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Abstract

Even surfaces of general type with K2 = 8, pg = 4 and q = 0 were found by Oliverio [35] as complete intersections of bidegree
(6,6) in a weighted projective space P(1,1,2,3,3).

In this article we prove that the moduli space of even surfaces of general type with K2 = 8, pg = 4 and q = 0 consists of two
35-dimensional irreducible components intersecting in a codimension one subset (the first of these components is the closure of
the open set considered by Oliverio). All the surfaces in the second component have a singular canonical model, hence we get a
new example of a generically nonreduced moduli space.

Our result gives a posteriori a complete description of the half-canonical rings of the above even surfaces. The method of proof
is, we believe, the most interesting part of the paper. After describing the graded ring of a cone we are able, combining the explicit
description of some subsets of the moduli space, some deformation theoretic arguments, and finally some local algebra arguments,
to describe the whole moduli space.

This is the first time that the classification of a class of surfaces is done using moduli theory: up to now first the surfaces were
classified, on the basis of some numerical inequalities, or other arguments, and later on the moduli spaces were investigated.
© 2013 Elsevier Masson SAS. All rights reserved.

Résumé

Oliverio [35] a construit des surfaces pairs de type général avec K2 = 8, pg = 4 et q = 0 comme intersections complètes de
bidegré (6,6) dans un espace projectif pondéré P(1,1,2,3,3).

Dans cet article, on montre que l’espace des modules des surfaces pairs de type général avec K2 = 8, pg = 4 et q = 0 se compose
de deux composantes irréductibles de dimension 35, qui se coupent dans un sous-ensemble de codimension 1.

Le premier de ces composants est la fermeture de l’ensemble ouvert considéré par Oliverio. Toutes les surfaces du deuxième
composant ont un modèle canonique singulier. Par conséquent, on obtient un nouvel exemple d’un espace de modules générique-
ment non réduit.

Notre résultat donne a posteriori une description complète des anneaux demi-canoniques des surfaces pairs au-dessus. Le
procédé de demonstration est, croyons-nous, la partie la plus intéressante de l’article. Après avoir décrit l’anneau gradué d’un
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cône, combinant la description explicite de certains sous-ensembles de l’espace des modules, quelques arguments de théorie de
déformation, et enfin quelques arguments d’algèbre locale, on peut décrire l’espace des modules complets.

C’est la première fois que la classification d’une classe de surfaces est effectuée à l’aide de la théorie des modules : jusqu’à
présent les surfaces ont été classées d’abord sur la base de certaines inégalités numériques, ou d’autres arguments, et les espaces
de modules ont été étudiés par la suite.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Algebraic surfaces with geometric genus pg = 4 have been a very natural object of study since Noether’s seminal
paper [34] in the 19-th century. Because their canonical map has image Σ1 which most of the times is a surface in the
projective 3-dimensional space P3, defined therefore by a single polynomial equation.

In the 20-th century new examples of such surfaces were found by several authors [31,21,20,29], and a substantial
part of Chapter VIII of Enriques’s book [20] is devoted to the discussion and the proposal of several constructions,
in the range 4 � K2 � 10. New examples were then found in [9] and [15] (see also [10]). Nowadays the investigation of
such surfaces is an interesting chapter of the theory of surfaces with small invariants, encompassing (easier) existence
questions and (harder) investigation of moduli spaces.

By the inequalities of Noether and Bogomolov–Miyaoka–Yau, minimal surfaces of general type with pg = 4 satisfy
4 � K2 � 45. Only recently the upper bound K2 = 45 was shown to be achieved [3], while the first historical examples
of surfaces which we mentioned above are surfaces with 4 � K2 � 7; by the work of Ciliberto and Catanese, [15]
and [12], existence is known for each 4 � K2 � 28.

Irregular surfaces with pg = 4 were later investigated in [14]: in this case K2 � 8 since, by [18], one has K2 � 2pg

for irregular surfaces1; while K2 � 12 if the canonical map has degree 1.
Surfaces with pg = 4 and K2 = 4 were classified by Noether and Enriques, but it took the work of Horikawa and

Bauer [26–28,2] to finish the classification of the surfaces with pg = 4 and 4 � K2 � 7 (necessarily regular). These
are ‘essentially’ classified, in the sense that the moduli space is shown to be a union of certain (explicitly described)
locally closed subsets: but there is missing complete knowledge of the incidence structure of these subsets of the
moduli space. We refer to the survey [6] for a good account of the range 4 � K2 � 7, and to [11] for a previous more
general survey (containing the construction of several new examples).

Minimal surfaces with K2 = 8, pg = 4, q = 0 have been the object of further work by several authors [15,16,35].
The surfaces constructed by Ciliberto have a birational canonical map, are not even, and have a trivial torsion group
H1(S,Z) (unlike the ones considered in [16]); the ones constructed by Oliverio are simply connected (see [19]), and
they are even (meaning that the canonical divisor is divisible by two: i.e., the second Stiefel Whitney class w2(S) = 0,
equivalently, the intersection form is even).

Therefore, for K2 = 8, pg = 4, q = 0 there are at least three different topological types [35, Remark 5.4], contrast-
ing the situation for (minimal) surfaces with pg = 4, K2 � 7 which, when they have the same K2, are homeomorphic
to each other. Recently Bauer and the third author [7] classified minimal surfaces with K2 = 8, pg = 4, q = 0 whose
canonical map is composed with an involution (while examples with canonical map of degree three are given in [32]).

Their work shows that the moduli space of minimal surfaces with K2 = 8, pg = 4, q = 0 has at least four irreducible
components: and a new fifth one is described in the present paper.

Therefore the classification of minimal surfaces with K2 = 8, pg = 4, q = 0 seems a very challenging problem,
yet not completely out of reach.

The present article provides a first step in this direction, classifying all the even surfaces and completely describing
the corresponding subset Mev

8,4,0 of the moduli space.

This is our main result: denote by Mev
8,4,0 the moduli space of even surfaces of general type with K2 = 8, pg = 4

and q = 0. We show that Mev
8,4,0, which a priori consists of several connected components of the whole moduli space

1 That the case K2 = 8, pg = 4 and q = 1 actually occurs is shown by the family of double covers of the product E × P1, where E is an elliptic
curve and the branch divisor has numerical type (4,6).
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M8,4,0, is indeed a single connected component of the moduli space M8,4,0. Oliverio [35] found out that, if |KS | is
base point free (this condition determines an open set of the moduli space) the half-canonical ring R(S,L) realizes the
canonical model X of the surface X as a (6,6) complete intersection in P(12,2,32). Since conversely such complete
intersections having at worst Du Val singularities (i.e., rational double points) yield such canonical models, one gets
as a result that this open set is an irreducible unirational open set of dimension 35 in the moduli space Mev

8,4,0, hence it
gives rise to an irreducible component which we denote by MF (here F stands for “free” canonical system). We treat
here the case where |KS | has base points and, completing Oliverio’s result, we obtain the following

Theorem 1.1. The moduli space Mev
8,4,0 consists of two 35-dimensional irreducible components MF and ME , such

that the general points of MF correspond to surfaces with base point free canonical systems, while all points of ME
correspond to surfaces whose canonical system has base points. Moreover MF and ME intersect in a codimension
one irreducible subset.

From the above theorem we derive a complete description of our surfaces in terms of explicit equations.

Corollary 1.2. The semicanonical rings of even surfaces with pg = 4, K2 = 8 admit three types of presentations:
the Oliverio presentation as complete intersections (see Theorem 3.4), the extrasymmetric presentation (see Proposi-
tion 5.8), and a special (M,V ) format presentation (see Proposition 5.14).

The subscript E in ME stands for ‘extrasymmetric’, since the general points of ME correspond to surfaces whose
half-canonical ring admits an ‘extrasymmetric’ presentation.

Let us also point out that we are describing the Gieseker moduli space, and that in fact all the surfaces in the
component ME have a node, hence the Kuranishi family for S is nonreduced at each point of this component.

Our proof starts with Reid’s method of infinitesimal extension of hyperplane sections (cf. [38]), which is the
algebraic counterpart (in terms of graded rings) of the inverse of the classical geometrical method of sweeping the
cone: taking the projective cone Cone(X) with vertex P over a projective variety, any hyperplane section of Cone(X)

not passing through P is isomorphic to X, and one can make it degenerate to a hyperplane section of the cone passing
through P , which is the cone Cone(H ∩ X) with vertex P over the hyperplane section of X, H ∩ X. Viewing the
process in the inverse way, one may see X as a deformation of Cone(H ∩ X) and indeed Schlessinger, Mumford and
Pinkham [39,33,36] set up the theory of deformations of varieties with a C∗ action to analyse this situation.

The advantage in the surface case is that the hyperplane section is a curve C and the graded ring of the cone over
C is much more tractable than in the higher dimensional case.

It is so once more in our special situation. In order to describe the graded ring R(S,L) associated to a half-canonical
divisor L, we first calculate (see Proposition 4.4), in the case where the canonical system has base points, the quotient
ring R associated to the restriction of R(S,L) to a smooth curve C in |L|. Then we would like to recover R(S,L)

as an extension ring, which of course can be viewed as a deformation of the cone CR associated to the graded ring R.
We can find some of these extension rings using two different “formats”, an old one and a new one; the old one

consists in writing the relations in R in terms of Pfaffians of certain extrasymmetric skew-symmetric matrices (see
Example 5.3), while the new one is more complicated (see Example 5.11). These formats produce in a natural way
two families of such surfaces embedded in a weighted projective space of dimension 6 (see Propositions 5.8 and 5.14)
via their half-canonical rings.

As written in the abstract, our method gives a posteriori only a complete description of the half-canonical rings
of the above surfaces (this was first achieved by the second author via heavy computer-aided calculations which are
impossible to be reproduced in a paper).

