH be the Heisenberg group with generatorsa, b, c and relations [a, b] = c, [a, c] =

[b, c] = 1. ThenH is a two-step nilpotent group with infinite cyclic centre generated byc,
and with abelianization free of rank 2. The elements inH can be uniquely written as words
ambnck, wherek, m, n are integers.

Then we can define∆ as the quotient of the free product ofH andG modulo the
relations

γ ′′
= c, [a, γ ] = [γ, b] = 1.

At this point we are not able to give a unique representation for the elements of∆, but we
follow an idea of Guido Zappa.

Namely, we observe that every element of∆ can be written as a product

h = g0a
m(1)bn(1)g1a

m(2)bn(2)
· · · gr−1a

m(r)bn(r)gr ,

where each pair of exponents(m(j), n(j)) is 6= (0, 0), g0, . . . , gr are elements ofG and
we can assume thatg1, . . . , gr−1 do not belong to the subgroupB generated byγ, γ ′′ in
G (whereasg0 andgr could even be trivial).

It remains to see when two such products yield the same elementh. Notice that the
condition thatg1, . . . , gr−1 do not belong toB follows from the property thatr be minimal.

We claim thatr is uniquely determined, and that the only allowed transformations of
the minimal representation are obtained by letting factorsγ, γ ′′ commute witha, resp.b.

More precisely, we claim that we get an equivalent minimal product iff:

• we replace eachgi (i = 1, . . . , r − 1) by multiplying it by an elementg ∈ B, and
correspondingly:

• if gi is replaced bygig, thengi+1 is replaced byg−1gi+1,
• if gi is replaced byggi , thengi−1 is replaced bygi−1g

−1.

This means that, for eachi, the exponents(m(j), n(j)) are uniquely determined; moreover,
the double cosetBgiB is uniquely determined, and finally the productg0 · · · gr is uniquely
determined. In particular, it follows that our element is inG iff r = 0, and in this case the
representation is unique, which is precisely the assertion of the proposition.

To establish our claim, consider the equivalence classes of the productsh described
above. It suffices to show that we have an action of the generators of the group∆ which
satisfies the defining relations for∆. This is clear for the elements of the groupG, and also
for the generatorsa, b, and an easy verification shows that the relations are satisfied.2
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REMARK 4. Notice that if we fix an integernj and in the groupG we add the relation

1 = γ
−nj

j

∏
h

γih,

we obtain the fundamental group of the graph of curves where the elliptic curveCj with
self-intersection(−mj ) has been replaced by a smooth curve∼= P1 with self-intersection
(−nj ). We can therefore by induction reduce to the case of a graph of rational curves.

5. THE CASE OF A TREE OF SMOOTH RATIONAL CURVES

Here we have a presentation with

Generators:

• γi for eachi;

Relations:

• 1 = γ
−mi

i

∏
j γij for eachi,

• [γi, γj ] = 1 (for eachpij ∈ L).

We first show the necessity of the nefness hypothesis in Theorem A.

EXAMPLE 1. Consider a diagram of typeAn, i.e., a linear tree withn vertices. Then our
group, as we shall shortly see, is generated byγ1, . . . , γn with relations

γ 2
1 = γ2, γ 2

2 = γ1γ3, γ 2
3 = γ2γ4, . . . , γ 2

n−1 = γn−2γn, γ 2
n = γn−1.

Therefore, the group is cyclic, generated byγ := γ1 with γ n+1
= 1, and we haveγi = γ i .

Let n = 4, and let us now blow up the central point of intersection betweenC2 andC3.
We then obtain a new generatorγ ′ (the loop around the exceptional curve) and the relation
γ ′

= γ2 · γ3, but nowγ ′
= γ2 · γ3 = 1 !

We recall that, for a tree of rational curves on a complex surface, the condition that the
divisorKS is nef reads

1) D2
i ≤ −2.

If we are on an algebraic surface, the index theorem says that

2) the intersection matrix(Di · Dj ) has positivity indexb+
≤ 1.

