Burniat-type surfaces and a new family of surfaces with $p_{g}=0, K^{2}=3$

I. Bauer • F. Catanese

Received: 19 September 2012 / Accepted: 5 December 2012 / Published online: 16 February 2013
© Springer-Verlag Italia 2013

Abstract

The paper is one of a series devoted to the classification, the moduli spaces and the classification of surfaces of general type with $p_{g}=0$. Here we generalize a classical construction due to P. Burniat (revised by M. Inoue). Among other results we construct a family of surfaces of general type with $K_{S}^{2}=3, p_{g}(S)=0$ realizing a new fundamental group of order 16 .

Keywords Surfaces of general type with geometric genus $p_{g}=0$. Action of finite groups • Computer aided constructions

Mathematics Subject Classification 14J29 14J25 14J10 14H30 - 20F05

1 Introduction

The present paper continues a research developed in a series of articles ($[3-9,11]$) dedicated to the classification, the moduli spaces and the discovery of new surfaces of general type with geometric genus $p_{g}=0$ (the first such having been constructed in [13] and [14]), with particular emphasis on the problem of classifying the possible fundamental groups occurring according to the respective values of $K_{S_{\text {min }}}^{2}$ (see [10,11,20,17-19] for related conjectures and results).

[^0][^1]The construction methods we have been using vary considerably, and in this paper we consider the method originally due to Burniat (Abelian coverings) in the reformulation done by Inoue (quotients by Abelian groups), presenting it in a rather general fashion which seems worthwhile a deeper investigation.

Our general approach consists in considering quotients (cf. [8] for the case of a free action, treated there in greater generality), by some group G of the form $(\mathbb{Z} / m)^{r}$, of varieties \hat{X} contained in a product of curves $\Pi_{i} C_{i}$, where each C_{i} is a maximal Abelian cover of the projective line with Galois group of the form $(\mathbb{Z} / m)^{n_{i}}$. Let us explain now the connection with Burniat surfaces.

Burniat surfaces are surfaces of general type with invariants $p_{g}=0$ and $K^{2}=6,5,4,3,2$, whose birational models were constructed by Pol Burniat (cf. [12]) in 1966 as singular bidouble covers of the projective plane. Later these surfaces were reconstructed by Inoue (cf. [16]) as $G:=(\mathbb{Z} / 2 \mathbb{Z})^{3}$-quotients of a (G-invariant) hypersurface \hat{X} of multi degree $(2,2,2)$ in a product of three elliptic curves. In the case where G acts freely, this construction and its topological characterization has been largely generalized by the authors in the already cited paper [8].

While Inoue writes the (affine) equation of \hat{X} in terms of the uniformizing parameters of the respective elliptic curves using a variant of the Weierstrass' functions (the Legendre functions), we found it much more useful, especially for a systematic approach to finding all possible such constructions, to write the elliptic curves as the complete intersection of two diagonal quadrics in three space. In fact, we consider first the following diagram of quotient morphisms:

We consider then P_{1} with homogeneous coordinates $\left(\left(s_{1}: t_{1}\right),\left(s_{2}: t_{2}\right),\left(s_{3}: t_{3}\right)\right)$ and the pencil of Del Pezzo surfaces of degree 6

$$
Y_{\lambda}:=\left\{s_{1} s_{2} s_{3}=\lambda t_{1} t_{2} t_{3}\right\} \subset P_{1}
$$

Y_{λ} is invariant under a subgroup $H_{0} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$ of \mathcal{H} generated by the transformations:

$$
t_{i} \mapsto \epsilon_{i} t_{i}, \quad, \epsilon \in\{ \pm 1\}, \quad \epsilon_{1} \epsilon_{2} \epsilon_{3}=1
$$

Therefore $\hat{X}_{\lambda}:=\left(\pi^{\prime}\right)^{-1}\left(Y_{\lambda}\right)$ is invariant under a subgroup $G_{1} \cong(\mathbb{Z} / 2 \mathbb{Z})^{5} \subset(\mathbb{Z} / 2 \mathbb{Z})^{9}$. It is now our aim to find all the subgroups $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{3} \subset G_{1}$, having the property that G acts freely on \hat{X}.

We give the following

Definition 1.1 Let $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{3} \leq G_{1}$ be such that G acts freely on \hat{X}_{λ}. Then $S_{\lambda}:=\hat{X}_{\lambda} / G$ is called a primary Burniat type surface.

Obviously, primary Burniat surfaces (i.e., Burniat surfaces with $K^{2}=6$) are primary Burniat type surfaces. With the help of the computer algebra system MAGMA we can classify all primary Burniat type surfaces and can prove the following

Theorem 1.2 Primary Burniat type surfaces are exactly the primary Burniat surfaces.
We then consider $\hat{X}:=\left(\pi^{\prime}\right)^{-1}\left(Y_{1}\right)$. Since Y_{1} is invariant under a bigger subgroup of \mathcal{H} it turns out that \hat{X} is invariant under $G_{0} \cong(\mathbb{Z} / 2 \mathbb{Z})^{6}$.

In the second part of the paper we find all the subgroups $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{4} \leq G_{0}$ with the property that there is exactly one element $g_{0} \in G$ such that g_{0} has isolated fixed points on \hat{X} which are also isolated fixed points on $E_{1} \times E_{2} \times E_{3}$, while all other non trivial elements of G act freely on \hat{X}. The quotient of \hat{X} by the action of G is then a surface having exactly four ordinary nodes and we give the following
Definition 1.3 Let $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{4} \leq G_{0}$ be such that $\hat{X}_{1}=\hat{X}$ is G-invariant. We shall say that G acts 1-almost freely on \hat{X}, if there is exactly one element $g_{0} \in G$ having isolated fixed points on \hat{X} which are also isolated fixed points on $E_{1} \times E_{2} \times E_{3}$, while all the other non trivial elements of G act freely.

Then the minimal resolution S of the nodal surface $X:=\hat{X} / G$ is called a 4-nodal Burniat type surface.

Remark 1.4 One can consider, more generally, subgroups

$$
G \cong(\mathbb{Z} / 2 \mathbb{Z})^{4} \leq G_{0}
$$

with the property that there is exactly one element $g_{0} \in G$ such that g_{0} has isolated fixed points on \hat{X}, while all other non trivial elements of G act freely on \hat{X}. As a matter of fact, if we admit g_{0} to have a one-dimensional fixed locus on $E_{1} \times E_{2} \times E_{3}$ (which is not contained in \hat{X}) we get more examples of surfaces S of general type with $K_{S}^{2}=3, \chi(S)=1$. It turns out however that these surfaces have $q(S)=1$. We postpone therefore the study of these surfaces to a further article.

We give here a complete classification of 4-nodal Burniat type surfaces, which turn out to be minimal surfaces of general type with $p_{g}=0$ and $K^{2}=3$. This gives us a list of seven subgroups G yielding three (3-dimensional) families of such surfaces. Since these families are nowhere dense in the moduli space, and also in order to determine whether the present construction yields hitherto unknown surfaces, we use the classical result of Armstrong to calculate the fundamental groups of these surfaces.

Hence we see that these families yield three different topological types: one family yields the same fundamental group as the family of Keum-Naie surfaces with $K^{2}=3$ (this is case (i)), one family yields (case ii)) tertiary Burniat surfaces with $K^{2}=3$, and the third family realizes a new fundamental group $P:=\operatorname{SmallGroup}(16,13)$ (case iii)). Observe that P is the central product of the dihedral group of order 8 with the cyclic group of order 4 .

We summarize our result as follows:
Theorem 1.5 Let S be a 4-nodal Burniat type surface. Then S is a minimal surface of general type with $K_{S}^{2}=3, p_{g}(S)=0$ and the fundamental group ${ }^{1}$ of S is one of the following groups of order 16:

[^2](i) $\pi_{1}(S) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2} \times \mathbb{Z} / 4 \mathbb{Z}$, or
(ii) $\pi_{1}(S) \cong \mathbb{H}_{8} \times \mathbb{Z} / 2 \mathbb{Z}$, or
(iii) $\pi_{1}(S) \cong \operatorname{SmallGroup}(16,13)$.

In a sequel to this paper we shall give other applications of the method considered here, constructing new surfaces as quotients of subvarieties of products of maximal abelian coverings of \mathbb{P}^{1} having Galois group of the form $(\mathbb{Z} / d)^{m_{i}}$.

2 Burniat surfaces as reconstructed by Inoue

We briefly recall the construction of the Burniat surfaces (cf. [12]) as given by Inoue ([16]). The description given by Inoue is very appropriate in order to calculate the fundamental group.

For $i \in\{1,2,3\}$, let $E_{i}:=\mathbb{C} /\left\langle 1, \tau_{i}\right\rangle$ be a complex elliptic curve. Denoting by z_{i} a uniformizing parameter on E_{i}, we consider the following three involutions on $T:=E_{1} \times$ $E_{2} \times E_{3}$:

$$
\begin{aligned}
g_{1}\left(z_{1}, z_{2}, z_{3}\right) & =\left(-z_{1}+\frac{1}{2}, z_{2}+\frac{1}{2}, z_{3}\right) \\
g_{2}\left(z_{1}, z_{2}, z_{3}\right) & =\left(z_{1},-z_{2}+\frac{1}{2}, z_{3}+\frac{1}{2}\right) \\
g_{3}\left(z_{1}, z_{2}, z_{3}\right) & =\left(z_{1}+\frac{1}{2}, z_{2},-z_{3}+\frac{1}{2}\right)
\end{aligned}
$$

Then $G:=\left\langle g_{1}, g_{2}, g_{3}\right\rangle \cong(\mathbb{Z} / 2 \mathbb{Z})^{3}$.
We consider the Legendre \mathcal{L}-function for E_{i} and denote it by \mathcal{L}_{i}, for $i=1,2,3: \mathcal{L}_{i}$ is a meromorphic function on E_{i} and $\mathcal{L}_{i}: E_{i} \rightarrow \mathbb{P}^{1}$ is a double cover ramified in $\pm 1, \pm a_{i} \in$ $\mathbb{P}^{1} \backslash\{0, \infty\}$. It is well known that we have (cf. [16], lemma 3-2, and also cf. [5], pages 52-54, Sect. 2 for an algebraic treatment):
$-\mathcal{L}_{i}\left(\frac{1}{2}\right)=-1, \mathcal{L}_{i}(0)=1, \mathcal{L}_{i}\left(\frac{\tau_{i}}{2}\right)=a_{i}, \mathcal{L}_{i}\left(\frac{1+\tau_{i}}{2}\right)=-a_{i} ;$

- let $b_{i}:=\mathcal{L}_{i}\left(\frac{\tau_{i}}{4}\right):$ then $b_{i}^{2}=a_{i}$;
$-\frac{\mathrm{d} \mathcal{L}_{i}}{\mathrm{~d} z_{i}}\left(z_{i}\right)=0$ if and only if $z_{i} \in\left\{0, \frac{1}{2}, \frac{\tau_{i}}{2}, \frac{1+\tau_{i}}{2}\right\}$ since these are the ramification points of \mathcal{L}_{i}.