We then prove that these two families fill the moduli space via a crucial study of the local deformation space of the
cone CR , obtained by first studying the infinitesimal deformations of first and second order. Then, using some local
algebra arguments, we show that there cannot be higher order obstructions.

An interesting novel feature is that the deformation space has embedding codimension two and is not a local
complete intersection.
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2. Preliminaries

This section collects some notions and facts that will be used in the sequel.

2.1. Notation

The varieties that we consider in this paper are defined over the complex numbers C.
Throughout the article S shall be the minimal model of a surface of general type with K2

S = 8, pg(S) = 4 and
q(S) = 0, and we shall assume that S is even, which means that there exists a divisor class L such that 2L ≡ KS ,
≡ denoting, as classically, linear equivalence. The first simple observation is that, if S is even, then S is minimal,
since for an exceptional curve of the first kind E one would have −1 = E · KS = 2E · L, a contradiction.

Observe moreover that L is not a priori unique, since the class of L is determined up to addition of a 2-torsion
divisor class, and these form a finite group (only a posteriori we shall see that the class of L is unique, since all our
surfaces will be shown to be deformation equivalent to a weighted complete intersection, hence they are all simply
connected).

Hence we shall throughout consider a pair (S,L) as above, observing that deformations of the pair (S,L)

correspond to deformations of S up to an étale base change.
Given a projective algebraic variety Y and a line bundle L,

R(Y,L) :=
⊕
n�0

H 0(Y,nL)

is the graded ring of sections of the pair (X,L).
The canonical model of such a surface of general type S is the projective spectrum X := Proj(R(S,KS)) of the

canonical ring of S; X is also the projective spectrum = Proj(R(S,L)) of the semicanonical ring associated to the
class of L, and is the only birational model of S with ample canonical class and at most rational double points as
singularities. The above (graded) rings are all finitely generated C-algebras. Observe that the line bundle L descends
to a line bundle on X by the results of Artin in [1].

Observe that any deformation of S yields a family of relative canonical algebras and (up to étale base change)
a family of relative half-canonical algebras. In particular, by the semicontinuity theorem, a minimal system of
(homogeneous) generators for the semicanonical ring R(S,L) yields an embedding of X into a weighted projec-
tive space P(d1, d2, . . . , dh), and locally a deformation of S yields a family of projectively normal subschemes of
P(d1, d2, . . . , dh).

By abuse of notation, we denote sometimes an element of a polynomial ring and its image in some quotient ring
by the same symbol.

C[ε] := C[t]/(t2) is the ring of dual numbers, so that ε is meant to be a first order parameter, i.e., ε has degree 0
and ε2 = 0. Given a C-algebra R, R[ε] := R ⊗C C[ε].

Finally, let M = (mij ) be a 4 × 4 skew-symmetric matrix. Then recall that the Pfaffian of M is

pf(M) = m12m34 − m13m24 + m14m23.

2.2. Deformation of closed subschemes and graded rings

As we shall sometimes not only use the analytical theory of deformations, we observe the connection between
Hilbert schemes and deformation theory, which is central in our arguments.

Theorem 2.1 (Ideal–variety correspondence). There is a natural bijection between the set of closed subschemes of
a weighted projective space and the set of saturated homogeneous ideals of the (weighted) polynomial ring, which
associates any closed subscheme to its saturated homogeneous ideal.

Proof. For closed subschemes of usual projective space, see for example [24, Example II.5.10]; for the weighted case,
see [19, 3.1.2(iv)]. �
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Theorem 2.2. The deformation functor of closed subschemes in weighted projective space satisfies Schlessinger’s
conditions H0, Hε , H̄ , Hf , and hence is prorepresentable.

Proof. This is [40, Proposition 3.2.1]. �
Let X be a closed subscheme of a weighted projective space P. Let A = C[x1, . . . , xn] be the polynomial ring of P

and I ⊂ A the saturated homogeneous ideal of X.

Theorem 2.3. If depth A/I � 2, then the deformation theory of the embedded projective scheme X is the same as that
of the corresponding graded ring A/I .

Proof. For the case of usual projective space, we refer to [25, Proposition 8.8]; for the weighted case, one can adapt
the same proof as [25, Proposition 8.8]. �

Thus in good situations, in particular in ours, we can study the deformations of weighted projective schemes via
the deformations of their graded rings, indeed the parameter spaces we shall use will be locally dominating the Hilbert
scheme.

Theorem 2.4 (Hilbert scheme). There is a natural scheme parametrizing the set of closed subschemes of a fixed
weighted projective space having a given Hilbert polynomial.

Proof. This result is due to Grothendieck [22], and has been generalized in the multigraded case by [23]. �
The role of the Hilbert scheme becomes more apparent when we shall take the deformation theory of the cone

Cone(H ∩ X) over the hyperplane section of the canonical model X in its half-canonical embedding in a weighted
projective space.

Here we shall use the results of Schlessinger and Pinkham [39,36], in particular Pinkham’s result:

Theorem 2.5 (Hilbert scheme and deformations). The natural morphism of the Hilbert scheme to the Kuranishi space
of Cone(H ∩ X) is smooth.

It is important to remark that, whereas the Kuranishi family is versal at any point, it is only semi-universal at the
point corresponding to Cone(H ∩ X): this is due to the C∗ action which stabilizes the cone Cone(H ∩ X) but not its
small deformations.

Observe finally that the local structure of the Gieseker moduli space is the quotient of the Kuranishi space of X by
the finite group Aut(X) (see [13] as a general reference), hence, in order to study the irreducible components of the
moduli space, openness questions are reduced to the study of the Kuranishi space, in turn this is locally dominated by
the Hilbert scheme (or any parameter space dominating the latter).

3. Oliverio’s surfaces

Oliverio [35] studied the even surfaces of general type with K2
S = 8, pg = 4 and q = 0 whose canonical system is

base point free, showing that their canonical models are the general complete intersections of bidegree (6,6) in the
weighted projective space P(12,2,32).

Let S be an even surface of general type with K2
S = 8, pg = 4 and q = 0. Let L be a half-canonical divisor, that is,

2L = KS . We recall one more preliminary result.

Lemma 3.1.

(i) For any k ∈ Z, h1(S, kL) = 0.
(ii) h0(S,L) = 2, h0(S,2L) = 4, h0(S, kL) = k2 − 2k + 5 for k � 3.
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Proof. This is the content of Lemma 2.1 and Lemma 2.2 of [35]. �
Remark 3.2. Our standard notation shall be that x1, x2 be a basis of H 0(S,L), while y completes w0 := x1x2,
w1 := x2

1 , w2 := x2
2 to a basis of H 0(S,2L), z1, z2 complete

x3
1 , x2

1x2, x1x
2
2 , x3

2 , yx1, yx2

to a basis of H 0(S,3L).
Observe that, since the canonical map of S cannot be composed with a pencil (see [41, Corollary 1 of Theorem 5.1]

or [37, Theorem 3.4] for the case of genus 2 fibrations, [8] for the higher genus case), this implies that φK(S) is a
quadric cone {w | w1w2 = w2

0}.

As a converse to the above remark, we show a result of independent interest:

Proposition 3.3. Let S be a minimal surface with K2
S = 8, pg = 4 and q = 0 and assume that the image of the

canonical map φK(S) is a quadric cone. Then, denoting by L the strict transform (closure of the pull back of the
Cartier locus) of a line on the quadric cone, we have KS = 2L + F where

1. either F = 0 and S is even, or
2. L2 = 1, KS · L = 3, F · L = 1, |L| is a pencil of curves of genus 3 having a simple base point, and the canonical

map has degree 3, or
3. L2 = 0, KS ·L = F ·L = 2, |L| is a base point free pencil of curves of genus g = 2, and the degree of φK is equal

to 2, or
4. L2 = 0, KS · L = F · L = 4, hence |L| is a base point free pencil of curves of genus g = 3 and the degree of φK

is equal to 4.

Proof. As usual write KS = 2L + F , and observe that KS and L are nef divisors. Then

8 = K2
S = 2LKS + FKS = 4L2 + 2LF + FKS � 4L2 + 2LF � 4L2.

The above shows that L2 ∈ {0,1,2} and that FKS is even.
If L2 = 2, then FKS = 2LF = F 2 = 0: hence first F is a sum of (−2) curves, and then we get F = 0 since the

intersection form is strictly negative definite on the set of divisors which are sums of (−2) curves.
If L2 = 1, then KSL is odd, at least 3, but KSL = 2 + LF , whence by the above inequality LF = 1 and KSF = 2,

F 2 = 0. Hence |L| is a pencil of curves of genus 3, and the degree of φK is then the intersection number KSL = 3.
If instead L2 = 0, then LKS = LF is even and � 2, so there are only the possibilities LKS = LF = 2, or LKS =

LF = 4. In the latter case FKS = 0, thus F is a sum of (−2) curves, in the former we have 4 = FKS = 4 +F 2, hence
F 2 = 0, FKS = 4. Again the degree of φK equals the intersection number KSL. �

Observe that examples of all the above cases are known (see [32,7]).
We turn now to a slight improvement of Oliverio’s result concerning the first case of Proposition 3.3.

Theorem 3.4. The canonical models X of even surfaces S of general type with K2
S = 8, pg = 4 and q = 0 whose

canonical system is base point free are exactly the complete intersections of type (6,6) in the weighted projective
space P(12,2,32) with at worst rational double points as singularities. In particular, there are coordinates x1, x2, y,
z1, z2 such that X is defined by equations of the type

f = z2
1 + z2A(x1, x2, y) + F(x1, x2, y) = 0,

f ′ = z2
2 + z1A

′(x1, x2, y) + F ′(x1, x2, y) = 0. (**)

These surfaces form an open set in an irreducible unirational component of dimension 35 of the moduli space of
surfaces of general type.
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Proof. Oliverio [35, Theorem 5.2] proves that minimal even surfaces of general type with K2
S = 8, pg = 4 and q = 0

whose canonical system is base point free have a canonical model X which is a complete intersection of type (6,6) in
the weighted projective space P(12,2,32) (hence X has at worse rational double points as singularities).

