Fabrizio Catanese, Keiji Oguiso and Tuyen Trung Truong

Unirationality of Ueno-Campana's threefold

Received: 4 December 2013 / Revised: 7 April 2014
Published online: 14 May 2014

Abstract

We shall prove that the threefold studied in the paper " Remarks on an Example of K. Ueno" by F. Campana is unirational. This gives an affirmative answer to a question posed in the paper above and also in the book by K. Ueno, "Classification theory of algebraic varieties and compact complex spaces".

1. Introduction

Let k be any field of characteristic $\neq 2$ containing a primitive fourth root of unity $\sqrt{-1}$. We shall work over k unless otherwise stated. Let $[x: y: z]$ be the homogeneous coordinates of \mathbb{P}^{2} and let

$$
C:=\left(y^{2} z=x\left(x^{2}-z^{2}\right)\right) \subseteq \mathbb{P}^{2}
$$

be the harmonic elliptic curve, having an automorphism g of order 4 defined by

$$
g^{*}(x: y: z)=(-x: \sqrt{-1} y: z)
$$

whose quotient is \mathbb{P}^{1}. When k is the complex number field \mathbb{C}, we have

$$
(C, g) \simeq\left(E_{\sqrt{-1}}, \sqrt{-1}\right)
$$

where $E_{\sqrt{-1}}=\mathbb{C} /(\mathbb{Z}+\sqrt{-1} \mathbb{Z})$, the elliptic curve of period $\sqrt{-1}$, and $\sqrt{-1}$ is the automorphism induced by multiplication by $\sqrt{-1}$ on \mathbf{C}. This is because the complex elliptic curve with an automorphism of order 4 acting on the space of global holomorphic 1-forms as $\sqrt{-1}$ is unique up to isomorphism.

Let $\left(C_{j}, g_{i}\right)(j=1,2,3)$ be three copies of (C, g). Let

$$
Z=C_{1} \times C_{2} \times C_{3}
$$

F. Catanese (\boxtimes): Lehrstuhl Mathematik VIII, Mathematisches Institut, Universität Bayreuth, Bayreuth, Germany. e-mail: fabrizio.catanese@uni-bayreuth.de
K. Oguiso: Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan. e-mail: oguiso@math.sci.osaka-u.ac.jp
T. T. Truong: Department of Mathematics, Syracuse University, Syracuse NY 13210, USA. e-mail: tutruong@syr.edu

Mathematics Subject Classification: 14M20 (primary), 14E08 (secondary)

For simplicity, we denote the automorphism of Z defined by $\left(g_{1}, g_{2}, g_{3}\right)$ by the same letter g. Then g is an automorphism of Z of order 4 and the quotient threefold

$$
Y:=\left(C_{1} \times C_{2} \times C_{3}\right) /\langle g\rangle
$$

has 8 singular points of type $(1,1,1) / 4$ and 28 singular points of type $(1,1,1) / 2$. Let X be the blow up of Y at the maximal ideals of these singular points. Then X is a smooth projective threefold defined over k. In his paper, Campana [1] proved that X is a rationally connected threefold when $k=\mathbb{C}$. We shall call X the Ueno-Campana's threefold.

In [1, Question 4], Campana asked whether X is rational or unirational (at least over \mathbb{C}). See also [4, Page 208] for this Question and [3] for a relevant example and applications to complex dynamics. The aim of this short note is to give an affirmative answer to this question:

Theorem 1.1. Ueno-Campana's threefold X is unirational, i.e., there is a dominant rational map $\mathbb{P}^{3} \cdots \rightarrow X$.

We shall show that X is birationally equivalent to the Galois quotient of a conic bundle over \mathbb{P}^{2} with a rational section, while X itself is birationally equivalent to a conic bundle over \mathbb{P}^{2} without any rational section.

