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Abstract. — We show in this paper that the set of irreducible components of the family of Galois

coverings of P1
C with Galois group isomorphic to Dn is in bijection with the set of possible numerical

types.

In this special case the numerical type is the equivalence class (for automorphisms of Dn) of the
function which to each conjugacy class C in Dn associates the number of branch points whose local

monodromy lies in the class C.
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Introduction

The theory of covering spaces was invented to clarify the concept of an algebraic
function and its polydromy.

In the modern terminology one can describe an algebraic function f on an
algebraic curve Y as a rational function f on a projective curve X admitting a
non constant morphism p : X ! Y , and such that f generates the field extension
CðY ÞHCðX Þ.

The easiest example would be the one where Y ¼ P1 ¼ P1
C and f ¼

ffiffiffiffi
P

p
ðxÞ, P

being a square free polynomial.
f is in general polydromic, i.e., many valued as a function on Y , and going

around a closed loop we do not return to the same value. It is a theorem of
Weierstrass that f is a rational function on Y i¤ f is monodromic, i.e., there is
no polydromy.

For strange reasons (but remember the famous explanation ‘Lucus a non
lucendo’, the grove has a similar name to light because there is no light) what
should be called polydromy is nowadays called monodromy.

1The present work took place in the realm of the DFG Forschergruppe 790 ‘‘Classification of

algebraic surfaces and compact complex manifolds’’.



Given p : X ! Y as above there is a finite set BHY , called the branch locus,
such that, setting Y � :¼ YnB, X � :¼ p�1ðY �Þ, then p induces a covering space
X � ! Y � which is classified by its monodromy m, which is a homomorphism
of the fundamental group (Poincaré group) of Y �, p1ðY �; y0Þ, into the group of
permutations of the fibre p�1ðy0Þ.

If X is irreducible, and d is the degree of p, then the image of the monodromy
is a transitive subgroup of Sd, and conversely Riemann’s existence theorem
asserts that for any homomorphism m : p1ðY �; y0Þ ! Sd with transitive image we
obtain a morphism p : X ! Y as above inducing the given monodromy m, hence
also a corresponding algebraic function on Y with branch set contained in B.

Riemann’s existence theorem is a very powerful but not constructive result: it
is similar in spirit to the non constructive argument which shows that any n� n
matrix A satisfies a polynomial equation of degree at most n2; while the theorem
of Hamilton Cayley constructs such a polynomial equation of degree n, namely,
the characteristic polynomial PA of A. Although PA is not the polynomial of
minimal degree which gives zero when evaluated on A, it has the advantage that
it varies well with A if A varies in a family.

Similarly, one can consider families of algebraic functions, or, equivalently,
families of morphisms Xt ! Yt of algebraic curves, and a natural question
is whether a given parameter space T is irreducible: for this type of question
Riemann’s existence theorem plays a crucial role.

Usually one splits the above question by considering families where the
branch locus has a fixed cardinality, obtaining in this way a stratification of the
parameter space (the strata are often called Hurwitz spaces, see [Ful69]); and then
asking which strata are irreducible.

The archetypal result is the theorem of Lüroth-Clebsch and Hurwitz, show-
ing that simple coverings of the projective line form an irreducible variety (see
[Cleb72], [Hur91], cf. also [BaCa97] for a simple proof ). Here, simple means
that the local monodromies (image under m of small loops around the branch
points) are transpositions. The theorem of Lüroth-Clebsch has been extended
to projective curves Y of higher genus by several authors ([GHS02]), and there
are variants ([Kluit88], [Waj96], [Kanev06], [Kanev05], [Ve06], [Ve07], [Ve08])
where for one or two distinguished branch points the local monodromy can be
chosen to be a di¤erent type of permutation, or where one replaces the sym-
metric group by Weyl groups and the transpositions by reflections.

Observe that one can factor the monodromy m : p1ðY �; y0Þ ! Sd through a
surjection onto a finite group G followed by a permutation representation of G,
i.e., an injective homomorphism G ! Sd with transitive image.

Geometrically this amounts to construct a morphism Z ! Y (the Galois
closure of p) such that G acts on Z with quotient Z=GGY , and such that X is
obtained as the quotient of Z by a non normal subgroup H of G, and we have the
factorization

Z ! Z=H ¼ X ! Z=G ¼ Y :

In this way one separates the investigation of algebraic functions into two
parts: the study of Galois covers Z ! Y , and the study of intermediate covers.
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The study of Galois covers is however also of interest in itself, since inside the
moduli space Mg of curves X of genus gb 2 we have the closed proper algebraic
subset of curves having a nontrivial group of automorphisms, and one would like
to understand, given a finite group G, which are the irreducible components of
the algebraic subset Mg;G of curves X admitting G as a subgroup of their group
of automorphisms.

The action of G on the curve X gives rise to a morphism p : X ! X=G ¼ Y ,
and the geometry of p encodes several discrete invariants which distinguish the
irreducible components of Mg;G: the genus g 0 of Y , the number d of branch
points, and the orders m1; . . . ;md of the local monodromies. These invariants
form the primary numerical type.

Once the primary numerical type is fixed, then the determination of the
irreducible components of Mg;G with a given primary numerical type is, by
Riemann’s existence theorem, equivalent to the determination of the orbits of
the group Mapðg 0; dÞ � AutðGÞ on the set of possible monodromies m. Here
Mapðg 0; dÞ is the mapping class group of the curve YnB, a curve of genus g 0

with d points removed.
Thus the general problem is to try to determine some finer numerical invari-

ants which determine these orbits (equivalently, the above irreducible compo-
nents).