Conversely, if X = {f = f ′ = 0} is a complete intersection of two sextics in P(12,2,32) with only rational double
points as singularities, then KX =OX(2), K2

X = 8, pg = 4 and q = 0 and the only nontrivial thing to show is that the
Weil divisor L such that 2L ≡ KX is indeed a Cartier divisor (then the minimal model S is an even surface) and that
the induced linear system is base point free.

To this purpose it suffices to show that |KX| = |2L| and |3L| are base point free: because thenOX(2) andOX(3) are
invertible sheaves, hence also OX(1) is invertible. Notice the surjection H 0(OP(2)) → H 0(OX(KX)) which implies
that the base locus of |KX| is the locus of zeros of all degree two monomials.

Choose weighted homogeneous coordinates x1, x2, y, z1, z2 in P := P(12,2,32) and write

f = q(z1, z2) + g, f ′ = q ′(z1, z2) + g′

with g,g′ ∈ (x1, x2, y) and q , q ′ quadratic forms in z1, z2. Assume by contradiction that the base locus of |KX| is not
empty, i.e., that X ∩ {x1 = x2 = y = 0} 
= ∅. Then q and q ′ have a common factor, say z1, and the canonical system
of the surface has a base point at Q = [0,0,0,0,1].

Note that Q is a singular point of P(12,2,32), a quotient singularity of type 1
3 (1,1,2,3) with Zariski tangent space

of dimension 7, whose basis is given by the monomials xi
1x

3−i
2 , xiy, z1. Since OP(12,2,32)(6) is Cartier, the Zariski

tangent space of X at Q has then dimension at least 7 − 2 = 5, contradicting the assumption on the singularities of X

(they have Zariski tangent dimension at most 3).
Similarly, if |3L| were not base point free, then X would contain the point Q = [0,0,1,0,0], a quotient singularity

of type 1
2 (1,1,1,1) with Zariski tangent space of dimension 10: this again contradicts the fact that the singularities of

X have Zariski tangent dimension at most 3.
Therefore the quadratic forms q , q ′ have no common factor, and we can change coordinates so that the equations

of X take the desired form (**), where however A(0,0,1) 
= 0 or A′(0,0,1) 
= 0:

f = z2
1 + z2A(x1, x2, y) + F(x1, x2, y) = 0, f ′ = z2

2 + z1A
′(x1, x2, y) + F ′(x1, x2, y) = 0.

These equations naturally exhibit X as a 4-to-1 cover of the quadric cone, and show that our surfaces form an open
set in an irreducible unirational component of dimension 35 of the moduli space (since we have 6 affine parameters
for A, A′, 15 projective parameters for F , F ′ and we divide out by a group of dimension 7, the group of automorphisms
of the quadric cone P(1,1,2); at any rate, the dimension follows also from [35, Corollary 5.3]). �
4. The hyperplane section C ∈ |L|

Let S be an even surface of general type with K2
S = 8, pg = 4 and q = 0 and let L as above be a half-canonical

divisor. We view the half-canonical curves as hyperplane sections of a suitable embedding of the canonical model into
a weighted projective space, and we describe the associated graded ring.

Lemma 4.1. If |KS | is not base point free, then

(i) |KS | has two base points Q, Q′ with Q′ infinitely near to Q;
(ii) |L| has two base points Q, Q′′ with Q′′ infinitely near to Q and Q′′ 
= Q′;

(iii) a general curve in |L| is smooth of genus 4.

Proof. These results are in Lemma 3.1, Lemma 3.3 and Theorem 4.1 of [35]. �
Let us fix a smooth curve C ∈ |L|. Then Q ∈ C and OC(L) = OC(2Q) by Lemma 4.1. Let x1 be a section in

H 0(S,L) with div(x1) = C. Using the long exact cohomology sequence associated to the exact sequence

0 →OS

(
(k − 1)L

) x1−→OS(kL) →OC(2kQ) → 0,

we have, by Lemma 3.1(i), the exact sequence
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0 → H 0(S, (k − 1)L
) x1−→ H 0(S, kL) → H 0(C,2kQ) → 0 (1)

and it follows that

R(S,L)/(x1) = R(C,2Q) = R(C,Q)(2) ⊂ R(C,Q),

where R(C,Q)(2) := ⊕
k R(C,Q)2k is the even part of R(C,Q). In other words, ProjR(C,2Q) turns out to be a

weighted hyperplane section of ProjR(S,L).

Lemma 4.2.

R(C,Q) = C[ξ, η, ζ ]/(p),

where deg(ξ, η, ζ ) = (1,3,5) and p is a weighted polynomial of degree 15. Moreover one can, up to automorphisms
of P(1,3,5), assume that

p = ζ 3 − η5 + ξp′,

where p′ is some suitable weighted polynomial of degree 14.

Proof. We first calculate h0(C,mQ) for all m � 0. By the exact sequence (1), we have

h0(C,2kQ) = h0(S, kL) − h0(S, (k − 1)L
)
,

for any k � 0. Together with Lemma 3.1, this yields in particular

h0(C,OC) = h0(C,2Q) = 1, h0(C,4Q) = 2, h0(C,6Q) = 4,

which in turns implies h0(C,Q) = 1, h0(C,5Q) = 3.
Since Q is a base point of |KS |, it is also a base point of |4Q| = |KS |C | = |KS ||C , which implies that

h0(C,3Q) = h0(C,4Q) = 2.

For m � 7, we have h0(C,mQ) = m − 3 by the Riemann–Roch theorem.
Now take a nonzero section ξ ∈ H 0(C,Q). Then

H 0(C,Q) = 〈ξ 〉, H 0(C,2Q) = 〈
ξ2〉

and ξ has only a simple zero at Q. There are sections η ∈ H 0(C,3Q) \ ξH 0(C,2Q) and ζ ∈ H 0(C,5Q) \
ξH 0(C,4Q).

Since both η and ζ do not vanish at Q, there exist nonzero a, b ∈ C such that aη5 − bζ 3 vanishes at Q. Therefore
there is a polynomial p′ in ξ , η, ζ of degree 14 such that

aη5 − bζ 3 = ξp′.

Up to rescaling the generators, we have p = η5 − ζ 3 + ξp′ = 0.
Now, ξ , η, ζ give a morphism into P(1,3,5). Therefore the image is an irreducible curve and there are no other

relations than p holding among the three elements ξ , η, ζ .
In other words we get by pull back an injective ring homomorphism from C[ξ, η, ζ ]/(p) to R(C,Q). Since, by the

first part of our proof, both rings have the same Hilbert function, they are isomorphic. �
Remark 4.3. Conversely a general curve C = {p = 0} of degree 15 in P(1,3,5) is smooth of genus 1 + 15(15−9)

2·15 = 4
and R(C,Q) is naturally isomorphic to C[ξ, η, ζ ]/p, where {Q} := C ∩ (ξ = 0) is a Weierstraß point whose semi-
group is generated by 3 and 5; the proof of Lemma 4.2 shows that every smooth curve of genus 4 with a Weierstraß
point of this form arises in this way.

The smooth curves of degree 15 in P(1,3,5) form a linear system of dimension 12. Since dim Aut P(1,3,5) = 5,
they form a subvariety of dimension 7 in the moduli space of curves of genus 4; note that it is a divisor in the locus of
the curves whose canonical image is contained in a quadric cone, which are those possessing only one g1

3 .
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Proposition 4.4.

R(C,2Q) = C[x2, y, z1, z2, u, v]/I,
where deg(x2, y, z1, z2, u, v) = (1,2,3,3,4,5), and I is generated by the equations

f1 = x2z2 − y2 deg 4,

f2 = x2u − yz1 deg 5,

f3 = yu − z1z2 deg 6,

f4 = x2v − z2
1 deg 6,

f5 = yv − z1u deg 7,

f6 = z2v − u2 deg 8,

f7 = z1A − yB + x2D deg 8,

f8 = uA − z2B + yD deg 9,

f9 = vA − uB + z1D deg 10.

Here A, B , D are general polynomials of respective degrees 5, 6 and 7. Up to automorphisms, one can assume A = v,
B = z2

2.

Proof. We have shown that the graded ring R(C,Q) corresponds to a projectively normal embedding in the weighted
projective plane P(1,3,5). Therefore the subring R(C,2Q) is the even degree part of R(C,Q), a quotient of the
graded ring of the Veronese embedding of the plane P(1,3,5).

In other words, since the three generators ξ , η, ζ of R(C,Q) have odd degrees, the even part R(C,2Q) is generated
by the six products

x2 := ξ2, y := ξη, z1 := ξζ,

z2 := η2, u := ηζ, v := ζ 2.

These in fact define a closed embedding ϕ : P(1,3,5) → P(1,2,32,4,5). Generators of the ideal of ϕ(P(1,3,5)) are
the 2 × 2 minors of the 3 × 3 symmetric matrix (

x2 y z1
y z2 u

z1 u v

)
.

Note that C is the curve defined by p = 0 in P(1,3,5). So the ideal I of ϕ(C) is generated by the defining equations
of ϕ(P(1,3,5)) plus ξp, ηp, ζp.

In view of Lemma 4.2, we can write these three homogeneous polynomials in terms of x2, y, z1, z2, u, v:

ξp15 = z1v − yz2
2 + x2D,

ηp15 = uv − z3
2 + yD,

ζp15 = v2 − z2
2u + z1D. �

Note that R(C,2Q) is Cohen–Macaulay. In fact for any smooth projective curve C and an ample line bundle H ,
the graded ring R(C,H) is Cohen–Macaulay (see [25, Proposition 8.6] and its proof).