2. Proof of Theorem 1.1

The curves $\left(C_{i}, g_{i}\right)(i=1,2,3)$ are birationally equivalent to $\left(C_{i}^{0}, g_{i}\right)$, where C_{i}^{0} is the curve in the affine space $\mathbb{A}^{2}=\operatorname{Spec} k\left[X_{i}, Y_{i}\right]$, and g_{i} is the automorphism of C_{i}^{0}, defined by

$$
Y_{i}^{2}=X_{i}\left(X_{i}^{2}-1\right), g_{i}^{*} Y_{i}=\sqrt{-1} Y_{i}, g_{i}^{*} X_{i}=-X_{i}
$$

The affine coordinate ring $k\left[C_{i}^{0}\right]$ of C_{i}^{0} is

$$
k\left[C_{i}^{0}\right]=k\left[X_{i}, Y_{i}\right] /\left(Y_{i}^{2}-X_{i}\left(X_{i}^{2}-1\right)\right)
$$

We set $x_{i}:=X_{i} \bmod \left(Y_{i}^{2}-X_{i}\left(X_{i}^{2}-1\right)\right), y_{i}:=Y_{i} \bmod \left(Y_{i}^{2}-X_{i}\left(X_{i}^{2}-1\right)\right)$. We note that $y_{i}^{2}=x_{i}\left(x_{i}^{2}-1\right), g^{*} y_{i}=\sqrt{-1} y_{i}, g^{*} x_{i}=-x_{i}$ in $k\left[C_{i}^{0}\right]$.

Then $\left(Z=C_{1} \times C_{2} \times C_{3}, g=\left(g_{1}, g_{2}, g_{3}\right)\right)$ is birationally equivalent to the affine threefold

$$
V:=C_{1}^{0} \times C_{2}^{0} \times C_{3}^{0}
$$

with automorphism $\left(g_{1}, g_{2}, g_{3}\right)$, which we denote by the same letter g, and with affine coordinate ring

$$
k[V]=k\left[C_{i}^{0}\right] \otimes k\left[C_{2}^{0}\right] \otimes k\left[C_{3}^{0}\right] \text { generated by } x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}
$$

The rational function field $k(Z)$ of Z is

$$
k(Z)=k(V)=k\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right)
$$

In both $k[V]$ and $k(Z)$, we have

$$
\begin{align*}
y_{i}^{2} & =x_{i}\left(x_{i}^{2}-1\right) \tag{2.1}\\
g^{*} y_{i} & =\sqrt{-1} y_{i}, g^{*} x_{i}=-x_{i} \tag{2.2}
\end{align*}
$$

Since X is birationally equivalent to $V /\langle g\rangle$, the rational function field $K(X)$ of X is identified with the invariant subfield $k(Z)^{g}$ of $k(Z)$, i.e.,

$$
k(X)=k(Z)^{g}=\left\{f \in k(Z) \mid g^{*} f=f\right\} .
$$

Consider the following elements in $k(Z)$:

$$
\begin{align*}
& b_{2}:=\frac{x_{2}}{x_{1}}, \quad b_{3}:=\frac{x_{3}}{x_{1}}, \quad a_{2}:=\frac{y_{2}}{y_{1}}, \quad a_{3}:=\frac{y_{3}}{y_{1}}, \tag{2.3}\\
& u_{1}:=x_{1}^{2}, \quad w_{1}:=y_{1}^{4}, \quad \lambda_{1}:=x_{1} y_{1}^{2}, \tag{2.4}
\end{align*}
$$

and define the subfield L of $k(Z)$ by

$$
L:=k\left(b_{2}, b_{3}, a_{2}, a_{3}, u_{1}, w_{1}, \lambda_{1}\right) .
$$

Here we used the fact that $x_{1} \neq 0, y_{1} \neq 0$ in $k(Z)$.
Lemma 2.1. $k(X)=L$ in $k(Z)$.
Proof. By (2.2) and (2.3), $b_{2}, b_{3}, a_{2}, a_{3}, u_{1}, w_{1}, \lambda_{1}$ are g-invariant. Hence

$$
\begin{equation*}
L \subseteq k(X) \subseteq k(Z) \tag{2.5}
\end{equation*}
$$

Note that $k(Z)=L\left(y_{1}\right)$. This is because

$$
x_{1}=\frac{\lambda_{1}}{y_{1}^{2}}, \quad x_{2}=b_{2} x_{1}, x_{3}=b_{3} x_{1}, \quad y_{2}=a_{2} y_{1}, \quad y_{3}=a_{3} y_{1},
$$

by (2.3) and (2.4). Since $y_{1}^{4}=w_{1}$ and $w_{1} \in k(Z)$, it follows that

$$
\begin{equation*}
[k(Z): L] \leq 4, \tag{2.6}
\end{equation*}
$$

where $[k(Z): L]$ is the degree of the field extension $L \subseteq k(Z)$, i.e., the dimension of $k(Z)$ being naturally regarded as the vector space over L.

