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A REMARKABLE MODULI SPACE OF RANK 6
VECTOR BUNDLES RELATED TO CUBIC SURFACES

FABRIZIO CATANESE AND FABIO TONOLI

Abstract. We study the moduli space Ms(6; 3, 6, 4) of simple
rank 6 vector bundles E on P3 with Chern polynomial 1 + 3t +
6t2 +4t3 and properties of these bundles, especially we prove some
partial results concerning their stability. We first recall how these
bundles are related to the construction of sextic nodal surfaces
in P3 having an even set of 56 nodes (cf. [Ca-To]). We prove
that there is an open set, corresponding to the simple bundles
with minimal cohomology, which is irreducible of dimension 19
and bimeromorphic to an open set A0 of the G.I.T. quotient space
of the projective space B := {B ∈ P(U∨ ⊗ W ⊗ V ∨)} of triple
tensors of type (3, 3, 4) by the natural action of SL(W ) × SL(U).

We give several constructions for these bundles, which relate
them to cubic surfaces in 3-space P3 and to cubic surfaces in the
dual space (P3)∨. One of these constructions, suggested by Igor
Dolgachev, generalizes to other types of tensors.

Moreover, we relate the socalled cross-product involution for
(3, 3, 4)-tensors, introduced in [Ca-To], with the Schur quadric as-
sociated to a cubic surface in P3 and study further properties of
this involution.

Introduction

A good motivation for the study of moduli spaces of vector bundles
in P3 comes from the classical problem concerning the geometry of
nodal surfaces F in P3, and more specifically from the study of even
sets ∆ of nodes on them (Beauville has shown in [Bea] that a surface
of low degree and with many nodes contains necessarily several such
even sets ∆).

In turn, as we recall in section 1 of the paper, every even set occurs
as the second degeneracy locus of a symmetric map of a vector bundle
in P3: more precisely, the main theorem of [Ca-Ca] asserts that, given
δ ∈ {0, 1} and a δ-even set of nodes ∆ on a nodal surface F of degree d
in P3, there is a vector bundle E ′′ on P3 and a symmetric map E ′′∨(−d−
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2 FABRIZIO CATANESE AND FABIO TONOLI

δ)
ϕ
−→ E ′′ such that ∆ is precisely the locus where the corank of ϕ equals

2, while F \ ∆ is the locus of points where corank (ϕ) = 1.
The simplest case is the case where the vector bundle is a direct sum

of line bundles (cf. [Cat1]): here ϕ is just a symmetric matrix with
entries homogeneous polynomials of fixed degrees.

The problem of existence and classification of even sets of nodes is
in general based on a preliminary analysis of certain moduli spaces of
pairs (E ′′, ϕ) as above. The main question being whether a pair as
above defines loci F := det(ϕ) and ∆ := {x|corank(ϕ) ≥ 2} which
have the desired singularities.

For instance, the classification of 0-even nodes on sextic surfaces was
achieved in [Ca-To], showing the existence of sets of cardinality 56. In
this case a remarkable feature was that the corresponding moduli space
of vector bundles E := E ′′(3) was shown to be irreducible, yet computer
experiments showed that for a general such bundle E the determinant
F := detϕ would yield a cubic surface G counted with multiplicity two
and independent of the choice of ϕ.

This was the first motivation to try to understand the relation oc-
curring between such bundles and cubic surfaces. This brought to a
finer investigation of the moduli space of pairs (E , ϕ) as above, which
revealed that the latter moduli space is indeed reducible, with a sec-
ond component of codimension 7 corresponding to cubic surfaces G
reducible as the union of a plane and a smooth quadric intersecting
transversally. Several explicit constructions for the vector bundles E
in question allowed finally to show that for a general pair (E , ϕ) in the
second component the determinant of the symmetric map ϕ yields a
nodal surface F with an even set ∆ as wished for.

The purpose of the present paper is threefold: first of all we want
to explain the beautiful geometry relating one of our vector bundles E
to a cubic surface G in P3 and to another cubic surface G∗ in the dual
projective space.

This relation goes back to the classical discovery that a smooth cubic
surface can be written as the determinant of a matrix of linear forms,
and also as the image of the plane P2 through the linear system of
cubics passing through 6 given points.

Since our second purpose, following a suggestion of Igor Dolgachev,
is to show how the above correspondence can be vastly generalized (this
is done in section 2), we try to set up the classical story in a context
of modern multilinear algebra.



A REMARKABLE MODULI SPACE OF RANK 6 VECTOR BUNDLES 3

Let B be a general tensor of type (3, 3, 4), more precisely let B ∈
U∨ ⊗W ⊗ V ∨, where U,W, V are complex vector spaces of respective
dimensions 3,3,4.

Now, it is classical that to a general 3 × 3 × 4 tensor B one can
associate a cubic surface in P3 by taking the determinant of the corre-
sponding 3×3 matrix of linear forms on P3. In this way we get a cubic
surface G∗ in the dual projective space P3∨ = P(V ) := Proj(V ∨), to-
gether with two different realizations of G∗ as a blow up of a projective
plane Proj(U∨) (respectively Proj(W )) in a set of 6 points. These are
the points where the 3 × 4 Hilbert–Burch matrix of linear forms on U
(respectively on W∨) drops rank by 1, and the rational map to P3∨ is
given by the system of cubics through the 6 points, a system which is
generated by the determinants of the four 3× 3 minors of the Hilbert–
Burch matrix. One passes from one realization to the other simply by
transposing the tensor, and we shall call this the trivial involution
for 3 × 3 × 4 tensors.

For a 3 × 3 × 4 tensor B ∈ U∨ ⊗W ⊗ V ∨, besides this trivial in-
volution, which consists in regarding B as element of W ⊗ U∨ ⊗ V ∨,
there exists another involution, called the cross-product involution
(see [Ca-To]). This second involution associates to a general tensor
B ∈ U∨ ⊗W ⊗ V ∨ another tensor B′ ∈ U ′∨ ⊗W ⊗ V , where U ′ is
defined as the kernel of the map Λ2(W∨)⊗ V → U∨ ⊗W∨ induced by
contraction with B. The reversing construction1 is then defined as
the composistion of the cross-product involution with the trivial involu-
tion, and associates to B ∈ U∨⊗W ⊗V ∨ the tensor B′ ∈W ⊗U ′∨⊗V ,

In the paper [Ca-To] the authors give the following direct geometric
construction of nodal sextic surfaces with an even sets of 56 nodes.

Consider the open set B∗ of B = P(U∨ ⊗W ⊗ V ∨) given by the
(3, 3, 4)-tensors B whose determinant (as 3×3 matrices) defines a cubic
surface G∗ ⊂ P3∨ = Proj(V ∨). To such a B we apply the reversing
construction and we consider the following exact sequence induced by
the (3, 3, 4)-tensor B′ on P(V ∨) = Proj(V ):

0 →W∨ ⊗O(−1)
B′

−→ U ′∨ ⊗O → G → 0.

Observe that if B′ never drops rank by two then G is an invertible sheaf
on the cubic surface G associated to B′.

The direct construction produces a bundle E as an extension of 6O
by the sheaf τ := G⊗2(−1): it turns out that the extension E is unique

1We are pedantic with the order of the spaces of a multitensor, but this is essential
for a correct correspondence between the various constructions we will develop from
a multitensor.
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(up to isomorphisms) if the cubic surface G is smooth, and also if it
is reducible as the transversal union of a plane with a smooth quadric.
In the latter case we obtain a sextic nodal surface F as the corank 2
degeneracy locus of a general symmetric map ϕ : E∨ → E (while, if G
is smooth, F is the cubic surface G counted with multiplicity two) (cf.
again [Ca-To]).

Concerning the cross-product involution, we show its relation to the
Schur quadric. We fix an orientation of W , which allows us to identify
Λ2(W∨) with W . The Schur quadric Q is defined (up to scalars) as
a generator of the kernel of the natural map S2V → Λ2(U∨) ⊗ Λ2W
obtained as the composition of S2(B) with the projection of

S2(U∨ ⊗W ) =
(
Λ2(U∨) ⊗ Λ2W

)
⊕

(
S2(U∨) ⊗ S2W

)

onto the first factor. Indeed, dimS2V = 10, dim (Λ2(U∨) ⊗ Λ2W ) = 9,
and the kernel is 1-dimensional, cf. [Do-Ka, §0 and Thm 0.5].

Classically, the Schur quadric induces an isomorphism q between
P(V ∨) and P(V ) sending the cubic surface G to the cubic surface G∗:
here, we consider the tensor B as inducing an injective map U →
W ⊗V ∨, and we show that the subspace U ′ is equal to the image inside
W ⊗ V of the composition of this inclusion with idW ⊗ q : W ⊗ V ∨ →
W ⊗ V . Hence we obtain the tensor B′ associated to the inclusion
U ′ → W ⊗ V .

Up to now we have been talking about moduli spaces, for instance
about the moduli space of the bundles E which we obtain from our
tensors B. The trouble however is: does such a moduli space really
exist? The answer is positive because we show that the bundles E are
simple rank 6 vector bundles with Chern polynomial 1+3t+6t2 +4t3,
and from the holomorphic point of view one has a moduli space of
simple vector bundles. We show that our construction leads then to
the realization of an open set of the moduli space Ms(6; 3, 6, 4) of simple
rank 6 vector bundles E on P3 with Chern polynomial 1+3t+6t2 +4t3.
This open set is the biholomorphic image of an open set of the G.I.T.
quotient space B/SL(U) × SL(W ) of B := {B ∈ P(U∨ ⊗W ⊗ V ∨)}.
The above is a subset of the open set formed by the simple bundles
with minimal cohomology, as explained in the following:

Main Theorem Consider the moduli space Ms(6; 3, 6, 4) of rank
6 simple vector bundles E on P3 := Proj(V ) with Chern polynomial
1 + 3t + 6t2 + 4t3, and inside it the open set A corresponding to the
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simple bundles with minimal cohomology, i.e., those with

(1) H i(E) = 0 ∀i ≥ 1; (2) H i(E(−1)) = 0 ∀i 6= 1;
(3) H i(E(−2)) = 0 ∀i 6= 1; (4) H i(E(−3)) = 0 ∀i;
(5) H i(E(−4)) = 0 ∀i.

Then A is irreducible of dimension 19 and it is bimeromorphic to A0,
where A0 is an open set of the G.I.T. quotient space of the projective
space B of tensors of type (3, 4, 3), B := {B ∈ P(U∨ ⊗W ⊗ V ∨)} by
the natural action of SL(W ) × SL(U) (recall that U,W are two fixed
vector spaces of dimension 3, while V = H0(P3,O(1)).

Let moreover [B] ∈ A0 be a general point: then to [B] corresponds a
vector bundle EB on P3 via the kernel construction, and also a vector
bundle E∗

B on P
3∨, obtained from the direct construction applied to the

tensor B ∈ U∨ ⊗W ⊗ V ∨ (cf. definition 3.9 applied to B, or equation
(5.1)). E∗

B is the vector bundle EB′, where B′ ∈W⊗U ′∨⊗V is obtained
from B via the reversing construction and [B′] ∈ A0

∗.

Moreover, in section 5 we address the question of Mumford-Takemoto
(slope), respectively Gieseker (semi)stability of the bundles E . This
is an interesting but delicate question, since slope stability implies
Gieseker stability, which implies slope semistability. We can prove
slope semistability, but there remains the interesting question whether
the general bundle E associated to a tensor B is Gieseker stable.