The secondary numerical type consists of the equivalence class (for automor-
phisms of G) of the function which to each conjugacy class C in G associates the
number of branch points whose local monodromy lies in the class C.

It was shown in [Cat10] that the primary and secondary numerical type su‰ce
to determine the irreducible components Mg;G in the case where G is cyclic.

In this paper and its sequel we shall be concerned with the case where G is
a dihedral group Dn. In this case one can define the numerical type, which is
nothing else than the primary and secondary numerical type unless n is even
and the monodromy m 0 onto the Abelianization ðZ=2ZÞ2 of Dn determines an
unramified covering of Y .

We conjecture that each numerical type determines only one irreducible com-
ponent, and we present the proof here for the case g 0 ¼ 0; we have also a proof in
the unramified case with g 0 > 0.

Of course one can ask similar questions for more general groups, abelian
groups should be relatively easy, whereas more general solvable groups could
lead to remarkable di‰culties.2

On the opposite side, there is the case where G is a simple group: for this case
we would like to call attention to the stability result of [Du-Th06].

The stability result of [Du-Th06] states that, in the unramified case (where
primary and secondary invariants boil down to only one invariant, namely the
genus g 0), for every finite group G the number of irreducible components becomes
a constant independent of g 0 for g 0 su‰ciently large.

2Added in proof: we discovered that some partial results have been obtained in [EdmI] and

[EdmII].
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A very interesting question is whether a similar stability result holds fixing the
secondary numerical type but letting the genus g 0 become su‰ciently large.

1. Preliminaries

Dihedral groups. The dihedral group Dn of order 2n is the group of symmetries
of a regular polygon with n edges. We assume nb 3, else we get the group

ðZ=2ZÞ2.
A simple representation of Dn is as the normal subgroup of the a‰ne group

Að1;Z=nZÞ consisting of transformations of the form

m 7!emþ j; j a Z=nZ:

It has generators x such that xðmÞ ¼ mþ 1, and y such that yðmÞ ¼ �m; x j

corresponds to a rotation of 2pj=n around its barycenter and each element x jy
(such that x jyðmÞ ¼ �mþ j) corresponds to a reflection with respect to a line of
symmetry.

Dn can be defined by generators and relations as follows:

Dn ¼ 3x; y j xn ¼ y2 ¼ ðxyÞ2 ¼ 14:

The above presentation shows right away that the Abelianization of Dn has the
presentation

DAb
n ¼ 3x; y j xy ¼ yx; y2 ¼ ðxÞGCDð2;nÞ ¼ 14

hence we get Z=2Z for n odd, ðZ=2ZÞ2 for n even.
The n reflections y; xy; . . . ; xn�1y will also be denoted either by s0; s1; . . . ; sn�1

or by their indices 0; 1; . . . ; n� 1.
For any rotation xi, its conjugacy class consists exactly of the elements xi and

x�i (if n ¼ 2i we obtain in this way the only central element).
If n is odd all the reflections belong to the same conjugacy class, while if n is

even two reflections xiy and x jy are conjugate if and only if iC j ðmod 2Þ.
These two cases are distinguished by the property of the corresponding a‰ne

transformation to have fixed points, since xiyðmÞ ¼ m , iC 2m ðmod nÞ, and
this equation has no solution if n is even and i is odd.

The automorphism group AutðDnÞ is identified with Að1;Z=nZÞGZ=nZz

ðZ=nZÞ� as follows: the map Z=nZ ! AutðDnÞ, which assigns i a Z=nZ to the
automorphism defined by y 7! xiy and x 7! x, identifies Z=nZ with the normal
subgroup of AutðDnÞ, consisting of those automorphisms which act trivially on
the subgroup of rotations.

The quotient AutðDnÞ=ðZ=nZÞ is isomorphic to the subgroup of AutðDnÞ con-
sisting of automorphisms of the form y 7! y, x 7! xi for i a ðZ=nZÞ�.

Observe that, Dn being a normal subgroup of Að1;Z=nZÞ, we get by conjuga-
tion a homomorphism Að1;Z=nZÞ ! AutðDnÞ which is an isomorphism exactly
for n odd.
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Dihedral coverings of curves. Let Y be a compact connected Riemann surface
of genus g 0. A dihedral covering of Y is a Galois covering p : X ! Y with Galois
group G ¼ Dn and with X connected. We will also say that p is a Dn-covering.

Riemann’s existence theorem allows us to use combinatorial methods to study
Dn-coverings, or more generally any G-covering (a Galois covering with an arbi-
trary finite Galois group G).

Let B ¼ fy1; . . . ; ydgHY be the branch locus of p.
Fix a base point y0 a YnB and a point x0 a p�1ðy0Þ.
Monodromy gives a surjective group-homomorphism

m : p1ðYnB; y0Þ ! G:ð1Þ

We recall now the definition of a geometric basis of p1ðYnB; y0Þ.
Let a1; b1; . . . ; ag 0 ; bg 0 be simple nonintersecting (except in y0) closed arcs in

YnB which are based on y0 and whose classes in H1ðY ;ZÞ form a symplectic
basis.

Let ~ggi be an arc connecting y0 with yi, contained in ðYnfa1; b1; . . . ; ag 0 ; bg 0 gÞA
fy0g and such that ~ggi intersects ~ggj only in y0 for iA j. Require moreover that
~gg1; . . . ; ~ggd stem out of y0 with distinct tangents and following each other in coun-
terclockwise order.

Let g1; . . . ; gd HYnðBA fa1; b1; . . . ; ag 0 ; bg 0gÞA fy0g be arcs defined as fol-
lows: gi begins at y0, travels along ~ggi to a point near yi, makes a small simple
counterclockwise loop around yi and then returns to y0 along ~ggi.