On the other hand, the group $\langle g\rangle=\operatorname{Gal}(k(Z) / k(X))$ is of order 4. Thus, by the fundamental theorem of Galois theory, we have that

$$
\begin{equation*}
[k(Z): k(X)]=\left[K(Z): k(Z)^{g}\right]=\operatorname{ord}(g)=4 . \tag{2.7}
\end{equation*}
$$

The result now follows from (2.5), (2.6), (2.7). Indeed, by (2.5), we have

$$
[k(Z): L]=[k(Z): k(X)][k(X): L] .
$$

On the other hand, $[k(Z): L] \leq 4$ by (2.6), and $[k(X): L] \geq 1$. Hence $[k(X): L]=1$ by (2.7). This means that $L=k(X)$ in $k(Z)$, as claimed.

Lemma 2.2. $L=k\left(u_{1}, b_{2}, b_{3}, a_{2}, a_{3}\right)$ in $k(Z)$.
Proof. Since $u_{1}, b_{2}, b_{3}, a_{2}, a_{3} \in L$, it follows that $k\left(u_{1}, b_{2}, b_{3}, a_{2}, a_{3}\right) \subseteq L$. Let us show that $L \subseteq k\left(u_{1}, b_{2}, b_{3}, a_{2}, a_{3}\right)$. For this, it suffices to show that $w_{1}, \lambda_{1} \in k\left(u_{1}, b_{2}, b_{3}, a_{2}, a_{3}\right)$.

Recall that, by $(2.1), y_{1}^{2}=x_{1}\left(x_{1}^{2}-1\right)$; hence, squaring both sides of the equality and using (2.6), we obtain that

$$
\begin{equation*}
w_{1}=y_{1}^{4}=x_{1}^{2}\left(x_{1}^{2}-1\right)^{2}=u_{1}\left(u_{1}-1\right)^{2} . \tag{2.8}
\end{equation*}
$$

Hence $w_{1} \in k\left(u_{1}, b_{2}, b_{3}, a_{2}, a_{3}\right)$. From $y_{1}^{2}=x_{1}\left(x_{1}^{2}-1\right)$ again, we have that

$$
\begin{equation*}
\lambda_{1}=x_{1} y_{1}^{2}=x_{1}^{2}\left(x_{1}^{2}-1\right)=u_{1}\left(u_{1}-1\right) . \tag{2.9}
\end{equation*}
$$

Hence $\lambda_{1} \in k\left(u_{1}, b_{2}, b_{3}, a_{2}, a_{3}\right)$ as well.

Lemma 2.3. Let $j=2,3$. Then, $a_{j}^{2}-b_{j} \neq 0$ in both $k(Z)$ and $k(X)$.
Proof. By using (2.1), we obtain that

$$
\begin{equation*}
a_{j}^{2}-b_{j}=\frac{y_{j}^{2}}{y_{1}^{2}}-\frac{x_{j}}{x_{1}}=\frac{x_{j}\left(x_{j}^{2}-1\right)}{x_{1}\left(x_{1}^{2}-1\right)}-\frac{x_{j}}{x_{1}}=\frac{x_{j}}{x_{1}}\left(\frac{x_{j}^{2}-1}{x_{1}^{2}-1}-1\right) \tag{2.10}
\end{equation*}
$$

in $k(Z)$. Recall that $x_{i} \neq 0$ in $k(Z)$. Thus, if $a_{j}^{2}-b_{j}=0$ in $k(Z)$, then we would have $\left(x_{j}^{2}-1\right) /\left(x_{1}^{2}-1\right)=1$ in $K(Z)=k(V)$ from the equality above, and therefore, $x_{j}= \pm x_{1}$ in $k[V]$. However, this contradicts the fact that x_{1} is identically 0 on the set of \bar{k}-valued points $\left(\{0\} \times C_{2} \times C_{3}\right)(\bar{k})$ but $\pm x_{j}(j=2,3)$ are not identically 0 on it. This contradiction implies that $a_{j}^{2}-b_{j} \neq 0$ in $k(Z)$. Since $a_{j}^{2}-b_{j} \in k(Z)^{g}=k(X)$ and $k(X)$ is a subfield of $k(Z)$, it follows that $a_{j}^{2}-b_{j} \neq 0$ in $k(X)$ as well.