1. Quadratic sheaves, nodal surfaces, and related vector
bundles

The study of vector bundles of rank 6 is a slightly unusual topic of
research, in the sense that a topic of this type is usually studied not
for its own sake, but in view of applications to other problems. Since
this is exactly the case here, in this section we want to explain how we
got interested in our class of vector bundles and in which context we
encountered them.

Definition 1.1. Let F be a locally Cohen–Macaulay projective scheme.
A locally Cohen–Macaulay, reflexive, coherent OF - sheaf F is said to
be δ/2-quadratic (δ ∈ {0, 1}) if there exists a symmetric isomorphism
σ : F(δ) → HomOF

(F ,OF ) (symmetric means that the associated
bilinear map F × F → OF (−δ) is symmetric).

Let us now suppose that F is a hypersurface of degree d in a
projective space P. If F is a coherent OF - sheaf, we have a natural

isomorphism:

HomOF
(F ,OF (−δ)) ∼= Ext1OP

(F ,OP(−d − δ)).
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Indeed, let f = 0 be the equation defining F and consider the exact
sequence

0 → OP(−d− δ)
·f
−→ OP(−δ) → OF (−δ) → 0.

By applying the functor HomOP
(F ,−), we obtain

0 → HomOF
(F ,OF (−δ)) → Ext1OP

(F ,OP(−d−δ))
·f
−→ Ext1OP

(F ,OP(−δ)),

where the last map is zero, since it is induced by multiplication by f
as a morphism between OF - sheaves of modules.

Therefore, for a quadratic sheaf F defined on F , we have

F ∼= HomOF
(F ,OF (−δ)) ∼= Ext1OP

(F ,OP(−d − δ)).

On the other hand, if E ′′ is a vector bundle on P and ϕ : E ′′∨(−d−
δ) → E ′′ is a symmetric morphism, we define F as the locus where
rk(ϕ) ≤ rk E ′′ − 1 and set F := cokerϕ. We then have the exact
sequence

0 → E ′′∨(−d − δ) → E ′′ → F → 0

and, by applying HomOP
(−,O(−d − δ)),

0 → E ′′∨(−d − δ) → E ′′ → Ext1OP
(F ,OP(−d− δ)) → 0.

Thus F is naturally isomorphic to Ext1OP
(F ,OP(−d − δ)). By iden-

tifying Ext1OP
(F ,OP(−d − δ)) with HomOF

(F ,OF (−δ)) via the nat-
ural isomorphism described above, we get a symmetric isomorphism
F ∼= Hom(F ,OF (−δ)), and we finally conclude that F is a quadratic
sheaf. Thus a symmetric morphism ϕ : E ′′∨(−d − δ) → E ′′ induces a
quadratic sheaf with support on the hypersurface F := {detϕ = 0}.

Assume now that the generic rank of F is 1, and choose a section
β ∈ H0(OF (δ)): then the bilinear pairing F ×F → OF (−δ) composed
with multiplication by β yields a commutative ring structure on the
module OF ⊕F .

We can then consider the scheme F̃ := Spec(OF ⊕ F), which yields

a 2:1 covering π : F̃ → F , étale over the complement of ∆ ∪ {β = 0},
where ∆ is the locus where rk(ϕ) ≤ rk E − 2.

In this way, a subscheme ∆ of a locally Cohen–Macaulay projective
scheme F is said to be bundle–symmetric if there exist a bundle E and
a symmetric morphism ϕ such that F is the corank 1 locus of ϕ and
∆ is the corank 2 locus of ϕ, as in the above setting.

Definition 1.2. Let F be a nodal surface in P3 and ∆ be a set of nodes

of F . Consider the resolution F̃ of F along the singularities in ∆ and
the corresponding (−2)-curves Ai. A set of nodes ∆ ⊂ F is called δ/2-
even if the corresponding divisor

∑
Ai + δH is 2-divisible in the Picard
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group of F̃ , where H is the divisor class corresponding to a hyperplane
section of F in P3 (cf. [Cat1]).

This property amounts to the existence of a 2 : 1 covering S̃ of F̃
ramified along the divisor

∑
Ai + δH , or, equivalently, to the existence

of a 2 : 1 covering S of F ramified on ∆ (and on a hyperplane section
if δ = 1) (S is obtained by blowing down the (−1) rational curves on

S̃ which are the inverse images of the Ai’s).

Clearly, a bundle–symmetric set of nodes is a δ/2-even set, but also
the converse holds, as it was shown in [Ca-Ca]:

Theorem 1.3. [Ca-Ca, theorem 0.3 and corollary 0.4] Let F ⊂ P3 be
a nodal surface of degree d. Then every δ/2-even set of nodes ∆ on F ,
δ = 0, 1, is the degeneracy locus of a symmetric map of locally free OP3-

sheaves E ′′∨(−d−δ)
ϕ
−→ E ′′ ( i.e., F is the locus where rk(ϕ) ≤ rk E ′′−1,

∆ is the locus where rk(ϕ) = rk E ′′ − 2). Moreover, if p : S → F is
a 2 : 1 covering associated to ∆ and F is defined as the anti-invariant
part of p∗(OS) = OF ⊕F , then F fits into the exact sequence

0 → E ′′∨(−d− δ)
ϕ
−→ E ′′ → F → 0.

The authors of [Ca-Ca] also describe how to construct the bundle
E ′′. Recall that the first syzygy bundle Syz1(M) associated to a graded
module M is obtained as follows. Take a graded free resolution of the
module M :

0 → P4 → . . .→ P 1 α1−→ P 0 α0−→M → 0.

Then the homomorphism α1 : P 1 → P 0 induces a corresponding ho-
momorphism (α1)

∼ between the (Serre-) associated sheaves (P 1)∼ and
(P 0)∼, and the first syzygy bundle of M is defined as Syz1(M) :=
Ker(α∼

1 ).
In [Ca-Ca] it is shown that, up to direct sum of line bundles, E ′′ is

the first syzygy bundle of the module

M = U ⊕
(
⊕m>(d−4+δ)/2H

1(F,F(m))
)
,

where, if (d + δ) is even, U is any maximal isotropic subspace of
H1(F,F((d−4+ δ)/2)) with respect to the non-degenerate alternating
form on H1(F,F((d − 4 + δ)/2)) induced by Serre’s duality, and, if
(d+ δ) is odd, U is zero (cf. [Ca-Ca] for more details).

Even sets of nodes are classified and explicitly described for surfaces
of degree up to 5. In [Ca-To], we studied the case of even (i.e., 0-even)
sets on sextic surfaces.
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Particularly interesting is the case of even sets of cardinality 56: this
is the first case where the module M is relatively big. Concerning the
possible dimensions of the various graded pieces of M , we showed that
only two cases can occur: either h1(F,F(1)) = h1(F,F(2)) = 3 or
h1(F,F(1)) = 3, h1(F,F(2)) = 4. Then we studied the former case.

In the former case U is thus an (isotropic) 3-dimensional vector space
in H1(F,F(1)) and, if we denote by W the 3-dimensional vector space
W := H1(F,F(2)) and set V := H0(P3,OP3(1)), we have that M is
completely determined by the multiplication tensor

(1.1) B ∈ U∨ ⊗W ⊗ V ∨.

We now describe Beilinson’s table for E ′′, up to direct sums of line
bundles. Since H0(P3,F(2)) = 0 (as shown in prop. 2.4 of [Ca-To],
compare also Beilinson’s table for F given in section 3 of [Ca-To]), one
has H0(P3, E ′′(2)) = 0. Since, up to direct sums of lines bundles, E ′′ is
the first syzygy bundle of M , we have that H1

∗ (P
3, E) ∼= M and all the

other intermediate cohomology modules of E ′′ are zero. It follows that
Beilinson’s table hi(E ′′(j)) for E ′′, up to direct sums of line bundles, is

xi
0 0 0 0 0

0 0 0 0 0

0 0 3 3 0

0 0 0 0 ∗
−→
j

If we denote from now on by E the previous E(3), theorem 1.3 gives
the exact sequence

0 → E∨ ϕ
−→ E → F(3) → 0,

and, by Beilinson’s theorem and the above cohomology table, E(−1) is
obtained by adding a direct sum of line bundles to the bundle

E ′(−1) := ker
(
U ⊗ Ω1(1) ∼= 3Ω1(1)

β(−1)
−−−→W ⊗O ∼= 3O

)
.

Moreover, since Beilinson’s complex has no cohomology in degree 6= 0,
the above map is surjective: hence E ′ is a vector bundle with rk(E ′) = 6.

Recall the Euler sequence

(1.2) 0 → Ω1(1) → V ⊗O ∼= 4O
ǫ
−→ O(1) → 0,

where V := H0(P3,O(1)) is the space of linear forms on P3, and suppose
that the map H0(β), induced in cohomology by β, is also surjective (as
it happens for a general β): then h0(P3, E ′) = 3h1(Ω1(2)) − 12 = 6.
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Since h0(P3,F) = 6 (cf. again Beilinson’s table for F in section 3 of
[Ca-To]), one can make the following generality assumption:

FIRST ASSUMPTION: F is generated in degree 3 and the
linear map H0(E ′) → H0(F(3)) is an isomorphism.

Under the above assumption the following holds:

Proposition 1.4. [Ca-To, Prop 3.3] Notation being as above, if the
first assumption holds true then E = E ′ or, equivalently, rank (E)
= 6. More precisely, there exists a homomorphism β : U ⊗ Ω1(2) ∼=
3Ω1(2) →W ⊗O(1) ∼= 3O(1) with E = kerβ and such that we have an
exact sequence

(1.3) 0 → E → U ⊗ Ω1(2) ∼= 3Ω1(2)
β
−→ W ⊗O(1) ∼= 3O(1) → 0.

Conversely, if E is obtained in this way it is a rank 6 bundle and, if
the map H0(β) is surjective, it has an intermediate cohomology module
M := H1

∗ (E) having the required Hilbert function of type (3, 3).

We are now able to explain why we got interested in vector bundles
E of rank 6 with Chern polynomial c(E)(t) = 1 + 3t+ 6t2 + 4t3:

Lemma 1.5. Let E be given as kernel of a surjective homomorphism
β : U ⊗ Ω1(2) ∼= 3Ω1(2) → W ⊗ O(1) ∼= 3O(1), where U and W are
3-dimensional vector spaces:

(1.4) 0 → E → U ⊗ Ω1(2) ∼= 3Ω1(2)
β
−→ W ⊗O(1) ∼= 3O(1) → 0.

Then E is a rank 6 bundle with total Chern class

(1.5) c(E)(t) = 1 + 3t+ 6t2 + 4t3,

and H0(E∨) = 0.
Moreover, if the map H0(β) is surjective, E is a bundle with minimal

cohomology, more precisely, it satisfies:

(1) H i(E) = 0 ∀i ≥ 1; (2) H i(E(−1)) = 0 ∀i 6= 1;
(3) H i(E(−2)) = 0 ∀i 6= 1; (4) H i(E(−3)) = 0 ∀i;
(5) H i(E(−4)) = 0 ∀i.

In this case, in particular, h0(E) = 6 and the unique nonzero inter-
mediate cohomology groups of E are U = H1(P3, E(−2)) and W =
H1(P3, E(−1)).

Conversely, a bundle E with total Chern class as above and with
minimal cohomology as above admits a presentation of type (1.4), where
U = H1(P3, E(−2)) and W = H1(P3, E(−1)) are 3-dimensional vector
spaces and H0(β) is surjective.
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Proof. If E is given as in (1.4), then it is a rank 6 bun-
dle and its Chern polynomial is c(E) = c(Ω1(2))3c(O(1))−3 =
(c(O(1))4c(O(2))−1)3c(O(1))−3 = (1 + t)9(1 + 2t)−3 = (1 + 9t+ 36t2 +
84t3)(1 − 6t+ 24t2 − 80t3) = 1 + 3t+ 6t2 + 4t3.