Then we have chosen a geometric basis, and we have a presentation:

p1ðYnB; y0Þ ¼ 3a1; b1; . . . ; ag 0 ; bg 0 ; g1; . . . ; gd jP
g 0

i¼1½ai; bi� � g1 � . . . � gd ¼ 14:

Let Tðg 0; dÞ be the group defined abstractly by generators and relations as follows:

Tðg 0; dÞ :¼ 3A1;B1; . . . ;Ag 0 ;Bg 0 ;G1; . . . ;Gd jPg 0

i¼1½Ai;Bi� � G1 � . . . � Gd ¼ 14:

The choice of a geometric basis yields an obvious isomorphism p1ðYnB; y0ÞG
Tðg 0; dÞ and under this identification the homomorphism (1) corresponds to an
epimorphism:

m : Tðg 0; dÞ ! G:ð2Þ

Conversely, given a surjective homomorphism m as in (2) such that mðGiÞA 1 Ei,
by Riemann’s existence theorem the choice of a geometric basis as above ensures
the existence of a G-covering p : X ! Y branched on B and whose monodromy
is m.

Varying a covering in a flat family with connected base, there are some
numerical invariants which remain unchanged, the first ones being the respective
genera g, g 0 of the curves X , Y , which are related by the Hurwitz formula:

2ðg� 1Þ ¼ jGj 2ðg 0 � 1Þ þ
X
i

1� 1

mi

� �" #
; mi :¼ ordðmðgiÞÞ:
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Observe moreover that a di¤erent choice of the geometric basis changes the
generators gi, but does not change their conjugacy classes (up to permutation),
hence another numerical invariant is provided by the number of elements mðgiÞ
which belong to a fixed conjugacy class in the group G.

We formalize these invariants through the following definitions.

Definition 1. A G-Hurwitz vector is an ordered sequence

v ¼ ða1; b1; . . . ; ag 0 ; bg 0 ; c1; . . . ; cdÞ a G2g 0þdð3Þ

such that the following conditions are satisfied:

(i) ci A 1 for all i;
(ii) G is generated by the components of v, G ¼ 3v4;
(iii) Pg 0

i¼1½ai; bi� � c1 � . . . � cd ¼ 1.

To any Dn-Hurwitz vector v we associate a tuple of positive integers nðvÞ
defined as follows.

If n ¼ 2n 0 þ 1 is odd, nðvÞ ¼ ðk; k1; . . . ; kn 0 Þ, where k (resp. ki) is the number of
the ci’s in the conjugacy class of y (resp. xi).

If n ¼ 2n 0 is even, nðvÞ ¼ ðky; kxy; k1; . . . ; kn 0 Þ, where ky (resp. kxy, ki) is the
number of the ci’s in the conjugacy class of y (resp. xy, xi).

The group AutðDnÞ acts diagonally on the set of Hurwitz vectors. This action
induces an action of AutðDnÞ on the set N :¼ fnðvÞ j v is a Hurwitz vectorg such
that the map n is AutðDnÞ-equivariant.

The equivalence class of nðvÞ in N=AutðDnÞ will be denoted by ½nðvÞ�.

Definition 2. The numerical type of the Hurwitz vector v is defined as follows.
If n ¼ 2n 0 þ 1 is odd, it is the pair ðg 0; ½nðvÞ�Þ, where g 0 is the genus of Y and

½nðvÞ� a N=AutðDnÞ is as above.
If n ¼ 2n 0 is even, then let H be the normal subgroup normally generated by

c1; . . . ; cd and set G 0 ¼ Dn=H. Then either G 0 GZ=2Z or G 0GDm, where mb 2,
mjn. In the case where G 0 GDm and mb 2 is even, the associated surjection
m 0 : p1ðY Þ ! Dm determines, since Y is the classifying space for p1ðYÞ, a contin-
uous map M 0 : Y ! KðDm; 1Þ, hence a map in homology H2ðM 0Þ : Z½Y �G
H2ðY ;ZÞ ! H2ðDm;ZÞGZ=2Z.

We define i a f0; 1g to be the image element H2ðM 0Þð½Y �Þ.
Then the numerical type is defined as the triple ðg 0; ½nðvÞ�; iÞ.3

Topological type. We recall a result contained in [Cat00], see also [Cat08].
Define the orbifold fundamental group porb

1 ðYnB; y0;m1; . . .mdÞ of the cover-
ing as

3a1; b1; . . . ; ag 0 ; bg 0 ; g1; . . . ; gd jP
g 0

i¼1½ai; bi� � g1 � . . . � gd ¼ 1; g
mj

j ¼ 1 Ej ¼ 1; . . . d4:

3 for g 0 ¼ 0 the group G 0 is trivial and hence the numerical type is just ½nðvÞ�.
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We have then an exact sequence

1 ! p1ðX ; x0Þ ! porb
1 ðYnB; y0;m1; . . .mdÞ ! G ! 1

which is completely determined by the monodromy, and which in turn deter-
mines, via conjugation, a homomorphism

r : G ! Outðp1ðX ; x0ÞÞ ¼ MapðX Þ :¼ Di¤ þðX Þ=Di¤ 0ðX Þ

which is fully equivalent to the topological action of G on X .
We have that, by Proposition 4.13 of [Cat00], all the curves X of a fixed genus

g which admit a given topological action r of the group G, specified up to an
automorphism of G, are parametrized by a connected complex manifold; arguing
as in Theorem 2.4 of [Cat10] we get

Theorem 1. The triples ðX ;G; rÞ where X is a complex projective curve of genus
gb 2, and G is a finite group acting on X with a topological action of type r are
parametrized by a connected complex manifold Tg;G;r of dimension 3ðg 0 � 1Þ þ d,
where g 0 is the genus of Y :¼ X=G, and d is the cardinality of the branch locus B.

