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Abstract. We shall prove that the threefold studied in the paper “ Remarks on an Example
of K. Ueno” by F. Campana is unirational. This gives an affirmative answer to a question
posed in the paper above and also in the book by K. Ueno, “Classification theory of algebraic
varieties and compact complex spaces”.

1. Introduction

Let k be any field of characteristic �= 2 containing a primitive fourth root of unity
√−1. We

shall work over k unless otherwise stated. Let [x : y : z] be the homogeneous coordinates
of P

2 and let

C :=
(

y2z = x(x2 − z2)
)

⊆ P
2

be the harmonic elliptic curve, having an automorphism g of order 4 defined by

g∗(x : y : z) =
(
−x : √−1y : z

)

whose quotient is P
1. When k is the complex number field C, we have

(C, g) �
(

E√−1,
√−1

)
,

where E√−1 = C/(Z + √−1Z), the elliptic curve of period
√−1, and

√−1 is the au-

tomorphism induced by multiplication by
√−1 on C. This is because the complex elliptic

curve with an automorphism of order 4 acting on the space of global holomorphic 1-forms
as

√−1 is unique up to isomorphism.
Let (C j , gi ) ( j = 1, 2, 3) be three copies of (C, g). Let

Z = C1 × C2 × C3.

F. Catanese (B): Lehrstuhl Mathematik VIII, Mathematisches Institut, Universität Bayreuth,
Bayreuth, Germany. e-mail: fabrizio.catanese@uni-bayreuth.de

K. Oguiso: Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043,
Japan. e-mail: oguiso@math.sci.osaka-u.ac.jp

T. T. Truong: Department of Mathematics, Syracuse University, Syracuse NY 13210, USA.
e-mail: tutruong@syr.edu

Mathematics Subject Classification: 14M20 (primary), 14E08 (secondary)

DOI: 10.1007/s00229-014-0680-z



400 F. Catanese et al.

For simplicity, we denote the automorphism of Z defined by (g1, g2, g3) by the same letter
g. Then g is an automorphism of Z of order 4 and the quotient threefold

Y := (C1 × C2 × C3)/〈g〉
has 8 singular points of type (1, 1, 1)/4 and 28 singular points of type (1, 1, 1)/2. Let X
be the blow up of Y at the maximal ideals of these singular points. Then X is a smooth
projective threefold defined over k. In his paper, Campana [1] proved that X is a rationally
connected threefold when k = C. We shall call X the Ueno-Campana’s threefold.

In [1, Question 4], Campana asked whether X is rational or unirational (at least over
C). See also [4, Page 208] for this Question and [3] for a relevant example and applications
to complex dynamics. The aim of this short note is to give an affirmative answer to this
question:

Theorem 1.1. Ueno-Campana’s threefold X is unirational, i.e., there is a dominant rational
map P

3 · · · → X.

We shall show that X is birationally equivalent to the Galois quotient of a conic bundle
over P

2 with a rational section, while X itself is birationally equivalent to a conic bundle
over P

2 without any rational section.

2. Proof of Theorem 1.1

The curves (Ci , gi ) (i = 1, 2, 3) are birationally equivalent to (C0
i , gi ), where C0

i is the

curve in the affine space A
2 = Spec k[Xi , Yi ], and gi is the automorphism of C0

i , defined
by

Y 2
i = Xi

(
X2

i − 1
)

, g∗
i Yi = √−1Yi , g∗

i Xi = −Xi .

The affine coordinate ring k[C0
i ] of C0

i is

k
[
C0

i

]
= k

[
Xi , Yi

]
/
(

Y 2
i − Xi

(
X2

i − 1
))

.

We set xi := Xi mod (Y 2
i − Xi (X2

i − 1)), yi := Yi mod (Y 2
i − Xi (X2

i − 1)). We note that

y2
i = xi (x2

i − 1), g∗yi = √−1yi , g∗xi = −xi in k[C0
i ].

Then (Z = C1 × C2 × C3, g = (g1, g2, g3)) is birationally equivalent to the affine
threefold

V := C0
1 × C0

2 × C0
3

with automorphism (g1, g2, g3), which we denote by the same letter g, and with affine
coordinate ring

k[V ] = k[C0
i ] ⊗ k[C0

2 ] ⊗ k[C0
3 ] generated by x1, x2, x3, y1, y2, y3.

The rational function field k(Z) of Z is

k(Z) = k(V ) = k(x1, x2, x3, y1, y2, y3).