An easy example where 1) holds butb+
= 1 is provided by a tree of rational(−2)-curves,

where all curves meet a central one (the dual graph is a star).
In fact, if D0 is the central curve, we then have

(mD0 + D1 + · · · + Dn)
2

= 2(−m2
+ mn − n),

which is positive for 1< m < n − 1.

Then the group is generated byγ1, . . . , γn, δ with relations

γ 2
i = δ, δ2

= γ1γ2 · · · γn.
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In this case the abelianization is the direct sum of cyclic groups of respective
orders 2(n − 4), 2, . . . , 2, with generators induced by the respective residue classes of
γ1, γ

−1
1 γ2, . . . , γ

−1
1 γn−1, whence our standard generators even have a nontrivial image in

the maximal abelian quotient.
We now proceed to analyse the different cases.

5A. Case of a linear tree of rational curves

LEMMA 5. Assume that we have a linear tree ofn smooth rational curves with self-
intersection(−mi), wheremi ≥ 2. Set inductivelya1 := 1, a2 := m1, ai+1 := miai−ai−1.
Then

1) ai+1 > ai ;
2) our groupΓ is a cyclic group of orderan+1, generated byγ1;
3) the elementγi equalsγ ai

1 , and is not trivial.

PROOF. We can write our relations amongγ1, . . . , γn as

γ
m1
1 = γ2, γ

m2
2 = γ1γ3, . . . , γ

mi

i = γi−1γi+1, . . . , γ
mn−1
n−1 = γn−2γn, γ mn

n = γn−1.

We then easily obtain

γi+1 = γ −1
i−1γ

mi

i = γ
−ai−1
1 γ

aimi

i = γ
ai+1
1 ,

which proves the first part of assertion 3); on the other hand, the last relation yields
γ

an+1
1 = 1, which proves assertion 2).

Notice that

ai+1 − ai = miai − ai−1 − ai = (mi − 1)ai − ai−1 > 0

sincemi ≥ 2 and since by inductionai > ai−1.
Hence, assertion 1) is proved, and simultaneously we have shown that eachγi is

nontrivial. 2

REMARK 5. The proof of the above lemma shows that in any case the local fundamental
group of a tree of rational curves is cyclic, of orderan+1 if an+1 is nonzero.

Assume now that all the numbersmi are strictly positive. Then, ifmi = 1, we obtain
γi = γi−1γi+1, and since the group is abelian, we may rewrite the relationγ

mi−1
i−1 = γi−2γi

asγ
mi−1−1
i−1 = γi−2γi+1, and similarlyγ mi+1

i+1 = γiγi+2 becomesγ mi+1−1
i+1 = γi−1γi+2. This

has the obvious geometrical meaning that we can blow down all the(−1)-curves, and then
if at the end of the processK remains nef, our remaining elementsγi are not trivial.

REMARK 6. Assume that we letmi → ∞. Then alsoai+1 → ∞, hencean+1 → ∞,
whereasaj remains constant forj ≤ i. Hence, ord(γj ) → ∞ for j ≤ i. Changing the
linear order of the linear tree to its inverse, we see that ord(γj ) → ∞ also forj ≥ i.
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5B. Reduction to the case of a comb of rational curves

LEMMA 6. LetG1, G2 be groups and letai be nontrivial elements inGi for i = 1, 2 such
that moreovera2 has infinite order inG2. If Γ is the quotient of the free productG1∗G2 by
the relationa1a2 = 1, then the natural homomorphism ofG1 in Γ is injective. Moreover, if
a1 does not generateG1 anda2 does not generateG2, thenΓ is always an infinite group.