The image Mg;G;r of Tg;G;r inside the moduli space Mg is an irreducible closed
subset of the same dimension 3ðg 0 � 1Þ þ d.

The next question which the above result motivates is: when do two Galois
monodromies m1; m2 : p

orb
1 ðYnB; y0;m1; . . .mdÞ ! G have the same topological

type?
The answer is theoretically easy, since if the two covering spaces have the

same topological type then they are homeomorphic, hence this means that the
two monodromies di¤er by:

• An automorphism of G.

• And a di¤erent choice of a geometric basis. This is performed by the mapping
class group (the first equality follows since the points of B are the ends of
YnB):

MapðY ;BÞGMapðYnBÞ :¼ Di¤ þðYnBÞ=Di¤ 0ðYnBÞ:

Moduli spaces. Fixing a genus g and a finite group G we have a finite number of
closed irreducible subsets Mg;G;r HMg corresponding to the choice of a topolog-
ical type r for the action of G.

A first invariant for the topological type r is provided by the pair ðg 0; dÞ where
g 0 is as above the genus of Y :¼ X=G, and d is the cardinality of the branch locus
BHY .

A further numerical invariant is the AutðGÞ equivalence class of the class func-
tion n which, for each conjugacy class C in G, counts the number of local mono-
dromies ci :¼ mðgiÞ which belong to the conjugacy class C.
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In particular, a weaker numerical invariant is given by the sequence of multi-
plicities mi of the branch points (mi is the order of mðgi); one can assume w.l.o.g.
m1 am2 a � � �amd).

One can consider then the set of equivalence classes of pairs ðX ; aÞ, where X is
a projective curve of genus g and a is an e¤ective action of G on X with primary
numerical invariants ðg;m1; . . .mdÞ.

Two such pairs ðX ; aÞ and ðX 0; a0Þ are considered equivalent i¤ there exists a
biholomorphic map F : X ! X 0 and an automorphism j a AutðGÞ such that
F ðgxÞ ¼ jðxÞF ðxÞ, for any x a X and g a G.

The set of such irreducible components Mg;G;r with the given primary
numerical invariants ðg;m1; . . .mdÞ is then computed as the number of orbits of
Mapðg 0; dÞ � AutðGÞ on the set of surjective homomorphisms

m : Tðg 0; d;m1; . . .mdÞ ! G

where

Tðg 0; d;m1; . . .mdÞ
:¼ 3A1;B1; . . . ;Ag 0 ;Bg 0 ;G1; . . . ;Gd jPg 0

i¼1½Ai;Bi� � G1 � . . . � Gd ¼ 1;Gmi

i ¼ 1 Ei4:

The geometrical insight is that the union of such components Mg;G;r has a
finite map Q : Mg;G;r ! Mg 0;d onto the (coarse) moduli space Mg 0;d of smooth
curves of genus g 0 with d unordered marked points. This is a topological covering
and the fundamental group of the base is a quotient of the mapping class group
Mapðg 0; dÞ.

Hence the components Mg;G;r are detected by the orbits of the monodromy of
this covering space.

The case of the dihedral group. Let n be a positive integer nb 3 and let ðg; ½nðvÞ�Þ
(resp. ðg; ½nðvÞ�; iÞ be a numerical type.

Let HDn
ðg; ½nðvÞ�Þ (resp. HDn

ðg; ½nðvÞ�; iÞ) be the set of equivalence classes of
pairs ðX ; aÞ, where X is a Riemann surface of genus g and a is an e¤ective action
of Dn on X such that the Dn-covering X ! X=Dn is of numerical type ðg; ½nðvÞ�Þ
(resp. ðg; ½nðvÞ�; iÞ.

The main question we address is whether the spaces HDn
ðg; ½nðvÞ�Þ, respec-

tively HDn
ðg; ½nðvÞ�; iÞ are irreducible, i.e., are spaces Mg;Dn;r for a unique topo-

logical type r. This can be proved by showing the transitivity of Mapðg 0; dÞ�
AutðDnÞ on the set of monodromies of given (full) numerical type.

This is the same thing as bringing each monodromy with a given numerical
type to a normal form.

2. The case g 0 ¼ 0

In this Section we assume g 0 ¼ 0.
The moduli space M0;d is a quotient of ðSdP1ÞnD by the action of the pro-

jective linear group PGLð2;CÞ, where SdP1 is the d-th symmetric product
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of P1, and D is the subset of SdP1 consisting of points with two or more equal
coordinates.

We have SdP1 GPd , therefore we consider the action of the braid group of
the sphere SBd :¼ p1ðPdnD; yÞ on the fibre over y of the above map Q.

The group SBd is a quotient of Artin’s braid group Bd which is generated
by the so-called elementary braids s1; . . . ; sd�1 acting on the Hurwitz vector
v ¼ ðc1; . . . ; cdÞ as follows:

ðc1; . . . ; cdÞsi ¼ ðc1; . . . ; ciciþ1c
�1
i ; ci; . . . ; cdÞ;

ðc1; . . . ; cdÞs�1
i ¼ ðc1; . . . ; ciþ1; c

�1
iþ1ciciþ1; . . . ; cdÞ:

Recall moreover the diagonal action of the group AutðDnÞ on the set of Hurwitz
vectors.

Since the two actions commute, we have an action of the groupBd �AutðDnÞ.

