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Abstract The paper is one of a series devoted to the classification, the moduli spaces and
the classification of surfaces of general type with pg = 0. Here we generalize a classical
construction due to P. Burniat (revised by M. Inoue). Among other results we construct a
family of surfaces of general type with K 2

S = 3, pg(S) = 0 realizing a new fundamental
group of order 16.
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1 Introduction

The present paper continues a research developed in a series of articles ( [3–9,11]) dedicated
to the classification, the moduli spaces and the discovery of new surfaces of general type
with geometric genus pg = 0 (the first such having been constructed in [13] and [14]), with
particular emphasis on the problem of classifying the possible fundamental groups occurring
according to the respective values of K 2

Smin
(see [10,11,20,17–19] for related conjectures

and results).

The present work took place in the realm of the DFG Forschergruppe 790 “Classification of algebraic
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environment.
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38 I. Bauer, F. Catanese

The construction methods we have been using vary considerably, and in this paper we
consider the method originally due to Burniat (Abelian coverings) in the reformulation done
by Inoue (quotients by Abelian groups), presenting it in a rather general fashion which seems
worthwhile a deeper investigation.

Our general approach consists in considering quotients (cf. [8] for the case of a free
action, treated there in greater generality), by some group G of the form (Z/m)r , of varieties
X̂ contained in a product of curves �i Ci , where each Ci is a maximal Abelian cover of the
projective line with Galois group of the form (Z/m)ni . Let us explain now the connection
with Burniat surfaces.

Burniat surfaces are surfaces of general type with invariants pg = 0 and K 2 = 6, 5, 4, 3, 2,

whose birational models were constructed by Pol Burniat (cf. [12]) in 1966 as singular
bidouble covers of the projective plane. Later these surfaces were reconstructed by Inoue
(cf. [16]) as G := (Z/2Z)3-quotients of a (G-invariant) hypersurface X̂ of multi degree
(2, 2, 2) in a product of three elliptic curves. In the case where G acts freely, this construction
and its topological characterization has been largely generalized by the authors in the already
cited paper [8].

While Inoue writes the (affine) equation of X̂ in terms of the uniformizing parameters
of the respective elliptic curves using a variant of the Weierstrass’ functions (the Legendre
functions), we found it much more useful, especially for a systematic approach to finding all
possible such constructions, to write the elliptic curves as the complete intersection of two
diagonal quadrics in three space. In fact, we consider first the following diagram of quotient
morphisms:

E1 × E2 × E3

H′:=(Z/2)3 π ′

��

E1 := {x2
1 + x2

2 + x2
3 = 0, x2

0 = a1x2
1 + a2x2

2 + a3x2
3 }

E2 := {u2
1 + u2

2 + u2
3 = 0, u2

0 = b1u2
1 + b2u2

2 + b3u2
3}

P1 := P
1 × P

1 × P
1

πH:=((Z/2)2)3

��

E3 := {z2
1 + z2

2 + z2
3 = 0, z2

0 = c1z2
1 + c2z2

2 + c3z2
3}

P2 := P
1 × P

1 × P
1

(1)

We consider then P1 with homogeneous coordinates ((s1 : t1), (s2 : t2), (s3 : t3)) and the
pencil of Del Pezzo surfaces of degree 6

Yλ := {s1s2s3 = λt1t2t3} ⊂ P1.

Yλ is invariant under a subgroup H0 ∼= (Z/2Z)2 of H generated by the transformations:

ti �→ εi ti , , ε ∈ {±1}, ε1ε2ε3 = 1.

Therefore X̂λ := (π ′)−1(Yλ) is invariant under a subgroup G1 ∼= (Z/2Z)5 ⊂ (Z/2Z)9. It is
now our aim to find all the subgroups G ∼= (Z/2Z)3 ⊂ G1, having the property that G acts
freely on X̂ .

We give the following
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New Burniat-type surfaces 39

Definition 1.1 Let G ∼= (Z/2Z)3 ≤ G1 be such that G acts freely on X̂λ. Then Sλ := X̂λ/G
is called a primary Burniat type surface.

Obviously, primary Burniat surfaces (i.e., Burniat surfaces with K 2 = 6) are primary
Burniat type surfaces. With the help of the computer algebra system MAGMA we can classify
all primary Burniat type surfaces and can prove the following

Theorem 1.2 Primary Burniat type surfaces are exactly the primary Burniat surfaces.

We then consider X̂ := (π ′)−1(Y1). Since Y1 is invariant under a bigger subgroup of H it
turns out that X̂ is invariant under G0 ∼= (Z/2Z)6.

In the second part of the paper we find all the subgroups G ∼= (Z/2Z)4 ≤ G0 with the
property that there is exactly one element g0 ∈ G such that g0 has isolated fixed points on X̂
which are also isolated fixed points on E1 × E2 × E3, while all other non trivial elements
of G act freely on X̂ . The quotient of X̂ by the action of G is then a surface having exactly
four ordinary nodes and we give the following

Definition 1.3 Let G ∼= (Z/2Z)4 ≤ G0 be such that X̂1 = X̂ is G-invariant. We shall say
that G acts 1-almost freely on X̂ , if there is exactly one element g0 ∈ G having isolated fixed
points on X̂ which are also isolated fixed points on E1 × E2 × E3, while all the other non
trivial elements of G act freely.

Then the minimal resolution S of the nodal surface X := X̂/G is called a 4-nodal Burniat
type surface.

Remark 1.4 One can consider, more generally, subgroups

G ∼= (Z/2Z)4 ≤ G0

with the property that there is exactly one element g0 ∈ G such that g0 has isolated fixed
points on X̂ , while all other non trivial elements of G act freely on X̂ . As a matter of fact, if
we admit g0 to have a one-dimensional fixed locus on E1 × E2 × E3 (which is not contained
in X̂ ) we get more examples of surfaces S of general type with K 2

S = 3, χ(S) = 1. It turns
out however that these surfaces have q(S) = 1. We postpone therefore the study of these
surfaces to a further article.

We give here a complete classification of 4-nodal Burniat type surfaces, which turn out to
be minimal surfaces of general type with pg = 0 and K 2 = 3. This gives us a list of seven
subgroups G yielding three (3-dimensional) families of such surfaces. Since these families
are nowhere dense in the moduli space, and also in order to determine whether the present
construction yields hitherto unknown surfaces, we use the classical result of Armstrong to
calculate the fundamental groups of these surfaces.

Hence we see that these families yield three different topological types: one family yields
the same fundamental group as the family of Keum-Naie surfaces with K 2 = 3 (this is case
(i)), one family yields (case ii)) tertiary Burniat surfaces with K 2 = 3, and the third family
realizes a new fundamental group P := SmallGroup(16, 13) (case iii)). Observe that P is
the central product of the dihedral group of order 8 with the cyclic group of order 4.

We summarize our result as follows:

Theorem 1.5 Let S be a 4-nodal Burniat type surface. Then S is a minimal surface of general
type with K 2

S = 3, pg(S) = 0 and the fundamental group 1 of S is one of the following groups
of order 16:

1 Unlike other authors, when we write ‘fundamental group’, we mean the topological fundamental group, and
not its profinite completion, the algebraic fundamental group.
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40 I. Bauer, F. Catanese

(i) π1(S) ∼= (Z/2Z)2 × Z/4Z, or
(ii) π1(S) ∼= H8 × Z/2Z, or

(iii) π1(S) ∼= SmallGroup(16, 13).

In a sequel to this paper we shall give other applications of the method considered
here, constructing new surfaces as quotients of subvarieties of products of maximal abelian
coverings of P

1 having Galois group of the form (Z/d)mi .

2 Burniat surfaces as reconstructed by Inoue

We briefly recall the construction of the Burniat surfaces (cf. [12]) as given by Inoue ([16]).
The description given by Inoue is very appropriate in order to calculate the fundamental
group.

For i ∈ {1, 2, 3}, let Ei := C/〈1, τi 〉 be a complex elliptic curve. Denoting by zi a
uniformizing parameter on Ei , we consider the following three involutions on T := E1 ×
E2 × E3:

g1(z1, z2, z3) =
(

−z1 + 1

2
, z2 + 1

2
, z3

)
,

g2(z1, z2, z3) =
(

z1,−z2 + 1

2
, z3 + 1

2

)
,

g3(z1, z2, z3) =
(

z1 + 1

2
, z2,−z3 + 1

2

)
.

Then G := 〈g1, g2, g3〉 ∼= (Z/2Z)3.