Proposition 2.4. $k(X)=L=k\left(b_{2}, b_{3}, a_{2}, a_{3}\right)$ in $k(Z)$. More precisely, in $k(Z)$, we have

$$
\begin{equation*}
u_{1}=\frac{a_{2}^{2}-b_{2}}{a_{2}^{2}-b_{2}^{3}}=\frac{a_{3}^{2}-b_{3}}{a_{3}^{2}-b_{3}^{3}} \tag{2.11}
\end{equation*}
$$

Proof. By Lemmas 2.1 and 2.2, it suffices to show the equality (2.10) in $k(Z)$. Observe that, for $j=2,3$:

$$
y_{j}^{2}=x_{j}\left(x_{j}^{2}-1\right), y_{1}^{2} a_{j}^{2}=x_{1} b_{j}\left(x_{1}^{2} b_{j}^{2}-1\right)
$$

hence multiplication by x_{1} yields

$$
x_{1}^{2} b_{j}\left(x_{1}^{2} b_{j}^{2}-1\right)=x_{1} y_{1}^{2} a_{j}^{2}=x_{1}^{2}\left(x_{1}^{2}-1\right) a_{j}^{2}
$$

and dividing by x_{1}^{2} and observing that $u_{1}=x_{1}^{2}$ we obtain

$$
b_{j}\left(u_{1} b_{j}^{2}-1\right)=\left(u_{1}-1\right) a_{j}^{2}
$$

i.e.,

$$
(* *) u_{1}\left(a_{j}^{2}-b_{j}^{3}\right)=a_{j}^{2}-b_{j}
$$

Using the previous lemma and $\left({ }^{* *}\right)$ we obtain $\left(a_{j}^{2}-b_{j}^{3}\right) \neq 0$, so we can divide and obtain (2.11).

Proposition 2.5. X is birationally equivalent to the affine hypersurface H in $\mathbb{A}^{4}=\operatorname{Spec}$ $k[a, b, \alpha, \beta]$, defined by

$$
\left(a^{2}-b\right)\left(\alpha^{2}-\beta^{3}\right)=\left(\alpha^{2}-\beta\right)\left(a^{2}-b^{3}\right)
$$

or equivalently defined by

$$
a^{2} \beta\left(1-\beta^{2}\right)=\alpha^{2} b\left(1-b^{2}\right)+b \beta\left(b^{2}-\beta^{2}\right)
$$

Proof. By Lemma (2.1) and Proposition (2.4), $k(X)=k\left(a_{2}, a_{3}, b_{2}, b_{3}\right)$ in $k(Z)$, with a relation

$$
\begin{equation*}
\left(a_{2}^{2}-b_{2}\right)\left(a_{3}^{2}-b_{3}^{3}\right)=\left(a_{3}^{2}-b_{3}\right)\left(a_{2}^{2}-b_{2}^{3}\right) . \tag{2.12}
\end{equation*}
$$

Expanding both sides and subtracting then the common term $a_{2}^{2} a_{3}^{2}$, we obtain

$$
-a_{2}^{2} b_{3}^{3}-b_{2} a_{3}^{2}+b_{2} b_{3}^{3}=-a_{3}^{2} b_{2}^{3}-b_{3} a_{2}^{2}+b_{3} b_{2}^{3} .
$$

Solving this relation in terms of a_{2}, we obtain that

$$
\begin{equation*}
a_{2}^{2} b_{3}\left(1-b_{3}^{2}\right)=a_{3}^{2} b_{2}\left(1-b_{2}^{2}\right)+b_{2} b_{3}\left(b_{2}^{2}-b_{3}^{2}\right) . \tag{2.13}
\end{equation*}
$$

Since $b_{3}=x_{3} / x_{1}$ is not a constant in $k(Z)$, it follows that $b_{3}\left(1-b_{3}^{2}\right) \neq 0$ in $k(Z)$, whence also not 0 in $k(X)$. Thus

$$
\begin{equation*}
a_{2}^{2}=\frac{a_{3}^{2} b_{2}\left(1-b_{2}^{2}\right)+b_{2} b_{3}\left(b_{2}^{2}-b_{3}^{2}\right)}{b_{3}\left(1-b_{3}^{2}\right)} . \tag{2.14}
\end{equation*}
$$