Definition 3. Two Hurwitz vectors v and w are said to be Hurwitz equi-
valent, or Braid-equivalent (resp. automorphism-equivalent, braid-automorphism-
equivalent) if there exist s a Bd (resp. j a AutðDnÞ, ðs; jÞ a Bd �AutðDnÞ) such
that w ¼ vs (resp. w ¼ vj, w ¼ vðs; jÞ). In this case we write v P

B
w (resp. v P

A
w,

v P
BA

w).

Notation 1. Identify a reflection siðmÞ ¼ �mþ i with its index i a Z=nZ.

The main result of this section is the following

Theorem 2. The group Bd �AutðDnÞ acts transitively on the set of Hurwitz
vectors of a fixed numerical type, hence dihedral covers of P1 of a fixed numerical
type form an irreducible closed subvariety of the moduli space.

More precisely, given v with nðvÞ ¼ ðk; k1; . . . ; kn 0 Þ (resp. nðvÞ ¼ ðky; kxy; k1; . . . ;
kn 0 Þ), set R :¼

P
i ki, and assume (w.l.o.g.) fh; kg ¼ fky; kxyg, ha k (observe that

k, resp. k þ h is even).
We have then, assuming throughout 0 < ri a riþ1 a n 0, r ¼ ðr1; . . . ; rRÞ and

setting jrj : C
P

i ri ðmod nÞ:

(i) v P
BA ð0; . . . ; 0; 1; 1þ jrj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

k

; xr1 ; . . . ; xrRÞ, if n ¼ 2n 0 þ 1.

(ii) v P
BA ð0; . . . ; 0|fflfflfflffl{zfflfflfflffl}

h

; 1; . . . ; 1; l|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k

; xr1 ; . . . ; xrRÞ, if n ¼ 2n 0 and hA 0.

Here l ¼ jrj þ e, where e a f0; 1g, eþ kC 1 ðmod 2Þ.
(iii) v P

BA ð1; . . . ; 1; 3; l|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
k

; xr1 ; . . . ; xrRÞ, if n ¼ 2n 0 and h ¼ 0.

Here l ¼ jrj þ 3.

We collect in the next section some preliminary results that shall be used in the
proof.
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Remark 1. It was brought to our attention after the paper was completed that a
rather complicated but more general classification of Hurwitz orbits on Dd

n was
done in [Sia09]. It is however not clear to us whether one can deduce our theorem
above from these results.

2.1. Auxiliary results

Remark 2. Identifying a reflection siðmÞ ¼ �mþ i with its index i a Z=nZ,
then conjugation corresponds to the action of another reflection on i:

si 7! sjsisj corresponds to i 7! 2j � i ¼ j � ði � jÞ:

Remark 3. The action of s1 on a pair of reflections ði; jÞ leaves their
product invariant, hence leaves the di¤erence i � j invariant: for instance
ði; jÞs1 ¼ ð2i � j; iÞ.

Lemma 2.1 (Normalization of reflection triples). Given a sequence of reflections
ði; j; kÞ in Dn which generate a dihedral subgroup Dm, its Hurwitz orbit contains a
sequence of type ði 0; j 0; j 0Þ and a sequence of type ði 00; i 00; j 00Þ.

In particular the subgroup Dm is generated by the first two entries of a suitable
sequence in the Hurwitz orbit.

Proof. First we consider the action of the four elements s1, s2, s
�1
1 , s�1

2 on the
triple.

ði; j; kÞs1 ¼ ð2i � j; i; kÞ; ði; j; kÞs2 ¼ ði; 2j � k; jÞ;
ði; j; kÞs�1

1 ¼ ð j; 2j � i; kÞ; ði; j; kÞs�1
2 ¼ ði; k; 2k � jÞ:

The corresponding transformations on the di¤erences of consecutive elements are

ð j � i; k � jÞs1 ¼ ð j � i; ðk � jÞ þ ð j � iÞÞ;
ð j � i; k � jÞs2 ¼ ðð j � iÞ � ðk � jÞ; k � jÞ;

ð j � i; k � jÞs�1
1 ¼ ð j � i; ðk � jÞ � ð j � iÞÞ;

ð j � i; k � jÞs�1
2 ¼ ðð j � iÞ þ ðk � jÞ; k � jÞ:

As long as both di¤erences are non-zero (modulo n), we can reduce the maximal
di¤erence by one of these transformations.

This process must terminate, hence we reach a situation where one of the
di¤erences is zero.

We can arrange for the other di¤erence to become zero by at most two addi-
tional transformations. Then we end up with a triple such that the last two entries
are equal, and also with a triple such that the first two entries are equal.

Note that we can compute the necessary transformations using the Euclidean
algorithm for the two di¤erences. r
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Lemma 2.2. Let ðsi; sj; xmÞ a D3
n . Then, for all l a Z we have:

ðsi; sj ; xmÞ PB ðsiþ2lm; sjþ2lm; x
mÞ:

Proof. For any l a Z the following formula can be verified:

ðsi; sj; xmÞðs2s1s1s2Þl ¼ ðsiþ2lm; sjþ2lm; x
mÞ:

This proves the claim. r

Lemma 2.3 (Double exchange). The following equivalence holds:

ð j; i; iÞ PB ði; i; jÞ:

Proof. This follows from the following equality:

ð j; i; iÞs�1
1 s�1

2 ¼ ði; 2i � j; iÞs�1
2 ¼ ði; i; jÞ: r

Lemma 2.4 (Normalization of pair sequences). The following equivalences hold.

(i) ð0; 0; i; iÞ PB ð0; 0;�i;�iÞ,
(ii) ði; i; j; jÞ PB ð j; j; i; iÞ,
(iii) ði; i; j; jÞ PB ði þ lð j � iÞ; i þ lð j � iÞ; j þ lð j � iÞ; j þ lð j � iÞÞ, El a Z.