We consider the Legendre L-function for Ei and denote it by Li , for i = 1, 2, 3: Li is
a meromorphic function on Ei and Li : Ei → P

1 is a double cover ramified in ±1,±ai ∈
P

1 \{0,∞}. It is well known that we have (cf. [16], lemma 3-2, and also cf. [5], pages 52–54,
Sect. 2 for an algebraic treatment):

– Li (
1
2 ) = −1, Li (0) = 1, Li (

τi
2 ) = ai , Li (

1+τi
2 ) = −ai ;

– let bi := Li (
τi
4 ): then b2

i = ai ;

– dLi
dzi

(zi ) = 0 if and only if zi ∈ {0, 1
2 ,

τi
2 ,

1+τi
2 } since these are the ramification points

of Li .

Moreover

Li (zi ) = Li (zi + 1) = Li (zi + τi ) = Li (−zi ) = −Li

(
zi + 1

2

)
,

Li

(
zi + τi

2

)
= ai

Li (zi )
.

Consider

X̂c := {(z1, z2, z3)) ∈ T | L1(z1)L2(z2)L3(z3) = c, }.
Then

– X̂c is invariant under the action of G,

– for a general choice of c, X̂c is a smooth hypersurface in T of multidegree (2, 2, 2) and
G acts freely on X̂c, thus Xc := X̂c/G is a smooth minimal surface of general type with
pg = 0, K 2 = 6.
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New Burniat-type surfaces 41

– for special values of c and for special choices of the elliptic curves the hypersurface X̂c

has 4, 8, 12, 16 nodes, which are isolated fixed points of G; in these cases Xc gets 1, 2, 3,
4 singularities of type 1

4 (1, 1) and the minimal resolution of singularities of Xc := X̂c/G
is a minimal surface of general type with pg = 0 and K 2 = 5, 4, 3, 2.

3 Intersection of diagonal quadrics and (Z/2Z)n-actions

We consider diagram (1):

E1 × E2 × E3

H′:=(Z/2)3 π ′

��

E1 := {x2
1 + x2

2 + x2
3 = 0, x2

0 = a1x2
1 + a2x2

2 + a3x2
3 }

E2 := {u2
1 + u2

2 + u2
3 = 0, u2

0 = b1u2
1 + b2u2

2 + b3u2
3}

P1 := P
1 × P

1 × P
1

πH:=((Z/2)2)3

��

E3 := {z2
1 + z2

2 + z2
3 = 0, z2

0 = c1z2
1 + c2z2

2 + c3z2
3}

P2 := P
1 × P

1 × P
1

Remark 3.1 (1) π ′ is given by ‘forgetting’ the variables x0, u0, z0.

(2) π is given by x2
i = yi , u2

i = vi , z2
i = wi , i = 1, 2, 3, where we consider

P2 ⊂ P
2 × P

2 × P
2

as given by the equations

y1 + y2 + y3 = 0, v1 + v2 + v3 = 0, w1 + w2 + w3 = 0.

(3) The inverse image of the Del Pezzo surface Y ′
λ := {y1v1w1 = λy2v2w2} ⊂ P2 under π

splits into two irreducible components:

π−1({y1v1w1 = λy2v2w2}) = Y +
λ ∪ Y −

λ ⊂ P1,

where Y ±
λ := {x1u1z1 = ±√

λx2u2z2}.
(4) If we take homogeneous coordinates

((s1 : t1), (s2 : t2), (s3 : t3)),

such that the action of H on P1 = (P1)3 is generated by the transformations:

ti �→ ±ti , , si �→ si , 1 ≤ i ≤ 3,

ti �→ si , si �→ ti , 1 ≤ i ≤ 3,

then we see that the Del Pezzo surface

Yλ := {s1s2s3 = λt1t2t3} ⊂ P1
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42 I. Bauer, F. Catanese

is invariant under the subgroup H0 ∼= (Z/2Z)2 of H generated by the transformations:

si �→ si , ti �→ εi ti , , ε ∈ {±1}, ε1ε2ε3 = 1.

Then X̂λ := π ′−1(Yλ) is invariant under G1 ∼= (Z/2Z)5 ⊂ (Z/2Z)9. It is now our aim
to find all subgroups G ∼= (Z/2Z)3 ⊂ G1, such that G acts freely on X̂λ.

We obtain in this case a commutative diagram

X̂λ

(Z/2)3 π ′

��

(Z/2)3∼=G

�������������

Yλ ⊂ P1

H0

��

Sλ := X̂λ/G

(Z/2)2
�������������

Z ′.

(2)

S is then a smooth minimal surface of general type with K 2
S = 6, pg = 0. We shall in

fact show that necessarily S is a primary Burniat surface.
(5) If instead we set λ = 1, we see that the Del Pezzo surface

Y := Y1 = {s1s2s3 = t1t2t3} ⊂ P1

is invariant under the subgroup H1 ∼= (Z/2Z)3 of H generated by the transformations:

si �→ si , ti �→ εi ti , , ε ∈ {±1}, ε1ε2ε3 = 1

and

ti �→ si , si �→ ti , ∀i.

Then X̂ := π ′−1(Y ) is invariant under G0 ∼= (Z/2Z)6 ⊂ (Z/2Z)9. It is now our aim to
find all subgroups G ∼= (Z/2Z)4 ⊂ G0, such that there is exactly one element g0 ∈ G
which has isolated fixed points on X̂ (which are also isolated fixed points on E1×E2×E3),
while all other nontrivial elements act freely.
We obtain then a commutative diagram

X̂

(Z/2)3 π ′
��

(Z/2)4∼=G

�������������

Y ⊂ P1

H1

��

S := X̂/G

(Z/2)2

�������������

Z .

(3)

(6) Note that it is easy to see that Z is the four nodal cubic surface in P
3. In fact, Y ± =

{s1s2s3 = ±t1t2t3} is the pull-back of Z ′ := {σ1σ2σ3 = τ1τ2τ3} under the map s2
i =

σi , t2
i = τi . Hence Y + → Z ′ is a (Z/2Z)2-cover of a Del Pezzo surface of degree 6. On

Z ′, the involution which exchanges σi and τi has four isolated fixed points. Hence the
quotient Z is a four nodal cubic surface.
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New Burniat-type surfaces 43

Observe that in the above remark we described the action of H on (P1)3 in the coordinates
(si : ti ). We have to rewrite this action in the coordinates xi , ui , zi , and then give the equations
of the Del Pezzo surface

Yλ = {s1s2s3 = λt1t2t3} ⊂ P1

in the coordinates xi , ui , zi .

In order to give the action of H in the coordinates xi , ui , zi and find the equations of the
Del Pezzo surfaces Yλ ⊂ P1 ⊂ (P2)3, we consider first the following diagram

E1 = E

Z/2Z

��
P

1

(Z/2Z)2

��

= {x2
1 + x2

2 + x2
3 = 0} =: C ⊂ P

2

P
1 = {y1 + y2 + y3 = 0} ⊂ P

2.

(4)

Observe that

x2
1 + x2

2 + x2
3 = 0 ⇐⇒ det

(
x1 + i x2 −x3

x3 x1 − i x2

)
= 0.

Therefore we get a parametrization of C :

(s : t) = (x1 + i x2 : x3) = (−x3 : x1 − i x2).

With this parametrization, we can rewrite the action of (Z/2Z)2 on P
1 (we use the conve-

nient notation by which all variables not mentioned in a transformation are left unchanged):

(a) x1 �→ −x1 (or equivalently

(
x2

x3

)
�→

(−x2

−x3

)
) corresponds to (s : t) �→ (t : s);

(b) x2 �→ −x2 (or equivalently

(
x1

x3

)
�→

(−x1

−x3

)
) corresponds to (s : t) �→ (−t : s);

(c) x3 �→ −x3 (or equivalently

(
x1

x2

)
�→

(−x1

−x2

)
) corresponds to (s : t) �→ (s : −t).

Remark 3.2 The fixed points of the three involutions above are

(a) s = ±t ⇐⇒ x1 = x3 ± i x2 = 0;
(b) t = ±is ⇐⇒ x2 = x1 ± i x3 = 0;
(c) st = 0 ⇐⇒ x3 = x1 ± i x2 = 0.

The equations for the Del Pezzo surface Yλ = {s1s2s3 = λt1t2t3} in the coordinates
xi , ui , zi can now be easily computed.

Lemma 3.3 Consider

P
1 × P

1 × P
1 ⊂ P

2
(x1:x2:x3)

× P
2
(u1:u2:u3)

× P
2
(z1:z2:z3)

,

given by the equations

x2
1 + x2

2 + x2
3 = 0, u2

1 + u2
2 + u2

3 = 0, z2
1 + z2

2 + z2
3 = 0.