5. Two families of surfaces

Recall that R := R(S,L)/(x1) = R(C,2Q), where x1 is an element of H 0(S,L) defining the curve C. The hyper-
plane section principle [38, Proposition 1.2] gives the following, which is the explicit counterpart of the existence of
a flat 1-dimensional family induced by the function x1:
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(i) R(S,L) needs exactly one more generator, namely x1, and the other generators are lifted from R;
(ii) the relations F1, . . . ,F9 among the generators of R(S,L) are liftings of f1, . . . , f9;

(iii) moreover the first syzygies among the fi are lifted to those among the Fi .

Point (iii) is the tricky part of the principle, and is where “formats” are useful in order to write explicitly a flat
family having as basis a locally closed set of an affine space. A format is simply a way to write an ideal in such a way
that the obvious first syzygies are all the first syzygies (in other words, one produces automatically a flat family).

We will describe two formats. Each of them will produce a family of minimal surfaces of general type with pg = 4,
q = 0, K2 = 8 and even canonical divisor.

5.1. The extrasymmetric format

This format was first introduced by M. Reid and D. Dicks (see [38], and [4,5] for further applications and a
discussion).

Let us explain now what is an extrasymmetric format: we consider two vector spaces V , W of dimension 3, and
the Pfaffian P locus in

Λ2(V ⊕ W),

corresponding to the cone over the Grassmann variety G(1,5).
P has codimension 6 and is arithmetically Gorenstein.
Even if the Pfaffian P locus in Λ2(V ⊕W) has codimension 6, we obtain a codimension 4 locus if we consider the

tensors of the form: (
B D = CA

−tD −tABA

)
,

where C is symmetric (and B is skew-symmetric).
Then for these triples of matrices (A,B,C) the Pfaffian locus reduces codimension to 4.

Remark 5.1. In fact, for A invertible, w.l.o.g. we assume A = I , and the matrix is equivalent to(
0 C + B

−C + B 0

)

and we find the geometry of P2 × P2 ⊂ P8.

More precisely, we consider a 6 × 6 skew-symmetric extrasymmetric matrix

Ñ =

⎛
⎜⎜⎜⎜⎜⎝

n1 n2 n3 n4 n5
n6 n7 n8 n4

n9 an7 an3
bn6 bn2

abn1

⎞
⎟⎟⎟⎟⎟⎠

and let IE ⊂ ÃE := C[n1, n2, . . . , n9, a, b] be the ideal generated by the 4 × 4 Pfaffians of Ñ . A minimal system of
generators of IE is given by 9 of these Pfaffians, the last 6 being just repetitions of simple multiples of them. These 9
generators are yoked by exactly 16 independent syzygies, which we can explicitly compute (see also [38, 5.5]).

Definition 5.2. Let A be any weighted polynomial ring and consider a ring homomorphism ϕ : ÃE → A; then the ideal
I generated by ϕ(IE ) is generated by the 4 × 4 Pfaffians of the 6 × 6 skew-symmetric matrix ϕ(Ñ), obtained by Ñ

by substituting to each entry its image. We will say that ϕ(Ñ) is an extrasymmetric format for the quotient ring A/I .
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Example 5.3. Computing the 4 × 4 Pfaffians of the matrix

N =

⎛
⎜⎜⎜⎜⎜⎝

A B z1 y x2
D u z2 y

v u z1
0 0

0

⎞
⎟⎟⎟⎟⎟⎠ ,

the reader can check that it is an extrasymmetric format for R. Here A = C[x2, y, z1, z2, u, v] with the grading given
in Proposition 4.4.

Let us consider, in Example 5.3, ÃE graded by the grading making ϕ a graded homomorphism. Since ϕ is surjective,
it yields an isomorphism of graded rings A ∼= ÃE/kerϕ and

kerϕ = (
a − 1, b, n1 − Ã(ni), n2 − B̃(ni), n6 − D̃(ni)

)
,

where Ã, B̃ , D̃ are obtained by A, B , D replacing the variables x2, y, z1, z2, u, v by n5, n4, n3, n8, n7, n9 respectively.
Consider R̃ = ÃE/IE , and write f̃1, . . . , f̃9 for the nine Pfaffians of Ñ generating IE . Here we can arrange the

indices so that ϕ(f̃i) = fi for 1 � i � 9. Note that R = R̃ ⊗ÃE A is such that Spec(R) a codimension five complete

intersection in Spec(R̃).

Lemma 5.4. TorÃE
1 (A, R̃) = 0.

Proof. This follows since A ∼= ÃE/kerϕ and kerϕ is generated by a regular sequence, see [30]. �
Corollary 5.5. The first syzygy module of R is a reduction of the one of R̃.

Proof. Let L̃• → R̃ → 0 be a free resolution of R̃ over ÃE . By Lemma 5.4, A ⊗ÃE L̃• → A ⊗ÃE R̃ → 0 is exact at

A ⊗ÃE L̃1, which implies the corollary. �
Therefore, to calculate the syzygy module of R, it suffices to work out that of R̃.

Corollary 5.6. The syzygies

σ1: −z1f1 + yf2 − x2f3 = 0 deg 7,

σ2: −uf1 + z2f2 − yf3 = 0 deg 8,

σ3: z1f2 − yf4 + x2f5 = 0 deg 8,

σ4: vf1 + z1f3 − z2f4 + yf5 = 0 deg 9,

σ5: vf1 − uf2 + yf5 − x2f6 = 0 deg 9,

σ6: vf2 − uf4 + z1f5 = 0 deg 10,

σ7: −uf3 + z2f5 − yf6 = 0 deg 10,

σ8: −vf3 + uf5 − z1f6 = 0 deg 11,

σ9: Bf1 − Af2 − yf7 + x2f8 = 0 deg 10,

σ10: −Bf2 + Af4 + z1f7 − x2f9 = 0 deg 11,

σ11: Df1 − Af3 − z2f7 + yf8 = 0 deg 11,

σ12: Bf3 − Af5 − z1f8 + yf9 = 0 deg 12,

σ13: −Df2 + Af5 + uf7 − yf9 = 0 deg 12,

σ14: Df3 − Af6 − uf8 + z2f9 = 0 deg 13,
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σ15: −Df4 + Bf5 + vf7 − z1f9 = 0 deg 13,

σ16: Df5 − Bf6 − vf8 + uf9 = 0 deg 14

generate all the syzygies between f1, . . . , f9.

Proof. This follows by Corollary 5.6 and by the computation of the relations among the Pfaffians of Ñ done
in [38, 5.5]. �

This is useful because we can then easily construct flat deformations of this ring. Indeed, if we lift the matrix to a
bigger ring B, we will get automatically a new ideal in B generated by lifts of I , and also the first syzygies of R will
automatically lift, yielding flatness. More formally

Corollary 5.7. Consider the map ϕ: AE → A in Example 5.3, a surjective ring homomorphism π : B → A, and a ring
homomorphism ψ : AE → B such that ϕ = π ◦ ψ (i.e. “ψ lifts ϕ”).

Let F1, . . . ,F9 be the nine Pfaffians of Ñ such that π(Fi) = fi . Then every relation among the fi lifts to a relation
among the Fi .

Proof. Each relation σj is obtained by applying ϕ to a relation σ̃j among the f̃j . Applying ψ to the same relations
will give the required lifts. �

By the hyperplane section principle, we can use the above to construct a family of surfaces.

Proposition 5.8. Consider the extrasymmetric matrix

N =

⎛
⎜⎜⎜⎜⎜⎝

A B z1 y x2
D u z2 y

v u z1
0 0

0

⎞
⎟⎟⎟⎟⎟⎠ ,

where A, B, D are weighted polynomials of respective degrees 5, 6 and 7 in the graded polynomial ring
C[x1, x2, y, z1, z2, u, v] with weights (1,1,2,3,3,4,5), and let X ⊂ P(12,2,32,4,5) be given by the vanishing of
the 4 × 4 Pfaffians of N .

Then, for general choice of A, B, D, X is a surface with at worse rational double points as singularities. In this
case K2

X = 8, pg(X) = 4, q = 0, KX =OX(2) and |KX| is not base point free. We obtain in this way a 35-dimensional
unirational family ME in the moduli space of surfaces of general type.

Proof. Varying A, B and D we let X move in a fixed threefold, the cone over the weighted Veronese surface
(its ideal is generated by the 2 × 2 minors of the 3 × 3 submatrix on the top-right corner of N ) which has a single
not quasismooth point, with coordinates [1,0,0,0,0,0,0]. The same point is also the only base point of the linear
system. By Bertini’s theorem, the general surface X is nonsingular away from that point. If the coefficient of x7

1 in D
does not vanish, then this point is a node of X.

By Corollary 5.7 and its proof there is a Gorenstein symmetric free resolution of the ideal of X which lifts a
resolution of the ideal of the curve C = {x1 = 0} ∩X in P(1,2,32,4,5): both are images by a suitable ring map of the
Gorenstein symmetric resolution of IE . Since KC = OC(3), then KX = OS(2), and it follows immediately that the
invariants are as stated.

We show that the canonical system of S has a base point. Indeed, in the 2-plane {x1 = x2 = y = z1 = 0} the
equations reduce to asking that the rank of the matrix(

z2 u A
u v B

)
is not 2. Such a determinantal condition defines a locus of codimension at most 2, and with nontrivial cohomology
class, hence not empty.
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To compute the dimension of the family, we note that, on X, z2 = y2

x2
, u = yz1

x2
, v = z2

1
x2

. Then, forgetting the

variables z2, u and v, we get a projection map π :X ��� P(12,2,3) which is birational onto its image, a surface Y of
degree 10 whose equation is general in the ideal(

y5, x2y
3, x2y

2z1, x2yz2
1, x2z

3
1, x

2
2y, x2

2z1, x
3
2

)
. (2)

These surfaces Y belong to a family depending on 47 free parameters, so Y = π(X) varies in a 46-dimensional family.
We have to subtract from this dimension the dimension of the subgroup of AutP(12,2,3) preserving the ideal (2).