(iv) ð0; 0; i; i; j; jÞ PB ð0; 0; i; i; j � 2li; j � 2liÞ, for any l a N

Proof. We achieve equivalence (i) by

ð0; 0; i; iÞs2s2
3s2 ¼ ð0;�i;�i; 0Þs3s2

¼ ð0;�i;�2i;�iÞs2
¼ ð0; 0;�i;�iÞ:

We achieve equivalence (ii) by applying twice Lemma 2.3.
Equivalence (iii) follows from the formula

ði; i; j; jÞðs�1
2 s�1

1 s3s2Þl

¼ ði þ lð j � iÞ; i þ lð j � iÞ; j þ lð j � iÞ; j þ lð j � iÞÞ; El a Z;

which can be proved e.g. by induction.
For equivalence (iv) we have:

ð0; 0; i; i; j; jÞs4s5s5s4 ¼ ð0; 0; i; 2i � j; 2i � j; iÞs5s4
¼ ð0; 0; i; i; 2i � j; 2i � jÞ

P
B ð0; 0; i; i; j � 2i; j � 2iÞ by ðiÞ and ðiiiÞ:

Iterating this procedure we get the claim for all l a N. r
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Lemma 2.5. Let n be an integer nb 3 and let v ¼ ði1; . . . ; i2NÞ a D2N
n be a

Hurwitz vector whose components are all reflections. Then there exists j a Z=nZ
such that:

v P
BA ð0; . . . ; 0; j; jÞ if n is odd;

ð0; . . . ; 0; j; . . . ; jÞ if n is even:

�

Moreover, the automorphisms involved in the previous equivalences are all of the
form y 7! xly, x 7! x.

Proof. Using Lemma 2.1 inductively we get

v P
B ði1; i1; i2; i2; . . . ; iN�1; iN�1; iN ; jNÞ:

Then also iN ¼ jN , since the product is the identity and we have in fact ob-
tained

v P
B ði1; i1; i2; i2; . . . ; iN�1; iN�1; iN ; iNÞ:

By the automorphism y 7! x�i1y, x 7! x which is of the form given in the claim of
the lemma we get the following form

P
BA ð0; 0; i2; i2; . . . ; iN ; iNÞ

and we may assume in b 0 by choosing suitable representatives.
The assertion of the Lemma follows now from the following:
CLAIM: Unless the sequence is already in the asserted form there is another

sequence of pairs of non-negative integers representing a Hurwitz vector in the
same braid equivalence class which is strictly smaller with respect to the lexico-
graphical ordering.

Since we may reorder the sequence of pairs according to Lemma 2.4 (ii), we
may assume 0a i2 a � � �a iN .

Assume now we have three di¤erent kinds of entries 0 < i < j. Then by using
once more Lemma 2.4 (ii) we can bring these entries next to each other and have
then a subsequence of the form ð0; 0; i; i; j; jÞ.

By Lemma 2.4 (iv) and (i), (ii) we have:

ð0; 0; i; i; j; jÞ PB ð0; 0; i; i; j � 2i; j � 2iÞð4Þ

P
B ð0; 0; i; i;�j þ 2i;�j þ 2iÞð5Þ

Now, either j � 2ib 0 or j � 2i < 0. In the first case j > j � 2ib 0 and the r.h.s.
of ð4Þ is smaller than the l.h.s. In the second case 0 < i < j implies 2i � j < j and
the r.h.s. of ð5Þ is smaller than the l.h.s of ð4Þ.

Therefore we can reduce to a sequence of pairs where all entries are either 0 or
a positive integer j. This concludes the claim in case where n is even.

302 f. catanese, m. lönne and f. perroni



In the case where n is odd we may have reached a situation with at least four
entries equal to j. But, according to Lemma 2.4 (iv) with l ¼ �ðn� 1Þ=2, we
have

ð0; 0; j; j; j; jÞPB ð0; 0; j; j; j � 2lj; j � 2ljÞ
¼ ð0; 0; j; j; nj; njÞ
¼ ð0; 0; j; j; 0; 0Þ

P
B ð0; 0; 0; 0; j; jÞ

Hence also in this case our claim holds true. r

Lemma 2.6 (Normalization of reflection pair). Given a sequence of reflections
ði0; j0Þ in Dn which generate a dihedral subgroup Dm, its Hurwitz orbit consists of
the pairs ði; jÞ with iC i0

�
mod n

m

�
and j � i ¼ j0 � i0.

2.2. Proof of Theorem 2

1. We first bring all the rotations to the right by elementary braids, obtaining:

v P
B ðsi1 ; . . . ; si2N ; xr1 ; . . . ; xrRÞ;ð6Þ

where 2N ¼ k if n is odd, 2N ¼ hþ k if n is even and R ¼
P

i ki.
Observe moreover that we can arbitrarily permute the rotations among them-

selves, a fact that at a later moment will allow us to assume ri a riþ1, Ei.

2. If ri > n 0, we bring ri next to the reflection sj ¼ si2N and then apply a full twist
with this reflection sj, obtaining:

ðsj ; xriÞs2
1 ¼ ðsj�2ri ; x

�riÞ:

Hence we can assume 0 < ri a n 0 for all i.

3. If n is even, without loss of generality, we may further assume that

k ¼ jfsi j si is conjugate to si2Ngj:

4. By Lemma 2.3 we can assume that i2f ¼ i2f�1 for any f a f1; . . . ;N � 1g.
Then we set jf ¼ i2f for f a f1; . . . ;N � 1g and jN ¼ i2N�1, thus we have:

v P
B ð j1; j1; j2; j2; . . . ; jN�1; jN�1; jN ; jN þ jrj; xr1 ; . . . ; xrRÞ:

Notice that the condition that k ¼ jfsi j si is conjugate to sjNþjrjgj still holds.