Let Yλ ⊂ P
1
(s1:t1) × P

1
(s2:t2) × P

1
(s3:t3) be the Del Pezzo surface given by the equation

Y = {s1s2s3 = λt1t2t3}, λ �= 0.
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44 I. Bauer, F. Catanese

Then

Yλ ⊂ P
1 × P

1 × P
1 ⊂ P

2
(x1:x2:x3)

× P
2
(u1:u2:u3)

× P
2
(z1:z2:z3)

is given by the following eight equations:

(1) (x1 + i x2)(u1 + iu2)(z1 + i z2) = λx3u3z3,

(2) (x1 + i x2)(u1 + iu2)(−z3) = λx3u3(z1 − i z2),

(3) (x1 + i x2)(−u3)(z1 + i z2) = λx3(u1 − iu2)z3,

(4) (−x3)(u1 + iu2)(z1 + i z2) = λ(x1 − i x2)u3z3,

(5) (x1 + i x2)u3z3 = λx3(u1 − iu2)(z1 − i z2),

(6) x3(u1 + iu2)z3 = λ(x1 − i x2)u3(z1 − i z2),

(7) x3u3(z1 + i z2) = λ(x1 − i x2)(u1 − iu2)z3,

(8) −x3u3z3 = λ(x1 − i x2)(u1 − iu2)(z1 − i z2).

Proof We have seen that each P
1 (written as a conic in P

2) has a birational map to P
1 given

by:

(s1 : t1) = (x1 + i x2 : x3) = (−x3 : x1 − i x2),

(s2 : t2) = (u1 + iu2 : u3) = (−u3 : u1 − iu2),

(s3 : t3) = (z1 + i z2 : z3) = (−z3 : z1 − i z2).

Since each birational map is well defined at each point either through the second or through
the third ratio, this implies immediately that the divisorial equation of the Del Pezzo surface
in P

1 × P
1 × P

1 is equivalent to the above eight equations in P
2 × P

2 × P
2. ��

Let X̂ ⊂ E1 × E2 × E3 be the inverse image of the Del Pezzo surface Yλ ⊂ P1 given by
the above eight equations. Then we have:

Lemma 3.4 (1) λ �= 0: then X̂λ is invariant under the group G1 ∼= (Z/2Z)5 ≤ (Z/2Z)3 ×
(Z/2Z)3 × (Z/2Z)3, where

G1 := {(ε0, ε1, η0, ε2, ζ0, ε3) ⊂ (Z/2Z)6|ε1ε2ε3 = 1}.
The action of G1 on E1 × E2 × E3 is given by:

x0 �→ ε0x0, u0 �→ η0u0, z0 �→ ζ0z0,

x3 �→ ε1x3, u3 �→ ε2u3, z3 �→ ε3z3, ε1ε2ε3 = 1.

(2) λ = 1: then X̂ := X̂1 is invariant under the group G0 ∼= (Z/2Z)6 ≤ (Z/2Z)3 ×
(Z/2Z)3 × (Z/2Z)3, where

G0 := {(ε0, η1, ε1, η0, ε2, ζ0, ε3) ⊂ (Z/2Z)7|ε1ε2ε3 = 1}.
The action of G0 on E1 × E2 × E3 is given by:

x0 �→ ε0x0, u0 �→ η0u0, z0 �→ ζ0z0,

⎛
⎝ x1

u1

z1

⎞
⎠ �→ η1

⎛
⎝ x1

u1

z1

⎞
⎠ ,

x3 �→ ε1x3, u3 �→ ε2u3, z3 �→ ε3z3, ε1ε2ε3 = 1.

Proof Just observe that multiplication of the variables x1, u1, z1 by −1 correspond to
exchanging, for each i = 1, 2, 3, si with ti . ��
Definition 3.5 (1) Let G ∼= (Z/2Z)3 ≤ G1 have the property that G acts freely on X̂λ. Then

Sλ := X̂λ/G is is called a primary Burniat type surface.
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New Burniat-type surfaces 45

(2) Let G ∼= (Z/2Z)4 ≤ G0, such that X̂1 = X̂ is invariant under G. We say that G acts
1-almost freely on X̂ , if there is exactly one element g0 ∈ G having isolated fixed points
on X̂ which are also isolated fixed points on E1 × E2 × E3 while all other nontrivial
elements of G act freely.

Then the minimal resolution of singularities S of X := X̂/G is called a 4-nodal Burniat
type surface.

Observe that a primary Burniat type surface Sλ is a smooth minimal surface of general
type with χ(S) = 1 and K 2

S = 6. In particular, primary Burniat surfaces are primary Burniat
type surfaces.

The minimal resolution of a 4-nodal Burniat type surface is then a minimal surface of
general type with K 2

S = 3, χ(S) = 1.

4 The fixed points of G0 on X̂

Remark 4.1 Fix a1, a2, a3 ∈ C distinct so that the curve

E := {(x0 : x1 : x2 : x3) ∈ P
3|x2

1 + x2
2 + x2

3 = 0, x2
0 = a1x2

1 + a2x2
2 + a3x2

3 }
is smooth (hence an elliptic curve). Then:

g(x0 : x1 : x2 : x3) := (α0x0, α1x1, x2, α3x3), αi ∈ {±1},
has fixed points on E if and only if either

• α0 = α1 = α3 = −1, or
• exactly one αi = −1, the others are equal to 1.

Note that the group of automorphisms that we consider is isomorphic to (Z/2Z)3 ∼=
{(m1, m2, m3, m4) ∈ (Z/2Z)4|m3 = 0}.
4.1 Elements of G0 having a fixed locus of dimension 2 on E1 × E2 × E3

Let g ∈ G0 be an element leaving a surface

S ⊂ T := E1 × E2 × E3

pointwise fixed. Then we have the following three possibilities:

(i) g = idE1 × idE2 ×g3, where g3 has fixed points on E3;
(ii) g = idE1 ×g2 × idE3 , where g2 has fixed points on E2;

(iii) g = g1 × idE2 × idE3 , where g1 has fixed points on E1.

(i) g = idE1 × idE2 ×g3: this implies ε0 = η1 = ε1 = 1 and η0 = ε2 = 1. This implies
ε3 = 1, whence we have for g3 only one possibility:

g3 =

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ .
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By symmetry we get for the cases ii) and iii) the following two respective possibilities:

(i i) g2 =

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ , (i i i) g1 =

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ .

4.2 Elements of G0 having a fixed locus of dimension 1 on E1 × E2 × E3

Let g ∈ G0 be an element leaving a curve C ⊂ T := E1 × E2 × E3 pointwise fixed. Then
we have the following three possibilities:

(i) g = idE1 ×g2 × g3, where g2, g3 have fixed points on E2 resp. E3;
(ii) g = g1 × idE2 ×g3, where g1, g3 have fixed points on E1 resp. E3;

(iii) g = g1 × g2 × idE3 , where g1, g2 have fixed points on E1 resp. E2.

(i) g = idE1 ×g2 × g3: then ε0 = η1 = ε1 = 1, in particular, ε2 = ε3. We have therefore:

g = (g1, g2, g3) =

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

η0

1
1
ε2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

ζ0

1
1
ε3

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

This shows that we have the following two possibilities for g2:
(a) η0 = 1 and ε2 = ε3 = −1,

(b) η0 = −1 and ε2 = ε3 = 1.

(a) The first possibility for g is:

g =

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
1
1

−1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
1
1

−1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

(b) The second possibility for g is:

g =

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

(ii) g = g1 × idE2 ×g3: by symmetry of E1 and E2, we get the following two possibilities
for g:

g =

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1
1
1

−1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
1
1

−1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ , or g =

⎛
⎜⎜⎝

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

(iii) g = g1 × g2 × idE3 : again by symmetry we have two possibilities for g:

g =

⎛
⎜⎜⎝

⎛
⎜⎜⎝

1
1
1

−1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
1
1

−1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ , or g =

⎛
⎜⎜⎝

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
1
1
1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .
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Table 1 The elements of G0 having fixed points on T, written additively

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ε0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1

η1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

ε1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1

η0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1

ε2 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 1

ζ0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0

ε3 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0

Remark 4.2 Note that X̂ ⊂ T is an ample divisor, hence the fixed locus of the above elements
has non trivial intersection with X̂ .

4.3 Elements of G0 having isolated fixed points on E1 × E2 × E3

We still have to find all elements of G0 which have isolated fixed points on T .

An element g = (g1, g2, g3) ∈ G0 has isolated fixed points on T = E1 × E2 × E3 if and
only if gi (�= id) has fixed points on Ei . Therefore, on each Ei , gi is one of the four elements

gi ∈

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
−1
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
1
1

−1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1
−1
1

−1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

.

We will list in Table 1 all the elements of G0 which have fixed points on T .

Observe that, unlike before, we write the group additively.
More precisely, the elements 1, 2, 3 have a fixed locus of dimension 2, the elements 4–9

have a fixed curve and the elements 10–17 have isolated fixed points on T .

We shall prove now the following

Proposition 4.3 The elements 11 − 17 do have fixed points on X̂ , whereas the fixed points
of the element 10 do not intersect X̂ .