PROOF. The desired claim follows if we show that the elements inΓ are represented by
elements of the setW of equivalence classes of “good” words

w = g1(1) · g2(1) · g1(2) · · · g1(k) · g2(k) · g1(k + 1),

whereg2(i) does not belong to the subgroup generated bya2 for 1 ≤ i ≤ k, andg1(j)

does not belong to the subgroup generated bya1 for 2 ≤ j ≤ k, andw is equivalent tow′

if and only if the following conditions hold:

1) k = k′,
2) there exist integers (“r” for right, “λ” for left) r1, λ2, r2, λ3, . . . , rk, λk+1 such that the

wordw′ equals

(g1(1)a
r1
1 ) · (a

r1
2 g2(1)a

λ2
2 ) · (a

λ2
1 g1(2)a

r2
1 )

· · · (a
λk

1 g1(k)a
rk
1 ) · (a

rk
2 g2(k)a

λk+1
2 ) · (a

λk+1
1 g1(k + 1)).

We let the elements ofΓ operate by left multiplication as follows:

• for γ1 ∈ G1 we letγ1w := (γ1g1(1)) · g2(1) · g1(2) · · · g1(k) · g2(k) · g1(k + 1),
• for γ2 ∈ G2 not in the subgroup generated bya2 we let

γ2w := e1 · γ2 · g1(1) · g2(1) · g1(2) · · · g1(k) · g2(k) · g1(k + 1),

(ei being the identity element ofGi), while we set
• ar

2w := a−r
1 w.

We obtain a homomorphism of eachGi into the groupS(W) of permutations ofW, and
moreover the transformation associated toa1a2 is by definition the identity, whence we get
a homomorphism ofΓ into S(W).

Moreover,Γ acts transitively onW. Representing each element ofΓ by a good
wordw, we see that ifw is the identity this implies thatk = 0, andg1(1) = e1.

Thus the action one1 establishes a bijection betweenΓ andW; in particular, since the
words withk = 0 correspond to the elements ofG1, G1 injects intoW, whence intoΓ .
Notice finally that if a2 generatesG2 then G1 is isomorphic toΓ , and similarly if a1
generatesG1.

On the other hand, ifai does not generateGi for i = 1, 2, thenk can be arbitrarily
large, whenceΓ is surely infinite. 2

COROLLARY 7. Let G1, . . . ,Gr be groups and letai for i = 1, . . . , r be a nontrivial
element inGi . If Γ is the quotient of the free productG1 ∗ · · · ∗ Gr by the relation
a1 · · · ar = 1, then forr ≥ 3 the natural homomorphism ofG1 in Γ is injective. Moreover,
if r ≥ 4, then the groupΓ is infinite.
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PROOF. Apply Lemma 6, considering thata2 · · · ar is an element of infinite order in
G2 ∗ · · · ∗ Gr . In the caser ≥ 4, apply the lemma toG1 ∗ G2 andG3 ∗ · · · ∗ Gr , taking
into consideration that both are infinite and not cyclic. 2

With the aid of the foregoing corollary we are able to reduce the proof of our main
results to a very special case.

PROPOSITION8. Let γi be one of our generators of the groupΓ , in the case where the
hypotheses of Theorem B are satisfied. Thenγi is nontrivial except possibly if the tree is
nonlinear and the curveDi is the only one which intersects at least three other irreducible
components ofD (we shall then say that the tree is acomb, and thatDi is the rim of the
comb).

PROOF. The case where the tree is linear was already dealt with. So, assume that there
exists a curveDj with i 6= j such thatDj intersects at least three other irreducible
components ofD. Consider the groupG obtained as the quotient ofΓ by the relation
γj = 1.

If D − Dj (the difference of divisors, and not of sets) hasr connected components
D(1), . . . ,D(r), we see immediately thatG is the quotient of the free productG1∗· · ·∗Gr

by the relationa1 · · · ar = 1, whereGh is the fundamental group of the boundary of a
good tubular neighbourhood ofD(h), andah is the loop around the unique irreducible
component ofD(h) meetingDj . By our corollary, and since by induction we may assume
that eachai , i = 1, . . . , r, is nontrivial, we conclude that eachGh injects intoG, and a
fortiori into Γ .