In both k[V ] and k(Z), we have

y2
i = xi

(
x2

i − 1
)

, (2.1)

g∗yi = √−1yi , g∗xi = −xi . (2.2)
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Since X is birationally equivalent to V/〈g〉, the rational function field K (X) of X is identified
with the invariant subfield k(Z)g of k(Z), i.e.,

k(X) = k(Z)g = { f ∈ k(Z) |g∗ f = f }.
Consider the following elements in k(Z):

b2 := x2

x1
, b3 := x3

x1
, a2 := y2

y1
, a3 := y3

y1
, (2.3)

u1 := x2
1 , w1 := y4

1 , λ1 := x1 y2
1 , (2.4)

and define the subfield L of k(Z) by

L := k(b2, b3, a2, a3, u1, w1, λ1).

Here we used the fact that x1 �= 0, y1 �= 0 in k(Z).

Lemma 2.1. k(X) = L in k(Z).

Proof. By (2.2) and (2.3), b2, b3, a2, a3, u1, w1, λ1 are g-invariant. Hence

L ⊆ k(X) ⊆ k(Z). (2.5)

Note that k(Z) = L(y1). This is because

x1 = λ1

y2
1

, x2 = b2x1, x3 = b3x1 , y2 = a2 y1 , y3 = a3 y1,

by (2.3) and (2.4). Since y4
1 = w1 and w1 ∈ k(Z), it follows that

[k(Z) : L] ≤ 4, (2.6)

where [k(Z) : L] is the degree of the field extension L ⊆ k(Z), i.e., the dimension of k(Z)

being naturally regarded as the vector space over L .
On the other hand, the group 〈g〉 = Gal(k(Z)/k(X)) is of order 4. Thus, by the funda-

mental theorem of Galois theory, we have that

[k(Z) : k(X)] = [K (Z) : k(Z)g] = ord (g) = 4. (2.7)

The result now follows from (2.5), (2.6), (2.7). Indeed, by (2.5), we have

[k(Z) : L] = [k(Z) : k(X)][k(X) : L].
On the other hand, [k(Z) : L] ≤ 4 by (2.6), and [k(X) : L] ≥ 1. Hence [k(X) : L] = 1 by
(2.7). This means that L = k(X) in k(Z), as claimed. ��
Lemma 2.2. L = k(u1, b2, b3, a2, a3) in k(Z).

Proof. Since u1, b2, b3, a2, a3 ∈ L , it follows that k(u1, b2, b3, a2, a3) ⊆ L . Let us show
that L ⊆ k(u1, b2, b3, a2, a3). For this, it suffices to show thatw1, λ1 ∈ k(u1, b2, b3, a2, a3).

Recall that, by (2.1), y2
1 = x1(x2

1 − 1); hence, squaring both sides of the equality and
using (2.6), we obtain that

w1 = y4
1 = x2

1

(
x2

1 − 1
)2 = u1(u1 − 1)2. (2.8)

Hence w1 ∈ k(u1, b2, b3, a2, a3). From y2
1 = x1(x2

1 − 1) again, we have that

λ1 = x1 y2
1 = x2

1

(
x2

1 − 1
)

= u1(u1 − 1). (2.9)

Hence λ1 ∈ k(u1, b2, b3, a2, a3) as well. ��
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Lemma 2.3. Let j = 2, 3. Then, a2
j − b j �= 0 in both k(Z) and k(X).

Proof. By using (2.1), we obtain that

a2
j − b j =

y2
j

y2
1

− x j

x1
=

x j

(
x2

j − 1
)

x1

(
x2

1 − 1
) − x j

x1
= x j

x1

(
x2

j − 1

x2
1 − 1

− 1

)
, (2.10)

in k(Z). Recall that xi �= 0 in k(Z). Thus, if a2
j − b j = 0 in k(Z), then we would have

(x2
j − 1)/(x2

1 − 1) = 1 in K (Z) = k(V ) from the equality above, and therefore, x j = ±x1

in k[V ]. However, this contradicts the fact that x1 is identically 0 on the set of k-valued
points ({0} × C2 × C3)(k) but ±x j ( j = 2, 3) are not identically 0 on it. This contradiction

implies that a2
j − b j �= 0 in k(Z). Since a2

j − b j ∈ k(Z)g = k(X) and k(X) is a subfield of

k(Z), it follows that a2
j − b j �= 0 in k(X) as well. ��

Proposition 2.4. k(X) = L = k(b2, b3, a2, a3) in k(Z). More precisely, in k(Z), we have

u1 = a2
2 − b2

a2
2 − b3

2

= a2
3 − b3

a2
3 − b3

3

. (2.11)

Proof. By Lemmas 2.1 and 2.2, it suffices to show the equality (2.10) in k(Z). Observe that,
for j = 2, 3:

y2
j = x j

(
x2

j − 1
)

, y2
1 a2

j = x1b j

(
x2

1 b2
j − 1

)

hence multiplication by x1 yields

x2
1 b j

(
x2

1 b2
j − 1

)
= x1 y2

1 a2
j = x2

1

(
x2

1 − 1
)

a2
j ,

and dividing by x2
1 and observing that u1 = x2

1 we obtain

b j

(
u1b2

j − 1
)

= (u1 − 1)a2
j

i.e.,

(∗∗) u1

(
a2

j − b3
j

)
= a2

j − b j .