Note that Y = π(X) has a point of multiplicity � 3 at the point p of coordinates [x1, x2, y, z1] = [1,0,0,0].
The subgroup of automorphisms of Aut P(12,2,3) preserving the ideal (2) is exactly, as one can verify, the isotropy

group of p, a group of dimension 11. Finally we obtain 46 − 11 = 35. �
5.2. The MV format

Consider a 5 × 5 skew-symmetric matrix M̃ and a vector Ṽ as follows

M̃ =

⎛
⎜⎜⎜⎝

m12 m13 m14 m15
m23 m24 m25

m34 m35
m45

⎞
⎟⎟⎟⎠ , Ṽ =

⎛
⎜⎜⎜⎝

v1
v2
v3
v4
v5

⎞
⎟⎟⎟⎠ ,

and let IV ⊂ ÃV := C[m12, . . . ,m45, v1, . . . , v5] be the ideal generated by the 4 × 4 Pfaffians of M̃ , and by the entries
of M̃Ṽ .

This gives 10 polynomials, which form a minimal system of generators of IV :

g1: −m23m45 + m24m35 − m34m25,

g2: m13m45 − m14m35 + m34m15,

g3: −m12m45 + m14m25 − m24m15,

g4: m12m35 − m13m25 + m23m15,

g5: −m12m34 + m13m24 − m23m14,

g6: m12v2 + m13v3 + m14v4 + m15v5,

g7: m12v1 − m23v3 − m24v4 − m25v5,

g8: m13v1 + m23v2 − m34v4 − m35v5,

g9: m14v1 + m24v2 + m34v3 − m45v5,

g10: m15v1 + m25v2 + m35v3 + m45v4

yoked (cf. [17, pages 20 and 21]) by 16 independent first syzygies (i.e., relations):

m12g2 + m13g3 + m14g4 + m15g5 = 0,

−m12g1 + m23g3 + m24g4 + m25g5 = 0,

−m13g1 − m23g2 + m34g4 + m35g5 = 0,

−m14g1 − m24g2 − m34g3 + m45g5 = 0,

−m15g1 − m25g2 − m35g3 − m45g4 = 0,

v5g4 − v4g5 − m23g6 + m13g7 − m12g8 = 0,

−v5g3 + v3g5 − m24g6 + m14g7 − m12g9 = 0,

−v5g2 + v2g5 + m34g6 − m14g8 + m13g9 = 0,

−v5g1 + v1g5 − m34g7 + m24g8 − m23g9 = 0,

v4g3 − v3g4 − m25g6 + m15g7 − m12g10 = 0,
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−v3g2 + v2g3 + m45g6 − m15g9 + m14g10 = 0,

v4g1 − v1g4 − m35g7 + m25g8 − m23g10 = 0,

−v3g1 + v1g3 − m45g7 + m25g9 − m24g10 = 0,

v2g1 + −v1g2 − m45g8 + m35g9 − m34g10 = 0,

v4g2 − v2g4 + m35g6 − m15g8 + m13g10 = 0,

v1g6 + v2g7 + v3g8 + v4g9 + v5g10 = 0.

Remark 5.9. In the previous cases we had a codimension 4 Gorenstein subscheme of a weighted projective space
defined by an ideal with 9 generators: the ideals I ⊂ A and IE ⊂ AE .

Here we need 10 generators. Moreover, the locus has codimension 5: indeed, the 5 Pfaffians describe a codimen-
sion 3 Gorenstein subscheme, and at the general point of it M̃ has rank 2, so the latter 5 polynomials give locally just
two conditions.

The important point for us is that the number of first syzygies is 16, as in the previous cases.

Definition 5.10. Let A be any weighted polynomial ring, consider a ring homomorphism ϕ: ÃV → A, and set
M := ϕ(M̃), V = ϕ(Ṽ ). Let I be the ideal generated by ϕ(IV ); I is generated by the 4 × 4 Pfaffians of M and
by MV = 0. In this situation we will say that (M,V ) is an MV format for the quotient ring A/I .

Example 5.11. We write an MV format for our ring R.
Again we choose the graded ring A = C[x2, y, z1, z2, u, v]. By Proposition 4.4 we can assume A = v. Then the

pair of matrices (M,V ), where M is antisymmetric and V is a vector, and with

M =

⎛
⎜⎜⎜⎝

v u z2 D

z1 y B

0 v

u

⎞
⎟⎟⎟⎠ , V =

⎛
⎜⎜⎜⎝

x2
−y

z1
0
0

⎞
⎟⎟⎟⎠

is an MV format for R.
Indeed if we compute the image of the 10 generators of IV we get exactly (up to a sign) the polynomials fi :

ϕ(g1) = f5, ϕ(g2) = −f6, ϕ(g3) = −f8, ϕ(g4) = f9, ϕ(g5) = f3, ϕ(g6) = −f5, ϕ(g7) = −f4, ϕ(g8) = −f2, ϕ(g9) =
−f1, ϕ(g10) = −f7. The polynomial which we obtain twice is f5, which is produced twice by M1, the first row of M :
−f5 equals both M1V (= ϕ(g6)) and the Pfaffian of M which ignores it (−ϕ(g1)).

Lemma 5.12. The map ϕ: ÃV → A given by Example 5.11 maps the 16 relations among the 10 generators of IV onto
a generating system of the relations between f1, . . . , f9.

Proof. This is a straightforward computation, comparing the images of these relations with the relations in
Corollary 5.6. �

In this case a general lift of ϕ will not produce a flat family, because the ideal of the general fibre will need
10 generators. Still, a useful weaker statement holds. It says that we obtain a flat family if we keep the equation saying
that the Pfaffian g1 obtained by deleting the first row and column of M equals the opposite of the product g6 := M1V .

Corollary 5.13. Consider the map ϕ: ÃV → A in Example 5.11, a surjective ring homomorphism π : B → A, and a
ring homomorphism ψ : AV → B such that ϕ = π ◦ ψ (i.e. “ψ lifts ϕ”). Assume moreover ψ(g6) = −ψ(g1), i.e. that
ψ(M̃1Ṽ ) equals the image by ψ of the Pfaffian obtained by deleting the first row and column of M̃ .

Then {ψ(gi)} has cardinality 9: denote its elements by ±F1, . . . ,±F9 so that π(Fi) = fi (so, e.g., F6 = −ϕ(g2)).
Then every relation among the fi lifts to a relation among the Fi .

Proof. φ maps the 16 generating relations among the gi to a set of generating relations among the fi ; ψ maps the
same relations to relations among their lifts, the Fi . Since a generating system of relations lift, every relation does. �
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This format produces naturally a family of surfaces.

Proposition 5.14. Consider, in the graded polynomial ring C[x1, x2, y, z1, z2, u, v] with weights (1,1,2,3,3,4,5),
a number c0 ∈ C, three general homogeneous polynomials D, B, and l of respective degrees 7, 6 and 1 of the form

l = c1x1 + c2x2,

B = vBv + uBu + z2Bz2 + z1Bz1 + yBy +Bx,

D = vDv + uDu + z2Dz2 + z1Dz1 + yDy +Dx.

Then consider the pair of matrices (M,V) (cf. Example 5.11) with

M=

⎛
⎜⎜⎜⎝

v u z2 D
z1 y B

l v + lBy − c0Dy

u − lBz1 + c0Dz1

⎞
⎟⎟⎟⎠ , V =

⎛
⎜⎜⎜⎝

x2
−y + lBv − c0Dv

z1 + lBu − c0Du

lBz2 − c0Dz2

c0

⎞
⎟⎟⎟⎠ .

Assume moreover that c0Dx = lBx .
Let X ⊂ P(12,2,32,4,5) be the zero locus of the ideal generated by the 4 × 4 Pfaffians of M and by the entries

of MV . We get in this way a reducible family of surfaces with reducible base T . The open subset {c0 
= 0} ⊂ T is
irreducible, as well as its closure T1.

Then, for a general choice of D, B, l and c0 in T1, X is a surface with at worse Du Val singularities (rational
double points). If X has Du Val singularities, then X is the canonical model of a surface of general type and, if S is
the minimal model of X, then K2

S = 8, pg(S) = 4, q = 0, KS =OS(2), and S is an even surface.
The case c0 
= 0 gives exactly all the surfaces with base point free canonical system, described in Theorem 3.4.

T1 gives a 35-dimensional irreducible locally closed set MF , in the moduli space of surfaces of general type, which
contains the set of Oliverio surfaces. Moreover MF ∩ ME is irreducible of dimension 34.

Remark 5.15. First of all, we may write the polynomials Bv, . . . uniquely if we require that Bx is a polynomial only
in the variables x1, x2, By is a polynomial only in the variables x1, x2, y, and so on, following the increasing weight
order x1, x2, y, z1, z2, u, v.

The parameter space T is reducible, since in fact the equation

c0Dx = lBx ⇔ c0Dx = (c1x1 + c2x2)Bx

is equivalent to requiring either that c0 
= 0 and then Dx = c−1
0 (c1x1 + c2x2)Bx , or that c0 = c1 = c2 = 0,

or c0 = Bx = 0.
The closure of the irreducible affine set T ∩ {c0 
= 0} shall be denoted by T1, while T2 := {c0 = c1 = c2 = 0},

T3 := {c0 = Bx = 0}.
On T2, Bx andDx are arbitrary, hence T2 ∩T1 is the subset where Bx dividesDx . Similarly, on T3, l = (c1x1 +c2x2),

Dx are arbitrary, hence T3 ∩ T1 is the subset where l = (c1x1 + c2x2) divides Dx . The intersection of the three
components T1 ∩ T2 ∩ T3 is easily seen to be equal to {c0 = c1 = c2 = Bx = 0}.