Hence, all elementsγi with i 6= j are nontrivial. 2

5C. The rim of a comb of rational curves

Assume that we have a unique curveDj such thatD−Dj hasr ≥ 3 connected components
D(1), . . . ,D(r), each being a chain of smooth rational curves. Set for convenience
γ := γj . We shall then say as before that we have acomb with rim Dj and withstrings
D(1), . . . ,D(r).

Then, for each chainD(h), we can order the generators in such a way that we obtain
the relations

γ
m1
1 = γ2, γ

m2
2 = γ1γ3, . . . , γ

mi

i = γi−1γi+1, γ
mn−1
n−1 = γn−2γn.

Proceeding as in Section 5A, we infer thatγ = γ
an

1 , wherean > 0 is defined inductively
as there.

Finally, letting(−m) be the self-intersection ofDj , we obtain a relation

γ m
= β

d1
1 · · · βdr

r ,

where theβh’s are loops, for each chainD(h), around the end opposite toDj .
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We are left with the following

THEOREM 9. LetΓ (m, b1, . . . , br ; d1, . . . , dr), for integersm ≥ 2 andbi > di ≥ 1, be
the group with

(i) generatorsγ, β1, . . . , βr and relations
(ii) γ = β

b1
1 = · · · = β

br
r (recall that the integersbh are≥ 2), and

(iii) γ m
= β

d1
1 · · · β

dr
r .

Then the (central) elementγ is nontrivial insideΓ and indeed of infinite order unless we
are in the following exceptional cases withr = 3, and wherec = 1, 2 and1 ≤ t ≤ n − 1:

(Va) (b1, b2, b3) = (2, 2, n), n ≥ 2, (d1, d2, d3) = (1, 1, t),
(Vb) (b1, b2, b3) = (2, 3, n), 3 ≤ n ≤ 5, (d1, d2, d3) = (1, c, t).

PROOF. STEP I. We may assume that G.C.D.(bi, di) = 1 for eachi. This is a conse-
quence of the following Logical Principle Lemma of combinatorial group thery.

LEMMA 10 (Logical Principle Lemma).LetG be a finitely presented group

G = 〈β1, . . . , βr | R1(β) = · · · = Rs(β) = 1〉.

Then, settingβ1 = βk, i.e., taking the new groupG′′ := G ∗ Z/〈〈β1β
−k

〉〉, we get
ordG′′(β) = k · ordG(β1), while, forj ≥ 2, ordG′′(βj ) = ordG(βj ).

PROOF. The situation is a particular case of Lemma 6 witha1 = β1 anda2 = β−k. The
injectivity of the mapG → G′′ implies the desired assertion. 2

Clearly, if ci = G.C.D.(bi, di) and∆ is the groupΓ (m, b1/c1, . . . , br/cr ; d1/c1, . . . ,

dr/cr), an iterated application of the Logical Principle shows that the order ofγ is the
same inΓ and in∆.

STEP II. Let T := T (m, b1, . . . , br ; d1, . . . , dr) be the quotient of the group
Γ (m, b1, . . . , br ; d1, . . . , dr) by the central cyclic subgroupC(γ ) generated byγ . Then
by Step I,T is isomorphic to the polygonal groupT (b1, . . . , br) with generatorsδ1, . . . , δr

and relationsδb1
1 = · · · = δ

br
r = δ1 · · · δr = 1.

In factT (m, b1, . . . , br ; d1, . . . , dr) is the quotient of the free product of cyclic groups
of respective ordersbi by the relationβd1

1 · · · β
dr
r = 1. But, since G.C.D.(bi, di) = 1, each

β
di

i := δi is a generator of the respective cyclic group.

STEPSIII–V. We thus have a central extension

1 → C(γ ) → Γ (m, b1, . . . , br ; d1, . . . dr) → T (b1, . . . , br) → 1,

where C(γ ) is the cyclic central subgroup generated byγ , and the quotientT :=
T (b1, . . . , br) is the polygonal group defined above.