Using the previous lemma and (**) we obtain (a2
j − b3

j ) �= 0, so we can divide and
obtain (2.11). ��
Proposition 2.5. X is birationally equivalent to the affine hypersurface H in A

4 = Spec
k[a, b, α, β], defined by

(
a2 − b

) (
α2 − β3

)
=

(
α2 − β

) (
a2 − b3

)
,

or equivalently defined by

a2β
(

1 − β2
)

= α2b
(

1 − b2
)

+ bβ
(

b2 − β2
)

,
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Proof. By Lemma (2.1) and Proposition (2.4), k(X) = k(a2, a3, b2, b3) in k(Z), with a
relation (

a2
2 − b2

) (
a2

3 − b3
3

)
=

(
a2

3 − b3

) (
a2

2 − b3
2

)
. (2.12)

Expanding both sides and subtracting then the common term a2
2a2

3 , we obtain

−a2
2b3

3 − b2a2
3 + b2b3

3 = −a2
3b3

2 − b3a2
2 + b3b3

2.

Solving this relation in terms of a2, we obtain that

a2
2b3

(
1 − b2

3

)
= a2

3b2

(
1 − b2

2

)
+ b2b3

(
b2

2 − b2
3

)
. (2.13)

Since b3 = x3/x1 is not a constant in k(Z), it follows that b3(1 − b2
3) �= 0 in k(Z), whence

also not 0 in k(X). Thus

a2
2 =

a2
3b2

(
1 − b2

2

)
+ b2b3

(
b2

2 − b2
3

)

b3

(
1 − b2

3

) . (2.14)

Therefore a2 is algebraic over k(a3, b2, b3) of degree at most 2. Since X is of dimension 3
over k, it follows that a3, b2, b3 form a transcendence basis of k(X) over k. Thus, the subring
k[a3, b2, b3] of k(X) is isomorphic to the polynomial ring over k of Krull-dimension 3.
Moreover, the right hand side of 2.14 is not a square in k(a3, b2, b3). Indeed, the multiplicity
of b3 in the denominator is 1 while the numerator is not in k and the multiplicity of b3 in
the numerator is 0. Thus Eq. (2.14) is the minimal polynomial of a2 over k(a3, b2, b3).
Hence X is birationally equivalent to the double cover of A

3 = Spec k[a3, b2, b3], defined
by (2.14). This means that X is birationally equivalent to the hypersurface in the affine space
A

4 = Spec k[a, α, b, β], defined by (2.14) or, equivalently, defined by (2.13), or by (2.12),
in which (a2, a3, b2, b3) are replaced by (a, α, b, β). ��
Corollary 2.6. Let H ⊆ A

4 = Spec k[a, α, b, β]be the same as in Proposition 2.5. Consider
the affine plane A

2 = Spec k[b, β] and the natural projection

π : A
4 → A

2

defined by

(a, b, α, β) �→ (b, β).

Then the natural restriction map

p := π |H : H → A
2

is a conic bundle over A
2. In particular, the graph � of the rational map p̃ : X · · · → P

2

naturally induced by p forms a conic bundle on � over P
2. We note that � is projective and

birationally equivalent to X over k.

Proof. The fibre π−1(η) of π over the generic point η ∈ A
2 = Spec k[b, β] is the affine

space A
2
η = Spec k(b, β)[a, α] defined over κ(η) = k(b, β). Thus by the second equation

in Proposition 2.5, the generic fibre Xη := (π |H)−1(η) is the conic in A
2
η, defined by

a2β
(

1 − β2
)

= α2b
(

1 − b2
)

+ bβ
(

b2 − β2
)

.

This implies the result. ��
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Remark 2.7. The conic Xη in the proof of Proposition 2.6 has no rational point over
κ(η) = k(b, β), i.e., the set Xη(k(b, β)) is empty.

Proof. Suppose to the contrary that (a(b, β), α(b, β)) ∈ Xη(k(b, β)). We can write

a(b, β) = P(b, β)

Q(b, β)
, α(b, β) = R(b, β)

Q(b, β)
,

where P(b, β), Q(b, β), R(b, β) ∈ k[b, β] with no non-constant common factor, possibly
after replacing the denominators by their product. Then substituting the above into the
equation of Xη and clearing the denominator, we would have the following identity in
k[b, β]:

P (b, β)2 β
(

1 − β2
)

= R(b, β)2b
(

1 − b2
)

+ Q(b, β)2bβ
(

b2 − β2
)

.