5. Consider the vector

w :¼ ð j1; j1; j2; j2; . . . ; jN ; jNÞ a D2N
n :
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The subgroup 3w4aDn generated by w is isomorphic either to Z=2Z, Z=2Z�
Z=2Z or to Dm with mb 3.

We show now, in each of these three cases, that v is equivalent to one of the
vectors in the statement of Theorem 2.

I. 3w4GZ=2Z. Then j1 ¼ j2 ¼ � � � ¼ jN ¼: j and

v P
B ð j; . . . ; j; j þ jrj; xrÞ:

We have that Dn ¼ 3 j; xr4 and hence GCDðn; rÞ ¼ 1. By Lemmas 2.2 and 2.4 (ii)
it follows that

v P
B ð j þ 2l; . . . ; j þ 2l; j þ 2m; j þ 2mþ jrj; xrÞ; El; m a Z:

If n is odd, 2 is a generator of Z=nZ and hence the result follows.
If n is even, we may assume that j is odd. In the case where moreover jrj

is even (i.e., h ¼ 0) we choose l such that j þ 2l ¼ 1 and we set m ¼ ð3� jÞ=2.
Otherwise we take m such that j þ 2mþ jrj ¼ 0, and l such that j þ 2l ¼ �1.
The result follows by a sequence of Hurwitz moves between reflections bringing
the element 0 from the last position to the initial one.

II. 3w4GZ=2Z� Z=2Z.
Then n must be even and there exist i; j a Dn with i � j ¼ n

2 such that
jf a fi; jg for all f a f1; . . . ;Ng. Using Lemma 2.4 (ii) we can bring all the pairs
of i’s to the left and obtain:

v P
B ði; . . . ; i; j; . . . ; j; j þ jrj; xrÞ or

v P
B ði; . . . ; i; j; . . . ; j; i; i þ jrj; xrÞ:

Exchanging the roles of i and j and using again Lemma 2.4 (ii) we see that the
second vector is braid-equivalent to one of the first type, hence we shall only con-
sider the first vector.

We have that Dn ¼ 3i; j; xr4 and so GCDðn; rÞ a f1; 2g.
If GCDðn; rÞ ¼ 1, we apply Lemma 2.2 and we get:

v P
B ði þ 2l; . . . ; i þ 2l; j þ 2m; . . . ; j þ 2m; j þ 2p; j þ 2pþ jrj; xrÞ; El;m; p a Z:

For an appropriate choice of l;m; p a Z if i, j are odd we reach the required
normal form (iii).

If one is even and the other is odd there are two possibilities: either the larger
group of k elements (to which j þ jrj by our assumption belongs) contains the
numbers j, or that it contains the numbers i.

In the former case with an automorphism of Dn we achieve that i is even and
again for an appropriate choice of l;m; p a Z we reach the required normal form
(ii).
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In the latter case since the number of occurrences of i is even we first apply
repeatedly Lemma 2.3 to move all the j’s to the left, then with an automorphism
we achieve that j is even, and finally for an appropriate choice of l;m we reach
the required normal form (ii).
Assume now that GCDðn; rÞ ¼ 2.

Then n
2 must be odd and therefore i and j have di¤erent parities. Moreover jrj

is even and so we may assume, acting with an automorphism, that h coincides
with the number of i’s. By Lemma 2.2 we get:

v P
B ði þ 4l; . . . ; i þ 4l; j; . . . ; j; j þ jrj; xrÞ; El a Z:

If iC j � 1 ðmod4Þ, we apply the automorphism x j�1y 7! y, x 7! x to transform
the vector in the desired form (ii). Otherwise iC j þ 1 ðmod4Þ and we proceed as
follows:

v P
B ð j þ 1; . . . ; j þ 1; j; . . . ; j; j þ jrj; xrÞ

P
A ð�j � 1; . . . ;�j � 1;�j; . . . ;�j;�j � jrj; x�rÞ

P
A ð0; . . . ; 0; 1; . . . ; 1; 1� jrj; x�rÞ

P
B ð0; . . . ; 0; 1; . . . ; 1; 1þ jrj; xrÞ;

where in the second equivalence we have used the automorphism x 7! x�1,
xy 7! x�1y, in the third equivalence we have used the automorphism x 7! x,
xy 7! x jþ2y, and in the fourth one we proceeded as in the reduction step 2.

III. 3w4GDm, mb 3.
By Lemma 2.5 applied to w we reduce w to the form

w P
BA ð0; . . . ; 0; j; . . . ; j; jÞ:ð7Þ

Since we want to apply the corresponding moves to v we avoid moves which
put the last pair into a di¤erent position.

By a careful modification of the proof of Lemma 2.5 this restriction leads to

w P
BA ð0; . . . ; 0; j; . . . ; j; j; jÞ orð8Þ

P
BA ð0; . . . ; 0; j; . . . ; j; 0; 0Þ

hence we have

v P
BA ð0; . . . ; 0; j; . . . ; j; j þ jrj; xrÞ orð9Þ

P
BA ð0; . . . ; 0; j; . . . ; j; 0; jrj; xrÞ:

It is clearly enough to consider only the first case.
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Observe that Dn ¼ 3y; x jy; xr4.
If n is odd, then by Lemma 2.5 we have:

v P
BA ð0; . . . ; 0; j; j þ jrj; xrÞ

with GCDð j; n; rÞ ¼ 1.
From Lemma 2.2 it follows that the right hand side is braid-equivalent to

ð0; . . . ; 0; j þ 2lM; j þ jrj þ 2lM; xrÞ;

where M :¼ GCDðn; rÞ. We have then GCDð j;MÞ ¼ 1.
Set l ¼ n=g, with g equal to the product of all common prime factors

of n and j taken with the maximal power with which they divide n; hence
GCDðe :¼ j þ 2lM; nÞ ¼ 1. In fact if p j n, then pA 2, and either p j l, or p j j:
but if p j l then p j j, contradicting that l and j are relatively prime; if instead
p j j, then by the same token p jM, contradicting GCDð j;MÞ ¼ 1.