Dualizing the sequence 0 → E → 3Ω1(2)
β
−→ 3O(1) → 0 yields

0 → 3O(−1) → 3T (−2) → E∨ → 0.

Thus h0(E∨) = 0.

Let us verify that a bundle given as in (1.4) satisfies properties (2)
and (3). The exact cohomology sequences of the twists of (1.4) give:
H1(E(−2)) ∼= 3H1(Ω1), H1(E(−1)) ∼= 3H0(O). This also shows that
all the other intermediate cohomology modules of the above twists of
E are zero. Considering the Euler sequence, it is also clear that all
the negative twists of E have no global sections, and that E(−2) and
E(−1) have vanishing third cohomology groups. Therefore E(−2) and
E(−1), if E is given as in (1.4), have only first cohomology group, and
of dimension 3.

The exact cohomology sequence of (1.4) gives H1(E) = coker(H0(β))
andH2(E) = 0. IfH0(β) is assumed to be surjective, then also property
(1) is satisfied and h0(E) = χ(E) = 6 is determined by the Riemann-
Roch theorem.

Moreover, if H0(β) is surjective, then also H0(β(k)) is surjective
for positive twists k. Since Ω1(k) has no global section for k ≤ 0,
it follows easily that the intermediate cohomology group H1

∗ (E) has
nonzero degree parts only in degree -2 and -1 and that H2

∗ (E) = 0.
It remains to show the vanishing of the groups H3(E(k)), for −4 ≤

k ≤ 0. This follows from the vanishing of H3(Ω1(k)), for −2 ≤ k ≤ 2,
which is a straighforward computation: H3(Ω1(k)) ∼= H0(T 1(−k −
4)) = 0 for −2 ≤ k ≤ 2.

We now prove the converse. Assume that we have a vector bun-
dle with such a Chern polynomial and minimal cohomology as de-
scribed above. Then the Euler characteristics of E (or its twists) are
the same as the Euler characteristic of a bundle (or its twists) given as
in (1.4). Therefore the first cohomology groups U = H1(E(−2)) and
W = H1(E(−1)) are both 3-dimensional vector spaces.

By appling Beilinson’s theorem to E(−1), it follows that E fits in
an exact sequence as in (1.4). Condition (1) implies that H0(β) is
surjective. �
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2. Sheaves associated to tensors

Let W1, . . . ,Wr be vector spaces of respective dimensions dimKWj =
dj + 1, where K is C or any algebraically closed field. Assume that we
have a tensor

(2.1) B ∈W1 ⊗ · · · ⊗Wr.

To B one can associate a collection of subschemes of products of
projective spaces, namely

Definition 2.1. Let 1 ≤ i1 < · · · < ih ≤ r be a strictly increasing
h-tuple of indexes between 1 and r. Then we define

Γi1,...,ih(B) :=
{
u = ui1 ⊗ · · · ⊗ uih | uij ∈W∨

ij
, B¬u = 0

}
;

where B¬u denotes the contraction of the tensor B with u.

Remark 2.2. 1) Without loss of generality, we may assume i1 =
1, . . . , ih = h, and r = h or r = h + 1 (it suffices to replace the vector
spaces Wh+1, . . . ,Wr with their tensor product Wh+1 ⊗ · · · ⊗Wr).

2) Observe that Γi1,...,ih(B) ⊂ P(W∨
i1)×· · ·×P(W∨

ih
) is the intersection

of hypersurfaces of multidegree (1, . . . , 1).
3) Is h = r, then we have a single hypersurface of multidegree

(1, . . . , 1). Otherwise, we shall make the following assumption of gen-
erality: Γ1,...,r−1(B) is the complete intersection of dr +1 hypersurfaces
of multidegree (1, . . . , 1).

4) The case r = 1 is empty, while the case r = 2 is not very in-
teresting, since we get corresponding linear maps A : W∨

1 → W2 and
tA : W∨

2 →W1 and loci P(kerA), P(ker tA), {(x, y) ∈ P(W∨
1 )×P(W∨

2 ) |
〈y, Ax〉 = 0}

5) Observe finally that it suffices to treat the case r = h+ 1. In fact,
if r = h, we take Wr+1 = C, whereas the case r > h+ 1 can be reduced
to the case r = h+ 1, as observed in part (1).

We now fix a tensor B ∈W1 ⊗ . . .Wh+1 as above. In order to study
the sheaves associated to the tensor B, the following assumption is
fundamental.

Main Assumption: consider P := P(W∨
1 ) × · · · × P(W∨

h ) and the
variety Γ := Γ1,...,h ⊂ P. We assume that Γ := Γ1,...,h ⊂ P is a complete
intersection of dh+1 + 1 hypersurfaces of multidegree (1, . . . , 1).

We further assume that Γ 6= ∅ (under the above assumption, this
happens if and only if d1 + · · ·+ dh ≥ dh+1 + 1).

If the main assumption holds we have then a Koszul exact sequence
(2.2)
. . . → ∧2W∨ ⊗OP(−2, . . . ,−2) → W∨ ⊗OP(−1, . . . ,−1) → OP → OΓ → 0,
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where 



W := Wh+1

P := P(W∨
1 ) × · · · × P(W∨

h )

P(W∨
i ) := Proj(Sym(Wi))

;

or, equivalently,

(2.3) . . . → ∧2W∨ ⊗OP(−2, . . . ,−2) → W∨ ⊗OP(−1, . . . ,−1) → IΓ → 0,

Definition 2.3. Assume now that s < h: consider P
′ := P(W∨

1 ) ×
· · · × P(W∨

s ), P′′ = P(W∨
s+1) × · · · × P(W∨

h ), and let p : P → P′ be the
projection of the product P = P′ × P′′ → P′ onto the first factor.

For t = (ts+1, . . . , th), we define Gt := p∗OΓ(0, . . . , 0, ts+1, . . . , th).

We aim at giving a resolution of Gt. The above situation is quite
general, but in any case the object OΓ(0, . . . , 0, ts+1, . . . , th) can be
replaced, as an object in the derived category of coherent sheaves on P,
by the twisting by OP(0, . . . , 0, ts+1, . . . , th) of the resolution (2.2). By
applying p∗ to the exact sequence obtained in this way, we get a spectral
sequence converging to Rkp∗OΓ(0, . . . , 0, ts+1, . . . , th) ( if h = s + 1
we get a complex, as in Beilinson’s theorem (cf. [Bei]), whose k-th
cohomology group is Rkp∗OΓ(0, . . . , 0, ts+1, . . . , th)).

The advantage of using the twisted Koszul complex (2.2) is that a line
bundle O(as+1, . . . , ah) on P′′ is an external tensor product O(as+1) ⊠

· · ·⊠ O(ah), hence its total cohomology H∗(P′′,O(as+1, . . . , ah)) is the
tensor product H∗(P(W∨

s+1),O(as+1)) ⊗ · · · ⊗H∗(P(W∨
h ),O(ah)).

On the other hand, H∗(Pd,OPd(a)) contains at most one term:
H0(Pd,OPd(a)) if a ≥ 0, Hd(Pd,OPd(a)) if a ≤ −d − 1, none if
−d ≤ a ≤ −1. Whence, fixed i, Rjp∗OP(0, . . . , 0, ts+1−i, . . . , th−i) = 0
with only one possible exception j.

We thus obtain the following proposition.

Proposition 2.4. There is a spectral sequence with E1 term E1(−i, j)
given by

(2.4) Rjp∗
(
∧iW∨ ⊗OP(−i, . . . ,−i, ts+1 − i, . . . , th − i)

)
=

= ∧iW∨ ⊗Hj(OP′′(ts+1 − i, . . . , th − i)) ⊗OP′(−i, . . . ,−i)

which converges to the direct image sheaves
Rkp∗OΓ(0, . . . , 0, ts+1, . . . , th).

Proof. This is a standard spectral sequence argument, compare pages
149-150 of [Wei]. Consider the complex given by (2.2) (without the last
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term at the right) and tensor it by OP(0, . . . , 0, ts+1, . . . , th). The se-
quence obtained, say C ·, remains exact, with the exception of the right-
most term, where the cohomology group is OΓ(0, . . . , 0, ts+1, . . . , th).

If we take an injective resolution of the complex and apply the functor
p∗, we obtain a double complex with two associated spectral sequences.
The horizontal spectral sequence degenerates at the E1 term, and yields
the direct image sheaves Ehor

1 (0, k) = Rkp∗OΓ(0, . . . , 0, ts, . . . , th).
The vertical spectral sequence, instead, yields an E1 term of the form

Evert
1 (−i, j) = Rjp∗ (∧iW∨ ⊗OP(−i, . . . ,−i, ts+1 − i, . . . , th − i)) .

This is precisely the spectral sequence which we choose, and which
converges to Rkp∗OΓ(0, . . . , 0, ts+1, . . . , th) as claimed.

�

Consider the differential d1 at the E1 level of the vertical spectral
sequence: it is a horizontal differential given at the place (−i, j) by a
map

(2.5) ∧i W∨ ⊗Hj(OP′′(ts+1 − i, . . . , th − i)) ⊗OP′(−i, . . . ,−i) →

∧i−1W∨⊗Hj(OP′′(ts+1−i+1, . . . , th−i+1))⊗OP′(−i+1, . . . ,−i+1)

induced by 2.2.

By the above discussion on the cohomology groups
H∗(P′′,O(as+1, . . . , ah)), first of all it follows that the term E1(−i, j)
is nonzero, for fixed i, only for at most one value of j.

More precisely, if Hj(OP′′(ts+1 − i, . . . , th − i)) 6= 0, then there is an
expression j = js+1 + · · ·+ jh such that the above group is an external
tensor product of cohomology groups Hjc(Pdc ,O(tc − i)). Since each
term of the external tensor product must be nonzero, it follows that
jc = 0 orjc = dc and that tc − i ≥ 0 if jc = 0, else tc − i ≤ −dc − 1.

Moreover, we conclude also that Hj−p(OP′′(ts+1 − i+ p+ 1, . . . , th −
i+p+1)) = 0 unless there is are some jc = dc such that Hdc(Pdc ,O(tc−
i)) 6= 0 and H0(Pdc ,O(tc−i+p+1)) 6= 0: this is only possible if tc−i ≤
−dc − 1 and tc − i+ p+ 1 ≥ 0. This implies −dc − 1 ≥ tc − i ≥ −p− 1,
in particular, p ≥ dc.

We want now to consider an easier situation, first of all we would
like to have

Rjp∗(OΓ(0, . . . , 0, ts+1, . . . , th)) = 0 for j ≥ 1,

so that the given spectral sequence converges then to
Rjp∗(OΓ(0, . . . , 0, ts+1, . . . , th)).

To achieve this property, we assume s = h− 1.
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Lemma 2.5. If s = h − 1, Rjp∗(OΓ(0, . . . , 0, t)) for j ≥ 1, assuming
that t ≥ −1.

Proof. This follows from the base change theorem, since the fibres of
Γ → P

′ = P
d1 × · · · × P

dh−1 are linear subspaces of P
dh , and since

Hj(OPd(t)) = 0 for any d, t ≥ −1, and j ≥ 1.
�

Corollary 2.6. If s = r − 2 and h = r − 1, then for t ≥ −1 Gt =
p∗OΓ(0, . . . , 0, t) has a resolution given by an exact complex of vector
bundles on P

′ whose k-th term is

(2.6)
⊕

j−i=k

∧iW∨ ⊗Hj(O
P

dh (t− i)) ⊗OP′(−i, . . . ,−i).