Moreover

$$
\begin{aligned}
\mathcal{L}_{i}\left(z_{i}\right)=\mathcal{L}_{i}\left(z_{i}+1\right)=\mathcal{L}_{i}\left(z_{i}+\tau_{i}\right)=\mathcal{L}_{i}\left(-z_{i}\right)=-\mathcal{L}_{i}\left(z_{i}+\frac{1}{2}\right), \\
\mathcal{L}_{i}\left(z_{i}+\frac{\tau_{i}}{2}\right)=\frac{a_{i}}{\mathcal{L}_{i}\left(z_{i}\right)} .
\end{aligned}
$$

Consider

$$
\left.\hat{X}_{c}:=\left\{\left(z_{1}, z_{2}, z_{3}\right)\right) \in T \mid \mathcal{L}_{1}\left(z_{1}\right) \mathcal{L}_{2}\left(z_{2}\right) \mathcal{L}_{3}\left(z_{3}\right)=c,\right\}
$$

Then

- \hat{X}_{c} is invariant under the action of G,
- for a general choice of c, \hat{X}_{c} is a smooth hypersurface in T of multidegree $(2,2,2)$ and G acts freely on \hat{X}_{c}, thus $X_{c}:=\hat{X}_{c} / G$ is a smooth minimal surface of general type with $p_{g}=0, K^{2}=6$.
- for special values of c and for special choices of the elliptic curves the hypersurface \hat{X}_{c} has $4,8,12,16$ nodes, which are isolated fixed points of G; in these cases X_{c} gets $1,2,3$, 4 singularities of type $\frac{1}{4}(1,1)$ and the minimal resolution of singularities of $X_{c}:=\hat{X}_{c} / G$ is a minimal surface of general type with $p_{g}=0$ and $K^{2}=5,4,3,2$.

3 Intersection of diagonal quadrics and $(\mathbb{Z} / 2 \mathbb{Z})^{n}$-actions

We consider diagram (1):

Remark 3.1 (1) π^{\prime} is given by 'forgetting' the variables x_{0}, u_{0}, z_{0}.
(2) π is given by $x_{i}^{2}=y_{i}, u_{i}^{2}=v_{i}, z_{i}^{2}=w_{i}, i=1,2,3$, where we consider

$$
P_{2} \subset \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}
$$

as given by the equations

$$
y_{1}+y_{2}+y_{3}=0, \quad v_{1}+v_{2}+v_{3}=0, \quad w_{1}+w_{2}+w_{3}=0
$$

(3) The inverse image of the Del Pezzo surface $Y_{\lambda}^{\prime}:=\left\{y_{1} v_{1} w_{1}=\lambda y_{2} v_{2} w_{2}\right\} \subset P_{2}$ under π splits into two irreducible components:

$$
\pi^{-1}\left(\left\{y_{1} v_{1} w_{1}=\lambda y_{2} v_{2} w_{2}\right\}\right)=Y_{\lambda}^{+} \cup Y_{\lambda}^{-} \subset P_{1},
$$

where $Y_{\lambda}^{ \pm}:=\left\{x_{1} u_{1} z_{1}= \pm \sqrt{\lambda} x_{2} u_{2} z_{2}\right\}$.
(4) If we take homogeneous coordinates

$$
\left(\left(s_{1}: t_{1}\right),\left(s_{2}: t_{2}\right),\left(s_{3}: t_{3}\right)\right),
$$

such that the action of \mathcal{H} on $P_{1}=\left(\mathbb{P}^{1}\right)^{3}$ is generated by the transformations:

$$
\begin{aligned}
& t_{i} \mapsto \pm t_{i}, \quad, s_{i} \mapsto s_{i}, \quad 1 \leq i \leq 3, \\
& t_{i} \mapsto s_{i}, \quad s_{i} \mapsto t_{i}, \quad 1 \leq i \leq 3,
\end{aligned}
$$

then we see that the Del Pezzo surface

$$
Y_{\lambda}:=\left\{s_{1} s_{2} s_{3}=\lambda t_{1} t_{2} t_{3}\right\} \subset P_{1}
$$

is invariant under the subgroup $H_{0} \cong(\mathbb{Z} / 2 \mathbb{Z})^{2}$ of \mathcal{H} generated by the transformations:

$$
s_{i} \mapsto s_{i}, \quad t_{i} \mapsto \epsilon_{i} t_{i}, \quad, \epsilon \in\{ \pm 1\}, \quad \epsilon_{1} \epsilon_{2} \epsilon_{3}=1
$$

Then $\hat{X}_{\lambda}:=\pi^{\prime-1}\left(Y_{\lambda}\right)$ is invariant under $G_{1} \cong(\mathbb{Z} / 2 \mathbb{Z})^{5} \subset(\mathbb{Z} / 2 \mathbb{Z})^{9}$. It is now our aim to find all subgroups $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{3} \subset G_{1}$, such that G acts freely on \hat{X}_{λ}.
We obtain in this case a commutative diagram

S is then a smooth minimal surface of general type with $K_{S}^{2}=6, p_{g}=0$. We shall in fact show that necessarily S is a primary Burniat surface.
(5) If instead we set $\lambda=1$, we see that the Del Pezzo surface

$$
Y:=Y_{1}=\left\{s_{1} s_{2} s_{3}=t_{1} t_{2} t_{3}\right\} \subset P_{1}
$$

is invariant under the subgroup $H_{1} \cong(\mathbb{Z} / 2 \mathbb{Z})^{3}$ of \mathcal{H} generated by the transformations:

$$
s_{i} \mapsto s_{i}, \quad t_{i} \mapsto \epsilon_{i} t_{i}, \quad, \epsilon \in\{ \pm 1\}, \quad \epsilon_{1} \epsilon_{2} \epsilon_{3}=1
$$

and

$$
t_{i} \mapsto s_{i}, \quad s_{i} \mapsto t_{i}, \quad \forall i
$$

Then $\hat{X}:=\pi^{\prime-1}(Y)$ is invariant under $G_{0} \cong(\mathbb{Z} / 2 \mathbb{Z})^{6} \subset(\mathbb{Z} / 2 \mathbb{Z})^{9}$. It is now our aim to find all subgroups $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{4} \subset G_{0}$, such that there is exactly one element $g_{0} \in G$ which has isolated fixed points on \hat{X} (which are also isolated fixed points on $E_{1} \times E_{2} \times E_{3}$), while all other nontrivial elements act freely.
We obtain then a commutative diagram

(6) Note that it is easy to see that Z is the four nodal cubic surface in \mathbb{P}^{3}. In fact, $Y^{ \pm}=$ $\left\{s_{1} s_{2} s_{3}= \pm t_{1} t_{2} t_{3}\right\}$ is the pull-back of $Z^{\prime}:=\left\{\sigma_{1} \sigma_{2} \sigma_{3}=\tau_{1} \tau_{2} \tau_{3}\right\}$ under the map $s_{i}^{2}=$ $\sigma_{i}, t_{i}^{2}=\tau_{i}$. Hence $Y^{+} \rightarrow Z^{\prime}$ is a $(\mathbb{Z} / 2 \mathbb{Z})^{2}$-cover of a Del Pezzo surface of degree 6. On Z^{\prime}, the involution which exchanges σ_{i} and τ_{i} has four isolated fixed points. Hence the quotient Z is a four nodal cubic surface.

Observe that in the above remark we described the action of \mathcal{H} on $\left(\mathbb{P}^{1}\right)^{3}$ in the coordinates $\left(s_{i}: t_{i}\right)$. We have to rewrite this action in the coordinates x_{i}, u_{i}, z_{i}, and then give the equations of the Del Pezzo surface

$$
Y_{\lambda}=\left\{s_{1} s_{2} s_{3}=\lambda t_{1} t_{2} t_{3}\right\} \subset P_{1}
$$

in the coordinates x_{i}, u_{i}, z_{i}.
In order to give the action of \mathcal{H} in the coordinates x_{i}, u_{i}, z_{i} and find the equations of the Del Pezzo surfaces $Y_{\lambda} \subset P_{1} \subset\left(\mathbb{P}^{2}\right)^{3}$, we consider first the following diagram

$$
\begin{array}{ccc}
E_{1}=E & \tag{4}\\
\mathbb{Z} / 2 \mathbb{Z} \\
\downarrow & \\
\mathbb{P}^{1} & = & \left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0\right\}=: C \subset \mathbb{P}^{2} \\
(\mathbb{Z} / 2 \mathbb{Z})^{2} \\
\downarrow & \\
\mathbb{P}^{1} & = & \left\{y_{1}+y_{2}+y_{3}=0\right\} \subset \mathbb{P}^{2} .
\end{array}
$$

Observe that

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0 \Longleftrightarrow \operatorname{det}\left(\begin{array}{cc}
x_{1}+i x_{2} & -x_{3} \\
x_{3} & x_{1}-i x_{2}
\end{array}\right)=0 .
$$

Therefore we get a parametrization of C :

$$
(s: t)=\left(x_{1}+i x_{2}: x_{3}\right)=\left(-x_{3}: x_{1}-i x_{2}\right) .
$$

With this parametrization, we can rewrite the action of $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ on \mathbb{P}^{1} (we use the convenient notation by which all variables not mentioned in a transformation are left unchanged):
(a) $x_{1} \mapsto-x_{1}$ (or equivalently $\binom{x_{2}}{x_{3}} \mapsto\binom{-x_{2}}{-x_{3}}$) corresponds to $(s: t) \mapsto(t: s)$;
(b) $x_{2} \mapsto-x_{2}$ (or equivalently $\binom{x_{1}}{x_{3}} \mapsto\binom{-x_{1}}{-x_{3}}$) corresponds to $(s: t) \mapsto(-t: s)$;
(c) $x_{3} \mapsto-x_{3}$ (or equivalently $\binom{x_{1}}{x_{2}} \mapsto\binom{-x_{1}}{-x_{2}}$) corresponds to $(s: t) \mapsto(s:-t)$.

Remark 3.2 The fixed points of the three involutions above are
(a) $s= \pm t \Longleftrightarrow x_{1}=x_{3} \pm i x_{2}=0$;
(b) $t= \pm i s \Longleftrightarrow x_{2}=x_{1} \pm i x_{3}=0$;
(c) $s t=0 \Longleftrightarrow x_{3}=x_{1} \pm i x_{2}=0$.

The equations for the Del Pezzo surface $Y_{\lambda}=\left\{s_{1} s_{2} s_{3}=\lambda t_{1} t_{2} t_{3}\right\}$ in the coordinates x_{i}, u_{i}, z_{i} can now be easily computed.

Lemma 3.3 Consider

$$
\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}_{\left(x_{1}: x_{2}: x_{3}\right)}^{2} \times \mathbb{P}_{\left(u_{1}: u_{2}: u_{3}\right)}^{2} \times \mathbb{P}_{\left(z_{1}: z_{2}: z_{3}\right)}^{2},
$$

given by the equations

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0, \quad u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=0, \quad z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0 .
$$

Let $Y_{\lambda} \subset \mathbb{P}_{\left(s_{1}: t_{1}\right)}^{1} \times \mathbb{P}_{\left(s_{2}: t_{2}\right)}^{1} \times \mathbb{P}_{\left(s_{3}: t_{3}\right)}^{1}$ be the Del Pezzo surface given by the equation

$$
Y=\left\{s_{1} s_{2} s_{3}=\lambda t_{1} t_{2} t_{3}\right\}, \quad \lambda \neq 0 .
$$

Then

$$
Y_{\lambda} \subset \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \subset \mathbb{P}_{\left(x_{1}: x_{2}: x_{3}\right)}^{2} \times \mathbb{P}_{\left(u_{1}: u_{2}: u_{3}\right)}^{2} \times \mathbb{P}_{\left(z_{1}: z_{2}: z_{3}\right)}^{2}
$$

is given by the following eight equations:
(1) $\left(x_{1}+i x_{2}\right)\left(u_{1}+i u_{2}\right)\left(z_{1}+i z_{2}\right)=\lambda x_{3} u_{3} z_{3}$,
(2) $\left(x_{1}+i x_{2}\right)\left(u_{1}+i u_{2}\right)\left(-z_{3}\right)=\lambda x_{3} u_{3}\left(z_{1}-i z_{2}\right)$,
(3) $\left(x_{1}+i x_{2}\right)\left(-u_{3}\right)\left(z_{1}+i z_{2}\right)=\lambda x_{3}\left(u_{1}-i u_{2}\right) z_{3}$,
(4) $\left(-x_{3}\right)\left(u_{1}+i u_{2}\right)\left(z_{1}+i z_{2}\right)=\lambda\left(x_{1}-i x_{2}\right) u_{3} z_{3}$,
(5) $\left(x_{1}+i x_{2}\right) u_{3} z_{3}=\lambda x_{3}\left(u_{1}-i u_{2}\right)\left(z_{1}-i z_{2}\right)$,
(6) $x_{3}\left(u_{1}+i u_{2}\right) z_{3}=\lambda\left(x_{1}-i x_{2}\right) u_{3}\left(z_{1}-i z_{2}\right)$,
(7) $x_{3} u_{3}\left(z_{1}+i z_{2}\right)=\lambda\left(x_{1}-i x_{2}\right)\left(u_{1}-i u_{2}\right) z_{3}$,
(8) $-x_{3} u_{3} z_{3}=\lambda\left(x_{1}-i x_{2}\right)\left(u_{1}-i u_{2}\right)\left(z_{1}-i z_{2}\right)$.