In the above theorem we consider only the first irreducible component T1, the closure of {c0 
= 0}. By the
forthcoming Theorem 6.6 all the other surfaces shall belong to MF ∪ ME .

Proof. One can verify that the assumption c0Dx = lBx boils down to the fact that the two equations produced by the
first row coincide (i.e., the Pfaffian of the minor of M where one erases the first row and column equals the first entry
of MV).

Then, by Corollary 5.13 we have a flat family with base T1, giving an irreducible locally closed set of the moduli
space, which we denote by MF .

We consider the subset MEF of the moduli space of surfaces of general type given by the image of {c0 = l = 0}∩T1.
We have that MEF ⊂ ME : to write a surface in MEF in the format of Proposition 5.8 it suffices to take A= v.
We deduce then the existence of a surface X with at most rational double points as singularities in MEF as in the

proof of Proposition 5.8. By flatness and Proposition 5.8, its minimal resolution has K2
S = 8, pg(S) = 4, q(S) = 0 and

KS is the pull back of KX =OX(2).
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We compute the dimension of MEF , forgetting the variables z2, u and v and taking the associated projection as in

the proof of Proposition 5.8, and then using z2 = y2

x2
, u = yz1

x2
, v = z2

1
x2

. The image of S is a surface Σ of degree 10
general in the ideal (

y5, x2y
3, x2y

2z1, x2yz2
1, x2z

3
1, x

2
2y2, x2yz1, x2z

2
1, x

2
2x6

1y, x3
2

)
.

Comparing with the ideal (2), we have only 46 parameters: the monomial we are missing is x2
2x5

1z1. Arguing as in
the proof of Proposition 5.8, dimMEF = 45 − 11 = 34 = dimME − 1.

When c0 
= 0, the two equations of smaller degree eliminate u and v, embedding the surface as a complete inter-
section of type (6,6) in P(12,2,32), so, by Theorem 3.4, the canonical system is base point free.

Conversely, all the isomorphism classes of canonical models of such complete intersection surfaces are here.
Indeed, choosing for simplicity c0 = c1 = 1, c2 = 0, Dx = x1Bx (to ensure that we are in T1) we get

u = −Dz1 + x1(−Du +Bz1) − yDv + x2
1Bu + x1yBv + x1z1 + x2z2 − y2,

v = Dy + x1Dz2 − x1By − x2
1Bz2 − z1Dv + x1z1Bv + x2u − yz

and X becomes the complete intersection in P(12,2,33) of the two sextics which are obtained eliminating u, v in the
sextics

yu − z1z2 − x1v,

B− yDz2 + x1yBz2 − z1Du + x1z1Bu − x2v + z2
1.

It follows that we get all pencils of sextics (with base locus a surface with at most rational double points of singular-
ities) containing a sextic in the ideal generated by x1, y and z1z2. On the other hand, if we cannot find such a sextic
in the pencil even after a projective coordinate change, then, arguing as in the proof of Theorem 3.4, the canonical
system has a base point, a contradiction.

Therefore we have shown that the surfaces Xt in the family MF admit a smooth deformation X0; X0 is an even
surface, because it is smooth and OX(KX0)

∼=OX0(2). Hence all the minimal models St of our canonical models Xt ,
being diffeomorphic to X0, are even surfaces.

By Theorem 3.4 the surfaces with base point free canonical system form a 35-dimensional irreducible open set of
the moduli space, so MF is an irreducible component of the moduli space, containing the set of Oliverio surfaces.

Finally, we have already proved that ME ∩MF contains the irreducible family MEF of dimension 34. On the other
hand, let X be a surface in MF which is also in ME . Then KX has base points, so c0 = 0. Moreover, the equation of
degree 4 must be of the form WZ − Y 2 for some forms W,Y,Z of respective degree 1,2 and 3: this forces c1 = 0, so
l = c2x2. A long but straightforward computation shows that we can make a coordinate change so that the generators
are still produced by matrices M and V as in the statement, but with l = 0. So X ∈ MEF . �
6. Deformations of the cone and the moduli space

Our next goal is to prove that ME and MF fill Mev
8,4,0. By Theorem 3.4 and Proposition 5.14 it suffices to restrict

our considerations to surfaces S in Mev
8,4,0 such that |KS | = |2L| is not base point free. It will be convenient to

consider only the canonical models X of such surfaces, observing that KX = 2L and R(X,L) is an extension ring
of degree one [38] of the ring R = R(C,2Q), where C is a general curve in the pencil |L| (this simply means that
R ∼= R(X,L)/(x1), where the coordinate x1 has degree 1, which is the algebraic counterpart of the geometric process
of taking a hyperplane section).

First of all, if no nonsingularity condition is set forth, a trivial extension ring of R ∼= A/(f1, . . . , f9), where A is
the polynomial ring C[x2, y, z1, z2, u, v], is given by the cone

CR := Proj
(
B/(f1, . . . , f9)

)
,

where B is the polynomial ring C[x1, x2, y, z1, z2, u, v] and deg(x1, x2, y, z1, z2, u, v) = (1,1,2,3,3,4,5).
Every extension ring of R can be viewed as a deformation of CR , since in both situations the issue is to lift the

same generators f1, . . . , f9 of the graded ideal and their first syzygies σ1, . . . , σ16.
Pay attention that the ideal J of CR is different from the one of R, since J is generated by f1, . . . , f9 in the bigger

polynomial ring B.
An explicit calculation of the infinitesimal deformations of CR occupies the main part of this section.
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6.1. First order deformations of CR

As usual, we begin by calculating the space T 1 of first order deformations: since we know that the Kuranishi family
is parametrized by a complex analytic subspace of T 1.

A first order deformation of CR (see for instance [39], Section 1) is an element of Hom(J,B/J ) and can be
therefore written in the following form:

F
(1)
i = fi + ε ·

∑
k�0

xk
1f ′

i,k, 1 � i � 9, (3)

where f ′
i,k ∈ A = C[x2, y, z1, z2, u, v] which is viewed as a subring of the polynomial ring B; so the F

(1)
i ’s are

elements in B[ε].
A standard observation is that each f ′

i,k can be viewed as an element of R which is a quotient of A. In fact,

supposing that F
(1)
i and G

(1)
i define two first order deformations of CR and that F

(1)
i − G

(1)
i is in ε · J for 1 � i � 9:

then they actually define the same first order deformation, since F
(1)
i ’s and the G

(1)
i ’s generate the same ideal of B[ε].

For 1 � j � 16, suppose the relations (first syzygies) σj are
∑

1�i�9 lij fi = 0 (see Corollary 5.6). Then the

relations between the F
(1)
i should be of the form∑

1�i�9

(lij + ε · mij )F
(1)
i = 0,

where mij is an element of B. The possibility of lifting the relations is equivalent to the condition that we get a
homomorphism of J into B/J and yields the exact restrictions on the f ′

i,k in (3).

Lemma 6.1. For the first order deformations, it suffices to lift the following five of the sixteen relations (first order
syzygies): σ1, σ3, σ5, σ9, σ10.

Proof. Indeed, we have the following equivalences (mod J ) between the first order syzygies

z1σ2 ≡ uσ1, yσ11 ≡ vσ2 + z2σ9,

yσ4 ≡ −z1σ2 + z2σ3, x2σ12 ≡ −(
z2

2σ1 + vσ3 + z1σ9 + yσ10
)
,

z1σ6 ≡ vσ3, z1σ13 ≡ vσ6 + uσ10,

x2σ8 ≡ vσ1 + z1σ5, z1σ14 ≡ vσ8 + uσ12,

vσ7 ≡ uσ8, z1σ15 ≡ z2
2σ6 + vσ10,

z1σ16 ≡ z2
2σ8 + vσ12.

Since the variables x2, . . . , v are not zero-divisors in CR , the syzygies σ1, σ3, σ5 imply σ2, σ4, σ6, σ7, σ8 mod J by
the first column, and σ1, . . . , σ10 imply the remaining ones σ11, . . . , σ16 by the second column. �

We can calculate the f ′
i,k separately, since they correspond to different degrees in x1. Denote by Vk the space of

first order deformations having degree k in x1, and by V ′
k the subspace of Vk induced by variations of the entries of

the matrix N (while preserving the extrasymmetric format) in Example 5.3. Due to the previous observations, we see
that the calculations of first order deformations essentially take place in the quotient ring B/J .

Proposition 6.2.

(i) Vk = V ′
k for k � 2, that is, every first order deformation of CR with degree 2 in x1 is obtained from the extra-

symmetric format.
(ii) dimV1/V ′

1 = dimV0/V ′
0 = 1, that is, in degrees 1 (resp. 0) in x1, the first order deformations that are induced by

the matrix format build a subspace of codimension 1.
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Proof. For every k � 0, let F
(1)
i = fi + εxk

1f ′
i,k , 1 � i � 9 be a first order deformation of CR , with degree k in x1.

We will compare V ′
k and Vk for each k � 0.

Note that deg(f1, . . . , f9) = (4,5,6,6,7,8,8,9,10) and degf ′
i,k = degfi − k. If k > 10, then f ′

i,k = 0 by degree
reason. If k = 10, then

f ′
1,10 = · · · = f ′

8,10 = 0.

By the relation σ10, we have

−z2
2f

′
2,10 + vf ′

4,10 + z1f
′
7,10 − x2f

′
9,10 = 0

and it follows that f ′
9,10 is also 0. A similar argument shows that, if k = 8 or 9, then f ′

i,k = 0 for 1 � i � 9. Therefore
Vk = 0 for k � 8 and also V ′

k = 0 a fortiori.
Next we show that Vk/V ′

k = 0 for every 2 � k � 7. Since the calculations are similar, we treat only the case when
k = 7 and leave the rest of the verifications to the reader.