Therefore a_{2} is algebraic over $k\left(a_{3}, b_{2}, b_{3}\right)$ of degree at most 2 . Since X is of dimension 3 over k, it follows that a_{3}, b_{2}, b_{3} form a transcendence basis of $k(X)$ over k. Thus, the subring $k\left[a_{3}, b_{2}, b_{3}\right]$ of $k(X)$ is isomorphic to the polynomial ring over k of Krull-dimension 3. Moreover, the right hand side of 2.14 is not a square in $k\left(a_{3}, b_{2}, b_{3}\right)$. Indeed, the multiplicity of b_{3} in the denominator is 1 while the numerator is not in k and the multiplicity of b_{3} in the numerator is 0 . Thus Eq. (2.14) is the minimal polynomial of a_{2} over $k\left(a_{3}, b_{2}, b_{3}\right)$. Hence X is birationally equivalent to the double cover of $\mathbb{A}^{3}=\operatorname{Spec} k\left[a_{3}, b_{2}, b_{3}\right]$, defined by (2.14). This means that X is birationally equivalent to the hypersurface in the affine space $\mathbb{A}^{4}=\operatorname{Spec} k[a, \alpha, b, \beta]$, defined by (2.14) or, equivalently, defined by (2.13), or by (2.12), in which $\left(a_{2}, a_{3}, b_{2}, b_{3}\right)$ are replaced by (a, α, b, β).

Corollary 2.6. Let $H \subseteq \mathbb{A}^{4}=\operatorname{Spec} k[a, \alpha, b, \beta]$ be the same as in Proposition 2.5. Consider the affine plane $\mathbb{A}^{2}=\operatorname{Spec} k[b, \beta]$ and the natural projection

$$
\pi: \mathbb{A}^{4} \rightarrow \mathbb{A}^{2}
$$

defined by

$$
(a, b, \alpha, \beta) \mapsto(b, \beta) .
$$

Then the natural restriction map

$$
p:=\pi \mid H: H \rightarrow \mathbb{A}^{2}
$$

is a conic bundle over \mathbb{A}^{2}. In particular, the graph Γ of the rational map $\tilde{p}: X \cdots \rightarrow \mathbb{P}^{2}$ naturally induced by p forms a conic bundle on Γ over \mathbb{P}^{2}. We note that Γ is projective and birationally equivalent to X over k.

Proof. The fibre $\pi^{-1}(\eta)$ of π over the generic point $\eta \in \mathbb{A}^{2}=\operatorname{Spec} k[b, \beta]$ is the affine space $\mathbb{A}_{\eta}^{2}=\operatorname{Spec} k(b, \beta)[a, \alpha]$ defined over $\kappa(\eta)=k(b, \beta)$. Thus by the second equation in Proposition 2.5, the generic fibre $X_{\eta}:=(\pi \mid H)^{-1}(\eta)$ is the conic in \mathbb{A}_{η}^{2}, defined by

$$
a^{2} \beta\left(1-\beta^{2}\right)=\alpha^{2} b\left(1-b^{2}\right)+b \beta\left(b^{2}-\beta^{2}\right) .
$$

This implies the result.

Remark 2.7. The conic X_{η} in the proof of Proposition 2.6 has no rational point over $\kappa(\eta)=k(b, \beta)$, i.e., the set $X_{\eta}(k(b, \beta))$ is empty.

Proof. Suppose to the contrary that $(a(b, \beta), \alpha(b, \beta)) \in X_{\eta}(k(b, \beta))$. We can write

$$
a(b, \beta)=\frac{P(b, \beta)}{Q(b, \beta)}, \quad \alpha(b, \beta)=\frac{R(b, \beta)}{Q(b, \beta)}
$$

where $P(b, \beta), Q(b, \beta), R(b, \beta) \in k[b, \beta]$ with no non-constant common factor, possibly after replacing the denominators by their product. Then substituting the above into the equation of X_{η} and clearing the denominator, we would have the following identity in $k[b, \beta]$:

$$
P(b, \beta)^{2} \beta\left(1-\beta^{2}\right)=R(b, \beta)^{2} b\left(1-b^{2}\right)+Q(b, \beta)^{2} b \beta\left(b^{2}-\beta^{2}\right)
$$