Proof We have seen that each \mathbb{P}^{1} (written as a conic in \mathbb{P}^{2}) has a birational map to \mathbb{P}^{1} given by:

$$
\begin{aligned}
& \left(s_{1}: t_{1}\right)=\left(x_{1}+i x_{2}: x_{3}\right)=\left(-x_{3}: x_{1}-i x_{2}\right), \\
& \left(s_{2}: t_{2}\right)=\left(u_{1}+i u_{2}: u_{3}\right)=\left(-u_{3}: u_{1}-i u_{2}\right), \\
& \left(s_{3}: t_{3}\right)=\left(z_{1}+i z_{2}: z_{3}\right)=\left(-z_{3}: z_{1}-i z_{2}\right) .
\end{aligned}
$$

Since each birational map is well defined at each point either through the second or through the third ratio, this implies immediately that the divisorial equation of the Del Pezzo surface in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ is equivalent to the above eight equations in $\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$.

Let $\hat{X} \subset E_{1} \times E_{2} \times E_{3}$ be the inverse image of the Del Pezzo surface $Y_{\lambda} \subset P_{1}$ given by the above eight equations. Then we have:
Lemma 3.4 (1) $\lambda \neq 0$: then \hat{X}_{λ} is invariant under the group $G_{1} \cong(\mathbb{Z} / 2 \mathbb{Z})^{5} \leq(\mathbb{Z} / 2 \mathbb{Z})^{3} \times$ $(\mathbb{Z} / 2 \mathbb{Z})^{3} \times\left(\overline{\mathbb{Z} / 2 \mathbb{Z})^{3}}\right.$, where

$$
G_{1}:=\left\{\left(\epsilon_{0}, \epsilon_{1}, \eta_{0}, \epsilon_{2}, \zeta_{0}, \epsilon_{3}\right) \subset(\mathbb{Z} / 2 \mathbb{Z})^{6} \mid \epsilon_{1} \epsilon_{2} \epsilon_{3}=1\right\} .
$$

The action of G_{1} on $E_{1} \times E_{2} \times E_{3}$ is given by:

$$
\begin{aligned}
x_{0} \mapsto \epsilon_{0} x_{0}, \quad u_{0} \mapsto \eta_{0} u_{0}, \quad z_{0} \mapsto \zeta_{0} z_{0}, \\
x_{3} \mapsto \epsilon_{1} x_{3}, \quad u_{3} \mapsto \epsilon_{2} u_{3}, \quad z_{3} \mapsto \epsilon_{3} z_{3}, \quad \epsilon_{1} \epsilon_{2} \epsilon_{3}=1 .
\end{aligned}
$$

(2) $\underline{\lambda=1}$: then $\hat{X}:=\hat{X}_{1}$ is invariant under the group $G_{0} \cong(\mathbb{Z} / 2 \mathbb{Z})^{6} \leq(\mathbb{Z} / 2 \mathbb{Z})^{3} \times$ $\overline{(\mathbb{Z} / 2 \mathbb{Z})^{3}} \times(\mathbb{Z} / 2 \mathbb{Z})^{3}$, where

$$
G_{0}:=\left\{\left(\epsilon_{0}, \eta_{1}, \epsilon_{1}, \eta_{0}, \epsilon_{2}, \zeta_{0}, \epsilon_{3}\right) \subset(\mathbb{Z} / 2 \mathbb{Z})^{7} \mid \epsilon_{1} \epsilon_{2} \epsilon_{3}=1\right\} .
$$

The action of G_{0} on $E_{1} \times E_{2} \times E_{3}$ is given by:

$$
\begin{array}{r}
x_{0} \mapsto \epsilon_{0} x_{0}, \quad u_{0} \mapsto \eta_{0} u_{0}, \quad z_{0} \mapsto \zeta_{0} z_{0}, \quad\left(\begin{array}{c}
x_{1} \\
u_{1} \\
z_{1}
\end{array}\right) \mapsto \eta_{1}\left(\begin{array}{l}
x_{1} \\
u_{1} \\
z_{1}
\end{array}\right), \\
x_{3} \mapsto \epsilon_{1} x_{3}, \quad u_{3} \mapsto \epsilon_{2} u_{3}, \quad z_{3} \mapsto \epsilon_{3} z_{3}, \quad \epsilon_{1} \epsilon_{2} \epsilon_{3}=1 .
\end{array}
$$

Proof Just observe that multiplication of the variables x_{1}, u_{1}, z_{1} by -1 correspond to exchanging, for each $i=1,2,3, s_{i}$ with t_{i}.
Definition 3.5 (1) Let $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{3} \leq G_{1}$ have the property that G acts freely on \hat{X}_{λ}. Then $S_{\lambda}:=\hat{X}_{\lambda} / G$ is is called a primary Burniat type surface.
(2) Let $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{4} \leq G_{0}$, such that $\hat{X}_{1}=\hat{X}$ is invariant under G. We say that G acts 1-almost freely on \hat{X}, if there is exactly one element $g_{0} \in G$ having isolated fixed points on \hat{X} which are also isolated fixed points on $E_{1} \times E_{2} \times E_{3}$ while all other nontrivial elements of G act freely.

Then the minimal resolution of singularities S of $X:=\hat{X} / G$ is called a 4-nodal Burniat type surface.

Observe that a primary Burniat type surface S_{λ} is a smooth minimal surface of general type with $\chi(S)=1$ and $K_{S}^{2}=6$. In particular, primary Burniat surfaces are primary Burniat type surfaces.

The minimal resolution of a 4-nodal Burniat type surface is then a minimal surface of general type with $K_{S}^{2}=3, \chi(S)=1$.

4 The fixed points of $\boldsymbol{G}_{\boldsymbol{0}}$ on \hat{X}

Remark 4.1 Fix $a_{1}, a_{2}, a_{3} \in \mathbb{C}$ distinct so that the curve

$$
E:=\left\{\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \in \mathbb{P}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0, x_{0}^{2}=a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2}\right\}
$$

is smooth (hence an elliptic curve). Then:

$$
g\left(x_{0}: x_{1}: x_{2}: x_{3}\right):=\left(\alpha_{0} x_{0}, \alpha_{1} x_{1}, x_{2}, \alpha_{3} x_{3}\right), \alpha_{i} \in\{ \pm 1\}
$$

has fixed points on E if and only if either

- $\alpha_{0}=\alpha_{1}=\alpha_{3}=-1$, or
- exactly one $\alpha_{i}=-1$, the others are equal to 1 .

Note that the group of automorphisms that we consider is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{3} \cong$ $\left\{\left(m_{1}, m_{2}, m_{3}, m_{4}\right) \in(\mathbb{Z} / 2 \mathbb{Z})^{4} \mid m_{3}=0\right\}$.
4.1 Elements of G_{0} having a fixed locus of dimension 2 on $E_{1} \times E_{2} \times E_{3}$

Let $g \in G_{0}$ be an element leaving a surface

$$
S \subset T:=E_{1} \times E_{2} \times E_{3}
$$

pointwise fixed. Then we have the following three possibilities:
(i) $g=\mathrm{id}_{E_{1}} \times \mathrm{id}_{E_{2}} \times g_{3}$, where g_{3} has fixed points on E_{3};
(ii) $g=\mathrm{id}_{E_{1}} \times g_{2} \times \mathrm{id}_{E_{3}}$, where g_{2} has fixed points on E_{2};
(iii) $g=g_{1} \times \mathrm{id}_{E_{2}} \times \mathrm{id}_{E_{3}}$, where g_{1} has fixed points on E_{1}.
(i) $g=\operatorname{id}_{E_{1}} \times \mathrm{id}_{E_{2}} \times g_{3}$: this implies $\epsilon_{0}=\eta_{1}=\epsilon_{1}=1$ and $\eta_{0}=\epsilon_{2}=1$. This implies $\epsilon_{3}=1$, whence we have for g_{3} only one possibility:

$$
g_{3}=\left(\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right)
$$

By symmetry we get for the cases ii) and iii) the following two respective possibilities:

$$
\text { (ii) } \quad g_{2}=\left(\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right), \quad \text { (iii) } \quad g_{1}=\left(\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right)
$$

4.2 Elements of G_{0} having a fixed locus of dimension 1 on $E_{1} \times E_{2} \times E_{3}$

Let $g \in G_{0}$ be an element leaving a curve $C \subset T:=E_{1} \times E_{2} \times E_{3}$ pointwise fixed. Then we have the following three possibilities:
(i) $g=\mathrm{id}_{E_{1}} \times g_{2} \times g_{3}$, where g_{2}, g_{3} have fixed points on E_{2} resp. E_{3};
(ii) $g=g_{1} \times \mathrm{id}_{E_{2}} \times g_{3}$, where g_{1}, g_{3} have fixed points on E_{1} resp. E_{3};
(iii) $g=g_{1} \times g_{2} \times \mathrm{id}_{E_{3}}$, where g_{1}, g_{2} have fixed points on E_{1} resp. E_{2}.
(i) $g=\mathrm{id}_{E_{1}} \times g_{2} \times g_{3}$: then $\epsilon_{0}=\eta_{1}=\epsilon_{1}=1$, in particular, $\epsilon_{2}=\epsilon_{3}$. We have therefore:

$$
g=\left(g_{1}, g_{2}, g_{3}\right)=\left(\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
\eta_{0} \\
1 \\
1 \\
\epsilon_{2}
\end{array}\right),\left(\begin{array}{c}
\zeta_{0} \\
1 \\
1 \\
\epsilon_{3}
\end{array}\right)\right)
$$

This shows that we have the following two possibilities for g_{2} :
(a) $\eta_{0}=1$ and $\epsilon_{2}=\epsilon_{3}=-1$,
(b) $\eta_{0}=-1$ and $\epsilon_{2}=\epsilon_{3}=1$.
(a) The first possibility for g is:

$$
g=\left(\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right)\right)
$$

(b) The second possibility for g is:

$$
g=\left(\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right)\right) .
$$

(ii) $g=g_{1} \times \mathrm{id}_{E_{2}} \times g_{3}$: by symmetry of E_{1} and E_{2}, we get the following two possibilities for g :

$$
g=\left(\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right)\right), \text { or } g=\left(\left(\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right)\right)
$$

(iii) $g=g_{1} \times g_{2} \times \operatorname{id}_{E_{3}}$: again by symmetry we have two possibilities for g :

$$
g=\left(\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\right), \text { or } g=\left(\left(\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\right)
$$

Table 1 The elements of G_{0} having fixed points on T, written additively

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
ϵ_{0}	0	0	1	0	0	0	1	0	1	1	1	0	0	0	0	1	1
η_{1}	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1
ϵ_{1}	0	0	0	0	0	1	0	1	0	0	0	0	0	1	1	1	1
η_{0}	0	1	0	0	1	0	0	0	1	1	0	0	1	1	0	0	1
ϵ_{2}	0	0	0	1	0	0	0	1	0	0	1	0	1	0	1	0	1
ζ_{0}	1	0	0	0	1	0	1	0	0	1	0	0	1	0	1	1	0
ϵ_{3}	0	0	0	1	0	1	0	0	0	0	1	0	1	1	0	1	0

Remark 4.2 Note that $\hat{X} \subset T$ is an ample divisor, hence the fixed locus of the above elements has non trivial intersection with \hat{X}.