Case k = 7: for degree reasons, one has f ′
1,7 = · · · = f ′

4,7 = 0. The syzygy σ3 implies that

z1f
′
2,7 − yf ′

4,7 + x2f
′
5,7 = 0

and it follows that f ′
5,7 = 0. In turn we have f ′

6,7 = 0 by σ5.
Then σ9 and σ10 yield

yf ′
7,7 = x2f

′
8,7, z1f

′
7,7 = x2f

′
9,7,

which implies that (f ′
7,7, f

′
8,7, f

′
9,7) = (cx2, cy, cz1) with c ∈ C, but this infinitesimal deformation is induced by

varying one entry of the 6 × 6 antisymmetric matrix N : D �→ D + εcx7
1 .

For (ii) (resp. (iii)), we will show that, up to a scalar, there is exactly one first order deformation with degree 1
(resp. 0) in x1 that cannot be induced by varying the entries of the matrix N .

Let us treat now the case k = 1: as before, we have that the degrees

deg
(
f ′

1,1, . . . , f
′
9,1

) = (3,4,5,5,6,7,7,8,9).

Using the infinitesimal matrix entry changes of the form z2 �→ z2 + εx1 · (· · ·) and x2 �→ x2 + εax1, we can assume
f ′

1,1 = c1z1. A similar change of the entry u allows us to assume that f ′
2,1 = c2u. Then the relation σ1 gives

−z1f
′
1,1 + yf ′

2,1 − x2f
′
3,1 = 0

and we see that f ′
2,1 = 0, f ′

3,1 = −c1v. Now making an appropriate change at v we can assume f ′
4,1 = c4,1yz2 + c4,2v.

We have the following equations by σ3, σ5:

−yf ′
4,1 + x2f

′
5,1 = 0, vf ′

1,1 + yf ′
5,1 − x2f

′
6,1 = 0

and it is not hard to see that

f ′
4,1 = −c1yz2, f ′

5,1 = −c1z
2
2, f ′

6,1 = −c1D.

Next, up to appropriate first order changes of v, z2
2, D in the top left corner of N by multiples of x1, we can assume

f ′
7,1 = c7z2u. The relations σ9, σ10 imply that

z2
2f

′
1,1 − yf ′

7,1 + x2f
′
8,1 = 0, vf ′

4,1 + z1f
′
7,1 − x2f

′
9,1 = 0

and we find that

c7 = c1, f ′
8,1 = f ′

9,1 = 0.

Summing up, we have the following first order deformation with degree 1 in x1:

f ′
1,1 = c1z1, f ′

3,1 = −c1v, f ′
4,1 = −c1yz2,

f ′
5,1 = −c1z

2
2, f ′

6,1 = −c1D, f ′
7,1 = c1z2u, f ′

2,1 = f ′
8,1 = f ′

9,1 = 0,

which is evidently not induced by the entry changes of N .
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Case k = 0: since the calculation is similar to the case k = 1, we leave it to the reader. The codimension of the
space of first order deformations in degree 0 that come by entry changes of the matrix N is one and a basis of V0/V ′

0
is represented by

f ′
1,0 = −c0u, f ′

4,0 = c0z2(d0,2z1 − z2), f ′
7,0 = −c0(Dyz1 + d0,2z2v),

f ′
2,0 = −c0v, f ′

5,0 = −c0
(
δx7

2 + Dyy + Dz1z1
)
, f ′

8,0 = c0
(
δx6

2z1 + Dz1v
)
,

f ′
3,0 = 0, f ′

6,0 = −c0
(
δx6

2y + Dyz2 + Dz1u
)
, f ′

9,0 = −c0Dyv,

where we have decomposed D as D = δx7
2 + Dyy + Dz1z1 + d0,2z2u. �

Recall that the subspace of elements of nonpositive grading in the space of first order deformations Hom(J,B/J )

yields the tangent space to the Hilbert scheme at the point corresponding to the cone CR .
However, to calculate the tangent space to the Kuranishi family, we must consider isomorphism classes of first

order deformations, i.e., we must divide by the subspace generated by the action of the Lie algebra of vector fields on
the weighted projective space, the tangent space to the group of projective automorphisms.

We divide therefore by these infinitesimal coordinate changes and, using Proposition 6.2, we can assume that any
first order deformation of the cone CR is equivalent to one of the form

F
(1)
i = fi + ε

(
f ′

i,0 + x1f
′
i,1 +

∑
k�0

xk
1f ′′

i,k

)
, 1 � i � 9, (4)

where f ′
i,0 (resp. f ′

i,1) is the deformation with degree 0 (resp. 1) in x1 in the proof of Proposition 6.2 and the

fi + ∑
k�0 xk

1f ′′
i,k (1 � i � 9) are the 4 × 4 Pfaffians of the following antisymmetric matrix:

N (1) =

⎛
⎜⎜⎜⎜⎜⎝

A(1) B(1) z1 y x2
D(1) u z2 y

v u z1
0 0

0

⎞
⎟⎟⎟⎟⎟⎠ , (5)

with

A(1) = v + εA′ = v + εa5x
5
1 ,

B(1) = z2
2 + εB′ = z2

2 + ε
(
b1x1v + b2x

2
1u + b3x

3
1z2 + b6x

6
1

)
,

D(1) = D + εD′ = δx7
2 + Dyy + Dz1z1 + d0,2z2u + ε

(
δ′x7

2 + D′
yy + D′

z1
z1 + d ′

0,2z2u
)

+ ε
(
d1,1x1yu + d1,2x1z

2
2 + d2,1x

2
1yz2 + d2,2x

2
1v + d3x

3
1u

+ d4,1x
4
1z1 + d4,2x

4
1z2 + d5x

5
1y + d7x

7
1

)
,

so that A(1) − v = εA′, B(1) − z2
2 = εB′, D(1) − D = εD′ are first order infinitesimals. Here we have thrown as many

terms as possible from A(1) and B(1) to D(1) using the equations f1 = · · · = f9 = 0.

Remark 6.3. If we use neither the coordinate changes nor the entry changes of N in the proof and keep track of the
free parameters, then we obtain all the dimensions:

• dimCVk = 0, for k � 8.
• dimC{V7, . . . , V0} = {1,2,4,6,11,16,23,30}.

Since Vk = HomR(J/J 2,R)−k [38, Theorem 1.10], these dimensions can be calculated in Macaulay 2 for an explicitly
assigned D as follows:
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--We count here the dimensions of first order deformations
--of the graded ring R=C[x_2,y,z_1,z_2,u,v]/(f_1,...,f_9) with D=0.

AA=QQ[x_2,y,z_1,z_2,u,v,Degrees=>{1,2,3,3,4,5}];
f_1=x_2*z_2-y^2;
f_2=x_2*u-y*z_1;
f_3=y*u-z_1*z_2;
f_4=x_2*v-z_1^2;
f_5=y*v-z_1*u;
f_6=z_2*v-u^2;
f_7=z_1*v-y*z_2^2;
f_8=u*v-z_2^3;
f_9=v^2-z_2^2*u;
I=ideal(f_1,f_2,f_3,f_4,f_5,f_6,f_7,f_8,f_9);
--the ideal of R;
I’=I/I^2;R=AA/I;
H=Hom(I’,R);h=hilbertSeries (H,Order => 1)
--h is the Hilbert series of Hom_R(I/I^2,R) up to degree 0;
--the coefficients of h are exactly the dimensions of V_k, 0<=k<=7.

6.2. Lifting to higher orders

We shall now try to lift the first order deformations obtained in Section 6.1 to higher order. We shall do this in
several steps, first of all we shall calculate the tangent cone to the base B of the Kuranishi family (equivalently, to the
Hilbert scheme).

We shall in this way obtain some quadratic equations which a posteriori will be shown to yield the equations
defining B; but since we do not want to use computer assisted calculations, we shall proceed in steps, first showing
that these equations define the tangent cone, then that these equations define B after a possible coordinate change, and
only in the proof of the main theorem we shall see that these equations define B in the initially chosen coordinates.

Proposition 6.4. If a first order deformation of CR as defined in (4) lifts to a genuine deformation, then

c0a5 = c1a5 = c0d7 − c1b6 ≡ 0
(
mod M3),

M being the maximal ideal of the origin in the vector space of first order deformations.

Proof. Starting with F
(1)
i (1 � i � 9), we can write a one parameter family of deformations of order n as

F
(n)
i = fi + tf

(1)
i + · · · + tnf

(n)
i , 1 � i � 9,

where f
(1)
i = f ′

i,0 + x1f
′
i,1 +∑

k�0 xk
1f ′′

i,k is the part defining F
(1)
i in (4) and t is an infinitesimal parameter of order n

(i.e. tn+1 = 0). Therefore the F
(n)
i are elements in B[t]/(tn+1). For m � n, there is a natural surjection of rings

B[t]/(tn+1) → B[t]/(tm+1),
and we denote by F

(m)
i the image of F

(n)
i in B[t]/(tm+1). The first syzygies σ1, . . . , σ16 between the fi should lift to

those between the F
(m)
i for any m � n, so that the F

(m)
i define a deformation of CR of order m.

The relation σ1 between fi lifts to the second order as

−z1F
(2)
1 + yF

(2)
2 − x2F

(2)
3 = t

(
c1x1F

(2)
4 − c0F

(2)
5

) − t2c2
0(D − d0,2z2u) + t2c2

1x
2
1yz2

− t2c0c1d0,2x1z1z2 + t2(−z1f
(2)
1 + yf

(2)
2 + x2f

(2)
3

)
and from this we see that f

(2)
2 does not contain x5

1 .
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The first syzygy σ3 lifts as

z1F
(2)
2 − yF

(2)
4 + x2F

(2)
5 = t

(
c0

(
d0,2z2F

(2)
2 − F

(2)
7

) − c1x1z2F
(2)
1

)
+ t2(c2

1x
2
1z1z2 − c2

0Dyz1 + c0
(
z1A′ − yB′ + x2D′))

+ t2(z1f
(2)
2 − yf

(2)
4 + x2f

(2)
5

)
.