Proof. In this case the spectral sequence degenerates at the E2 level if
all the nonzero terms of E1 occur only for j = 0.

If there is a nonzero term with j = dh, then, as we observed, for p > 0
we have Hj−p(O

P
dh (t− i+ p+ 1)) 6= 0 iff p = dh and t− i = −dh − 1.

In terms of differentials of the spectral sequence, this implies that
on this nonzero term d1 = d2 = dp−1 = 0, and then also in the corre-
sponding place dp+1 = · · · = 0. The result now follows.

�

We want now to restrict ourselves to the case where we obtain sheaves
on projective spaces, i.e., we restrict to the case r = 3 of tritensors.

We have P := Pd1 × Pd2 , P′ := Pd1 and p : Pd1 × Pd2 → Pd1. Recall
that under the main assumption that Γ ⊂ P be a complete intersection
we have:

(2.7) Γ 6= ∅ ⇐⇒ d1 + d2 ≥ d3 + 1.

By applying the above corollary (2.6) we get:

Corollary 2.7. Suppose that Γ is not empty, c.f. (2.7). Assume that
t− d3 − 1 ≥ −d2 ( i.e., t ≥ d3 + 1 − d2) and t ≥ −1.

Then Gt has a resolution given by an Eagon–Northcott type complex:
(2.8)

0 →

∧d3+1W∨
3

⊗
St−d3−1W2

⊗
OP′(−d3 − 1)

→ . . .→

∧2W∨
3

⊗
St−2W2

⊗
OP′(−2)

→

W∨
3

⊗
St−1W2

⊗
OP′(−1)

→
StW2

⊗
OP′

→ Gt → 0.

Remark 2.8. 1) Note that t ≥ d1 suffices in the above corollary.
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2) Observe that St(W2) = 0 for t < 0, and S0(W2) = C. We may
then assume t ≥ 0. For t = 0 we need d2 ≥ d3 + 1, and then we get
G0

∼= OP′.

Example 2.1. For t = 1 we need d2 ≥ d3, and then we get the “stan-
dard” matricial resolution

(2.9) 0 → W∨
3 ⊗OP′(−1) →W2 ⊗OP′ → G1 → 0,

where B ∈ Hom(W∨
3 ⊗OP′(−1),W2 ⊗OP′) ∼= W3 ⊗W1 ⊗W2.

Example 2.2. For t = 2, in the case where d2 ≥ d3 − 1 we get:
(2.10)
0 → ∧2W∨

3 ⊗OP′(−2) →W∨
3 ⊗W

∨
2 ⊗OP′(−1) → S2W2⊗OP′ → G2 → 0.

This case is the one we are particularly interested in, because if we

set Ê := p∗IΓ(0, 2), then we obtain

0 → ∧2W∨
3 ⊗OP′(−2) → W∨

3 ⊗W∨
2 ⊗OP′(−1) → Ê → 0(2.11)

0 → Ê → S2W2 ⊗OP′ → G2 → 0.(2.12)

Remark 2.9. The sheaves Gt are supported on

p(Γ) = {u1 ∈W∨
1 | ∃u2 ∈W∨

2 s.t. B¬(u1 ⊗ u2) = 0}

= {u1 ∈W∨
1 | B¬u1 has a nontrivial kernel}

= {u1 ∈W∨
1 | rk(B¬u1) ≤ d2}.

In particular, the expected codimension of p(Γ) equals d3 − d2 + 1 =
d1 − dim Γ.

Remark 2.10. If p(Γ) has codimension ≥ 1, then Ê is a vector bundle
if and only if p(Γ) is a hypersurface and G2 is Cohen-Macaulay.

Proof. Notice that (2.12) implies that, if Ê is locally free, then G2 has
local projective dimension at most 1 (over the local ring OP′). Whence
the codimension of p(Γ) (the support of G2) is at most 1.

Thus, if p(Γ) 6= P
′, p(Γ) is a hypersurface. Conversely, if p(Γ) is a

hypersurface, then G2 is Cohen-Macaulay iff it has projective dimension
1.

We dualize the exact sequence (2.12), obtaining:

0 → S2W2 ⊗OP′ → (Ê)∨ → Ext1(G2,OP′) → 0;

0 → Extm(Ê ,OP′) → Extm+1(G2,OP′) → 0, ∀m ≥ 1.

We have now that pdG2 = 1 if and only if Extm(G2,OP′) = 0, ∀m > 1.

Thus Extm(Ê ,OP′) = 0 ∀m > 0, equivalently pd(Ê) = 0 and Ê is locally
free.
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�

We are now going to describe the case where d1 = 3, d2 = d3 = 2, and
relate the above constructions (considering also all the possible permu-
tations of the spaces W1,W2,W3) to the geometry of cubic surfaces in
P3. We consider now a tensor

(2.13) B̂ ∈ V ⊗ (Û)∨ ⊗ Ŵ ; dimV = 4, dim Û = dim Ŵ = 3.

Observe that we have 6 permutations of the three vector spaces,
inducing 6 distinct product projections. Moreover, we may vary the
twisting factor t.

We consider the exact order given above of the three vector spaces.

On P3 := P(V ∨) = Proj(Sym(V )), for t = 1 we get the sheaf Ĝ1 =
(G1) bB:

(2.14) 0 → Ŵ∨ ⊗OP3(−1)
bBcW∨, bU∨

−−−−−→ Û∨ ⊗OP3 → Ĝ1 → 0

For t = 2 we get a vector bundle Ê := Ê bB, fitting in the two exact
sequences

0 → ∧2(Ŵ∨) ⊗OP3(−2) → Ŵ∨ ⊗ Û∨ ⊗OP3(−1) → Ê → 0(2.15)

0 → Ê → S2(Û∨) ⊗OP3 → Ĝ2 → 0.(2.16)

For t ≥ 3 it is pointless to proceed further, since indeed one finds
that Ĝt is the t-th symmetric power of Ĝ1. In fact, by Corollary 2.7,

Ĝt has resolution:

(2.17) 0 →

∧3Ŵ∨

⊗

St−3Û
⊗

OP3(−3)

→

∧2Ŵ∨

⊗

St−2Û
⊗

OP3(−2)

→

Ŵ∨

⊗

St−1Û
⊗

OP3(−1)

→
StÛ
⊗
OP3

→ Ĝt → 0,

which is the third symmetric power of (2.14).

We now consider the order V ⊗ Ŵ ⊗ (Û)∨ and repeat the same con-
struction: this is equivalent to consider the above construction applied
to the tensor

σ(B̂) ∈ V ⊗ Ŵ ⊗ (Û)∨,

where σ is the involution permuting Ŵ with (Û)∨.

We obtain the sheaves (Ĝ1)σ( bB), (Ĝ2)σ( bB), and another vector bundle

Êσ( bB), sitting in exact sequences equals to (2.14)–(2.17) with the roles
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of Ŵ and (Û)∨ exchanged:

0 → Û ⊗OP3(−1)
bB bU,cW

−−−→ Ŵ ⊗OP3 → (Ĝ1)σ( bB) → 0(2.18)

0 → ∧2Û ⊗OP3(−2) → Û ⊗ Ŵ ⊗OP3(−1) → Êσ( bB) → 0(2.19)

0 → Êσ( bB) → S2Ŵ ⊗OP3 → Ĝ2 → 0.(2.20)

As we shall see, these two sheaves, supported on the same cubic

surface G = {det(B̂cW∨, bU∨) = 0}(= {det(B̂bU,cW ) = 0}), correspond to
two plane representations of G as the blow-down of a sixtuple of lines
in a Double-6 configuration. One passes from one plane representation

to the other by excanging the roles of Ŵ and (Û)∨, i.e., by applying

the trivial involution σ to the tensor B̂.

Considering the ordering B̂ ∈ Û∨⊗V ⊗Ŵ , similar in spirit to the one

B̂ ∈ Ŵ ⊗ V ⊗ Û∨ we obtain a different geometric picture. Recall that

P3 = P(V ∨). We are considering the projection p : P(Û)× P3 → P(Û)

and Γ ⊂ P(Û) × P3 is the graph of the contraction morphism from

G ⊂ P3 to P(Û).
For t = 1, corollary (2.7) provides the resolution

0 → Ŵ∨ ⊗O
P(bU)(−1) → V ∨ ⊗O

P(bU) → p∗(OG(1)) → 0,

which is the Hilbert–Burch resolution of Iζ(3), a twist of the ideal

sheaf of a length 6 0-dimensional subscheme ζ := p(Γ) of P(Û). Thus
p∗(OG(1)) = Iζ(3), that is the linear forms on G correspond to the

cubics in P(Û) which are in the ideal sheaf Iζ .
For t = 2 we get a resolution of p∗(OG(2))

(2.21)

∧2 Ŵ∨⊗O
P(bU)

(−2) → Ŵ∨⊗V ⊗O
P(bU )

(−1) → S2V ⊗O
P(bU )

→ p∗(OG(2)),

and we find again the symmetric square of the previous resolution,
thus a resolution for Iζ

2(6).
Similarly for the cases where t ≥ 2.

Quite interesting is instead the ordering B̂ ∈ Û∨ ⊗ Ŵ ⊗ V ∨. similar

in spirit to the one B̂ ∈ Ŵ ⊗ Û∨ ⊗ V ∨, In this case p(Γ) = {u ∈ Û∨ |

B̂¬u has a kernel} and Γ ⊂ P(Û)×P(Ŵ∨) is the complete intersection
of 4 hypersurfaces of bidegree (1, 1). Let H1 be the hyperplane class

in P(Û) and H2 the one in P(Ŵ∨): since (H1 + H2)
4 = 6H1

2H2
2, we

conclude that in general Γ consists of 6 points (but for our purposes it
suffices that Γ is a complete intersection 0-dimensional subscheme of
length equal to 6). Let again be ζ the length-6 subscheme ζ := p(Γ).
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For t = 2 corollary (2.7) is still applicable and we get a non-classical
resolution for Oζ = p∗OΓ(0, 2):

0 → ∧2V⊗O
P(bU)(−2) → V⊗W⊗O

P(bU)(−1) → S2W⊗O
P(bU ) → p∗OΓ(0, 2) → 0.

For t = 1, the complex

V ⊗O
P(bU)(−1) → Ŵ ⊗O

P(bU) → Oζ → 0

is no longer necessarily exact, in the sense that corollary (2.7) does not
apply. We shall now show (cf. next corollary) that we get

0 → O
P(bU)(−4) → V ⊗O

P(bU)(−1) → Ŵ ⊗O
P(bU) → Oζ → 0.

This exact sequence may also be obtained, using Oζ
∼=

Ext2(Oζ ,OP(bU)(−4)) ∼= Ext2(Oζ ,OP(bU)), as the dual of the Hilbert–

Burch resolution of Oζ :

0 → Ŵ∨ ⊗O
P(bU)(−4) → V ∨ ⊗O

P(bU)(−3) → O
P(bU ) → Oζ → 0.

The following corollary spells out in detail corollary 2.6.

Corollary 2.11. Suppose that Γ is not empty, c.f. (2.7). Assume that
t > 0 but t < d3 + 1 − d2.

Then Gt has a resolution given by an Eagon–Northcott type complex:

0 →

∧d3+1W∨
3

⊗
Sd3−d2−tW∨

2

⊗
OP′(−d3 − 1)

→ . . . →

∧t+d2+2W∨
3

⊗
W∨

2

⊗
OP′(−t − d2 − 2)

→
∧t+d2+1W∨

3

⊗
OP′(−t − d2 − 1)

→

→
∧tW∨

3

⊗
OP′(−t)

→ . . . →

∧1W∨
3

⊗
St−1W2

⊗
OP′(−1)

→
StW2

⊗
OP′

→ Gt → 0.