Proof We recall that we have the Del Pezzo surface Y ⊂ P
1 × P

1 × P
1, given in the

coordinates (si : ti ) by Y := {s1s2s3 = t1t2t3}, or in the coordinates (xi , ui , zi ) as the
subvariety of P

2 × P
2 × P

2 defined by the equations in Lemma 3.3.
We have to check whether the fixed points of the elements 10 − 17 listed in Table 1 are

contained in the pull back X̂ of Y.

10) The fixed points are given by x0 = u0 = z0, i.e. they are of the form

((0 : ±iμ1x2 : x2 : ±λ1x2), (0 : ±iμ2u2 : u2 : ±λ2u2)(0 : ±iμ3z2 : z2 : ±λ3z2)),

where μi =
√

1 + λ2
i , and λi depends on ai (resp.bi , resp ci ).

It is now easy to check that, for a general choice of the elliptic curves E1, E2, E3, points
of this form never fulfill the 8 equations of Y.

11) The fixed points are given by x0 = u3 = z3 = 0. By Remark 3.2 u3 = z3 = 0
corresponds to s2t2 = 0 = s3t3 = 0. Whence e.g. all points of the form

((s1 : t1), (0 : t2), (s3 : 0)),
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48 I. Bauer, F. Catanese

(s1 : t1) arbitrary, lie on Y. This implies that the pull-back of Y contains fixed points of G
corresponding to number 11 in Table 1.

12) The fixed points are given by x1 = u1 = z1 = 0. By Remark 3.2 this correspond to
si = ±ti . This implies that the points si = εi ti , εi ∈ {±1}, ε1ε2ε3 = 1, are contained in the
pull-back of Y.

13) Here we have x1 = u2 = z2 = 0, or in the coordinates (si : ti ):

s1 = ±t1, t2 = ±is2, t3 = ±is3.

Again it is obvious that some of these fixed points are contained in the pull-back of Y.

14), 15) x3 = u0 = z3 = 0 resp. x3 = u3 = z0 = 0: these cases are equal to case 11 by
symmetry on the three elliptic curves. Hence also here the fixed points are contained in the
pull-back of Y.

16), 17) x2 = u1 = z2 = 0 resp. x2 = u2 = z1 = 0: these cases are symmetric to
case 13. ��

In the remaining part of the section we briefly sketch the analogous results for G1, i.e.,
we exhibit the elements g ∈ G1, which have fixed points on E1 × E2 × E3. Recall that
G1 ∼= (Z/2Z)5 ≤ (Z/2Z)3 × (Z/2Z)3 × (Z/2Z)3, where

G1 := {(ε0, ε1, η0, ε2, ζ0, ε3) ⊂ (Z/2Z)6|ε1ε2ε3 = 1}.
Remark 4.4 The calculations are quite the same as before for the group G0, just note that
here we always have η1 = 1. Then it is easy to see that the elements of G1 having a fixed
surface or a fixed curve are the same as for G0.

For the elements having isolated fixed points there is a small difference.

4.4 Elements of G1 having isolated fixed points on E1 × E2 × E3

We have to find all elements of G1, which have isolated fixed points on T . We have to exclude
those elements of G1 from G, where some of the fixed points are contained in the base locus
of the pencil X̂λ.

An element g = (g1, g2, g3) ∈ G1 has isolated fixed points on T = E1 × E2 × E3 if and
only if gi (�= id) has fixed points on Ei . On each Ei we have the two elements

gi =

⎛
⎜⎜⎝

−1
1
1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
1
1
−1

⎞
⎟⎟⎠ .

Table 2 The elements of G1 having fixed points on T

1 2 3 4 5 6 7 8 9 10 11 12 13

ε0 0 0 1 0 0 0 1 0 1 1 1 0 0

η1 0 0 0 0 0 0 0 0 0 0 0 0 0

ε1 0 0 0 0 0 1 0 1 0 0 0 1 1

η0 0 1 0 0 1 0 0 0 1 1 0 1 0

ε2 0 0 0 1 0 0 0 1 0 0 1 0 1

ζ0 1 0 0 0 1 0 1 0 0 1 0 0 1

ε3 0 0 0 1 0 1 0 0 0 0 1 1 0
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We will list now all elements of G1 having fixed points on T in the following Table 2.
Note that again we write the group additively in the sequel.
Note that the elements 1, 2, 3 have a fixed locus of dimension 2, the elements 4–9 have a

fixed curve and the elements 10–13 have isolated fixed points on T .

The following is easy to verify

Proposition 4.5 The elements 11 − 13 do have fixed points on the base locus of the pencil
X̂λ, whereas the fixed points of the element 10 do not lie on the base locus of X̂λ.

We can now prove the following

Theorem 4.6 Let S be a primary Burniat type surface. Then S is a primary Burniat surface.

Proof The following MAGMA script shows that there are two subgroups (Z/2Z)3 ∼= G ≤
G1 acting freely on X̂λ, for λ ∈ C general.

K:=FiniteField(2); V5:=VectorSpace(K,5); V2:=VectorSpace(K,2);
H:=Hom(V5,V2);
U1:=sub<V5|[0,0,0,0,1]>; U2:=sub<V5|[0,0,1,0,0]>;
U3:=sub<V5|[1,0,0,0,0]>; U4:=sub<V5|[0,0,0,1,0]>;
U5:=sub<V5|[0,0,1,0,1]>; U6:=sub<V5|[0,1,0,0,0]>;
U7:=sub<V5| [0,1,0,1,0] >; U8:=sub<V5| [1,0,1,0,0] >;
U9:=sub<V5| [1,0,0,0,1] >; U10:=sub<V5| [1,0,0,1,0] >;
U11:=sub<V5| [0,1,1,0,0] >; U12:=sub<V5| [0,1,0,1,1] >;
N:=sub<V5|[0,0,0,0,0]>;
w1:=V5![1,0,0,0,0];
w2:=V5![0,0,1,0,0];
x:=V2![1,0]; y:=V2![0,1];
M:={@ @};
for a in H do
if a(w1) eq x then

if a(w2) eq y then
if Kernel(a) meet U1 eq N then

if Kernel(a) meet U2 eq N then
if Kernel(a) meet U3 eq N then

if Kernel(a) meet U4 eq N then
if Kernel(a) meet U5 eq N then

if Kernel(a) meet U6 eq N then
if Kernel(a) meet U7 eq N then

if Kernel(a) meet U8 eq N then
if Kernel(a) meet U9 eq N then

if Kernel(a) meet U10 eq N then
if Kernel(a) meet U11 eq N then

if Kernel(a) meet U12 eq N then
Include(˜M,a);

end if;end if;end if;end if;end if;end if;end if;
end if;end if;end if;end if;end if;end if;end if;
end for;
M;
{@

[1 0]
[1 1]
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[0 1]
[0 1]
[1 1],

[1 0]
[1 0]
[0 1]
[1 1]
[1 1]

@}

It is now easy to see that the two cases are equivalent under the symmetry exchanging E1

and E2. Therefore they yield the same surfaces. ��

5 4-Nodal Burniat type surfaces

In this section we shall give a complete classification of 4-nodal Burniat type surfaces.

E1 × E2 × E3

H′:=(Z/2)3 π ′

��

E1 := {x2
1 + x2

2 + x2
3 = 0, x2

0 = a1x2
1 + a2x2

2 + a3x2
3 }

E2 := {u2
1 + u2

2 + u2
3 = 0, u2

0 = b1u2
1 + b2u2

2 + b3u2
3}

P1 := P
1 × P

1 × P
1

πH:=((Z/2)2)3

��

E3 := {z2
1 + z2

2 + z2
3 = 0, z2

0 = c1z2
1 + c2z2

2 + c3z2
3}

P2 := P
1 × P

1 × P
1

Using the notation in Sect. 3 we see that X̂ := π ′−1(Y ) is invariant under G0 ∼= (Z/2Z)6 ⊂
(Z/2Z)9. We find now subgroups G ∼= (Z/2Z)4 ⊂ G0 such that there is exactly one element
g0 ∈ G having (isolated) fixed points on X̂ and on T, while all the other nontrivial elements
of G act freely.

Remark 5.1 We shall see then that this unique element g0 ∈ G has 32 fixed points on X̂ ,

whence X := X̂/G has 4 nodes (this fact justifies our terminology).
It is clear that the minimal model S of X is a surface of general type with invariants

K 2
S = 3 and χ(S) = 1. Looking in fact at the respective groups G , we see that in all cases

q(S) = 0, whence pg(S) = 0.

The following MAGMA script has as output bases of subgroups G ≤ G0 as F2-
vectorspaces, which contain exactly one element g0 having isolated fixed points on X̂ which
are also isolated fixed points on T .