Note that t2c0z1A′ contains t2c0a5x
5
1z1 and t2c0x2D′ contains t2c0d7x

7
1x2 (cf. (5)). Since t2c0a5x

5
1z1 could only

be cancelled by t2z1f
(2)
2 , but unfortunately f

(2)
2 does not contain x5

1 , c0a5 must be 0. Besides t2c0d7x
7
1x2 can only be

absorbed into t2x2f
(2)
5 , so the coefficient of x7

1 in f
(2)
5 is −c0d7.

The relation σ5 gives

vF
(2)
1 − uF

(2)
2 + yF

(2)
5 − x2F

(2)
6 = t

(
c1x1F

(2)
7 + c0

(
DyF

(2)
1 + Dz1F

(2)
2

))
+ t2(c2

0(uDy + vDz1) + c0c1d0,2x1z2v + c2
1x

2
1z2u

)
− t2c1x1

(
z1A′ − yB′ + x2D′)

+ t2(vf (2)
1 − uf

(2)
2 + yf

(2)
5 − x2f

(2)
6

)
.

The term t2c1a5x
6
1z1 in t2c1x1z1A′ cannot be absorbed in any of t2f

(2)
i , i = 1,2,5,6, hence c1a5 = 0. On the

other hand the term t2c1b6x
7
1y in t2c1x1yB′ can only be absorbed into t2yf

(2)
5 , so the coefficient of x7

1 in f
(2)
5 is

−c1b6. Comparing with the coefficient of x7
1 in f

(2)
5 determined by σ3 above, we obtain c0d7 = c1b6 = 0. Summing

up, we have the following restrictions on the coefficients:

c0a5 = 0, c1a5 = 0, c0d7 = c1b6. �
For the reader’s benefit, we observe that the above equations describe the algebraic set

{a5 = c0d7 − c1b6 = 0} ∪ {c0 = c1 = 0},
which is not a complete intersection since it has codimension two, while the space of quadrics containing it has
dimension three.

6.3. The moduli space

Let’s come back to our original problem about the moduli space of even surfaces with K2 = 8, pg = 4, q = 0.
In the next lemma we are essentially continuing with the previous calculations, except that we set for convenience

a := a5, d := d7, b := b6.

Our purpose is to show that our previous equations, which were among the equations defining the tangent cone to
the base of the Kuranishi family, are indeed the equations of the base of the Kuranishi family.

Lemma 6.5. Set

f0 := c0a, f1 := c1a, g := c0d − c1b.

Let P be the polynomial ring C[a, b, c0, c1, d,u1, . . . , um] and consider an ideal J ⊂ P such that J contains
polynomials F0,F1,G such that

F0 ≡ f0
(
mod M3), F1 ≡ f1

(
mod M3), G ≡ g

(
mod M3),

M being the maximal ideal of the origin.
Let W the subscheme associated to J , and assume that W contains two distinct irreducible components of

codimension 2. Then, up to an analytic change of coordinates, we may assume that

(∗∗) J = (f0, f1, g), W = W1 ∪ W2, W1 = V (c0, c1), W2 = V (a,g).

In particular, W is schematically the union of two irreducible components of codimension 2 which are complete
intersections.
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Proof. We divide the proof in several steps.
Step 1. Observe that W is a subscheme of V (I), where I is the ideal I := (F0,F1,G).
W.L.O.G. we may replace J by I . In fact, once the final assertion (∗∗) is proven for I , W is a subscheme of

V (I) = W1 ∪W2 containing two irreducible components of codimension 2, hence W = V (I), and the proof is finished.
Step 2. Assume henceforth J = I . We observe first that W cannot have any component of codimension 1. Else

there would be a function F dividing F0, F1, G: in particular the leading form f of F would divide f0, f1, g, therefore
f would be a constant, and F would be a unit in the local ring of the origin.

Let Zi := V (Fi,G): the same argument shows that neither Z0 nor Z1 has a component of codimension 1, hence
Z0, Z1 are complete intersections of codimension 2.

Step 3. Consider now the irreducible decomposition W = ⋃
i Wi of W into irreducible components. By what we

have seen, each Wi has codimension either 2 or 3. We assume that W1 and W2 have codimension equal to 2.
Step 4. Consider now the tangent cone C of W at the origin. The irreducible decomposition W = ⋃

i Wi of W

yields a decomposition C = ⋃
i Ci . Observe moreover that C is a subscheme of

W ′ := V (f0, f1, g) = L ∪ Q, L := V (c0, c1), Q := V (a,g).

We may assume W.L.O.G. that L is the tangent cone of W1, and Q is the tangent cone of W2
Step 5. Note that W ′ = L ∪ Q holds schematically, and we have a corresponding projective subscheme of codi-

mension 2 and degree 3 of which C has a subscheme. Hence there are no other components Wi of codimension 2:
these would contribute to a higher degree of the subscheme C. Hence, if there are other components W3, . . . , they
have codimension 3. We shall now show that these latter do not exist.

Step 6. Since the tangent cone L to W1 is smooth, then W1 is smooth at the origin, and, by a suitable local change
of coordinates, we may assume that

W1 = V (c0, c1).

Since moreover F0, F1, G are in the ideal (c0, c1), we obtain, after a suitable change of coordinates

F0 = c0a + c1β1, F1 = c1(a + α) + c0β0, G = c0d − c1b,

where α, β0, β1 have all order at least 2 at the origin. Moreover, we can assume (changing the coordinate a and adding
possibly a multiple of G to F0 and F1) that

(6.1) the variables c0 and b do not appear in β1, and α,
(6.1) the variable c1 does not appear in β0.

Step 7. Consider now W \ W1, and intersect with c0 = 0: we obtain the algebraic set

c0 = b = β1 = (a + α) = 0,

which must have codimension 3.
It follows that (a + α) divides β1. We can therefore subtract a multiple of F1 to F0 and obtain that c0 divides F0.
Whence, we can finally assume that F0 = c0a.
Step 8. Now, the components of V (F0,G) are W1 = L, Q = V (a,G) and V (c0, b).
But W ∩V (c0, b) = {c0 = b = c1(a +α) = 0}, which has codimension 3. Whereas W ∩Q = V (a,G, c1α + c0β0);

this component must have codimension 2, so it must be Q, and F1 belongs to the ideal (a,G). We can subtract a
multiple of G to F1 hence we may obtain that a divides F1, i.e., that a divides β0 and α.

Step 9. We may now write

F1 = a
(
c1(1 + A) + c0B

)
,

hence, subtracting a multiple of F0 to F1, we may assume that B ≡ 0.
Furthermore, multiplying by the unit (1 + A) and its inverse the variables c1 and b, we finally get new coordinates

where

F0 = c0a, F1 = c1a, G = c0d − c1b.

This is exactly what we wanted to show. �
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Theorem 6.6. Mev
8,4,0 is connected and its irredundant irreducible decomposition is Mev

8,4,0 = MF ∪ ME .

Proof. We already know that MF ,ME are irreducible unirational subsets of Mev
8,4,0: indeed each of them is defined

as the closure of a morphism from an open set of an affine space into the moduli space.
We also know that MF is the closure of the open set M0

F of Mev
8,4,0 consisting of surfaces with base point free

canonical system: hence MF is clearly an irreducible component of Mev
8,4,0, and it suffices to show that every surface

not in M0
F lies either in MF or in ME , and that these two subsets do intersect. This will accomplish the proof.

Suppose then that S is an even surface with K2
S = 8, pg = 4, q = 0 and that |KS | is not base point free. As before,

let L be a half-canonical divisor, i.e., KS = 2L. Let X be the canonical model of S.
Then X is a small deformation of the cone CR over a smooth hyperplane section H of X, and the base B of

the Kuranishi family of CR consists, by Propositions 5.8, 5.14, 6.4 and Lemma 6.5 of two irreducible components:
we want to show that the open set B′ corresponding to the partial smoothings of CR yielding surfaces with Du Val
singularities remains connected, and that the points of one irreducible component of B′ correspond to canonical
models in MF and the points of the other to canonical models in ME , thus our statement shall follow.

We can translate everything back into the algebraic description of the extension rings of R = R(C,2Q) for a
smooth C ∈ |L| and Q ∈ bs|L| (see Section 4).

The half-canonical ring R(X,L) is an extension ring of R = R(C,2Q) hence it can be put in the form of (4),
(we take now a small and general specialization ε ∈ C) and, by Proposition 6.4, c0a5 = c1a5 = c0d7 − c1b6 = 0, up to
higher order terms. Let us note that, up to a coordinate change in R we can always assume that the coefficient of x7

2
in D vanishes: just choose ζ and η with a common zero.

Now, if c0 = c1 = 0, the equations are in the extrasymmetric format of Proposition 5.8, so X is an element of ME .
Else, a5 = 0. Moreover, since we assumed the vanishing of the coefficient of x7

2 in D, we can decompose B and D as
in Proposition 5.14 with Bx = b6x

6
1 and Dx = d7x

7
1 . Then c0d7 − c1b6 = 0 gives c1x1Bx = c0Dx .

It follows that R(X,L) is as described in Proposition 5.14 with l = c1x1, and therefore X ∈ MF .
We see then directly that the base B of the Kuranishi family of CR contains the subset B′′ := {c0a5 = c1a5 =

c0d7 − c1b6 = 0}, hence by Lemma 6.5 it equals B and we have shown that X belongs to MF ∪ ME .
Finally, the condition MF ∩ ME 
= 0 was shown already in Proposition 5.14. �
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