Our strategy will consist in proving that either

(III) the image ofγ is nontrivial inQ-homology (i.e., in the abelianization ofΓ tensored
with Q), whence a fortioriγ has infinite order inΓ , or



SURFACE CLASSIFICATION AND FUNDAMENTAL GROUPS 149

(IV) H 1(Γ, Q) = 0; however, then, in the nonexceptional cases,Γ differs fromT because
it has cohomological dimension 3 instead of 2, and thus in any caseγ has infinite
order inΓ .

(V) then treats the exceptional cases using integral homology and matrix representations.

STEP III. The above odd looking alternative is a consequence of the following

PROPOSITION11. Let Γ be the above groupΓ (m, b1, . . . , br ; d1, . . . , dr). Then the
image ofγ in H1(Γ, Q) is a generator, and it is nonzero if and only ifm 6=

∑
i di/bi .

PROOF. Let [γ ], [βi ] be the respective images ofγ, βi in H1(Γ, Q). Then they generate
it and the only relations are

[βi ] = (1/bi)[γ ],
(
m −

∑
i

di/bi

)
[γ ] = 0.

Hence, [γ ] generatesH1(Γ, Q), andH1(Γ, Q) 6= 0 if and only ifm =
∑

i di/bi . 2

STEP IV. Assume now thatH1(Γ, Q) = 0, and observe that, because of our plumbing
construction,Γ is the fundamental group of an orientable 3-manifoldM := Σ . In
particular,H1(M, Q) = H1(Γ, Q) = 0, and by Poincaré duality and ordinary duality
H 1(M, Q) = H 2(M, Q) = 0, while H 3(M, Q) ∼= Q. Let N be the universal covering
of M. Then we have a spectral sequenceHp(Γ, H q(N, Q)) converging to the graded
module associated to a suitable filtration ofHp+q(M, Q), for each ringQ (Q = Z or Q
in our application).

Clearly,H 1(N, Q) = 0, henceH 2(M, Q) = 0 impliesH 2(Γ, Q) = 0.

We can moreover apply (cf. [Wei94, 6.8.2]) the Lyndon–Hochschild–Serre spectral
sequence associated to the exact sequence

1 → C(γ ) → Γ := Γ (m, b1, . . . , br ; d1, . . . , dr) → T → 1,

whoseE2 term is Hp(T , H q(C(γ ), Q)) and which converges to a graded quotient of
Hp+q(Γ, Q).

Now, if γ had finite order, thenH i(C(γ ), Q) = 0 for eachi ≥ 1, whenceH i(Γ, Q) =

H i(T , Q) for eachi ≥ 0.
We get therefore an obvious contradiction in the case whereH 2(T , Q) 6= 0.

Observe that the polygonal groupT is a quotient of the groupΠ with generators
β1, . . . , βr and with relationβ1 · · · βr = 1. Π is the fundamental group ofP1

C minus
r points, andT is the orbifold fundamental group of the maximal Galois coverC of
P1 branched at these points with respective ramification multiplicities exactly equal to
b1 − 1, . . . , br − 1.

If T is infinite, thenC is not compact, otherwiseC ∼= P1, by the Riemann mapping
theorem. Hence ifT is infinite, thenH 2(P1, Q) ∼= Q ∼= H 2(T , Q) and we have found the
required contradiction.

Otherwise,T is finite, andC → P1 has a finite degreed. As is well known, by the
formula of Hurwitz, then 2− 2/d =

∑
i(1 − 1/bi), which implies thatr ≤ 3, and since

r ≥ 3 we getr = 3 and
∑

i(1− 1/bi) > 1, an inequality which leads us to the exceptional
cases for(b1, b2, b3), corresponding to the Platonic solids and to the Klein groups
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(Va) (2, 2, n), n ≥ 2 (d = 2n), (d1, d2, d3) = (1, 1, t),
(Vb) (2, 3, n), 3 ≤ n ≤ 5 (d = 12, 24, 60),(d1, d2, d3) = (1, c, t)

(herec = 1, 2 and 1≤ t ≤ n − 1).