Since k[b, β] is a polynomial ring, in particular, it is a UFD, it would follow that P(b, β)

is divisible by b and R(b, β) is divisible by β in k[b, β]. Thus P(b, β) = P1(b, β)b and
R(b, β) = R1(b, β)β for some P1(b, β), R1(b, β) ∈ k[b, β]. Substituting these two into
the equality above and dividing by bβ �= 0, it follows that

P1(b, β)2b
(

1 − β2
)

= R1(b, β)2β
(

1 − b2
)

+ Q(b, β)2
(

b2 − β2
)

.

Substitute b = 0 into this equation: we obtain R1(0, β)2β + Q(0, β)2β2 = 0, which,
by the parity of the degree, implies that R1(0, β) = Q(0, β) = 0. This means that both
R1(b, β) and Q(b, β) are divisible by b. Similarly, if we substitute β = 0 into the above
equation we find that both P1(b, β) and Q(b, β) are divisible by β. Thus we can write

P1(b, β) = β P2(b, β), R1(b, β) = bR2(b, β), Q(b, β) = bβQ2(b, β),

where P2(b, β), R2(b, β), Q(b, β) ∈ k[b, β]. But this implies that all P(b, β), Q(b, β),

R(b, β) are divisible by bβ, a contradiction. ��
The next corollary completes the proof of Theorem (1.1):

Corollary 2.8. Let H ⊆ A
4 = Spec k[a, α, b, β], p : H → A

2 = Spec k[b, β] be the same
as in Proposition 2.5 and Corollary 2.6. Consider another affine space Spec k[s, t] and the
(finite Galois) morphism of degree 4

f : Spec k[s, t] → Spec k[b, β]

defined by

f ∗b = s2, f ∗β = t2.

Consider then the fibre product

Q := H ×Spec k[b,β] Spec k[s, t]

and the natural second projection p2 : Q → Spec k[s, t]. Then p2 is a conic bundle with a
rational section and Q is a rational threefold. In particular, H, hence X, is unirational.
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Proof. Recall that H is the hypersurface in Spec k[a, b, α, β] defined by

a2β
(

1 − β2
)

= α2b
(

1 − b2
)

+ bβ
(

b2 − β2
)

,

or equivalently by
(

a2 − b
) (

α2 − β3
)

=
(
α2 − β

) (
a2 − b3

)
.

Thus, by definition of the fibre product, Q is a hypersurface in the affine space
A

4 = Spec k[a, α, s, t], defined by

a2t2
(

1 − t4
)

= α2s2
(

1 − s4
)

+ s2t2
(

s4 − t4
)

,

or equivalently by
(

a2 − s2
) (

α2 − t6
)

=
(
α2 − t2

) (
a2 − s6

)
.

Then the natural projection p2 : Q → Spec k[s, t] is a conic bundle with generic fibre

Qη′ =
(

a2t2(1 − t4
)

= α2s2
(

1 − s4
)

+ s2t2
(

s4 − t4
))

⊆ Spec k(s, t)[a, α] = A
2
η′ ,

where η′ is the generic point of Spec k[s, t]. Then Qη′ has a rational point (a, α) = (s, t) ∈
Q(k(s, t)) over κ(η′) = k(s, t). Hence Qη′ is isomorphic to P

1
η′ over k(s, t). Thus, denoting

the affine coordinate of P
1
η′ by v, we obtain that

k(Q) = k(s, t)(Qη′) � k(s, t)
(
P

1
η′

)
= k(s, t)(v) = k(s, t, v).

Since Q is of dimension 3 over k, it follows that s, t , v are algebraically independent
over k. Hence, k(Q) is isomorphic to the rational function field of P

3 over k. Hence Q is a
rational threefold over k, i.e., birationally equivalent to P

3 over k. Since the natural morphism
p1 : Q → H , i.e., the first projection morphism in the fibre product, is a finite dominant
morphism of degree 4, Q is birational to P

3 and H is birationally equivalent to X , all over
k, we obtain a rational dominant map q : P

3 · · · → X over k, from the natural projection
p1 : Q → H . Hence X is unirational. ��
Remark 2.9. (1) Colliot-Thélène finally proved in [2] that the hypersurface in Proposition

(2.5) is rational, whence Ueno-Campana’s threefold X is actually rational.
(2) Hence Ueno-Campana’s threefold X provides the second explicit example of a complex

smooth rational threefold admitting primitive automorphisms of positive entropy. Actu-
ally, automorphisms of E3√−1

of the same shape as those in Lemma 4.3 of [3] induce

such automorphisms of X .
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