(2.22)

Proof. Of course, we have

Hj(OPd2 (a))) = 0 except for

{
a ≥ 0 if j = 0;

a ≤ −d2 − 1 if j = d2.
.

Suppose that we have a free resolution on P of OΓ(t) with terms

0 → Lr → . . .→ Lt+d2+1 → . . .→ Lt → . . .→ L0 → OΓ(t),

with degLj = t − j. By applying the functor p∗(−) to an injective
resolution, we obtain a double complex whose vertical spectral term
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has an E1 term of the form

Rd2p∗(Lr) ∗ · · · ∗ Rd2p∗(Lt+d2+1) . . . 0 . . . 0
. . . . . . . . . . . . . . . . . .

0 . . . . . . . . . R0p∗(Lt) ∗ · · · ∗ R0p∗(L0)

,

whose non-zero terms are only the ones indicated explicitly or with
∗ · · · ∗.

Moreover Rd2p∗(Lt+a) = ∧t+aW∨
3 ⊗Hd2(P(W2),O(−a)) ⊗OP′(−t−

a) and Hd2(P(W2),O(−a)) ∼= H0(P(W2),O(−d2 − 1 + a)) by Serre’s
duality. As proven in corollary 2.6, we obtain therefore complex, which
is exact by lemma (2.5) since t > 0, and is a resolution of Gt. �

3. Vector bundles E on P3 with Chern polynomial
1 + 3t+ 6t2 + 4t3: general features, their construction,

and cubic surfaces

In this section we study some general features of vector bundles E on
P3 with Chern polynomial 1+3t+6t2+4t3. Recall lemma 1.5 of section
1: under the open condition of having minimal cohomology, these bun-
dles have quite a simple copresentation in terms of their intermediate
cohomology modules. Indeed, we have seen that H2

∗ (P
3, E) = 0 and

that H1
∗ (P

3, E) has only two nonzero graded pieces, namely the vector
spaces U = H1(P3, E(−2)) and W = H1(P3, E(−1)). Recall moreover
that V := H0(P3,O(1)) is the space of linear forms on P3.

We will see that there are three ways to construct such bundles:

(1) as syzygy bundles starting from a tensor

(3.1) B ∈ U∨ ⊗W ⊗ V ∨,

which will be our natural choice to parametrize E (we shall call
this the kernel construction);

(2) as extensions, starting from another tensor B′ ∈W ′∨⊗U ′∨⊗V
(we shall call this the direct construction)

(3) as a direct image sheaf, starting from a third tensor B̂ ∈

V ⊗ Û∨ ⊗ Ŵ and using the construction described in section 2.

The relation occurring between B and B′ will lead to the definition
of the cross-product involution, while the relation occurring between

B and B̂ will be investigated in the section 4 after we introduce the
cross-product involution.

We now explain the first construction. Suppose we have a bundle E as
in (1.4). Applying Hom(−,O) to the Euler sequence (1.2) and tensoring
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by O(1) yields, since Hom(O(2),O(1)) = 0, Ext1(O(2),O(1)) = 0,

(3.2) Hom(Ω1(2),O(1)) ∼= Hom(V ⊗O(1),O(1)).

Thus the map β factors through a map B : U ⊗ (V ⊗ O(1)) →
W ⊗ O(1) and the sheaf map B is surjective. This surjectivity is
obviously equivalent to H0(B(−1)) : U ⊗ V → W being surjective.

In the sequel we shall often identify the sheaf map B with the cor-
responding tensor H0(B(−1)) ∈ U∨ ⊗W ⊗ V ∨.

Let ǫ be the tensor product of the identity map of U with the eval-
uation map V ⊗ O → O(1). Then one sees easily that E = ker β =
kerB ∩ ker ǫ and that the short exact sequence (1.4) can be replaced
by

(3.3) 0 → E → U ⊗ V ⊗O(1)
B⊕ǫ
−−→ (W ⊗O(1)) ⊕ (U ⊗O(2)) → 0,

Remark 3.1. The cohomology exact sequence associated to the follow-
ing twist of (3.3), namely:

0 → E(−2) → U ⊗ V ⊗O(−1)
(B⊕ǫ)(−2)
−−−−−−→ (W ⊗O(−1))⊕ (U ⊗O) → 0

yields a canonical isomorphism U ∼= H1(E(−2)).
Since there is a canonical isomorphism

H0(ǫ(−1)) : U ⊗ V → U ⊗H0(O(1)),

the projection of W ⊕ (U ⊗ V ) → W induces an isomorphism of
H1(E(−1)) = CokerH0((B ⊕ ǫ)(−1)) with W , such that the map
B : U ⊗ V → W corresponds to the multiplication map of the co-
homology module H1

∗ (E).

Definition 3.2. The kernel construction of the bundle E is as fol-
lows. Consider a 3 × 3 × 4 tensor

(3.4) B ∈ U∨ ⊗W ⊗ V ∨.

Such B induces a linear map B : V ⊗U → W and a homomorphism
B : V ⊗ U ⊗ O → W ⊗ O of vector bundles on P

3 := P(V ∨), which
induces a homomorphism β = B ⊕ ǫ : U ⊗ Ω1(2) → W ⊗ O(1) as
described above.

If β is surjective, E := ker(β) as in (1.4) is a vector bundle.

Moreover, lemma 1.5 shows that such an E is a vector bundle with
total Chern class c(E)(t) = 1+3t+6t2 +4t3 and, if H0(β) is surjective,
with minimal cohomology (i.e., the conditions (1)–(5) of lemma 1.5 are
satisfied), and, moreover, U = H1(P3, E(−2)), W = H1(P3, E(−1)) and
the multiplication tensor is exactly B.
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We now proceed by illustrating the direct construction, our second
construction. Recall again that, by lemma 1.5, a tensor B such that
H0(B⊕ǫ) is surjective gives an E with H i(E) = 0 ∀i ≥ 1, and therefore
h0(E) = 6. It seems therefore natural to introduce the so-called

SECOND ASSUMPTION:
1) ι : 6O → E is injective, hence we get an exact sequence:

(3.5) 0 → 6O → E → τ → 0,

2) the torsion sheaf τ is OG-invertible, where G is the divisor of
Λ6(ι).

If for a vector bundle given as in (1.4) the second assumption is satis-
fied, then the divisor G is a cubic surface, and E may be reconstructed
as an extension of 6O by τ .

We first analyse the geometry and cohomology of the OG-invertible
sheaf τ . Let τ = OG(D) and let H denote the hyperplane divisor in
P3. We reproduce here remark 4.3 of [Ca-To]

Remark 3.3. Notation being as 1) above (even without assuming τ
to be OG-invertible) set τ ′ = Ext1(τ,O): then the dual of the previous
exact sequence (3.5) gives

(3.6) 0 → E∨ → 6O → τ ′ → 0.

and we have:

(1) By (3.5) clearly H0(τ) = H1(τ) = H2(τ) = 0.
(2) By (3.6) and since hi(E∨) ∼= h3−i(E(−4)) we get h0(τ ′) = 6,

H1(τ ′) = H2(τ ′) = 0.
(3) Since by definition τ ′ = Ext1(τ,O), applying the functor

Hom(τ,−) to the exact sequence 0 → O → O(3) → OG(3) → 0
we get τ ′ = Hom(τ,OG(3)). Therefore, if τ = OG(D), then
τ ′ = OG(3H −D).

Since hi(D) = 0 ∀i, h0(3H−D) = 6, hi(3H−D) = 0 for i = 1, 2, by
Riemann Roch follows that D2 +DH = −2 and 10 = 36− 7DH +D2.
Therefore HD = 3, D2 = −5.

Setting ∆ := D + H , it turns out that ∆H = 6,∆2 + ∆KG = −2,
i.e.,

∆H = 6,∆2 = 4.

Lemma 3.4. Assume that G is a smooth cubic surface: then there
exists a realization of G as the image of the plane under the system
|3L−

∑6
1Ei| of plane cubics through six points, such that either ∆ ≡ 2L,

i.e., ∆ corresponds to the conics in the plane, or (up to permutations
of the six points) ∆ ≡ 3L− 2E1 − E2.
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Proof. Observe preliminarly that if |H| = |3L −
∑6

1Ei| is such a
planar realization of a cubic surface, then another one is obtained via
a standard Cremona transformation centered at three of the points Pi

corresponding to the (−1)-curves Ei.
In fact, if L′ := 2L− E1 −E2 − E3, then

H = 3L′−(L−E1−E2)−(L−E1−E3)−(L−E2−E3)−E4−E5−E6.

We have 0 = H2(D) = H0(−D − H) and a fortiori H2(∆) =
H0(−D − 2H) = 0. It follows that |∆| has h0(∆) ≥ 6, ∆2 = 4,
and the arithmetic genus pa(∆) = 0.

Since 0 = H1(D) = H1(KG − D) = H1(−H − D) = H1(−∆), it
follows that ∆ is connected.

Hence we have a representation ∆ ≡ nL −
∑6

1 aiEi, where the ai’s
are non negative and we assume a1 ≥ a2 ≥ · · · ≥ a6.

We have: ∆2 = 4 = n2 −
∑6

1 a
2
i , ∆ ·H = 6 = 3n−

∑6
1 ai, i.e.

(3.7) n2 =

6∑

1

a2
i + 4, 3n =

6∑

1

ai + 6.

We want to show that, after a suitable sequence of standard Cremona
transformations, ∆ ≡ 2L or ∆ ≡ 3L − 2E1 − E2. By (3.7), we have
n ≥ 2 and for n = 2, 3 ∆ is as claimed. Hence the claim is that there
exists a sequence of standard Cremona transformations which makes
|∆| have degree n ≤ 3.

By applying |2L−E1−E2−E3| we get a new system ∆′ with degree
n′ = 2n− a1 − a2 − a3.

By our ordering choice for the ai’s, we have

a1 + a2 + a3 ≥ (

6∑

i=1

ai)/2 = 3n/2 − 3,

with strict inequality unless all ai’s are equal. We study this latter case
first:

Sublemma. In the previous setting, a1 = a2 = . . . = a6 if and only
if n = 2 and a1 = a2 = . . . = a6 = 0 or n = 10 and a1 = a2 = . . . =
a6 = 4.

Proof. The statement follows immediately by defining a := a1 = a2 =
. . . = a6 and using both conditions of (3.7): n = 2a + 2, n2 = 6a2 + 4,
which imply 8a = 2a2. �
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The previous inequality gives:

n′ ≤
n

2
+ 3 ≤ n for n ≥ 6,

and n′ < n for n ≥ 6 unless n′ = n = 6 and a1 = a2 = . . . = a6,
which has no solution by the above sublemma. We conclude that after
suitable Cremona transformations n ≤ 5.

If n = 5, then n′ ≤ 5/2 + 3, i.e., n′ ≤ 5. Moreover, if also n′ = 5,
then a1 + a2 + a3 = 5 and using again 3.7 we obtain a4 + a5 + a6 = 4.
But then a1 = a6 + 1 and we easily get a contradiction since then
a2 = a3 = a4 = a5 and they either equal a1 or a6. Hence, after a
suitable Cremona transformation, we can always reduce to the case
n ≤ 4.

Let now n = 4. Using (3.7) we get
∑6

i=1 ai = 6 and
∑6

i=1 ai(ai−1) =
6. We have the following two possibilities: a1 = 3, a2 = a3 = a4 =
1, a5 = a6 = 0 or a1 = a2 = a3 = 2, a4 = a5 = a6 = 0. In both cases we
have that a1 + a2 + a3 ≥ 5, and therefore n′ ≤ 3.