STEP VA . Assume we are in the exceptional case (Va). We shall explicitly prove that the
groupΓ is finite, find a faithful matrix representation, and find that the period ofγ equals
exactly 2p, wherep := (m − 1)n − t . Thus, the order ofγ is always≥ 2.

In fact, we can change the presentation of the group, eliminatingγ = β
b3
3 = βn

3 and
obtaining the relationβmn−t

3 = β1β2. Thenβ1β2 = βmn−t
3 = β2

1β
p

3 , whenceβ2 = β1β
p

3 .
Setting for simplicitya := β1, b := β3, we get the presentation

Γ = 〈a, b | a2
= bn

= abpabp
〉.

Sincea2
= abpabp, we getb−p

= abpa−1, whenceb−pn
= abpna−1 and sincea

commutes withbn
= a2, finally b−pn

= bpn, i.e.,b2pn
= 1 = a4p.

It follows that the order of the groupΓ is at most 4pn, and that equality holds if the
period ofa is exactly equal to 4p.

In order to show that the period ofa is exactly equal to 4p we use the representation
ρ : Γ → GL(2, C) such that

ρ(a) =

(
0 ζ4p

ζ4p 0

)
, ρ(b) =

(
ζ2np 0

0 uζ−1
2np

)
whereζh := exp(2πi/h), andu is ap-th root of 1 such thatun

= ζp (recall that, since we
assumed G.C.D.(n, t) = 1, also G.C.D.(p, n) = 1).

One can indeed verify thatρ(a2) = ρ(bn) = ρ((abp)2) = ζ2p · Id, as claimed. 2

STEP VB. Assume that we are in the exceptional case (Vb).
In this case, we shall first try to show that the image ofγ in the abelianizationG of Γ

is nontrivial.
Eliminatingγ we getβ1 = βmn−t

3 β−c
2 , thusΓ is generated bya := β2 andb := β3

with relations
a3

= bn
= bp+na−cbp+na−c,

wherep := n(m − 1) − t , as above.
LettingA, B be the respective images ofa, b in the abelianization ofΓ , we obtain

3A − nB = 0, 2cA = (2p + n)B.

Since 3− 2c = ±1 (according to the respective casesc = 1, c = 2), we get the relation
±A + 2pB = 0, thusG is cyclic with generatorB.

Moreover, the relationnB = 3A = −(±6pB) shows thatB has periodf := n ± 6p.

Now, if m ≥ 2, thenp > 0, thus ifc = 1 thenf > n, whencenB 6= 0, as we wanted
to show.

If insteadm ≥ 2 andc = 2, then the absolute value of the period equals 6p − n =

n[6(m − 1) − 1] = 6t , which is clearly> n as soon asm ≥ 3.
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If insteadm = 2, the absolute value of the period is> n iff 4n > 6t , which holds unless
2
3n ≤ t ≤ n−1, i.e., unlesst = n−1. But in this case one hasf = 5n−6(n−1) = 6−n,
thusnB = 0 since 6− n dividesn.

Similarly, if m = 1 andp = −t , we havef = ±6t − n, andnB 6= 0 if c = 2, whereas
if c = 1 we can reach this conclusion unlessn is a multiple of 6t − n, that is, unlesst = 1
andn = 3, 4, 5.

We are then left with two cases to consider, the first wherec = 2, the second where
c = 1. For the latter case, we use directly a result which goes back essentially to Felix
Klein ([Klein]), and is clearly stated by Milnor in [Mil75]:

Given a triangle groupT := T (1, b1, b2, b3; 1, 1, 1) which is elliptic, i.e., such that∑
i 1/bi > 1, its inverse imagêT in SU(2, C) has the presentation

T̂ = 〈γ, β1, β2, β3 | γ = β
b1
1 = β

b2
2 = β

b3
3 = β1β2β3〉.