K:=FiniteField(2);
V6:=VectorSpace(K,6); V2:=VectorSpace(K,2); H:=Hom(V6,V2);
U1:=sub<V6|[0,0,0,0,0,1]>; U2:=sub<V6|[0,0,0,1,0,0]>;
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U3:=sub<V6|[1,0,0,0,0,0]>; U4:=sub<V6|[0,0,0,0,1,0]>;
U5:=sub<V6|[0,0,0,1,0,1]>; U6:=sub<V6|[0,0,1,0,0,0]>;
U7:=sub<V6|[1,0,0,0,0,1]>; U8:=sub<V6|[0,0,1,0,1,0]>;
U9:=sub<V6|[1,0,0,1,0,0]>; U10:=sub<V6|[1,0,0,0,1,0]>;
U11:=sub<V6|[0,0,1,1,0,0]>; U12:=sub<V6|[0,0,1,0,1,1]>;
U13:=sub<V6|[0,1,0,0,0,0]>; U14:=sub<V6|[0,1,0,1,1,1]>;
U15:=sub<V6|[1,1,1,0,0,1]>; U16:=sub<V6|[1,1,1,1,1,0]>;
N:=sub<V6|[0,0,0,0,0,0]>;
w1:=V6![1,0,0,0,0,0]; w2:=V6![0,0,0,1,0,0];
x:=V2![1,0]; y:=V2![0,1];
M:={@ @};
for a in H do
if a(w1) eq x then
if a(w2) eq y then
if Kernel(a) meet U1 eq N then
if Kernel(a) meet U2 eq N then
if Kernel(a) meet U3 eq N then
if Kernel(a) meet U4 eq N then
if Kernel(a) meet U5 eq N then
if Kernel(a) meet U6 eq N then
if Kernel(a) meet U7 eq N then

if Kernel(a) meet U8 eq N then
if Kernel(a) meet U9 eq N then Include(˜M,a);

end if; end if;end if;end if; end if; end if;
end if;end if;end if;end if;end if;
end for;
F:={@ V6! [1,0,0,0,1,0],V6! [0,0,1,1,0,0],
V6! [0,0,1,0,1,1],V6! [0,1,0,0,0,0],
V6![0,1,0,1,1,1],V6![1,1,1,0,0,1],V6![1,1,1,1,1,0] @};

M1:={@ @};
for i in [1..#M] do K:={@ @};
for x in Kernel(M[i]) do Include(˜K,x);

end for;
if #(K meet F) eq 1 then Include(˜M1,i);

end if; end for;
M1;
{@ 7, 8, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24 @}
MM:={@ M[7],M[8],M[10],M[11],M[13],M[14],M[15],M[16],M[17],
M[18],M[19],M[20],M[22],M[24] @};

MB:={@ MM[1], MM[2],MM[3],MM[5],MM[6],MM[7],MM[8] @};
L:={@ @};
for x in MB do Include(˜L,Kernel(x));

end for;

Remark 5.2 We want to observe that MM contains 14 subgroups, which split into seven pairs
of equivalent subgroups under the symmetry obtained by exchanging E1 and E2.

There are seven groups in the set L . We list generators for each of these in Table 3.

Remark 5.3 In each of the seven subgroups G ≤ G0 there is exactly one (non trivial) element
having fixed points on X̂ . These elements are:

(A) g0 = (1, 0, 0, 0, 0, 1, 0, 0, 1),
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Table 3 Generators of G ∼= (Z/2Z)4

ε0 η1 ε1 η0 η1 ε2 ζ0 η1 ε3 ε0 η1 ε1 η0 η1 ε2 ζ0 η1 ε3

A 1 0 0 0 0 1 0 0 1 B 1 0 0 0 0 1 0 0 1

0 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0

0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1

0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1

C 1 0 0 0 0 1 1 0 1 D 1 0 0 0 0 1 1 0 1

0 1 0 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 1 0 1

0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1

E 1 0 0 0 0 1 1 0 1 F 1 0 0 0 0 1 1 0 1

0 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1

0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1

0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 1

G 1 0 0 0 0 1 1 0 1

0 1 0 0 1 0 1 1 0

0 0 1 0 0 0 1 0 1

0 0 0 1 0 1 0 0 1

(B) g0 = (1, 0, 0, 0, 0, 1, 0, 0, 1),

(C) g0 = (0, 0, 1, 0, 0, 1, 1, 0, 0),

(D) g0 = (0, 1, 0, 0, 1, 0, 0, 1, 0),

(E) g0 = (1, 1, 1, 0, 1, 0, 1, 1, 1),

(F) g0 = (1, 1, 1, 1, 1, 1, 0, 1, 0),

(G) g0 = (0, 1, 0, 1, 1, 1, 1, 1, 1).

In order to calculate the fundamental groups of the corresponding quotient surfaces it is
convenient to rewrite the action of Gi , i = A, B, C, D, E, F, G, on T := E1 × E2 × E3 in
terms of uniformizing parameters zi for Ei .

For i ∈ {1, 2, 3}, let Ei := C/〈1, τi 〉 be a complex elliptic curve. Then we choose as basis
for the (Z/2Z)3-action on Ei :

• (zi �→ −zi ) = (1, 0, 0),

• (zi �→ −zi + τi
2 ) = (0, 1, 0),

• (zi �→ −zi + 1
2 ) = (0, 0, 1).

Then we can rewrite the generators of Gi , i ∈ {A, B, C, D, E, F, G}, in Table (3) in the
following way.

We would like to point out that in the cases C, D, E, F, G we choose a different basis
from the one in Table (3).

(1) G A is generated by:

g1(z1, z2, z3) = (−z1,−z2 + 1
2 ,−z3 + 1

2 ),

g2(z1, z2, z3) = (−z1 + τ1
2 , z2 + 1

2 + τ2
2 ,−z3 + 1

2 + τ3
2 ),

g3(z1, z2, z3) = (−z1 + 1
2 , z2, z3 + 1

2 ),

g4(z1, z2, z3) = (z1, z2 + 1
2 , z3 + 1

2 ).
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(2) G B is generated by:

g1(z1, z2, z3) = (−z1,−z2 + 1
2 ,−z3 + 1

2 ),

g2(z1, z2, z3) = (−z1 + τ1
2 ,−z2 + τ2

2 , z3 + τ3
2 ),

g3(z1, z2, z3) = (−z1 + 1
2 , z2, z3 + 1

2 ),

g4(z1, z2, z3) = (z1, z2 + 1
2 , z3 + 1

2 ).

(3) GC is generated by:

g1(z1, z2, z3) = (−z1 + 1
2 ,−z2 + 1

2 ,−z3),

g2(z1, z2, z3) = (−z1 + τ1
2 , z2 + 1

2 + τ2
2 ,−z3 + 1

2 + τ3
2 ),

g3(z1, z2, z3) = (z1 + 1
2 , z2,−z3 + 1

2 ),

g4(z1, z2, z3) = (z1, z2 + 1
2 ,−z3 + 1

2 ).

(4) G D is generated by:

g1(z1, z2, z3) = (z1 + 1
2 ,−z2 + 1

2 , z3),

g2(z1, z2, z3) = (−z1 + 1
2 , z2, z3 + 1

2 ),

g3(z1, z2, z3) = (z1, z2 + 1
2 ,−z3 + 1

2 ),

g4(z1, z2, z3) = (−z1 + τ1
2 ,−z2 + τ2

2 ,−z3 + τ3
2 ).

(5) G E is generated by:

g1(z1, z2, z3) = (z1 + 1
2 ,−z2 + 1

2 , z3),

g2(z1, z2, z3) = (−z1 + 1
2 , z2, z3 + 1

2 ),

g3(z1, z2, z3) = (z1, z2 + 1
2 ,−z3 + 1

2 ),

g4(z1, z2, z3) = (−z1 + 1
2 + τ1

2 ,−z2 + τ2
2 ,−z3 + 1

2 + τ3
2 ).

(6) G F is generated by:

g1(z1, z2, z3) = (z1 + 1
2 ,−z2 + 1

2 , z3),

g2(z1, z2, z3) = (−z1 + 1
2 , z2, z3 + 1

2 ),

g3(z1, z2, z3) = (z1, z2 + 1
2 ,−z3 + 1

2 ),

g4(z1, z2, z3) = (−z1 + 1
2 + τ1

2 ,−z2 + 1
2 + τ2

2 ,−z3 + τ3
2 ).

(7) GG is generated by:

g1(z1, z2, z3) = (z1 + 1
2 ,−z2 + 1

2 , z3),

g2(z1, z2, z3) = (−z1 + 1
2 , z2, z3 + 1

2 ),

g3(z1, z2, z3) = (z1, z2 + 1
2 ,−z3 + 1

2 ),

g4(z1, z2, z3) = (−z1 + τ1
2 ,−z2 + 1

2 + τ2
2 ,−z3 + 1

2 + τ3
2 ).