4.3 Elements of G_{0} having isolated fixed points on $E_{1} \times E_{2} \times E_{3}$

We still have to find all elements of G_{0} which have isolated fixed points on T.
An element $g=\left(g_{1}, g_{2}, g_{3}\right) \in G_{0}$ has isolated fixed points on $T=E_{1} \times E_{2} \times E_{3}$ if and only if $g_{i}(\neq \mathrm{id})$ has fixed points on E_{i}. Therefore, on each E_{i}, g_{i} is one of the four elements

$$
g_{i} \in\left\{\left(\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
-1 \\
-1 \\
1 \\
-1
\end{array}\right)\right\} .
$$

We will list in Table 1 all the elements of G_{0} which have fixed points on T.
Observe that, unlike before, we write the group additively.
More precisely, the elements 1, 2, 3 have a fixed locus of dimension 2, the elements 4-9 have a fixed curve and the elements $10-17$ have isolated fixed points on T.

We shall prove now the following
Proposition 4.3 The elements $11-17$ do have fixed points on \hat{X}, whereas the fixed points of the element 10 do not intersect \hat{X}.

Proof We recall that we have the Del Pezzo surface $Y \subset \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$, given in the coordinates $\left(s_{i}: t_{i}\right)$ by $Y:=\left\{s_{1} s_{2} s_{3}=t_{1} t_{2} t_{3}\right\}$, or in the coordinates $\left(x_{i}, u_{i}, z_{i}\right)$ as the subvariety of $\mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{P}^{2}$ defined by the equations in Lemma 3.3.

We have to check whether the fixed points of the elements $10-17$ listed in Table 1 are contained in the pull back \hat{X} of Y.
10) The fixed points are given by $x_{0}=u_{0}=z_{0}$, i.e. they are of the form

$$
\left(\left(0: \pm i \mu_{1} x_{2}: x_{2}: \pm \lambda_{1} x_{2}\right),\left(0: \pm i \mu_{2} u_{2}: u_{2}: \pm \lambda_{2} u_{2}\right)\left(0: \pm i \mu_{3} z_{2}: z_{2}: \pm \lambda_{3} z_{2}\right)\right)
$$

where $\mu_{i}=\sqrt{1+\lambda_{i}^{2}}$, and λ_{i} depends on $a_{i}\left(\operatorname{resp} . b_{i}, \operatorname{resp} c_{i}\right)$.
It is now easy to check that, for a general choice of the elliptic curves E_{1}, E_{2}, E_{3}, points of this form never fulfill the 8 equations of Y.
11) The fixed points are given by $x_{0}=u_{3}=z_{3}=0$. By Remark $3.2 u_{3}=z_{3}=0$ corresponds to $s_{2} t_{2}=0=s_{3} t_{3}=0$. Whence e.g. all points of the form

$$
\left(\left(s_{1}: t_{1}\right),\left(0: t_{2}\right),\left(s_{3}: 0\right)\right),
$$

($s_{1}: t_{1}$) arbitrary, lie on Y. This implies that the pull-back of Y contains fixed points of G corresponding to number 11 in Table 1.
12) The fixed points are given by $x_{1}=u_{1}=z_{1}=0$. By Remark 3.2 this correspond to $s_{i}= \pm t_{i}$. This implies that the points $s_{i}=\epsilon_{i} t_{i}, \epsilon_{i} \in\{ \pm 1\}, \epsilon_{1} \epsilon_{2} \epsilon_{3}=1$, are contained in the pull-back of Y.
13) Here we have $x_{1}=u_{2}=z_{2}=0$, or in the coordinates $\left(s_{i}: t_{i}\right)$:

$$
s_{1}= \pm t_{1}, t_{2}= \pm i s_{2}, t_{3}= \pm i s_{3}
$$

Again it is obvious that some of these fixed points are contained in the pull-back of Y.
14), 15) $x_{3}=u_{0}=z_{3}=0$ resp. $x_{3}=u_{3}=z_{0}=0$: these cases are equal to case 11 by symmetry on the three elliptic curves. Hence also here the fixed points are contained in the pull-back of Y.
16), 17) $x_{2}=u_{1}=z_{2}=0$ resp. $x_{2}=u_{2}=z_{1}=0$: these cases are symmetric to case 13.

In the remaining part of the section we briefly sketch the analogous results for G_{1}, i.e., we exhibit the elements $g \in G_{1}$, which have fixed points on $E_{1} \times E_{2} \times E_{3}$. Recall that $G_{1} \cong(\mathbb{Z} / 2 \mathbb{Z})^{5} \leq(\mathbb{Z} / 2 \mathbb{Z})^{3} \times(\mathbb{Z} / 2 \mathbb{Z})^{3} \times(\mathbb{Z} / 2 \mathbb{Z})^{3}$, where

$$
G_{1}:=\left\{\left(\epsilon_{0}, \epsilon_{1}, \eta_{0}, \epsilon_{2}, \zeta_{0}, \epsilon_{3}\right) \subset(\mathbb{Z} / 2 \mathbb{Z})^{6} \mid \epsilon_{1} \epsilon_{2} \epsilon_{3}=1\right\} .
$$

Remark 4.4 The calculations are quite the same as before for the group G_{0}, just note that here we always have $\eta_{1}=1$. Then it is easy to see that the elements of G_{1} having a fixed surface or a fixed curve are the same as for G_{0}.

For the elements having isolated fixed points there is a small difference.
4.4 Elements of G_{1} having isolated fixed points on $E_{1} \times E_{2} \times E_{3}$

We have to find all elements of G_{1}, which have isolated fixed points on T. We have to exclude those elements of G_{1} from G, where some of the fixed points are contained in the base locus of the pencil \hat{X}_{λ}.

An element $g=\left(g_{1}, g_{2}, g_{3}\right) \in G_{1}$ has isolated fixed points on $T=E_{1} \times E_{2} \times E_{3}$ if and only if $g_{i}(\neq \mathrm{id})$ has fixed points on E_{i}. On each E_{i} we have the two elements

$$
g_{i}=\left(\begin{array}{c}
-1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
-1
\end{array}\right)
$$

Table 2 The elements of G_{1} having fixed points on T

	1	2	3	4	5	6	7	8	9	10	11	12	13
ϵ_{0}	0	0	1	0	0	0	1	0	1	1	1	0	0
η_{1}	0	0	0	0	0	0	0	0	0	0	0	0	0
ϵ_{1}	0	0	0	0	0	1	0	1	0	0	0	1	1
η_{0}	0	1	0	0	1	0	0	0	1	1	0	1	0
ϵ_{2}	0	0	0	1	0	0	0	1	0	0	1	0	1
ζ_{0}	1	0	0	0	1	0	1	0	0	1	0	0	1
ϵ_{3}	0	0	0	1	0	1	0	0	0	0	1	1	0

We will list now all elements of G_{1} having fixed points on T in the following Table 2.
Note that again we write the group additively in the sequel.
Note that the elements 1, 2, 3 have a fixed locus of dimension 2, the elements 4-9 have a fixed curve and the elements $10-13$ have isolated fixed points on T.

The following is easy to verify
Proposition 4.5 The elements $11-13$ do have fixed points on the base locus of the pencil \hat{X}_{λ}, whereas the fixed points of the element 10 do not lie on the base locus of \hat{X}_{λ}.

We can now prove the following
Theorem 4.6 Let S be a primary Burniat type surface. Then S is a primary Burniat surface.
Proof The following MAGMA script shows that there are two subgroups $(\mathbb{Z} / 2 \mathbb{Z})^{3} \cong G \leq$ G_{1} acting freely on \hat{X}_{λ}, for $\lambda \in \mathbb{C}$ general.

```
K:=FiniteField(2); V5:=VectorSpace(K,5); V2:=VectorSpace(K,2);
H:=Hom(V5,V2) ;
U1:=sub<V5 | [0,0,0,0,1]>; U2:=sub<V5 | [0,0,1,0,0]>;
U3:=sub<V5 | [1,0,0,0,0]>; U4:=sub<V5 | [0,0,0,1,0]>;
U5:=sub<V5 | [0,0,1,0,1]>; U6:=sub<V5 | [0,1,0,0,0]>;
U7:=sub<V5 | [0,1,0,1,0] >; U8:=sub<V5 | [1,0,1,0,0] >;
U9:=sub<V5 | [1,0,0,0,1] >; U10:=sub<V5 | [1,0,0,1,0] >;
U11:=sub<V5 | [0,1,1,0,0] >; U12:=sub<V5| [0,1,0,1,1] >;
N:=sub<V5|[0,0,0,0,0]> ;
w1:=V5![1,0,0,0,0];
w2:=V5![0,0,1,0,0];
x:=V2![1,0]; Y:=V2![0,1];
M:={@ @};
    for a in H do
    if a(w1) eq x then
            if a(w2) eq y then
                if Kernel(a) meet U1 eq N then
                if Kernel(a) meet U2 eq N then
                        if Kernel(a) meet U3 eq N then
                        if Kernel(a) meet U4 eq N then
                        if Kernel(a) meet U5 eq N then
                        if Kernel(a) meet U6 eq N then
                        if Kernel(a) meet U7 eq N then
                        if Kernel(a) meet U8 eq N then
                                    if Kernel(a) meet U9 eq N then
                                    if Kernel(a) meet U10 eq N then
                                    if Kernel(a) meet U11 eq N then
                                    if Kernel(a) meet U12 eq N then
                                    Include(~}\mp@subsup{~}{M,a);}{
end if;end if;end if;end if;end if;end if;end if;
end if;end if;end if;end if;end if;end if;end if;
end for;
M;
{@
    [1 0]
    [1 1]
```

$\left[\begin{array}{ll}0 & 1\end{array}\right]$
$\left[\begin{array}{ll}0 & 1\end{array}\right]$
[1 1],
$\left[\begin{array}{ll}1 & 0\end{array}\right]$
$\left[\begin{array}{ll}1 & 0\end{array}\right]$
$\left[\begin{array}{ll}0 & 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 1\end{array}\right]$
$\left[\begin{array}{ll}1 & 1\end{array}\right]$
@ \}
It is now easy to see that the two cases are equivalent under the symmetry exchanging E_{1} and E_{2}. Therefore they yield the same surfaces.

5 4-Nodal Burniat type surfaces

In this section we shall give a complete classification of 4-nodal Burniat type surfaces.

$E_{1}:=\left\{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0, x_{0}^{2}=a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2}\right\}$
$E_{2}:=\left\{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}=0, u_{0}^{2}=b_{1} u_{1}^{2}+b_{2} u_{2}^{2}+b_{3} u_{3}^{2}\right\}$
$E_{3}:=\left\{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0, z_{0}^{2}=c_{1} z_{1}^{2}+c_{2} z_{2}^{2}+c_{3} z_{3}^{2}\right\}$

$$
P_{2}:=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Using the notation in Sect. 3 we see that $\hat{X}:=\pi^{\prime-1}(Y)$ is invariant under $G_{0} \cong(\mathbb{Z} / 2 \mathbb{Z})^{6} \subset$ $(\mathbb{Z} / 2 \mathbb{Z})^{9}$. We find now subgroups $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{4} \subset G_{0}$ such that there is exactly one element $g_{0} \in G$ having (isolated) fixed points on \hat{X} and on T, while all the other nontrivial elements of G act freely.

Remark 5.1 We shall see then that this unique element $g_{0} \in G$ has 32 fixed points on \hat{X}, whence $X:=\hat{X} / G$ has 4 nodes (this fact justifies our terminology).