Using Lemma 2.6 we get:

ð0; . . . ; 0; e; eþ jrj; xrÞPB ð0; . . . ; 0; le; ðlþ 1Þe; eþ jrj; xrÞ
ðfor l ¼ �e�1Þ ¼ ð0; . . . ; 0;�1; e� 1; eþ jrj; xrÞ

P
B ð0; . . . ;�l;�l� 1; e� 1; eþ jrj; xrÞ

ðfor l ¼ �eÞ ¼ ð0; . . . ; e; e� 1; e� 1; eþ jrj; xrÞ:

Repeating these steps inductively we obtain a vector of the following form:

ðe; e� 1; . . . ; e� 1; eþ jrj; xrÞ PB ðe� 1; . . . ; e� 1; e; eþ jrj; xrÞ

P
A ð0; . . . ; 0; 1; 1þ jrj; xrÞ:

The case where n is odd is then settled.
Let now n be even.
We distinguish three cases: h ¼ 0, h is equal to the number of y’s in (9), or h is

equal to the number of x jy’s in (9).
In the first case we apply Lemma 2.2 to obtain:

ð0; . . . ; 0; j; . . . ; j; j þ jrj; xrÞ

P
B ð0; . . . ; 0; j þ 2lM; . . . ; j þ 2lM; j þ 2lM þ jrj; xrÞ;

where again M ¼ GCDðn; rÞ. Let l ¼ n=g, with g equal to the product of all
common prime factors of n and j taken with the maximal power with which
they divide n; hence GCDðe :¼ j þ 2lM; nÞ ¼ 2.
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Using Lemma 2.6 we have:

ð0; . . . ; 0; e; . . . ; e; eþ jrj; xrÞPB ð0; . . . ; 0; le; ðlþ 1Þe; e; . . . ; e; eþ jrj; xrÞ
ðfor le ¼ �2Þ ¼ ð0; . . . ; 0;�2; e� 2; e; . . . ; e; eþ jrj; xrÞ

P
B ð0; . . . ;�2l;�2ðlþ 1Þ; e� 2; e; . . . ; e; eþ jrj; xrÞ

ðfor �2l ¼ eÞ ¼ ð0; . . . ; e; e� 2; e� 2; e; . . . ; e; eþ jrj; xrÞ

P
B ð0; . . . ; e� 2; e� 2; e; e; . . . ; e; eþ jrj; xrÞ:

Repeating these steps inductively we arrive at the following form:

ðe� 2; . . . ; e� 2; e; . . . ; e; eþ jrj; xrÞ PA ð1; . . . ; 1; 3; . . . ; 3; 3þ jrj; xrÞ:

If N ¼ 2 this completes the proof. Otherwise we need to transform each pair of
the form ðx3y; x3yÞ into ðxy; xyÞ. Notice that, since ðx3yÞ2 ¼ 1, we can move this
pair everywhere inside the vector without changing the other elements. Moreover
we can conjugate both elements by any of the others obtaining again a pair of
the form ðg; gÞ with g2 ¼ 1. It follows that we can transform ðx3y; x3yÞ into
ðhx3yh�1; hx3yh�1Þ, for any h a 3xy; x3y; xr4 ¼ Dn, hence the result follows
(notice that this argument follows the proof of Lemma 1.9 in [Kanev06]).

We consider now the case where h is equal to the number of 0’s in (9).
In this situation j must be odd, therefore there exists an l such that
GCDðe :¼ j þ 2lM; nÞ ¼ 1, where M ¼ GCDðn; rÞ. From Lemmas 2.2 and 2.6
we have:

ð0; . . . ; 0; j; . . . ; j; j þ jrj; xrÞPB ð0; . . . ; 0; e; . . . ; e; eþ jrj; xrÞ

P
B ð0; . . . ; 0; le; ðlþ 1Þe; e; . . . ; e; eþ jrj; xrÞ

ðfor le ¼ �1Þ ¼ ð0; . . . ; 0;�1; e� 1; e; . . . ; e; eþ jrj; xrÞ

P
B ð0; . . . ;�l;�l� 1; e� 1; e; . . . ; e; eþ jrj; xrÞ

ðfor l ¼ �eÞ ¼ ð0; . . . ; e; e� 1; e� 1; e; . . . ; e; eþ jrj; xrÞ

P
B ð0; . . . ; e� 1; e� 1; e; e; . . . ; e; eþ jrj; xrÞ:

Repeating this argument inductively we reach the following form:

ðe� 1; . . . ; e� 1; e; . . . ; e; eþ jrj; xrÞ PA ð0; . . . ; 0; 1; . . . ; 1; 1þ jrj; xrÞ;

hence the claim follows.
If h is equal to the number of x jy’s, we apply the automorphism x 7! x,

x jy 7! y and use the equivalence

ð�j; . . . ;�j; 0; . . . ; 0; jrj; xrÞ PB ð0; . . . ; 0;�j; . . . ;�j; jrj; xrÞ:

The claim follows now from the previous case. This completes the proof of the
Theorem. r
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