Q.E.D.

Remark 3.5. The complete linear system ∆ has as image in P5 either
the Veronese embedding of P2, or the embedding of P1 × P1 through
H0(OP1×P1(1, 2)). In both case we have a surface of minimal degree
(=4).

Thus we have concluded that either D = 2L − H = −L +
∑
Ei,

or D = 3L − 2E1 − E2 − H = −E1 +
∑6

3Ei. The latter case does
not occur, because an extension of 6O by such a τ will not have the
required cohomology table. The former case is instead possible. We
refer to [Ca-To], Lemma 4.12 and Lemma 4.13 for the proof of these
facts.

We are now able to explain the second way to construct vector bun-
dles E such that H i(E) = 0 ∀i ≥ 1 and h0(E) = 6, as required in
Lemma (1.5): we construct them as extensions of 6O by τ , where τ is
the sheaf corresponding to −L +

∑6
1Ei on a smooth cubic surface G

(cf. [Ca-To, Lemma 4.12]).
Before we give this second construction, we study these extensions.

Setting τ ′ := Ext1(τ,O) and recalling remark (3.3), we see that such
extensions are parametrized by Ext1(τ, 6O) = H0(6Ext1(τ,O)) ∼= C36.

Lemma 3.6. [Ca-To, Lemma 4.10] Assume that h0(E∨) = 0 and that E
is an extension as in (3.5): then the extension class in Ext1(τ, 6O) =
H0(6Ext1(τ,O)) ∼= C6 ⊗ C6 is a rank 6 tensor (we shall refer to this
statement by saying that the extension does not partially split).



24 FABRIZIO CATANESE AND FABIO TONOLI

In particular, E is then uniquely determined up to isomor-
phism.

Proof. The extensions which yield vector bundles form an open set.
We canonically view the space of these extension classes as

Hom(H0(τ ′), H0(6O)) = Hom(H0(τ ′),C6), through the coboundary
map of the corresponding exact sequence. We have then an action
of GL(6,C) as a group of automorphisms of 6O, which induces an ac-
tion on Hom(H0(τ ′), H0(6O)) = Hom(H0(τ ′),C6) which corresponds
to the composition of the corresponding linear maps.

The extensions which yield vector bundles form an open set, which
contains an open dense orbit, on which this action is free, namely, the
tensors of rank = 6.

If the rank of the tensor corresponding to an extension is = r < 6,
it follows that the extension is obtained from an extension 0 → rO →
E ′′ → τ → 0 taking then a direct sum with (6−r)O: but then (6−r)O
is a direct summand of E∨, contradicting h0(E∨) = 0.

�

Corollary 3.7. E as above (3.6) is a vector bundle if H0(τ ′) has no
base points.

Proof. Our hypothesis shows that in each point of G the local extension
class is non zero, hence it yields a locally free sheaf. �

The second assumption yields a cubic surface G ⊂ Proj(V ) and an
invertible sheaf τ on G. If G is smooth, the invertible sheaf τ(1) = 2L
yields then a birational morphism onto a Veronese surface, whence
represents G as the blow up of a projective plane P2 in a subscheme ζ
consisting of six points (distinct if the cubic G is smooth), and as the
image of P2 through the linear system of cubic curves passing through ζ .
The Hilbert-Burch theorem allows us to make an explicit construction
which goes in the opposite direction.

Remark 3.8. Let U ′,W ′ be 3-dimensional vector spaces and set P
2 :=

P(U ′). Consider a 3 × 3 × 4 tensor

(3.8) B′ ∈W ′∨ ⊗ U ′∨ ⊗ V

and assume that the induced sheaf homomorphism W ′ ⊗ OP2(−1) →
V ⊗OP2, which we call again B′, yields an exact sequence

(3.9) 0 →W ′ ⊗OP2(−1)
B′

−→ V ⊗OP2

Λ3(B′)
−−−→ OP2(3) → Oζ(3) → 0

which is the Hilbert Burch resolution of a codimension 2 subscheme ζ
of length 6.
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We obtain a canonical isomorphism V ∼= H0(Iζ(3)) and we let G ⊂
Proj(V ) be the image of P2 via the rational map ψ associated to V .
Under the above assumption on B′, if moreover ζ is a local complete
intersection, G is a normal cubic surface and, if we set G := (ψ∗(O(1)),
there is an exact sequence on Proj(V ):

(3.10) 0 →W ′ ⊗O(−1)
B′

−→ U ′∨ ⊗O → G → 0.

Under the more general assumption that the sheaf map B′ in (3.10)
never drops rank by 2, G is an invertible sheaf on the cubic surface
G, and there is a Cartier divisor L on G such that G = OG(L) (and
h0(OG(L)) = 3).

Definition 3.9. We define now the direct construction of the bun-
dle E relying on our results above.

Consider a 3 × 3 × 4 tensor

(3.11) B′ ∈W ′∨ ⊗ U ′∨ ⊗ V

such that the sheaf G defined by the exact sequence (3.10) is invertible
on the cubic surface G (i.e., at each point y ∈ P3 rank(G ⊗ Cy) ≤ 1).

Define τ := G⊗2(−1) and let E be a vector bundle which is an exten-
sion of 6O by τ as in (3.5) (here and elsewhere, O := OProj(V )).

We then have the following results:

Proposition 3.10. [Ca-To, Proposition 4.17] E as above is unique up
to isomorphism in the following cases:

(1) if G is a smooth cubic surface.
(2) if G is the reduced union of a plane T and a smooth quadric Q

intersecting transversally.

Remark 3.11. The case where G is a a linear projection of the cubic
scroll Y (birational embedding of P2 in P4 by the system |2L−E|) yields
two sheaves G which are not invertible.

As it is well known, every point in P4 lies in one of the planes spanned
by the conics of the system L. If we project from a point in P4 \Y , this
conic maps two to one to the double line of the cubic G.

Such a plane is said to be special if the conic splits into two lines
E + F, F ≡ L− E.

In the non special case, we may assume without loss of generality
that the conic corresponds to the line z = 0 in the plane, that the blown
up point is the point x = y = 0, and that the linear system mapping to
G is generated by (zx := x0, zy := x1, x

2 := x2, y
2 := x3). In this case
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one sees that the matrix B′ is

B′ =



x0 0 x1

0 x1 −x0

−x2 −x3 0


 ,

hence the rank of B′ drops by 2 on the line x0 = x1 = 0 (G is then the
cubic of equation −x2

0x3 + x2x
2
1 = 0).

In the special case, we may again assume that the blown up point is
the point x = y = 0, we assume that the line F is the proper transform
of x = 0, and that the linear system mapping to G is generated by (y2+
zx := x0, x

2 := x1, yz := x2, xy := x3) ( in the projective embedding
given by (zx, yz, x2, xy, y2) it corresponds to projection from the point
(1, 0, 0, 0,−1) ∈ P4 \ Y ).

In this case one sees that the matrix B′ is

B′ =



x3 −x2 −x0

−x1 0 x3

0 x3 −x1


 ,

hence the rank of B′ drops by 2 on the line x3 = x1 = 0 (G is then the
cubic of equation −x3

3 + x2
1x2 + x1x2x3 = 0).

4. The cross-product-involution and Schur’s quadric

In the previous section we have seen that to a vector bundle as in
(1.4) satisfying the second assumption one can associate two tri-tensors:
the tri-tensor B ∈ U∨⊗W ⊗V ∨ and the tri-tensor B′ ∈W ′∨⊗U ′∨⊗V .
The first corresponds to the unique nonzero multiplication matrix of
the intermediate cohomology module H1

∗ (E), the second, according to
the direct construction, defines on a cubic surface the invertible sheaf
G such that E is an extension of τ = G⊗2(−1) and 6O.

What is the relation between them? In this section we will show that
there is indeed a strict relation between such tri-tensors: a birational
involution, which the authors call cross-product-involution.

In [Ca-To] the authors, after having discovered these two tensors,
relate them by constructing a not necessarily minimal resolution of a
bundle E constructed by means of the tri-tensors B and B′.

Indeed, given B, Beilinson’s complex for E yields a short exact se-
quence

0 → U ⊗ Ω2(2) →W ⊗ Ω1(1) ⊕ 6O → E → 0,
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where U = H1(E(−2)) and W = H1(E(−1))). We get:
(4.1)

0 →
U ⊗O(−2)

⊕
W ⊗O(−3)

→
U ⊗ V ⊗O(−1)

⊕
W ⊗ Λ3V ⊗O(−2)

→
6O
⊕

W ⊗ Λ2V ⊗O(−1)
→ E → 0.

On the other side, B′ gives a resolution of G, from which it is possible
to compute a resolution of τ = G⊗2(−1). From this one, by applying
the mapping cone, it is possible again to get a resolution of E :
(4.2)

0 → Λ2W ′ ⊗O(−3) → U ′∨ ⊗ W ′ ⊗O(−2) →
6O
⊕

S2U ′∨ ⊗O(−1)
→ E → 0.

Comparing the two resolutions, the authors obtained the following
identifications:

(1) W ′ ∼= Λ2W , U ∼= ker[¬B′ : Λ2W ′ ⊗ V ∨ → U ′∨ ⊗W ′],
(2) U ′∨ ⊗W ′ ∼= (W ⊗ Λ3V )/U , S2U ′∨ ∼= (W ⊗ Λ2V )/(U ⊗ V );

where ¬B′ is the contraction given by the composition of the natural
inclusion from (Λ2W ′) ⊗ V ∨ to (W ′ ⊗W ′) ⊗ V ∨ with the map B′ ⊗
idW ′(−1).

Based on the above considerations we state the following correspon-
dence for a pair of tri-tensors as above.

Definition-Proposition 4.1.
The Cross-Product Involution on Tensors of type 3 x 3 x 4 is
given as follows.

Consider a 4-tuple (U,W, V ∨, B), where:

(1) U , W are 3-dimensional vector spaces and V is a 4-dimensional
vector space;

(2) each vector space is equipped with a given orientation, identify-
ing respectively ∧3U , ∧3W , and ∧4(V ∨) with C;

(3) B is a tensor

B ∈ U∨ ⊗W ⊗ V ∨ ∼= Hom(U,W ) ⊗ V ∨.

We remark that the ordering of the three vector spaces yields a sheaf
homomorphism which is canonically associated to the tensor B, namely

U ⊗OProj(V ∨)(−1)
[B]
−→W ⊗OProj(V ∨).

The trivial involution associates to the 4-tuple (U,W, V ∨, B) the
4-tuple (W∨, U∨, V ∨, B).

The reversing construction associates to the 4-tuple (U,W, V ∨, B)
the 4-tuple (W ′, U ′∨, V, B′), where:



28 FABRIZIO CATANESE AND FABIO TONOLI

(1) W ′ := Λ2(W ). Since W is equipped with an orientation, the
duality W ⊗Λ2W → C induces a canonical isomorphism of W ′

with W∨.
U ′ := ker[¬B : Λ2(W∨) ⊗ V → U∨ ⊗W∨], where ¬B is the
contraction with the tensor B; in particular, U ′ is canonically
isomorphic to a subspace of W ⊗ V .

(2) the three vector spaces W ′, U ′, and V are equipped with the ori-
entations induced from the orientations of U , W , V ∨, under the
’main assumption’ that the contraction map ¬B be surjective.

(3) the tensor

B′ ∈W ′∨ ⊗ U ′∨ ⊗ V = Hom(W ′, U ′∨) ⊗ V,

which corresponds to the natural inclusion U ′ →W⊗V , in view
of the isomorphism W ∼= (W ′)∨.