It is clear that the minimal model S of X is a surface of general type with invariants $K_{S}^{2}=3$ and $\chi(S)=1$. Looking in fact at the respective groups G, we see that in all cases $q(S)=0$, whence $p_{g}(S)=0$.

The following MAGMA script has as output bases of subgroups $G \leq G_{0}$ as $\mathbb{F}_{2^{-}}$ vectorspaces, which contain exactly one element g_{0} having isolated fixed points on \hat{X} which are also isolated fixed points on T.

```
K:=FiniteField(2);
V6:=VectorSpace (K,6) ; V2:=VectorSpace (K, 2) ; H:=Hom(V6,V2) ;
U1 :=sub<V6 | [0,0,0,0,0,1]>; U2 :=sub<V6 | [0,0,0,1,0,0]> ;
```

```
U3:=sub<V6|[1,0,0,0,0,0]>; U4:=sub<V6 [ 0,0,0,0,1,0]>;
U5:=sub<V6 | [0,0,0,1,0,1]>; U6:=sub<V6| [0,0,1,0,0,0]>;
U7:=sub<V6|[1,0,0,0,0,1]>; U8:=sub<V6| [0,0,1,0,1,0]>;
U9:=sub<V6|[1,0,0,1,0,0]>; U10:=sub<V6|[1,0,0,0,1,0]>;
U11:=sub<V6|[0,0,1,1,0,0]>; U12:=sub<V6| [0,0,1,0,1,1]>;
U13:=sub<V6|[0,1,0,0,0,0]>; U14:=sub<V6| [0,1,0,1,1,1]>;
U15:=sub<V6|[1,1,1,0,0,1]>; U16:=sub<V6|[1,1,1,1,1,0]>;
N:=sub<V6|[0,0,0,0,0,0]>;
w1:=V6![1,0,0,0,0,0]; w2:=V6![0,0,0,1,0,0];
x:=V2![1,0]; y:=V2![0,1];
M:={@ @};
for a in H do
    if a(w1) eq x then
        if a(w2) eq y then
            if Kernel(a) meet U1 eq N then
                if Kernel(a) meet U2 eq N then
                if Kernel(a) meet U3 eq N then
                        if Kernel(a) meet U4 eq N then
                        if Kernel(a) meet U5 eq N then
                        if Kernel(a) meet U6 eq N then
                        if Kernel(a) meet U7 eq N then
                        if Kernel(a) meet U8 eq N then
                                if Kernel(a) meet U9 eq N then Include(* }\mp@subsup{}{}{M},a)
end if; end if;end if;end if; end if; end if;
end if;end if;end if;end if;end if;
end for;
F:={@ V6! [1,0,0,0,1,0],V6! [0,0,1,1,0,0],
V6! [0,0,1,0,1,1],V6! [0,1,0,0,0,0],
V6![0,1,0,1,1,1],V6![1,1,1,0,0,1],V6![1,1,1,1,1,0] @};
M1:={@ @ };
    for i in [1..#M] do K:={@ @};
        for x in Kernel(M[i]) do Include(~}\mp@subsup{}{}{~
    end for;
        if #(K meet F) eq 1 then Include(~M1,i);
    end if; end for;
M1 ;
{@ 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24 @}
MM:={@ M[7],M[8],M[10],M[11],M[13],M[14],M[15],M[16],M[17],
M[18],M[19],M[20],M[22],M[24] @};
MB:={@ MM[1], MM[2], MM[3], MM[5],MM[6],MM[7],MM[8] @};
L:={@ @};
    for x in MB do Include(*),Kernel(x));
end for;
```

Remark 5.2 We want to observe that MM contains 14 subgroups, which split into seven pairs of equivalent subgroups under the symmetry obtained by exchanging E_{1} and E_{2}.

There are seven groups in the set L. We list generators for each of these in Table 3.
Remark 5.3 In each of the seven subgroups $G \leq G_{0}$ there is exactly one (non trivial) element having fixed points on \hat{X}. These elements are:
(A) $g_{0}=(1,0,0,0,0,1,0,0,1)$,

Table 3 Generators of $G \cong(\mathbb{Z} / 2 \mathbb{Z})^{4}$

	ϵ_{0}	η_{1}	ϵ_{1}	η_{0}	η_{1}	ϵ_{2}	ζ_{0}	η_{1}	ϵ_{3}		ϵ_{0}	η_{1}	ϵ_{1}	η_{0}	η_{1}	ϵ_{2}	ζ_{0}	η_{1}	ϵ_{3}
A	1	0	0	0	0	1	0	0	1	B	1	0	0	0	0	1	0	0	1
	0	1	0	0	1	1	1	1	1		0	1	0	0	1	0	1	1	0
	0	0	1	0	0	0	1	0	1		0	0	1	0	0	0	1	0	1
	0	0	0	1	0	1	1	0	1		0	0	0	1	0	1	1	0	1
C	1	0	0	0	0	1	1	0	1	D	1	0	0	0	0	1	1	0	1
	0	1	0	0	1	1	1	1	1		0	1	0	0	1	0	0	1	0
	0	0	1	0	0	1	1	0	0		0	0	1	0	0	0	1	0	1
	0	0	0	1	0	1	0	0	1		0	0	0	1	0	1	0	0	1
E	1	0	0	0	0	1	1	0	1	F	1	0	0	0	0	1	1	0	1
	0	1	0	0	1	1	1	1	1		0	1	0	0	1	1	0	1	1
	0	0	1	0	0	0	1	0	1		0	0	1	0	0	0	1	0	1
	0	0	0	1	0	1	0	0	1		0	0	0	1	0	1	0	0	1
G	1	0	0	0	0	1	1	0	1										
	0	1	0	0	1	0	1	1	0										
	0	0	1	0	0	0	1	0	1										
	0	0	0	1	0	1	0	0	1										

(B) $g_{0}=(1,0,0,0,0,1,0,0,1)$,
(C) $g_{0}=(0,0,1,0,0,1,1,0,0)$,
(D) $g_{0}=(0,1,0,0,1,0,0,1,0)$,
(E) $g_{0}=(1,1,1,0,1,0,1,1,1)$,
(F) $g_{0}=(1,1,1,1,1,1,0,1,0)$,
(G) $g_{0}=(0,1,0,1,1,1,1,1,1)$.

In order to calculate the fundamental groups of the corresponding quotient surfaces it is convenient to rewrite the action of $G_{i}, i=A, B, C, D, E, F, G$, on $T:=E_{1} \times E_{2} \times E_{3}$ in terms of uniformizing parameters z_{i} for E_{i}.

For $i \in\{1,2,3\}$, let $E_{i}:=\mathbb{C} /\left\langle 1, \tau_{i}\right\rangle$ be a complex elliptic curve. Then we choose as basis for the $(\mathbb{Z} / 2 \mathbb{Z})^{3}$-action on E_{i} :

- $\left(z_{i} \mapsto-z_{i}\right)=(1,0,0)$,
- $\left(z_{i} \mapsto-z_{i}+\frac{\tau_{i}}{2}\right)=(0,1,0)$,
- $\left(z_{i} \mapsto-z_{i}+\frac{1}{2}\right)=(0,0,1)$.

Then we can rewrite the generators of $G_{i}, i \in\{A, B, C, D, E, F, G\}$, in Table (3) in the following way.

We would like to point out that in the cases C, D, E, F, G we choose a different basis from the one in Table (3).
(1) G_{A} is generated by:

$$
\begin{aligned}
& g_{1}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1},-z_{2}+\frac{1}{2},-z_{3}+\frac{1}{2}\right) \\
& g_{2}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{\tau_{1}}{2}, z_{2}+\frac{1}{2}+\frac{\tau_{2}}{2},-z_{3}+\frac{1}{2}+\frac{\tau_{3}}{2}\right) \\
& g_{3}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{1}{2}, z_{2}, z_{3}+\frac{1}{2}\right) \\
& g_{4}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}, z_{2}+\frac{1}{2}, z_{3}+\frac{1}{2}\right)
\end{aligned}
$$

(2) G_{B} is generated by:

$$
\begin{aligned}
& g_{1}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1},-z_{2}+\frac{1}{2},-z_{3}+\frac{1}{2}\right) \\
& g_{2}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{\tau_{1}}{2},-z_{2}+\frac{\tau_{2}}{2}, z_{3}+\frac{\tau_{3}}{2}\right) \\
& g_{3}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{1}{2}, z_{2}, z_{3}+\frac{1}{2}\right) \\
& g_{4}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}, z_{2}+\frac{1}{2}, z_{3}+\frac{1}{2}\right) .
\end{aligned}
$$

(3) G_{C} is generated by:

$$
\begin{aligned}
& g_{1}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{1}{2},-z_{2}+\frac{1}{2},-z_{3}\right) \\
& g_{2}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{\tau_{1}}{2}, z_{2}+\frac{1}{2}+\frac{\tau_{2}}{2},-z_{3}+\frac{1}{2}+\frac{\tau_{3}}{2}\right) \\
& g_{3}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}+\frac{1}{2}, z_{2},-z_{3}+\frac{1}{2}\right) \\
& g_{4}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}, z_{2}+\frac{1}{2},-z_{3}+\frac{1}{2}\right)
\end{aligned}
$$

(4) G_{D} is generated by:

$$
\begin{aligned}
& g_{1}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}+\frac{1}{2},-z_{2}+\frac{1}{2}, z_{3}\right) \\
& g_{2}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{1}{2}, z_{2}, z_{3}+\frac{1}{2}\right) \\
& g_{3}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}, z_{2}+\frac{1}{2},-z_{3}+\frac{1}{2}\right) \\
& g_{4}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{\tau_{1}}{2},-z_{2}+\frac{\tau_{2}}{2},-z_{3}+\frac{\tau_{3}}{2}\right)
\end{aligned}
$$

(5) G_{E} is generated by:

$$
\begin{aligned}
& g_{1}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}+\frac{1}{2},-z_{2}+\frac{1}{2}, z_{3}\right) \\
& g_{2}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{1}{2}, z_{2}, z_{3}+\frac{1}{2}\right) \\
& g_{3}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}, z_{2}+\frac{1}{2},-z_{3}+\frac{1}{2}\right) \\
& g_{4}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{1}{2}+\frac{\tau_{1}}{2},-z_{2}+\frac{\tau_{2}}{2},-z_{3}+\frac{1}{2}+\frac{\tau_{3}}{2}\right)
\end{aligned}
$$

(6) G_{F} is generated by:

$$
\begin{aligned}
& g_{1}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}+\frac{1}{2},-z_{2}+\frac{1}{2}, z_{3}\right) \\
& g_{2}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{1}{2}, z_{2}, z_{3}+\frac{1}{2}\right) \\
& g_{3}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}, z_{2}+\frac{1}{2},-z_{3}+\frac{1}{2}\right) \\
& g_{4}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{1}{2}+\frac{\tau_{1}}{2},-z_{2}+\frac{1}{2}+\frac{\tau_{2}}{2},-z_{3}+\frac{\tau_{3}}{2}\right)
\end{aligned}
$$

(7) G_{G} is generated by:

$$
\begin{aligned}
& g_{1}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}+\frac{1}{2},-z_{2}+\frac{1}{2}, z_{3}\right) \\
& g_{2}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{1}{2}, z_{2}, z_{3}+\frac{1}{2}\right) \\
& g_{3}\left(z_{1}, z_{2}, z_{3}\right)=\left(z_{1}, z_{2}+\frac{1}{2},-z_{3}+\frac{1}{2}\right) \\
& g_{4}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{\tau_{1}}{2},-z_{2}+\frac{1}{2}+\frac{\tau_{2}}{2},-z_{3}+\frac{1}{2}+\frac{\tau_{3}}{2}\right) .
\end{aligned}
$$

Remark 5.4 (1) We have $G_{i} \leq G_{0} \leq(\mathbb{Z} / 2 \mathbb{Z})^{3} \times(\mathbb{Z} / 2 \mathbb{Z})^{3} \times(\mathbb{Z} / 2 \mathbb{Z})^{3}$. Denote by $K_{i}, i=$ $1,2,3$, the kernel of the projection on the i-th factor. Then we have:
(i) $K_{3} \subset K_{1} \oplus K_{2}$, for the groups $G_{i}, i=A, B, C$;
(ii) $K_{i} \cap\left(K_{j} \oplus K_{l}\right)=\{0\}$, where $\{i, j, l\}=\{1,2,3\}$, for the groups $G_{i}, i=D, E, F, G$.
(2) The unique element in G_{i} having fixed points on \hat{X} is
(i) $g_{1}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1},-z_{2}+\frac{1}{2},-z_{3}+\frac{1}{2}\right)$, for $i=A, B$,
(ii) $g_{1}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1}+\frac{1}{2},-z_{2}+\frac{1}{2},-z_{3}\right)$, for $i=C$,
(iii) g_{4}, for $i=D, E, F, G$.