Remark 5.4 (1) We have Gi ≤ G0 ≤ (Z/2Z)3 × (Z/2Z)3 × (Z/2Z)3. Denote by Ki , i =
1, 2, 3, the kernel of the projection on the i-th factor. Then we have:

(i) K3 ⊂ K1 ⊕ K2, for the groups Gi , i = A, B, C ;
(ii) Ki ∩(K j ⊕Kl) = {0}, where {i, j, l} = {1, 2, 3}, for the groups Gi , i = D, E, F, G.

(2) The unique element in Gi having fixed points on X̂ is

(i) g1(z1, z2, z3) = (−z1,−z2 + 1
2 ,−z3 + 1

2 ), for i = A, B,

(ii) g1(z1, z2, z3) = (−z1 + 1
2 ,−z2 + 1

2 ,−z3), for i = C,

(iii) g4, for i = D, E, F, G.

Recall that we have written Ei = C/〈ei , τi ei 〉, i = 1, 2, 3.
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Denote by � the fundamental group of E1 × E2 × E3, so that, setting �i = 〈ei , τi ei 〉,
we have � = �1 ⊕ �2 ⊕ �3.

At this moment we invoke the hyperplane section theorem of Lefschetz, which we apply
to the ample divisor X̂ ⊂ E1 × E2 × E3: it follows that π1(X̂) ∼= π1(E1 × E2 × E3) = �.

Hence the universal covering X̃ of X̂ ⊂ E1 × E2 × E3 has a natural inclusion X̃ ⊂ C
3.

Now the affine group

i := 〈γ1, γ2, γ3, γ4, e1, τ1e1, e2, τ2e2, e3, τ3e3〉 ≤ A(3, C), (5)

where the γk are lifts of the generators gk of Gi as affine transformations, acts on C
3 leaving

X̃ invariant.
Moreover, Xi = X̂/Gi = X̃/i .

Then by Armstrong’s result (cf. [1,2]) we have

π1(Xi ) = i/ Tors(i ), (6)

where Tors(i ) is the normal subgroup of i generated by all elements of i having finite
order (indeed they have order equal to 2): since these are precisely the elements which have
fixed points on X̃ .

Remark 5.5 Denote by g0 ∈ G the unique element which has fixed points on X̂ , and denote
by γ0 ∈ i a lift of g0 to A(3, C). Observe that

γ0

⎛
⎝ z1

z2

z3

⎞
⎠ =

⎛
⎝−z1 + μ1

−z2 + μ2

−z3 + μ3

⎞
⎠ ,

where μi = 1
2εi ∈ 1

2�i .

(1) Assume that γ ∈ i has a fixed point on the universal covering X̃ of X̂ . Then there is a
λ ∈ � such that γ = γ0tλ.

(2) Let z = (z1, z2, z3) ∈ X̃ ⊂ C
3. Then z yields a fixed point of g0 on X̂ if and only if there

exists λ̂ ∈ � such that

2

⎛
⎝ z1

z2

z3

⎞
⎠ = 1

2

⎛
⎝ ε1

ε2

ε3

⎞
⎠ + λ̂ ⇐⇒ z = 1

4
ε + 1

2
λ̂,

where ε =
⎛
⎝ ε1

ε2

ε3

⎞
⎠ .

We need the following

Lemma 5.6 z = 1
4ε + 1

2 λ̂ ∈ X̃ is a fixed point of γ = γ0tλ if and only if λ = −λ̂.

Proof

γ (z) = γ0(z + λ) = −z − λ + 1

2
ε = −1

4
ε − 1

2
λ̂ − λ + 1

2
ε

= 1

4
ε + 1

2
λ̂ − λ̂ − λ = z − λ̂ − λ = z ⇐⇒ λ = −λ̂. (7)

��
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Note that g0 has 64 fixed points on T = E1 × E2 × E3, but only 32 lie on X̂ . These 32
points are divided in four Gi -orbits. Let P1, . . . , P4 ∈ X̃ be four representatives of the four
orbits. Then we have Pi = 1

4ε + 1
2 λ̂Pi . Then:

Tors(i ) = 〈〈γ0t
λ̂P1

, γ0t
λ̂P2

, γ0t
λ̂P3

, γ0t
λ̂P4

〉〉.

Moreover, since the point z can be changed modulo �, the above argument shows that
2� ⊂ Tors(i ), hence π1(S) = π1(X) is a quotient of the 2-step nilpotent group �G such
that

1 → �/2� → �G → G → 1.

We can now prove the following theorem:

Theorem 5.7 Let Si , i ∈ {A, B, C, D, E, F, G} be the minimal resolution of the surface
Xi := X̂/Gi (having four ordinary nodes). Then Si is a minimal surface of general type with
K 2

Si
= 3, pg(Si ) = 0, with fundamental group

(i) π1(Si ) ∼= (Z/2Z)2 × Z/4Z, for i = A, B, C;
(ii) π1(Si ) ∼= H × Z/2Z, for i = D;

(iii) π1(Si ) ∼= SmallGroup(16, 13), for i = E, F, G.

Remark 5.8 (1) Cases D,E,F,G are obviously quotients of a primary Burniat surface by
an involution having four isolated fixed points. Since primary Burniat surfaces satisfy
Bloch’s conjecture asserting that the group of zero cycles of degree 0 modulo rational
equivalence is trivial (cf. [15]), it follows that also the surfaces SD, SE , SF , SG satisfy
Bloch’s conjecture.
Cases A, B, C have the same fundamental group as the Keum-Naie surfaces with K 2 = 3.

Each of the cases E, F, G yields a (3-dimensional) family, which is new. Actually, the
fundamental group SmallGroup(16, 13), which is the central product of the dihedral
group of order 8 with the cyclic group of order 4, has not yet been realized by a surface
with K 2 = 3, pg = 0.

(2) Denote by Ŝi the double cover of Xi branched exactly in the four nodes. Then

• Ŝi is a surface of general type with K 2
S = 6, pg = q = 1 if i = A, B, C,

• Ŝi is a primary Burniat surface for i = D, E, F, G.

(3) It is easy to see that the groups G A, G B , GC yield the same family of surfaces. Indeed,
exchanging E2 with E3 has the effect of exchanging G A and G B , whereas exchanging
E1 with E3 has the effect of exchanging G B and GC .

The same holds for the groups G E , G F and GG . Therefore, in order to prove the above
theorem, it suffices to calculate the fundamental group in the cases A, D, E .

Proof (A) The fixed points of g0(z1, z2, z3) = (−z1,−z2 + 1
2 ,−z3 + 1

2 ) are the points
(z1, z2, z3) ∈ E1 × E2 × E3 such that

z1 ∈
{

0,
1

2
,
τ1

2
,

1

2
+ τ1

2

}
,

zi ∈
{

1

4
,

1

4
+ 1

2
,

1

4
+ τi

2
,

1

4
+ 1

2
+ τi

2

}
, i = 2, 3.
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These are 64 points, but only 32 of these are on X̂ , namely:

(z1, z2, z3), z1 ∈
{

0,
1

2
,
τ1

2
,

1

2
+ τ1

2

}
, (z2, z3) ∈

{(
1

4
,

1

4
+ τ3

2

)
,

(
1

4
,

1

4
+ 1

2
+ τ3

2

)
,

(
1

4
+ 1

2
,

1

4
+ τ3

2

)
,

(
1

4
+ 1

2
,

1

4
+ 1

2
+ τ3

2

)
,

(
1

4
+ τ2

2
,

1

4

)
,

(
1

4
+ τ2

2
,

1

4
+ 1

2

)
,

(
1

4
+ 1

2
+ τ2

2
,

1

4

)
,

(
1

4
+ 1

2
+ τ2

2
,

1

4
+ 1

2

)}
. (8)

In fact, recall that the affine equation of X̂ (cf. [16]) is

X̂ = {(z1, z2, z3) ∈ T |L1(z1)L2(z2)L3(z3) = b1b2b3},
where bi = Li (

τi
4 ). Observe that b2

i = ai . Let (Li (zi )0 : Li (zi )1) be homogeneous coordi-

nates of the point Li (zi ). The equation of X̂ is then:

L1(z1)0L2(z2)0L3(z3)0 = b1b2b3L1(z1)1L2(z2)1L3(z3)1.

It follows easily from the properties of the Legendre function that(
Li

(
zi + τi

2

)
0

: Li

(
zi + τi

2

)
1

)
= (ai Li (zi )1 : Li (zi )0) .

In particular, we have(
Li

(
1

4

)
0

: Li

(
1

4

)
1
) = (0 : 1), (Li

(
1

4
+ τi

2

)
0

: Li

(
1

4
+ τi

2

)
1

)
= (1 : 0).

Now it follows easily that a fixed point (z1, z2, z3) of g0 on T lies in fact on X̂ if and only
if it satisfies the equations

L1(z1)0L2(z2)0L3(z3)0 = L1(z1)1L2(z2)1L3(z3)1 = 0.