It follows thatT̂ is isomorphic to our groupΓ , thus we have a nontrivial central extension
of T by the central elementγ of order two.

In the former case, we have the presentation

Γ = 〈γ, δ1, δ2, δ3 | γ = δ2
1 = δ3

2 = δn
3, γ 2

= δ1δ2δ
n−1
3 〉.

Again here we use the extended triangle groupT̂ , setting

δ1 := β1, δ2 := β2, δ3 := β−1
3 .

Then we see that we get a homomorphic image ofΓ , whereγ maps onto an element of
order 2 (that we still denote byγ ).

We are finished with (Vb). 2

6. PROOFS OF THE MAIN THEOREMS

PROOF OFTHEOREM A. By Remark 3 we may replaceΓ by its homomorphic image
given by the simplified group, i.e., we may assumegi = 1 or 0.

If gi ≥ 1, by Remark 4, we may again take a homomorphic image ofΓ corresponding
to changinggi to 0 and makingmi arbitrarily large (i.e., making the self-intersection
extremely negative).

Thus we may assume that we have a tree of rational curves, where−mi ≤ −2 for all i.
If the tree is linear, the statement follows by Lemma 5.
If we have a comb of rational curves, andγi corresponds to the rim of the comb, then

the nontriviality ofγi follows by Theorem 9 and by the subsequent Steps III, IV, V; else, it
follows by Proposition 8.

The remaining cases are taken care of again by Proposition 8.2

PROOF OFTHEOREM B. Observe that if (ii-1) holds, andgi = 0, then ifD′

i is a curve
we haveKS′ · D′

i ≥ 0, hence alsoKS · Di ≥ 0.
Thus we see that all the curvesDi with gi = 0 have self-intersectionD2

i = −mi ≤ −1,
therefore (ii-1) implies (ii-2) and we proceed with assumption (ii-2), without forgetting the
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other assumption of minimality in the GNC category. This implies that ifgi = 0 and
D2

i = −1, thenDi meets at least three other components.
We can then use exactly the same strategy used for Theorem A, since the case of a

linear tree follows automatically, and curves with self-intersection−1 occur only as rims,
and in this case the possibilitym = 1 is handled in Theorem 9 and in the subsequent Steps
III, IV, V. 2

PROOF OFTHEOREM C. We again follow the strategy of proof of Theorem A.
If we have a linear tree, and there is a curve of positive genus, then we may conclude

that eachγi has infinite order by Remark 6.
If we have a comb, then we know by Theorem 9 that the generatorγ corresponding

to the rim has infinite order apart from the exceptional cases (Va), (Vb). Let moreoverγi

belong, say, to the stringD(1). Then we have shown in 5A (cf. Lemma 5) thatγ = γ
an

1
and γi = γ

ai

1 , where 1 ≤ ai ≤ an. Hence, alsoγ1 and γi have infinite order in the
nonexceptional cases.

Similarly we are done if we have a comb and there is a curveDi of positive genus,
since we may then reduce to the case where all the genera are 0, butmi is arbitrary, hence
we are not in the exceptional cases.

So our statement is proven for elementary infinite pieces, and the rest follows easily by
induction, since we may apply Lemma 6 and Corollary 7. 2

NOTE. When I presented these results at the AMS Meeting in NY, November 3–5,
2000, Walter Neumann mentioned that our presentation of the local fundamental group
of neighbourhoods of divisors in complex surfaces is similar to the method of [Neu81] of
solid tori decompositions for 3-manifolds, in turn based on the methods earlier introduced
by Waldhausen ([Wald67], [Wald68]), who studied the problem whether such manifolds
are determined by their fundamental groups.

We would also like to mention that Wagreich ([Wag71]) and Karras ([Kar75])
determined the cases whereD comes from a singularity and the groupΓ is solvable.
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