Recall that we have written $E_{i}=\mathbb{C} /\left\langle e_{i}, \tau_{i} e_{i}\right\rangle, i=1,2,3$.

Denote by Λ the fundamental group of $E_{1} \times E_{2} \times E_{3}$, so that, setting $\Lambda_{i}=\left\langle e_{i}, \tau_{i} e_{i}\right\rangle$, we have $\Lambda=\Lambda_{1} \oplus \Lambda_{2} \oplus \Lambda_{3}$.

At this moment we invoke the hyperplane section theorem of Lefschetz, which we apply to the ample divisor $\hat{X} \subset E_{1} \times E_{2} \times E_{3}$: it follows that $\pi_{1}(\hat{X}) \cong \pi_{1}\left(E_{1} \times E_{2} \times E_{3}\right)=\Lambda$.

Hence the universal covering \tilde{X} of $\hat{X} \subset E_{1} \times E_{2} \times E_{3}$ has a natural inclusion $\tilde{X} \subset \mathbb{C}^{3}$.
Now the affine group

$$
\begin{equation*}
\Gamma_{i}:=\left\langle\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, e_{1}, \tau_{1} e_{1}, e_{2}, \tau_{2} e_{2}, e_{3}, \tau_{3} e_{3}\right\rangle \leq \mathbb{A}(3, \mathbb{C}), \tag{5}
\end{equation*}
$$

where the γ_{k} are lifts of the generators g_{k} of G_{i} as affine transformations, acts on \mathbb{C}^{3} leaving \tilde{X} invariant.

Moreover, $X_{i}=\hat{X} / G_{i}=\tilde{X} / \Gamma_{i}$.
Then by Armstrong's result (cf. [1,2]) we have

$$
\begin{equation*}
\pi_{1}\left(X_{i}\right)=\Gamma_{i} / \operatorname{Tors}\left(\Gamma_{i}\right), \tag{6}
\end{equation*}
$$

where $\operatorname{Tors}\left(\Gamma_{i}\right)$ is the normal subgroup of Γ_{i} generated by all elements of Γ_{i} having finite order (indeed they have order equal to 2): since these are precisely the elements which have fixed points on \tilde{X}.

Remark 5.5 Denote by $g_{0} \in G$ the unique element which has fixed points on \hat{X}, and denote by $\gamma_{0} \in \Gamma_{i}$ a lift of g_{0} to $\mathbb{A}(3, \mathbb{C})$. Observe that

$$
\gamma_{0}\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right)=\left(\begin{array}{l}
-z_{1}+\mu_{1} \\
-z_{2}+\mu_{2} \\
-z_{3}+\mu_{3}
\end{array}\right),
$$

where $\mu_{i}=\frac{1}{2} \epsilon_{i} \in \frac{1}{2} \Lambda_{i}$.
(1) Assume that $\gamma \in \Gamma_{i}$ has a fixed point on the universal covering \tilde{X} of \hat{X}. Then there is a $\lambda \in \Lambda$ such that $\gamma=\gamma_{0} t_{\lambda}$.
(2) Let $z=\left(z_{1}, z_{2}, z_{3}\right) \in \tilde{X} \subset \mathbb{C}^{3}$. Then z yields a fixed point of g_{0} on \hat{X} if and only if there exists $\hat{\lambda} \in \Lambda$ such that

$$
2\left(\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{l}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3}
\end{array}\right)+\hat{\lambda} \Longleftrightarrow z=\frac{1}{4} \epsilon+\frac{1}{2} \hat{\lambda},
$$

where $\epsilon=\left(\begin{array}{l}\epsilon_{1} \\ \epsilon_{2} \\ \epsilon_{3}\end{array}\right)$.
We need the following
Lemma $5.6 z=\frac{1}{4} \epsilon+\frac{1}{2} \hat{\lambda} \in \tilde{X}$ is a fixed point of $\gamma=\gamma_{0} t_{\lambda}$ if and only if $\lambda=-\hat{\lambda}$.
Proof

$$
\begin{align*}
\gamma(z) & =\gamma_{0}(z+\lambda)=-z-\lambda+\frac{1}{2} \epsilon=-\frac{1}{4} \epsilon-\frac{1}{2} \hat{\lambda}-\lambda+\frac{1}{2} \epsilon \\
& =\frac{1}{4} \epsilon+\frac{1}{2} \hat{\lambda}-\hat{\lambda}-\lambda=z-\hat{\lambda}-\lambda=z \Longleftrightarrow \lambda=-\hat{\lambda} . \tag{7}
\end{align*}
$$

Note that g_{0} has 64 fixed points on $T=E_{1} \times E_{2} \times E_{3}$, but only 32 lie on \hat{X}. These 32 points are divided in four G_{i}-orbits. Let $P_{1}, \ldots, P_{4} \in \tilde{X}$ be four representatives of the four orbits. Then we have $P_{i}=\frac{1}{4} \epsilon+\frac{1}{2} \hat{\lambda}_{P_{i}}$. Then:

$$
\operatorname{Tors}\left(\Gamma_{i}\right)=\left\langle\left\langle\gamma_{0} t_{\hat{\lambda}_{P_{1}}}, \gamma_{0} t_{\hat{\lambda}_{P_{2}}}, \gamma_{0} t_{\hat{\lambda}_{P_{3}}}, \gamma_{0} t_{\hat{\lambda}_{P_{4}}}\right\rangle\right\rangle .
$$

Moreover, since the point z can be changed modulo Λ, the above argument shows that $2 \Lambda \subset \operatorname{Tors}\left(\Gamma_{i}\right)$, hence $\pi_{1}(S)=\pi_{1}(X)$ is a quotient of the 2 -step nilpotent group Π_{G} such that

$$
1 \rightarrow \Lambda / 2 \Lambda \rightarrow \Pi_{G} \rightarrow G \rightarrow 1
$$

We can now prove the following theorem:
Theorem 5.7 Let $S_{i}, i \in\{A, B, C, D, E, F, G\}$ be the minimal resolution of the surface $X_{i}:=\hat{X} / G_{i}$ (having four ordinary nodes). Then S_{i} is a minimal surface of general type with $K_{S_{i}}^{2}=3, p_{g}\left(S_{i}\right)=0$, with fundamental group
(i) $\pi_{1}\left(S_{i}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2} \times \mathbb{Z} / 4 \mathbb{Z}$, for $i=A, B, C$;
(ii) $\pi_{1}\left(S_{i}\right) \cong \mathbb{H} \times \mathbb{Z} / 2 \mathbb{Z}$, for $i=D$;
(iii) $\pi_{1}\left(S_{i}\right) \cong \operatorname{SmallGroup}(16,13)$, for $i=E, F, G$.

Remark 5.8 (1) Cases D,E,F,G are obviously quotients of a primary Burniat surface by an involution having four isolated fixed points. Since primary Burniat surfaces satisfy Bloch's conjecture asserting that the group of zero cycles of degree 0 modulo rational equivalence is trivial (cf. [15]), it follows that also the surfaces $S_{D}, S_{E}, S_{F}, S_{G}$ satisfy Bloch's conjecture.
Cases A, B, C have the same fundamental group as the Keum-Naie surfaces with $K^{2}=3$. Each of the cases E, F, G yields a (3-dimensional) family, which is new. Actually, the fundamental group $\operatorname{Small} \operatorname{Group}(16,13)$, which is the central product of the dihedral group of order 8 with the cyclic group of order 4 , has not yet been realized by a surface with $K^{2}=3, p_{g}=0$.
(2) Denote by \hat{S}_{i} the double cover of X_{i} branched exactly in the four nodes. Then

- \hat{S}_{i} is a surface of general type with $K_{S}^{2}=6, p_{g}=q=1$ if $i=A, B, C$,
- \hat{S}_{i} is a primary Burniat surface for $i=D, E, F, G$.
(3) It is easy to see that the groups G_{A}, G_{B}, G_{C} yield the same family of surfaces. Indeed, exchanging E_{2} with E_{3} has the effect of exchanging G_{A} and G_{B}, whereas exchanging E_{1} with E_{3} has the effect of exchanging G_{B} and G_{C}.

The same holds for the groups G_{E}, G_{F} and G_{G}. Therefore, in order to prove the above theorem, it suffices to calculate the fundamental group in the cases A, D, E.

Proof (A) The fixed points of $g_{0}\left(z_{1}, z_{2}, z_{3}\right)=\left(-z_{1},-z_{2}+\frac{1}{2},-z_{3}+\frac{1}{2}\right)$ are the points $\left(z_{1}, z_{2}, z_{3}\right) \in E_{1} \times E_{2} \times E_{3}$ such that

$$
\begin{gathered}
z_{1} \in\left\{0, \frac{1}{2}, \frac{\tau_{1}}{2}, \frac{1}{2}+\frac{\tau_{1}}{2}\right\}, \\
z_{i} \in\left\{\frac{1}{4}, \frac{1}{4}+\frac{1}{2}, \frac{1}{4}+\frac{\tau_{i}}{2}, \frac{1}{4}+\frac{1}{2}+\frac{\tau_{i}}{2}\right\}, i=2,3 .
\end{gathered}
$$

These are 64 points, but only 32 of these are on \hat{X}, namely:

$$
\begin{align*}
& \left(z_{1}, z_{2}, z_{3}\right), z_{1} \in\left\{0, \frac{1}{2}, \frac{\tau_{1}}{2}, \frac{1}{2}+\frac{\tau_{1}}{2}\right\}, \quad\left(z_{2}, z_{3}\right) \in\left\{\left(\frac{1}{4}, \frac{1}{4}+\frac{\tau_{3}}{2}\right),\left(\frac{1}{4}, \frac{1}{4}+\frac{1}{2}+\frac{\tau_{3}}{2}\right),\right. \\
& \left(\frac{1}{4}+\frac{1}{2}, \frac{1}{4}+\frac{\tau_{3}}{2}\right),\left(\frac{1}{4}+\frac{1}{2}, \frac{1}{4}+\frac{1}{2}+\frac{\tau_{3}}{2}\right),\left(\frac{1}{4}+\frac{\tau_{2}}{2}, \frac{1}{4}\right),\left(\frac{1}{4}+\frac{\tau_{2}}{2}, \frac{1}{4}+\frac{1}{2}\right), \\
& \left.\left(\frac{1}{4}+\frac{1}{2}+\frac{\tau_{2}}{2}, \frac{1}{4}\right),\left(\frac{1}{4}+\frac{1}{2}+\frac{\tau_{2}}{2}, \frac{1}{4}+\frac{1}{2}\right)\right\} . \tag{8}
\end{align*}
$$