The dimension of U ′ is equal to 3 if we make the
MAIN ASSUMPTION: The contraction ¬B is surjective.
The cross-product involution is the involution, defined for the 4-

tuples (U,W, V ∨, B), where B is assumed to belong to the open set of
tensors satisfying the main assumption, which is given by the composi-
tion of the reversing construction with the trivial involution.

The cross-product involution associates thus to the 4-tuple
(U,W, V ∨, B) the 4-tuple (U ′,W = W ′∨, V, B′).

Proof. We only need to show that the cross-product involution is an
involution, i.e., that applying it twice, we obtain the identity.

We present here a different proof from the one given in [Ca-To], and
based on the following

Fact: if the main assumption holds, then there is an element Q ∈
S2(V ), called Schur’s quadric, such that if we denote by q : V ∨ → V
the corresponding linear map, then q is an isomorphism and idW ⊗ q
carries U ⊂ W ⊗ V ∨ to U ′ ⊂W ⊗ V .

Indeed, by the construction of the Schur quadric, it follows that the
inverse q−1 of the linear map q is obtained from the Schur quadric
Q∨ ∈ S2(V ∨) associated to B′, and therefore U ′′ = idW ⊗ q−1(U ′) = U .

�

Remark 4.2. The two tensors considered in remark 3.11, whose
respective determinants yield the two non normal irreducible cubics
(which are not projectively equivalent) satisfy the main assumption.
But the cross-product involution constructs out of them two tensors
which do no longer satisfy the main assumption, and which are projec-
tively equivalent:
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x∨2 x∨3 0
0 x∨2 x∨3
0 0 0







0 0 0
x∨0 x∨2 0
x∨2 0 x∨3


 .

Let us now explain how the Schur quadric is obtained.
Let U,W, V be complex vector spaces of respective dimensions 3,3,4

and let B ∈ U∨ ⊗W ⊗ V ∨ be a tensor of type (3, 3, 4), as in (3.1).
Following the notation of [Do-Ka], to B are associated then 3 maps:

(4.3) gV ∨ : V → U∨ ⊗W,

(we think of it as a 3 × 3 matrix of linear forms on V ), and similarly
we view

gU∨ : U →W ⊗ V ∨,

gW : W∨ → U∨ ⊗ V ∨,

as 3 × 4 matrices of linear forms (respectively on U and W∨).
For a general B, the determinant of the 3 × 3 matrix gV ∨ of linear

forms on V gives a smooth cubic surface G∗ in the dual projective
space P3∨ = Proj(V ∨), together with two different realizations of G∗ as
a blow up of a projective plane Proj(U∨) (respectively Proj(W )) in a
set of six points Z. These are the points where the 3×4 Hilbert–Burch
matrix of linear forms on U (respectively on W∨) drops rank by 1,
and the rational map to P

3∨ is given by the system of cubics through
the 6 points, a system which is generated by the determinants of the
four minors of order 3 of the Hilbert–Burch matrix, the matrix gU∨

(resp. gW ). One passes from one realization to the other one simply
by applying the trivial involution to the tensor B, i.e., replacing gU∨

with gW .
Also the 12 lines of the double–six configuration can be obtained

from the original tensor B, as the union of the 6 lines Az = Ker(gU∨)
with the 6 lines A′

z = Ker(gW ) for z ∈ Z, cf. [Do-Ka, § 0]. According
to this notation, Dolgachev and Kapranov give the following modern
formulation of Schur’s classical theorem in [Schu]:

Theorem 4.3. [Do-Ka, Theorem 0.5] Given a smooth cubic there exists
a symmetric bilinear form Q(x, y) on V , unique up to a scalar factor,
which satisfies the following property: Q(x, y) = 0 whenever x ∈ Az and
y ∈ A′

z for some z ∈ Z (i.e., the corresponding lines of the double–six
are orthogonal with respect to Q). Q is nondegenerate.
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The bilinear form Q ∈ S2(V ) is called the Schur quadric, and it is
obtained as follows.

Given a tri-tensor B ∈ U∨⊗W ⊗V ∨, consider the second symmetric
power of the linear map g = gV ∨ ,

S2(g) : → S2(U∨ ⊗W )

and compose it with the projection of

S2(U∨ ⊗W ) =
(
Λ2U∨ ⊗ Λ2W

)
⊕

(
S2U∨ ⊗ S2W

)

onto the first factor.
Since dimS2V = 10, dim (Λ2U∨ ⊗ Λ2W ) = 9, the kernel is 1-

dimensional for a general tensor (cf. [Do-Ka, §0 and Thm 0.5]).

Recall once more that the cross-product involution associates to a
general tensor B ∈ U∨ ⊗W ⊗ V ∨ another tensor B′ ∈ U ′∨ ⊗W ⊗ V ,
where U ′ is defined as the kernel of the map Λ2(W∨)⊗ V → U∨ ⊗W∨

induced by contraction with B.

Associate to the Schur quadric Q ∈ S2V a linear map q : V ∨ → V .
The map q then relates B and B′ as follows.

Proposition 4.4. Let B ∈ U∨ ⊗W ⊗ V ∨ be a tri-tensor such that the
associated cubic surface G∗ ⊂ P3∨ is smooth (in particular, B and B′

lie in the open set of the tri-tensors where the cross-product involution
is defined).

Then the composition of gU∨ : U → W ⊗ V ∨ with

(4.4) idW ⊗ q : W ⊗ V ∨ →W ⊗ V

maps U to U ′, where U ′ is the vector space associated to U via the
cross-product involution.

In particular, the tensor B′, corresponding to the inclusion U ′ →
W ⊗ V , is determined in this way by the tensor B and by the Schur
quadric Q.

Proof. According to the definition of the cross-product involution, we
can identify Λ2W∨ with W , W∨ with Λ2W , and moreover

(4.5)
U ′ = Ker(W ⊗ V → U∨ ⊗W∨),

U = Ker(W ⊗ V ∨ → U ′∨ ⊗W∨),

and both spaces have dimension equal to 3.
Therefore, since q is invertible, in order to show that (idW ⊗

q)(gU∨(U)) = U ′, it suffices to show that (idW ⊗ q)(gU∨(U)) is con-
tained in U ′, i.e., this space maps to zero in U∨ ⊗W∨.
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Recall that the first map in (4.5) is the composition

W ⊗ V
⊗B
−−→ (W ⊗W ) ⊗ (V ⊗ V ∨) ⊗ U∨ → U∨ ⊗W∨,

where the second map is naturally obtained by the projection pW∨ :
W⊗W → Λ2W = W∨ and the contraction V ⊗V ∨ → C corresponding
to the identity of V . Then we have to show that U maps to 0 in U∨⊗W∨

via the composition
(4.6)

U
gU∨

−−→ W ⊗V ∨ idW⊗q
−−−−→ W ⊗V

⊗B
−−→ (W ⊗W )⊗ (V ⊗V ∨)⊗U∨ → U∨⊗W∨.

One sees easily that the above assertion is equivalent to the property
that B ⊗ B maps to 0 via the map

(U∨ ⊗U∨)⊗ (W ⊗W )⊗ (V ∨ ⊗ V ∨)
id⊗pW∨⊗(¬Q)
−−−−−−−−−→ (U∨ ⊗U∨)⊗ (W∨).

The above map factors through

(4.7) (U∨ ⊗ U∨) ⊗ (Λ2W ) ⊗ S2(V ∨),

and we have to show that the image of B ⊗ B in this space maps to 0
via id ⊗ id⊗ (¬Q).

Write U∨ ⊗ U∨ as a direct sum S2(U∨) ⊕ Λ2(U∨). By the definition
of Q we get 0 for the contraction ¬Q with Q of the component in
(Λ2U∨) ⊗ (Λ2W ) ⊗ S2(V ∨) of the image of B ⊗ B.

On the other side, the component of the image of B⊗B in (S2U∨)⊗
(Λ2W ) ⊗ S2(V ∨) = Hom (S2V, (S2U∨) ⊗ (Λ2W )) is also zero, because
S2(V ) maps to S2(U∨ ⊗W ) = (Λ2U∨ ⊗ Λ2W ) ⊕ (S2U∨ ⊗ S2W ). �

We now want to relate the method to construct such bundles E as
kernels with the direct image method illustrated in section 2.

Consider therefore a tensor

B̂ ∈ V ⊗ Û∨ ⊗ Ŵ ,

and apply to it the direct image method of section 2 with twist t = 2

(assuming of course that B̂ defines a complete intersection Γ ⊂ P(V )×
P(U ′)). Exact sequence (2.15) gives

0 → ∧2(Ŵ∨) ⊗OP3(−2) → Ŵ∨ ⊗ Û∨ ⊗OP3(−1) → Ê bB → 0(4.8)

0 → Ê bB → S2(Û∨) ⊗OP3 → Ĝ2 bB → 0.(4.9)

and Ê is a vector bundle on P
3.

Denote Ê bB simply by Ê , and consider Ê∨: we want to show that there

is a tensor B such that Ê∨ = EB.
Indeed we can dualize the first exact sequence above, obtaining

(4.10) 0 → Ê∨ → Ŵ ⊗ Û ⊗OP′(1) → Ŵ∨ ⊗OP′(2) → 0.
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Thus Ê∨ is a rank 6 vector bundle and, by looking at the long exact
cohomology sequences associated to the twists of the previous exact
sequence, we obtain that the only non-vanishing intermediate coho-
mology groups of Ê are the two groups

H1(Ê∨(−2)) = Ŵ∨

H1(Ê∨(−1)) = coker
(
Ŵ ⊗ Û → Ŵ∨ ⊗ V

)
∼=

(
ker(Ŵ ⊗ V ∨ → Ŵ∨ ⊗ Û∨)

)∨

Thus first of all Ê∨ is again a vector bundle on P3 with Chern polyno-
mial 1 + 3t+ 6t2 + 4t3 and minimal cohomology.

Observe that, in terms of the cross-product involution applied to the
4-tuple

(Ŵ∨, Û∨, V, B̂),

we have:
(
ker(Ŵ ⊗ V ∨ → Ŵ∨ ⊗ Û∨)

)∨

= (Û ′)∨.

Hence, if we set

U := Ŵ∨,W := (Û ′)∨, B := (B̂)′,

the bundle EB associated to B via the kernel construction will be iso-
morphic to the bundle Ê∨, as we wanted.

5. Semistability and moduli space

In this section we shall show that the explicit geometric construction
we gave before lends itself to construct a natural moduli space A

0 for
the vector bundles considered in this paper.

Since moduli space for vector bundles have been constructed in great
generality by Maruyama, it seems natural to investigate their Gieseker
stability (we refer to [O-S-S] and especially to [Hu-Le] as general ref-
erences). We conjecture that our bundles are Gieseker stable, but un-
fortunately for the time being we only managed to prove their slope
(Mumford-Takemoto) semistability.

We are however able to prove that our vector bundles are simple,
and we observe then (cf. Theorem 2.1 of [Kob]) that moduli spaces
of simple vector bundles exist as (possibly non Hausdorff) complex
analytic spaces.

We show indeed that the above moduli space exists as an algebraic
variety. More precisely, we show that, under a suitable open condition,
we can construct a G.I.T. quotient A0 which is a coarse moduli space.

Recall lemma 1.5: it will lead to a characterization of the vector
bundles obtained from the kernel construction as an open set in any
family of vector bundles with the above Chern polynomial.
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Proposition 5.1. Consider a rank 6 vector bundle of E with total
Chern class 1 + 3t+ 6t2 + 4t3, such that

(1) h0(E) = 6
(2) the 6 sections generate a rank 6 trivial subsheaf with quotient τ
(3) h0(E∨) = 0
(4) E is a subbundle of 3Ω1(2).