Therefore a fixed point (z1, z2, z3) ∈ T of g0 lies on X̂ if and only if z1 ∈ {
0, 1

2 , τ1
2 , 1

2 + τ1
2

}
and

(z2, z3) ∈
{(

1

4
,

1

4
+ τ3

2

)
,

(
1

4
,

1

4
+ 1

2
+ τ3

2

)
,

(
1

4
+ 1

2
,

1

4
+ τ3

2

)
,

(
1

4
+ 1

2
,

1

4
+ 1

2
+ τ3

2

)
,

(
1

4
+ τ2

2
,

1

4

)
,

(
1

4
+ τ2

2
,

1

4
+ 1

2

)
,

(
1

4
+ 1

2
+ τ2

2
,

1

4

)
,

(
1

4
+ 1

2
+ τ2

2
,

1

4
+ 1

2

)}
.

These points fall into 4 G A- orbits, and it is easy to verify that we can choose as repre-
sentatives the four points:

P1 =
(

0,
1

4
,

1

4
+ τ3

2

)
, P2 =

(
1

2
,

1

4
,

1

4
+ τ3

2

)
,

P3 =
(

τ1

2
,

1

4
,

1

4
+ τ3

2

)
, P4 =

(
1

2
+ τ1

2
,

1

4
,

1

4
+ τ3

2

)
.

Writing as above Pi = 1
4ε + 1

2 λ̂Pi , we see that ε =
⎛
⎝ 0

1
1

⎞
⎠ , and

λ̂P1 =
⎛
⎝ 0

0
τ3

⎞
⎠ , λ̂P2 =

⎛
⎝ 1

0
τ3

⎞
⎠ , λ̂P3 =

⎛
⎝ τ1

0
τ3

⎞
⎠ , λ̂P4 =

⎛
⎝ 1 + τ1

0
τ3

⎞
⎠ .
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Therefore

π1(X j ) = i/〈〈γ0t
λ̂Pi

: i = 1, 2, 3, 4〉〉, j = A, B.

The following MAGMA script gives π1(X j ) ∼= (Z/2Z)2 × Z/4Z.

G1:=DirectProduct([CyclicGroup(2),CyclicGroup(2),CyclicGroup(2)]);
G2:=DirectProduct([CyclicGroup(2),CyclicGroup(2),CyclicGroup(2)]);
G3:=DirectProduct([CyclicGroup(2),CyclicGroup(2),CyclicGroup(2)]);

H:=DirectProduct([G1,G2,G3]);
PolyGroup:=func<seq|Group<a1,a2,a3,a4|

a1ˆseq[1], a2ˆseq[2],a3ˆseq[3],a4ˆseq[4], a1*a2*a3*a4>>;
P1:=PolyGroup([2,2,2,2]);
P2:=PolyGroup([2,2,2,2]);
P3:=PolyGroup([2,2,2,2]);
P:=DirectProduct([P1,P2,P3]);
f:=Homomorphism(P,H, [P.1,P.2,P.3,P.4,P.5,P.6,P.7,P.8,P.9,
P.10,P.11,P.12],[H!(1,2),H!(3,4),H!(5,6),H!(1,2)(3,4)(5,6),
H!(7,8),H!(9,10),H!(11,12),H!(7,8)(9,10)(11,12),H!(13,14),
H!(15,16),H!(17,18),H!(13,14)(15,16)(17,18)]);
R:=Rewrite(P,Kernel(f));
R;
Finitely presented group R on 6 generators
Generators as words in group P

R.1 = (P.2 * P.1)ˆ2 /* = e_1
R.2 = (P.3 * P.1)ˆ2 /* = \tau_1
R.3 = (P.6 * P.5)ˆ2 /*= e_2
R.4 = (P.7 * P.5)ˆ2 /*= \tau_2
R.5 = (P.10 * P.9)ˆ2 /* = e_3
R.6 = (P.11 * P.9)ˆ2 /*= \tau_3

Relations
(R.1, R.2ˆ-1) = Id(R)
(R.3, R.4ˆ-1) = Id(R)
(R.5, R.6ˆ-1) = Id(R)
(R.4ˆ-1, R.6ˆ-1) = Id(R)
(R.1ˆ-1, R.5ˆ-1) = Id(R)
(R.5, R.2) = Id(R)
(R.1ˆ-1, R.3ˆ-1) = Id(R)
(R.2ˆ-1, R.4ˆ-1) = Id(R)
(R.1ˆ-1, R.6ˆ-1) = Id(R)
(R.3ˆ-1, R.6ˆ-1) = Id(R)
(R.4ˆ-1, R.5ˆ-1) = Id(R)
(R.2ˆ-1, R.6ˆ-1) = Id(R)
(R.3ˆ-1, R.5ˆ-1) = Id(R)
(R.4, R.1) = Id(R)
(R.2ˆ-1, R.3ˆ-1) = Id(R)
R.6ˆ-1 * R.5 * R.2ˆ-1 * R.1 * R.5ˆ-1 * R.6 *
R.1ˆ-1 * R.2 = Id(R)
R.1ˆ-1 * R.2 * R.3ˆ-1 * R.4 * R.2ˆ-1 *
R.1 * R.4ˆ-1 * R.3 = Id(R)
R.3ˆ-1 * R.4 * R.5ˆ-1 * R.6 * R.4ˆ-1 *
R.3 * R.6ˆ-1 * R.5 = Id(R)

CASE A:
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***********
GG1:=sub<H|H!(1,2)(11,12)(17,18),
H!(3,4)(9,10)(11,12)(13,14)(15,16)(17,18),
H!(5,6)(13,14)(17,18),H!(7,8)(11,12)(13,14)(17,18)>;

/*The only element of GG1 having fixed points is
(1,2)(11,12)(17,18).*/

Pi1:=Rewrite(P,GG1@@f);
Q1:=quo<Pi1|P.1*P.7*P.11, P.1*P.7*P.11*(P.11*P.9)ˆ2,
P.1*P.7*P.11*(P.2*P.1)ˆ2*(P.11*P.9)ˆ2,
P.1*P.7*P.11*(P.3*P.1)ˆ2*(P.11*P.9)ˆ2,
P.1*P.7*P.11*(P.2*P.1)ˆ2*(P.3*P.1)ˆ2*(P.11*P.9)ˆ2 >;
IdentifyGroup(Q1);
<16, 10>

D) Here we have g0 = (−z1 + τ1
2 ,−z2 + τ2

2 ,−z3 + τ3
2 ). The 64 fixed points of g0 on

T := E1 × E2 × E3 are:

z ∈
⎧⎨
⎩

1

4

⎛
⎝±τ1

±τ2

±τ3

⎞
⎠ + 1

2
(Z/2Z)3

⎫⎬
⎭ .

Here it suffices again to look at the affine equation of X̂ and we see that all the above points
satisfy

L1(z1)L2(z2)L3(z3) = ±b1b2b3.

They lie on X̂ (i.e., they fulfill the equation L1(z1)L2(z2)L3(z3) = b1b2b3) if and only if

z ∈
⎧⎨
⎩

1

4

⎛
⎝±τ1

±τ2

±τ3

⎞
⎠ + 1

2

⎧⎨
⎩0,

⎛
⎝ 1

1
0

⎞
⎠ ,

⎛
⎝ 1

0
1

⎞
⎠ ,

⎛
⎝ 0

1
1

⎞
⎠

⎫⎬
⎭

⎫⎬
⎭ .

It is easy to see that we can choose as representatives for the 4 G D-orbits:

P1 =
(τ1

4
,
τ2

4
,
τ3

4

)
, P2 =

(
τ1

4
+ 1

2
,
τ2

4
+ 1

2
,
τ3

4

)
,

P3 =
(

τ1

4
+ 1

2
,
τ2

4
,
τ3

4
+ 1

2

)
, P4 =

(
τ1

4
,
τ2

4
+ 1

2
,
τ3

4
+ 1

2

)
.

Hence we have:

λ̂P1 = 0, λ̂P2 =
⎛
⎝ 1

1
0

⎞
⎠ , λ̂P3 =

⎛
⎝ 1

0
1

⎞
⎠ , λ̂P4 =

⎛
⎝ 0

1
1

⎞
⎠ .

And the MAGMA script

CASE D
**********
GG4:=sub<H|H!(1,2)(11,12)(13,14)(17,18), H!(3,4)(9,10)(15,16),
H!(5,6)(13,14)(17,18),H!(7,8)(11,12)(17,18)>;

/*The only element of GG4 having fixed points is
(3,4)(9,10)(15,16).*/
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Pi4:=Rewrite(P,GG4@@f);

Q4:=quo<Pi4| P.2*P.6*P.10, P.2*P.6*P.10*(P.2 * P.1)ˆ2*(P.6 * P.5)ˆ2,
P.2*P.6*P.10*(P.2 * P.1)ˆ2 *(P.10 * P.9)ˆ2,
P.2*P.6*P.10*(P.6 * P.5)ˆ2 *(P.10 * P.9)ˆ2>;
IdentifyGroup(Q4);
<16, 12>

gives π1(X D) ∼= H × Z/2Z.