In fact, recall that the affine equation of \hat{X} (cf. [16]) is

$$
\hat{X}=\left\{\left(z_{1}, z_{2}, z_{3}\right) \in T \mid \mathcal{L}_{1}\left(z_{1}\right) \mathcal{L}_{2}\left(z_{2}\right) \mathcal{L}_{3}\left(z_{3}\right)=b_{1} b_{2} b_{3}\right\}
$$

where $b_{i}=\mathcal{L}_{i}\left(\frac{\tau_{i}}{4}\right)$. Observe that $b_{i}^{2}=a_{i}$. Let $\left(\mathcal{L}_{i}\left(z_{i}\right)_{0}: \mathcal{L}_{i}\left(z_{i}\right)_{1}\right)$ be homogeneous coordinates of the point $\mathcal{L}_{i}\left(z_{i}\right)$. The equation of \hat{X} is then:

$$
\mathcal{L}_{1}\left(z_{1}\right)_{0} \mathcal{L}_{2}\left(z_{2}\right)_{0} \mathcal{L}_{3}\left(z_{3}\right)_{0}=b_{1} b_{2} b_{3} \mathcal{L}_{1}\left(z_{1}\right)_{1} \mathcal{L}_{2}\left(z_{2}\right)_{1} \mathcal{L}_{3}\left(z_{3}\right)_{1} .
$$

It follows easily from the properties of the Legendre function that

$$
\left(\mathcal{L}_{i}\left(z_{i}+\frac{\tau_{i}}{2}\right)_{0}: \mathcal{L}_{i}\left(z_{i}+\frac{\tau_{i}}{2}\right)_{1}\right)=\left(a_{i} \mathcal{L}_{i}\left(z_{i}\right)_{1}: \mathcal{L}_{i}\left(z_{i}\right)_{0}\right) .
$$

In particular, we have

$$
\left(\mathcal{L}_{i}\left(\frac{1}{4}\right)_{0}: \mathcal{L}_{i}\left(\frac{1}{4}\right)_{1}\right)=(0: 1), \quad\left(\mathcal{L}_{i}\left(\frac{1}{4}+\frac{\tau_{i}}{2}\right)_{0}: \mathcal{L}_{i}\left(\frac{1}{4}+\frac{\tau_{i}}{2}\right)_{1}\right)=(1: 0) .
$$

Now it follows easily that a fixed point $\left(z_{1}, z_{2}, z_{3}\right)$ of g_{0} on T lies in fact on \hat{X} if and only if it satisfies the equations

$$
\mathcal{L}_{1}\left(z_{1}\right)_{0} \mathcal{L}_{2}\left(z_{2}\right)_{0} \mathcal{L}_{3}\left(z_{3}\right)_{0}=\mathcal{L}_{1}\left(z_{1}\right)_{1} \mathcal{L}_{2}\left(z_{2}\right)_{1} \mathcal{L}_{3}\left(z_{3}\right)_{1}=0 .
$$

Therefore a fixed point $\left(z_{1}, z_{2}, z_{3}\right) \in T$ of g_{0} lies on \hat{X} if and only if $z_{1} \in\left\{0, \frac{1}{2}, \frac{\tau_{1}}{2}, \frac{1}{2}+\frac{\tau_{1}}{2}\right\}$ and

$$
\begin{aligned}
\left(z_{2}, z_{3}\right) \in & \left\{\left(\frac{1}{4}, \frac{1}{4}+\frac{\tau_{3}}{2}\right),\left(\frac{1}{4}, \frac{1}{4}+\frac{1}{2}+\frac{\tau_{3}}{2}\right),\left(\frac{1}{4}+\frac{1}{2}, \frac{1}{4}+\frac{\tau_{3}}{2}\right),\left(\frac{1}{4}+\frac{1}{2}, \frac{1}{4}+\frac{1}{2}+\frac{\tau_{3}}{2}\right),\right. \\
& \left.\left(\frac{1}{4}+\frac{\tau_{2}}{2}, \frac{1}{4}\right),\left(\frac{1}{4}+\frac{\tau_{2}}{2}, \frac{1}{4}+\frac{1}{2}\right),\left(\frac{1}{4}+\frac{1}{2}+\frac{\tau_{2}}{2}, \frac{1}{4}\right),\left(\frac{1}{4}+\frac{1}{2}+\frac{\tau_{2}}{2}, \frac{1}{4}+\frac{1}{2}\right)\right\} .
\end{aligned}
$$

These points fall into $4 G_{A}$ - orbits, and it is easy to verify that we can choose as representatives the four points:

$$
\begin{gathered}
P_{1}=\left(0, \frac{1}{4}, \frac{1}{4}+\frac{\tau_{3}}{2}\right), \quad P_{2}=\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}+\frac{\tau_{3}}{2}\right), \\
P_{3}=\left(\frac{\tau_{1}}{2}, \frac{1}{4}, \frac{1}{4}+\frac{\tau_{3}}{2}\right), \quad P_{4}=\left(\frac{1}{2}+\frac{\tau_{1}}{2}, \frac{1}{4}, \frac{1}{4}+\frac{\tau_{3}}{2}\right) .
\end{gathered}
$$

Writing as above $P_{i}=\frac{1}{4} \epsilon+\frac{1}{2} \hat{\lambda}_{P_{i}}$, we see that $\epsilon=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$, and

$$
\hat{\lambda}_{P_{1}}=\left(\begin{array}{l}
0 \\
0 \\
\tau_{3}
\end{array}\right), \quad \hat{\lambda}_{P_{2}}=\left(\begin{array}{l}
1 \\
0 \\
\tau_{3}
\end{array}\right), \quad \hat{\lambda}_{P_{3}}=\left(\begin{array}{c}
\tau_{1} \\
0 \\
\tau_{3}
\end{array}\right), \quad \hat{\lambda}_{P_{4}}=\left(\begin{array}{c}
1+\tau_{1} \\
0 \\
\tau_{3}
\end{array}\right) .
$$

Therefore

$$
\pi_{1}\left(X_{j}\right)=\Gamma_{i} /\left\langle\left\langle\gamma_{0} t_{\hat{\lambda}_{P_{i}}}: i=1,2,3,4\right\rangle\right\rangle, j=A, B
$$

The following MAGMA script gives $\pi_{1}\left(X_{j}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{2} \times \mathbb{Z} / 4 \mathbb{Z}$.

```
G1:=DirectProduct([CyclicGroup (2),CyclicGroup (2),CyclicGroup (2)]);
G2:=DirectProduct([CyclicGroup (2),CyclicGroup (2),CyclicGroup (2)]);
G3:=DirectProduct([CyclicGroup (2),CyclicGroup (2),CyclicGroup (2)]);
H:=DirectProduct([G1,G2,G3]);
PolyGroup:=func<seq|Group<a1,a2,a3,a4|
    a1^seq[1], a2^seq[2],a3^seq[3],a4^seq[4], a1*a2*a3*a4>>;
P1:=PolyGroup([2,2,2,2]);
P2:=PolyGroup([2,2,2,2]);
P3:=PolyGroup([2,2,2,2]);
P:=DirectProduct([P1,P2,P3]);
f:=Homomorphism(P,H, [P.1,P.2,P.3,P.4,P.5,P.6,P.7,P.8,P.9,
P.10,P.11,P.12],[H!(1,2),H!(3,4),H!(5,6),H!(1, 2) (3,4)(5,6),
H!(7, 8),H!(9,10),H!(11,12),H!(7, 8) (9,10)(11,12),H!(13,14),
H! (15,16),H!(17,18),H!(13,14) (15,16) (17,18)]);
R:=Rewrite(P,Kernel(f));
R;
Finitely presented group R on 6 generators
Generators as words in group P
    R.1 = (P.2 * P.1)^2 /* = e_1
    R.2 = (P.3 * P.1)^2 /* = \tau_1
    R.3 = (P.6 * P.5)^2 /*= e_2
    R.4 = (P.7 * P.5)^2 /*= \tau_2
    R.5 = (P.10 * P.9)^2 /* = e_3
    R.6 = (P.11 * P.9)^2 /*= \tau_3
```

Relations
(R.1, R. $2^{\wedge}-1$) $=\operatorname{Id}(R)$
(R.3, R.4^-1) = Id(R)
(R.5, R.6^-1) = Id(R)
$\left(\right.$ R. $4^{\wedge}-1$, R. $\left.6^{\wedge}-1\right)=\operatorname{Id}(R)$
$\left(R .1^{\wedge}-1, R \cdot 5^{\wedge}-1\right)=\operatorname{Id}(R)$
(R.5, R.2) = Id(R)
(R.1^-1, R. $3^{\wedge}-1$) $=\operatorname{Id}(R)$
$\left(\right.$ R. $2^{\wedge}-1$, R. $\left.4^{\wedge}-1\right)=\operatorname{Id}(R)$
$\left(R \cdot 1^{\wedge}-1, R \cdot 6^{\wedge}-1\right)=\operatorname{Id}(R)$
$\left(\right.$ R. $\left.3^{\wedge}-1, R \cdot 6^{\wedge}-1\right)=\operatorname{Id}(R)$
$\left(\right.$ R. $\left.4^{\wedge}-1, \operatorname{R} \cdot 5^{\wedge}-1\right)=\operatorname{Id}(R)$
$\left(\right.$ R. $2^{\wedge}-1$, R. $\left.6^{\wedge}-1\right)=\operatorname{Id}(R)$
$\left(\right.$ R. $\left.3^{\wedge}-1, R \cdot 5^{\wedge}-1\right)=\operatorname{Id}(R)$
(R.4, R.1) = Id(R)
(R.2^-1, R. $3^{\wedge}-1$) $=\operatorname{Id}(R)$
R. $6^{\wedge-1 ~ * ~ R .5 ~ * ~ R . ~} 2^{\wedge-1 ~ * ~ R .1 ~ * R . ~} 5^{\wedge-1 ~ * ~ R . ~} 6$ *
R.1^-1 * R. $2=$ Id(R)
R.1^-1 * R.2 * R.3^-1 * R. 4 * R.2^-1 *
R. 1 * R.4^-1 * R. 3 = Id(R)
R. 3^-1 * R. 4 *R. $5^{\wedge}-1$ * R. 6 *R. $4^{\wedge}-1$ *
R. 3 * R. $6^{\wedge}-1$ * R. $5=\operatorname{Id}(R)$

CASE A:

```
GG1:=sub<H|H! (1, 2) (11, 12) (17,18),
H!(3,4) (9,10) (11,12) (13,14) (15,16) (17,18),
H! (5,6) (13,14) (17,18),H! (7, 8) (11, 12) (13,14) (17,18)>;
/*The only element of GG1 having fixed points is
(1,2) (11,12) (17,18).*/
Pi1:=Rewrite(P,GG1@@f);
Q1:=quo<Pi1|P.1*P.7*P.11, P.1*P.7*P.11*(P.11*P.9)^2,
P.1*P.7*P.11*(P.2*P.1)^2*(P.11*P.9)^2,
P.1*P.7*P.11*(P.3*P.1)^2*(P.11*P.9)^2,
P.1*P.7*P.11*(P.2*P.1)^2*(P.3*P.1)^2*(P.11*P.9)^2 >;
IdentifyGroup(Q1);
<16, 10>
```

D) Here we have $g_{0}=\left(-z_{1}+\frac{\tau_{1}}{2},-z_{2}+\frac{\tau_{2}}{2},-z_{3}+\frac{\tau_{3}}{2}\right)$. The 64 fixed points of g_{0} on $T:=E_{1} \times E_{2} \times E_{3}$ are:

$$
z \in\left\{\frac{1}{4}\left(\begin{array}{l}
\pm \tau_{1} \\
\pm \tau_{2} \\
\pm \tau_{3}
\end{array}\right)+\frac{1}{2}(\mathbb{Z} / 2 \mathbb{Z})^{3}\right\} .
$$

Here it suffices again to look at the affine equation of \hat{X} and we see that all the above points satisfy

$$
\mathcal{L}_{1}\left(z_{1}\right) \mathcal{L}_{2}\left(z_{2}\right) \mathcal{L}_{3}\left(z_{3}\right)= \pm b_{1} b_{2} b_{3} .
$$