Then E is slope-semistable.

Proof. Let E ′′ be a destabilizing subsheaf of rank r ≤ 5 and maximal
slope µ = d/r : without loss of generality we may assume that E ′′ is is a
saturated reflexive subsheaf, and similarly Ẽ := E ′′ ∩ 6O is a saturated
reflexive subsheaf of 6O.

0 // 6O // E // τ // 0

0 // Ẽ //

OO

E ′′ //

OO

τ ′′ //

OO

0

0

OO

0

OO

The slope µ(E) equals 1/2. On the other hand, by hypothesis 4 and
since Ω1(2) is a stable bundle (cf. 1.2.6 b , page 167 of [O-S-S]), the
slope of E ′′ is at most 2/3, and < 2/3 unless E ′′ ∼= Ω1(2).

CLAIM: E contains no subsheaf isomorphic to Ω1(2).
Proof of the claim: h0(Ω1(2)) = 6 = h0(E), thus this calculation

contradicts hypothesis 2. �

We have that d := c1(E
′′) = c1(Ẽ) + c1(τ

′′), and τ ′′ ⊂ τ is a coherent
subsheaf supported on a divisor, thus, c1(τ

′′) ≤ c1(τ) = 3.
On the other hand, c1(Ẽ) ≤ 0, and if equality holds, then Ẽ ∼= rO.
Hence, 1 ≤ d ≤ 3, and we have

2/3 > µ = d/r > 1/2 ⇔ 4d > 2r > 3d.

These inequalities leave open only the case d = 3, r = 5.
We show that this case does not exist.
In fact, otherwise we consider the quotient by the subbundle Ẽ ∼= rO.

By hypothesis 3, and the proof of lemma 3.6 we see that E/Ẽ is an
extension corresponding to a tensor of maximal rank, hence it yields a
vector bundle V (cf. corollary 3.7).

Since the torsion sheaf τ ′′ ⊂ V, we obtain τ ′′ = 0, hence d ≤ 0,
absurd.

Q.E.D.
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Remark 5.2. The possible exceptions to slope-stability, in view of the
inequalities

2/3 > µ = d/r ≥ 1/2 ⇔ 4d ≥ 2r > 3d

are:
1. d = 1, r = 2
2. d = 2, r = 4.
Matei Toma pointed out how case 2. could be excluded using Bo-

gomolov’s inequality for stable bundles, as done in Lemma 3.1 of his
paper [Toma]. The case r = 2, c1(Ẽ) = −2 seems as of now the most
difficult case.

Observe that slope-stability of E implies Gieseker stability of E , which
in turn implies that there is a point in the moduli space of Gieseker
semistable bundles corresponding to the isomorphism class of E .

Lemma 5.3. Let E be a vector bundle as in (1.4) with h0(E) = 6
(equivalently, h1(E) = 0) and verifying the second assumption. Then
hom(E , E) = 1, i.e., E is simple.

Proof. We consider the exact sequence

0 → Hom(E , 6O) → Hom(E , E) → Hom(E , τ) → Ext1(E ,O).

We have Ext1(E ,O) ∼= H1(E∨) ∼= H2(E(−4)) and from the exact
sequence (1.4) we infer H2(E(−4)) = 0. Since Hom(E , 6O) = 0 by
proposition 3.2, it follows that Hom(E , E) ∼= Hom(E , τ).

We compute hom(E , τ) by considering the exact sequence

0 → Hom(τ, τ) → Hom(E , τ) → Hom(6O, τ).

Indeed hom(O, τ) = h0(τ) = 0 (since h0(E) = 6) and, since τ is OG-
invertible, we have hom(τ, τ) = 1. �

Lemma 5.4. Let E be a simple vector bundle of rank 6, with Chern
classes c1(E) = 3, c2(E) = 6, c3(E) = 4. Then the local dimension of
the moduli space Ms(6; 3, 6, 4) of simple vector bundles at the point
corresponding to E is at least 19.

Proof. The moduli space of simple vector bundles exists (cf. [Kob],
Theorem 2.1) and it is well known that the local dimension is at least
equal to the expected dimension h1(E∨⊗E)−h2(E∨⊗E). On the other
hand, E simple means that h0(E∨ ⊗ E) = 1, hence follows also that
h3(E∨⊗E) = 0, since by Serre duality h3(E∨⊗E) = h0(E∨⊗E(−4)) = 0.

Thus the expected dimension equals −χ(E∨⊗E)+1 and there remains
to calculate −χ(E∨⊗E). This can be easily calculated in the case where
we have an exact sequence 0 → E → 9O(1) → 3O(2). We omit the
rest of the easy calculation. �
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In the following theorem we shall phrase the geometric meaning of
the cross-product involution in terms of a birational duality of moduli
space of vector bundles, A

0 on P
3, A

0
∗ on P

3∨.

Main Theorem Consider the moduli space Ms(6; 3, 6, 4) of rank
6 simple vector bundles E on P3 := Proj(V ) with Chern polynomial
1 + 3t + 6t2 + 4t3, and inside it the open set A corresponding to the
simple bundles with minimal cohomology, i.e., those with

(1) H i(E) = 0 ∀i ≥ 1; (2) H i(E(−1)) = 0 ∀i 6= 1;
(3) H i(E(−2)) = 0 ∀i 6= 1; (4) H i(E(−3)) = 0 ∀i;
(5) H i(E(−4)) = 0 ∀i.

Then A is irreducible of dimension 19 and it is bimeromorphic to A0,
where A

0 is an open set of the G.I.T. quotient space of the projective
space B of tensors of type (3, 4, 3), B := {B ∈ P(U∨ ⊗W ⊗ V ∨)} by
the natural action of SL(W ) × SL(U) (recall that U,W are two fixed
vector spaces of dimension 3, while V = H0(P3,O(1)).

Let moreover [B] ∈ A
0 be a general point: then to [B] corresponds a

vector bundle EB on P3 via the kernel construction, and also a vector
bundle E∗

B on P3∨, obtained from the direct construction applied to the
tensor B ∈ U∨ ⊗W ⊗ V ∨ (cf. definition 3.9 applied to B, or equation
(5.1)). E∗

B is the vector bundle EB′, where B′ ∈W⊗U ′∨⊗V is obtained
from B via the reversing construction and [B′] ∈ A0

∗.

Proof. To any such tensorB we tautologically associate two linear maps
which we denote by the same symbol,

B : U ⊗ V →W, B : U ⊗ V ⊗O(1) →W ⊗O(1)

and using the Euler sequence we define a coherent sheaf E on P3 as
a kernel, exactly as in the exact sequence (3.3) (except that surjec-
tivity holds only for B general), following what we called the kernel
construction.

As we already saw in (3.2), this is equivalent to giving E as the kernel
of a homomorphism β as in (1.4). Observe that GL(W )×GL(U) acts
on the vector space of such tensors, preserving the isomorphism class
of the sheaf thus obtained.

We define B′ as the open set in B where β is surjective (thus E
is a rank 6 bundle) and h0(E) = 6. Both conditions amount to the
surjectivity of h0(β) = h0(B⊕ǫ), cf. (3.3), and imply that E is a bundle
with minimal cohomology, in the sense of lemma 1.5. We further define
B′′ as the smaller open set where the second assumption is verified, and
we observe then that lemma 5.3 ensures the existence of a morphism
B

′′ → A which factors through the action of SL(W ) × SL(U).
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Since we want to construct a G.I.T. quotient of an open set of B,
we let B∗ the open set of tensors B whose determinant defines a cubic
surface G∗ ⊂ P

3∨, i.e., we have an exact sequence on P
3∨ of the form

(set O∗ := O
P3∨)

(5.1) 0 → U ⊗O∗(−1)
B
−→W ⊗O∗ → G∗ → 0.

Since the determinant map is obviously SL(W )×SL(U)-invariant, the
tensors in B∗ are automatically semistable points for the SL(W ) ×
SL(U)-action, by virtue of the criterion of Hilbert-Mumford.

Observe now that the maximal torus C∗ × C∗ of GL(W ) × GL(U)
acts trivially on B, thus we get an effective action of SL(W )× SL(U)
only upon dividing by a finite group K ′ ∼= (Z/3)2.

We claim that (SL(W )× SL(U))/K ′ acts freely on the open subset
B

∗∗ ⊂ B
∗, B

∗∗ = {B ∈ B
∗|End(G∗) = C}.

This is clear since the stabilizer of B corresponds uniquely to the
group of automorphisms of G∗, and any such automorphism acts on
W ∼= H0(G∗), and induces a unique automorphism of U in view of the
exact sequence (5.1). But every automorphism is multiplication by a
constant, thus it yields an element in K ′.

We want to show that the orbits are closed. But the orbits are
contained in the fibres of the determinant map: thus, it suffices to
show that, fixed the cubic surface G∗, if we have a 1-parameter family
where Gt

∼= G1 for t 6= 0, then also G0
∼= G1.

This holds on the smaller open set B∗∗∗ ⊂ B∗∗ consisting of the
tensors such that the cubic surface G∗ is smooth: since then G0 is
invertible, and the Picard group of G∗ is discrete.

We have proven that B
∗∗∗ consists of stable points, and observe that

the condition End(G∗) = C holds if G∗ is OG∗-invertible, or it is torsion
free and G∗ is normal. Therefore the open set Bst of stable points is
nonempty.

We define A0 as the open set of the G.I.T. quotient corresponding
to Bst ∩ B′′.

The fact that A is irreducible follows since every bundle E in A

has a cohomology table which (by Beilinson’s theorem, as explained
in lemma 1.5) implies that E is obtained from a tensor B in the open
subset B

′0 ⊂ B
′ consisting of those B for which the corresponding

bundle E is simple (note that B′0 ⊃ B′′).
Now, dim A0 = 19, while dim A ≥ 19 by 5.4; we only need to observe

that if [B], [B′] ∈ A0 and two bundles EB and EB′ are isomorphic, then
the corresponding tensors B,B′ are GL(U)×GL(W ) equivalent, since
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they express the multiplication matrix for the intermediate cohomology
module H1

∗ (E). Thus [B] = [B′] ∈ A0.
It follows on the one side that A

0 parametrizes isomorphism classes
of bundles, and on the other side that A0 maps bijectively to an open
set in A, in particular dim A = 19, since A is irreducible.

Q.E.D.
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[Gr-St] D. Grayson and M. Stillman, Macaulay 2 – a software sys-
tem for algebraic geometry and commutative algebra. Available at
http://www.math.uiuc.edu/Macaulay2, (1999).

[End] S. Endra, Minimal even sets of nodes. J. Reine Angew.Math. 503 (1998),
87–108.

[Eis] D. Eisenbud, Commutative algebra. With a view toward algebraic geom-
etry. Graduate Texts in Mathematics, 150. Springer-Verlag, New York,
1995. xvi+785 pp.

[Hu-Le] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves.
Aspects of Mathematics, E31. Friedr. Vieweg & Sohn, Braunschweig,
1997. xiv+269 pp.

[Ja-Ru] D. B. Jaffe and D. Ruberman, A sextic surface cannot have 66 nodes.
J. Alg. Geom., 6 (1997), 151–168 .

[Kob] S. Kobayashi, On moduli of vector bundles. Complex geometry and
analysis (Pisa, 1988), 45–57, Lecture Notes in Math., 1422, Springer,
Berlin, 1990.

[Kum] E. Kummer, Ueber diejenigen Flächen, welche mit ihren reciprok po-
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