E) Here we have g0 = (−z1 + 1
2 + τ1

2 ,−z2 + τ2
2 ,−z3 + 1

2 + τ3
2 ). The 64 fixed points of

g0 on T are:

z ∈
⎧⎨
⎩

1

4

⎛
⎝±(1 + τ1)

±τ2

±(1 + τ3)

⎞
⎠ + 1

2
(Z/2Z)3

⎫⎬
⎭ .

Observe now that

Li

(
1

4
+ τi

4

)2

= Li

(
1

4
+ τi

4
+ 1

2

)2

= −ai ,

whence
{Li

( 1
4 + τi

4

)
, Li

( 1
4 + τi

4 + 1
2

)} = {√−1bi ,−
√−1bi

}
.

Then we see that the points

z ∈
⎧⎨
⎩

1

4

⎛
⎝±(1 + τ1)

±τ2

±(1 + τ3)

⎞
⎠ + 1

2

⎧⎨
⎩

⎛
⎝ 0

0
1

⎞
⎠ ,

⎛
⎝ 1

1
1

⎞
⎠ ,

⎛
⎝ 1

0
0

⎞
⎠ ,

⎛
⎝ 0

1
0

⎞
⎠

⎫⎬
⎭

⎫⎬
⎭

lie on X̂ , whereas the other 32 points satisfy the equation L1(z1)L2(z2)L3(z3) = −b1b2b3.

We again can choose as representatives of the four G E -orbits the following points:

P1 = 1

4

⎛
⎝ (1 + τ1)

τ2

(1 + τ3)

⎞
⎠ + 1

2

⎛
⎝ 0

0
1

⎞
⎠ , P2 = 1

4

⎛
⎝ (1 + τ1)

τ2

(1 + τ3)

⎞
⎠ + 1

2

⎛
⎝ 1

1
1

⎞
⎠ ,

P3 = 1

4

⎛
⎝ (1 + τ1)

τ2

(1 + τ3)

⎞
⎠ + 1

2

⎛
⎝ 1

0
0

⎞
⎠ , P4 = 1

4

⎛
⎝ (1 + τ1)

τ2

(1 + τ3)

⎞
⎠ + 1

2

⎛
⎝ 0

1
0

⎞
⎠ ,

whence we have

λ̂P1 =
⎛
⎝ 0

0
1

⎞
⎠ , λ̂P2 =

⎛
⎝ 1

1
1

⎞
⎠ , λ̂P3 =

⎛
⎝ 1

0
0

⎞
⎠ , λ̂P4 =

⎛
⎝ 0

1
0

⎞
⎠ .

And the MAGMA script

CASE E
***********
GG5:=sub<H|H!(1,2)(11,12)(13,14)(17,18),
H!(3,4)(9,10)(11,12)(13,14)(15,16)(17,18),
H!(5,6)(13,14)(17,18),H!(7,8)(11,12)(17,18)>;

/*The only element of GG5 having fixed points is
(1, 2)(3, 4)(5, 6)(9, 10)(13, 14)(15, 16)(17, 18).*/
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Pi5:=Rewrite(P,GG5@@f);
Q5:=quo<Pi5| P.1*P.2*P.3*P.6*P.9*P.10*P.11*(P.10*P.9)ˆ2,
P.1*P.2*P.3*P.6*P.9*P.10*P.11*(P.2 * P.1)ˆ2*(P.6 * P.5)ˆ2*(P.10*P.9)ˆ2,
P.1*P.2*P.3*P.6*P.9*P.10*P.11*(P.2 * P.1)ˆ2 ,
P.1*P.2*P.3*P.6*P.9*P.10*P.11*(P.6 * P.5)ˆ2>;
IdentifyGroup(Q5);
<16, 13>

gives π1(X D) ∼= SmallGroup(16, 13). ��

References

1. Armstrong, M.A.: On the fundamental group of an orbit space. Proc. Camb. Philos. Soc. 61, 639–646
(1965)

2. Armstrong, M.A.: The fundamental group of the orbit space of a discontinuous group. Proc. Camb. Philos.
Soc. 64, 299–301 (1968)

3. Bauer, I., Catanese, F.: Some new surfaces with pg = q = 0. The Fano Conference, pp. 123–142, Univ.
Torino, Turin (2004)

4. Bauer, I., Catanese, F.: The moduli space of Keum-Naie surfaces. Group Geom. Dyn. 5(2), 231–250
(2011)

5. Bauer, I., Catanese, F.: Burniat surfaces I: Fundamental groups and moduli of primary Burniat surfaces.
In: Faber, C., et al. (eds.) Classification of Algebraic Varieties. Based on the Conference on Classification
of Varieties, Schiermonnikoog, Netherlands, Mat 2009. European Mathematical Society (EMS). EMS
Series of Congress Reports, Zürich, pp. 49–76 (2009)

6. Bauer, I., Catanese, F.: Burniat surfaces. II. Secondary Burniat surfaces form three connected components
of the moduli space. Invent. Math. 180(3), 559–588 (2010)

7. Bauer, I., Catanese, F., Burniat surfaces III: deformations of automorphisms and extended Burniat surfaces.
arXiv:1012.3770

8. Bauer, I., Catanese, F.: Inoue type manifolds and Inoue surfaces: a connected component of the moduli
space of surfaces with K 2 = 7, pg = 0. In: Faber, C., et al. (eds.) Geometry and Arithmetic. Zürich:
European Mathematical Society (EMS). EMS Series of Congress Reports, pp. 23–56 (2012)

9. Bauer, I., Catanese, F., Grunewald, F.: The classification of surfaces with pg = q = 0 isogenous to a
product of curves. Pure Appl. Math. Q. 4(2 part 1), 547–586 (2008)

10. Bauer, I., Catanese, F., Pignatelli, R.: Surfaces with geometric genus zero: a survey. In: Ebeling, W., et al.
(eds.) Complex and Differential Geometry. Conference Held at Leibniz Universität Hannover, Germany,
September 14–18, 2009. Proceedings. Springer Proceedings in Mathematics, vol. 8, pp. 1–48. Berlin:
Springer (2011)

11. Bauer, I., Catanese, F., Grunewald, F., Pignatelli, R.: Quotients of a product of curves, new surfaces with
pg = 0 and their fundamental groups. Am. J. Math. 134(4), 993–1049 (2012)

12. Burniat, P.: Sur les surfaces de genre P12 ≥ 1. Ann. Mat. Pura Appl. 71(4), 1–24 (1966)
13. Campedelli, L.: Sopra alcuni piani doppi notevoli con curve di diramazione del decimo ordine. Atti Acad.

Naz. Lincei. 15, 536–542 (1932)
14. Godeaux, L.: Les involutions cycliques appartenant à une surface algébrique. Actual. Sci. Ind., 270,

Hermann, Paris (1935)
15. Inose, H., Mizukami, M.: Rational equivalence of 0-cycles on some surfaces of general type with pg = 0.

Math. Ann. 244(3), 205–217 (1979)
16. Inoue, M.: Some new surfaces of general type. Tokyo J. Math. 17(2), 295–319 (1994)
17. Mendes Lopes, M., Pardini, R., On the algebraic fundamental group of surfaces with K 2 ≤ 3χ . J. Diff.

Geom. 77(2), 189–199 (2007)
18. Mendes Lopes, M., Pardini, R.: Numerical Campedelli surfaces with fundamental group of order 9. J.

Eur. Math. Soc. (JEMS) 10(2), 457–476 (2008)
19. Mendes Lopes, M., Pardini, R., Reid, M.: Campedelli surfaces with fundamental group of order 8. Geom.

Dedicata 139, 49–55 (2009)
20. Reid, M.: π1 for surfaces with small K 2. Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen,

Copenhagen, 1978), Lecture Notes in Math., vol. 732, pp. 534–544. Springer, Berlin (1979)

123


	Burniat-type surfaces and a new family of surfaces   with pg = 0, K2=3
	Abstract
	1 Introduction
	2 Burniat surfaces as reconstructed by Inoue
	3 Intersection of diagonal quadrics and (mathbbZ/2 mathbbZn)-actions
	4 The fixed points of G0 on 
	4.1 Elements of G0 having a fixed locus of dimension 2 on E1 ×E2 ×E3
	4.2 Elements of G0 having a fixed locus of dimension 1 on E1 ×E2 ×E3
	4.3 Elements of G0 having isolated fixed points on E1 ×E2 ×E3
	4.4 Elements of G1 having isolated fixed points on E1 ×E2 ×E3

	5 4-Nodal Burniat type surfaces
	References