They lie on \hat{X} (i.e., they fulfill the equation $\left.\mathcal{L}_{1}\left(z_{1}\right) \mathcal{L}_{2}\left(z_{2}\right) \mathcal{L}_{3}\left(z_{3}\right)=b_{1} b_{2} b_{3}\right)$ if and only if

$$
z \in\left\{\frac{1}{4}\left(\begin{array}{l}
\pm \tau_{1} \\
\pm \tau_{2} \\
\pm \tau_{3}
\end{array}\right)+\frac{1}{2}\left\{0,\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}\right\}
$$

It is easy to see that we can choose as representatives for the $4 G_{D}$-orbits:

$$
\begin{aligned}
& P_{1}=\left(\frac{\tau_{1}}{4}, \frac{\tau_{2}}{4}, \frac{\tau_{3}}{4}\right), P_{2}=\left(\frac{\tau_{1}}{4}+\frac{1}{2}, \frac{\tau_{2}}{4}+\frac{1}{2}, \frac{\tau_{3}}{4}\right), \\
& P_{3}=\left(\frac{\tau_{1}}{4}+\frac{1}{2}, \frac{\tau_{2}}{4}, \frac{\tau_{3}}{4}+\frac{1}{2}\right), P_{4}=\left(\frac{\tau_{1}}{4}, \frac{\tau_{2}}{4}+\frac{1}{2}, \frac{\tau_{3}}{4}+\frac{1}{2}\right) .
\end{aligned}
$$

Hence we have:

$$
\hat{\lambda}_{P_{1}}=0, \quad \hat{\lambda}_{P_{2}}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \hat{\lambda}_{P_{3}}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), \quad \hat{\lambda}_{P_{4}}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
$$

And the MAGMA script

```
CASE D
```

```
**********
```

```
GG4:=sub<H|H!(1,2)(11,12) (13,14) (17,18), H! (3,4) (9,10)(15,16),
H! (5,6)(13,14)(17,18),H!(7,8)(11,12) (17,18)>;
```

/*The only element of GG4 having fixed points is
$(3,4)(9,10)(15,16)$.*/

Pi4:=Rewrite(P,GG4@@f);

Q4:=quo<Pi4|P.2*P.6*P.10, P.2*P.6*P.10*(P.2*P.1)^2*(P.6*P.5)^2, P.2*P.6*P.10*(P.2 * P.1)^2 *(P.10 * P.9) 2 2, P.2*P.6*P.10*(P.6 * P.5)^2 *(P.10 * P.9)^2>;

IdentifyGroup (Q4);
<16, 12>
gives $\pi_{1}\left(X_{D}\right) \cong \mathbb{H} \times \mathbb{Z} / 2 \mathbb{Z}$.
E) Here we have $g_{0}=\left(-z_{1}+\frac{1}{2}+\frac{\tau_{1}}{2},-z_{2}+\frac{\tau_{2}}{2},-z_{3}+\frac{1}{2}+\frac{\tau_{3}}{2}\right)$. The 64 fixed points of g_{0} on T are:

$$
z \in\left\{\frac{1}{4}\left(\begin{array}{c}
\pm\left(1+\tau_{1}\right) \\
\pm \tau_{2} \\
\pm\left(1+\tau_{3}\right)
\end{array}\right)+\frac{1}{2}(\mathbb{Z} / 2 \mathbb{Z})^{3}\right\} .
$$

Observe now that

$$
\mathcal{L}_{i}\left(\frac{1}{4}+\frac{\tau_{i}}{4}\right)^{2}=\mathcal{L}_{i}\left(\frac{1}{4}+\frac{\tau_{i}}{4}+\frac{1}{2}\right)^{2}=-a_{i}
$$

whence $\left\{\mathcal{L}_{i}\left(\frac{1}{4}+\frac{\tau_{i}}{4}\right), \mathcal{L}_{i}\left(\frac{1}{4}+\frac{\tau_{i}}{4}+\frac{1}{2}\right)\right\}=\left\{\sqrt{-1} b_{i},-\sqrt{-1} b_{i}\right\}$.
Then we see that the points

$$
z \in\left\{\frac{1}{4}\left(\begin{array}{c}
\pm\left(1+\tau_{1}\right) \\
\pm \tau_{2} \\
\pm\left(1+\tau_{3}\right)
\end{array}\right)+\frac{1}{2}\left\{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right\}\right\}
$$

lie on \hat{X}, whereas the other 32 points satisfy the equation $\mathcal{L}_{1}\left(z_{1}\right) \mathcal{L}_{2}\left(z_{2}\right) \mathcal{L}_{3}\left(z_{3}\right)=-b_{1} b_{2} b_{3}$.
We again can choose as representatives of the four G_{E}-orbits the following points:

$$
\begin{aligned}
& P_{1}=\frac{1}{4}\left(\begin{array}{c}
\left(1+\tau_{1}\right) \\
\tau_{2} \\
\left(1+\tau_{3}\right)
\end{array}\right)+\frac{1}{2}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad P_{2}=\frac{1}{4}\left(\begin{array}{c}
\left(1+\tau_{1}\right) \\
\tau_{2} \\
\left(1+\tau_{3}\right)
\end{array}\right)+\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \\
& P_{3}=\frac{1}{4}\left(\begin{array}{c}
\left(1+\tau_{1}\right) \\
\tau_{2} \\
\left(1+\tau_{3}\right)
\end{array}\right)+\frac{1}{2}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad P_{4}=\frac{1}{4}\left(\begin{array}{c}
\left(1+\tau_{1}\right) \\
\tau_{2} \\
\left(1+\tau_{3}\right)
\end{array}\right)+\frac{1}{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right),
\end{aligned}
$$

whence we have

$$
\hat{\lambda}_{P_{1}}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad \hat{\lambda}_{P_{2}}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \quad \hat{\lambda}_{P_{3}}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \hat{\lambda}_{P_{4}}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) .
$$

And the MAGMA script
CASE E

```
***********
GG5:=sub<H|H! (1, 2) (11, 12) (13,14) (17,18),
H! (3,4) (9,10) (11,12) (13,14) (15,16) (17,18),
H! (5,6) (13,14) (17,18),H! (7, 8) (11, 12) (17,18)>;
/*The only element of GG5 having fixed points is
(1, 2) (3, 4) (5, 6) (9, 10) (13, 14) (15, 16) (17, 18).*/
```

```
Pi5:=Rewrite(P,GG5@@f);
Q5:=quo<Pi5| P.1*P.2*P.3*P.6*P.9*P.10*P.11*(P.10*P.9)^2,
P.1*P.2*P.3*P.6*P.9*P.10*P.11*(P.2 * P.1)^2*(P.6 * P.5)^2*(P.10*P.9)^2,
P.1*P.2*P.3*P.6*P.9*P.10*P.11*(P.2 * P.1)^2 ,
P.1*P.2*P.3*P.6*P.9*P.10*P.11*(P.6 * P.5)^2>;
IdentifyGroup(Q5);
<16, 13>
```

gives $\pi_{1}\left(X_{D}\right) \cong \operatorname{SmallGroup}(16,13)$.

References

1. Armstrong, M.A.: On the fundamental group of an orbit space. Proc. Camb. Philos. Soc. 61, 639-646 (1965)
2. Armstrong, M.A.: The fundamental group of the orbit space of a discontinuous group. Proc. Camb. Philos. Soc. 64, 299-301 (1968)
3. Bauer, I., Catanese, F.: Some new surfaces with $p_{g}=q=0$. The Fano Conference, pp. 123-142, Univ. Torino, Turin (2004)
4. Bauer, I., Catanese, F.: The moduli space of Keum-Naie surfaces. Group Geom. Dyn. 5(2), 231-250 (2011)
5. Bauer, I., Catanese, F.: Burniat surfaces I: Fundamental groups and moduli of primary Burniat surfaces. In: Faber, C., et al. (eds.) Classification of Algebraic Varieties. Based on the Conference on Classification of Varieties, Schiermonnikoog, Netherlands, Mat 2009. European Mathematical Society (EMS). EMS Series of Congress Reports, Zürich, pp. 49-76 (2009)
6. Bauer, I., Catanese, F.: Burniat surfaces. II. Secondary Burniat surfaces form three connected components of the moduli space. Invent. Math. 180(3), 559-588 (2010)
7. Bauer, I., Catanese, F., Burniat surfaces III: deformations of automorphisms and extended Burniat surfaces. arXiv:1012.3770
8. Bauer, I., Catanese, F.: Inoue type manifolds and Inoue surfaces: a connected component of the moduli space of surfaces with $K^{2}=7, p_{g}=0$. In: Faber, C., et al. (eds.) Geometry and Arithmetic. Zürich: European Mathematical Society (EMS). EMS Series of Congress Reports, pp. 23-56 (2012)
9. Bauer, I., Catanese, F., Grunewald, F.: The classification of surfaces with $p_{g}=q=0$ isogenous to a product of curves. Pure Appl. Math. Q. 4(2 part 1), 547-586 (2008)
10. Bauer, I., Catanese, F., Pignatelli, R.: Surfaces with geometric genus zero: a survey. In: Ebeling, W., et al. (eds.) Complex and Differential Geometry. Conference Held at Leibniz Universität Hannover, Germany, September 14-18, 2009. Proceedings. Springer Proceedings in Mathematics, vol. 8, pp. 1-48. Berlin: Springer (2011)
11. Bauer, I., Catanese, F., Grunewald, F., Pignatelli, R.: Quotients of a product of curves, new surfaces with $p_{g}=0$ and their fundamental groups. Am. J. Math. 134(4), 993-1049 (2012)
12. Burniat, P.: Sur les surfaces de genre $P_{12} \geq 1$. Ann. Mat. Pura Appl. 71(4), 1-24 (1966)
13. Campedelli, L.: Sopra alcuni piani doppi notevoli con curve di diramazione del decimo ordine. Atti Acad. Naz. Lincei. 15, 536-542 (1932)
14. Godeaux, L.: Les involutions cycliques appartenant à une surface algébrique. Actual. Sci. Ind., 270, Hermann, Paris (1935)
15. Inose, H., Mizukami, M.: Rational equivalence of 0 -cycles on some surfaces of general type with $p_{g}=0$. Math. Ann. 244(3), 205-217 (1979)
16. Inoue, M.: Some new surfaces of general type. Tokyo J. Math. 17(2), 295-319 (1994)
17. Mendes Lopes, M., Pardini, R., On the algebraic fundamental group of surfaces with $K^{2} \leq 3 \chi$. J. Diff. Geom. 77(2), 189-199 (2007)
18. Mendes Lopes, M., Pardini, R.: Numerical Campedelli surfaces with fundamental group of order 9. J. Eur. Math. Soc. (JEMS) 10(2), 457-476 (2008)
19. Mendes Lopes, M., Pardini, R., Reid, M.: Campedelli surfaces with fundamental group of order 8. Geom. Dedicata 139, 49-55 (2009)
20. Reid, M.: π_{1} for surfaces with small K^{2}. Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., vol. 732, pp. 534-544. Springer, Berlin (1979)

[^0]: The present work took place in the realm of the DFG Forschergruppe 790 "Classification of algebraic surfaces and compact complex manifolds". A large part of this work was done while the authors were guests at KIAS, Seoul in April 2012: we are grateful to KIAS for the hospitality and wonderful working environment.

[^1]: I. Bauer (\boxtimes) • F. Catanese

 Lehrstuhl Mathematik VIII, Mathematisches Institut, Universität Bayreuth, NW II, Universitätsstr. 30, 95447 Bayreuth, Germany
 e-mail: ingrid.bauer@uni-bayreuth.de
 F. Catanese
 e-mail: fabrizio.catanese@uni-bayreuth.de

[^2]: ${ }^{1}$ Unlike other authors, when we write 'fundamental group', we mean the topological fundamental group, and not its profinite completion, the algebraic fundamental group.