Since $k[b, \beta]$ is a polynomial ring, in particular, it is a UFD, it would follow that $P(b, \beta)$ is divisible by b and $R(b, \beta)$ is divisible by β in $k[b, \beta]$. Thus $P(b, \beta)=P_{1}(b, \beta) b$ and $R(b, \beta)=R_{1}(b, \beta) \beta$ for some $P_{1}(b, \beta), R_{1}(b, \beta) \in k[b, \beta]$. Substituting these two into the equality above and dividing by $b \beta \neq 0$, it follows that

$$
P_{1}(b, \beta)^{2} b\left(1-\beta^{2}\right)=R_{1}(b, \beta)^{2} \beta\left(1-b^{2}\right)+Q(b, \beta)^{2}\left(b^{2}-\beta^{2}\right)
$$

Substitute $b=0$ into this equation: we obtain $R_{1}(0, \beta)^{2} \beta+Q(0, \beta)^{2} \beta^{2}=0$, which, by the parity of the degree, implies that $R_{1}(0, \beta)=Q(0, \beta)=0$. This means that both $R_{1}(b, \beta)$ and $Q(b, \beta)$ are divisible by b. Similarly, if we substitute $\beta=0$ into the above equation we find that both $P_{1}(b, \beta)$ and $Q(b, \beta)$ are divisible by β. Thus we can write

$$
P_{1}(b, \beta)=\beta P_{2}(b, \beta), R_{1}(b, \beta)=b R_{2}(b, \beta), Q(b, \beta)=b \beta Q_{2}(b, \beta)
$$

where $P_{2}(b, \beta), R_{2}(b, \beta), Q(b, \beta) \in k[b, \beta]$. But this implies that all $P(b, \beta), Q(b, \beta)$, $R(b, \beta)$ are divisible by $b \beta$, a contradiction.

The next corollary completes the proof of Theorem (1.1):
Corollary 2.8. Let $H \subseteq \mathbb{A}^{4}=\operatorname{Spec} k[a, \alpha, b, \beta], p: H \rightarrow \mathbb{A}^{2}=\operatorname{Spec} k[b, \beta]$ be the same as in Proposition 2.5 and Corollary 2.6. Consider another affine space $\operatorname{Spec} k[s, t]$ and the (finite Galois) morphism of degree 4

$$
f: \operatorname{Spec} k[s, t] \rightarrow \operatorname{Spec} k[b, \beta]
$$

defined by

$$
f^{*} b=s^{2}, \quad f^{*} \beta=t^{2}
$$

Consider then the fibre product

$$
Q:=H \times{ }_{\operatorname{Spec} k[b, \beta]} \operatorname{Spec} k[s, t]
$$

and the natural second projection $p_{2}: Q \rightarrow \operatorname{Spec} k[s, t]$. Then p_{2} is a conic bundle with a rational section and Q is a rational threefold. In particular, H, hence X, is unirational.

Proof. Recall that H is the hypersurface in Spec $k[a, b, \alpha, \beta]$ defined by

$$
a^{2} \beta\left(1-\beta^{2}\right)=\alpha^{2} b\left(1-b^{2}\right)+b \beta\left(b^{2}-\beta^{2}\right)
$$

or equivalently by

$$
\left(a^{2}-b\right)\left(\alpha^{2}-\beta^{3}\right)=\left(\alpha^{2}-\beta\right)\left(a^{2}-b^{3}\right) .
$$

Thus, by definition of the fibre product, Q is a hypersurface in the affine space $\mathbb{A}^{4}=\operatorname{Spec} k[a, \alpha, s, t]$, defined by

$$
a^{2} t^{2}\left(1-t^{4}\right)=\alpha^{2} s^{2}\left(1-s^{4}\right)+s^{2} t^{2}\left(s^{4}-t^{4}\right)
$$

or equivalently by

$$
\left(a^{2}-s^{2}\right)\left(\alpha^{2}-t^{6}\right)=\left(\alpha^{2}-t^{2}\right)\left(a^{2}-s^{6}\right) .
$$

Then the natural projection $p_{2}: Q \rightarrow \operatorname{Spec} k[s, t]$ is a conic bundle with generic fibre

$$
Q_{\eta^{\prime}}=\left(a^{2} t^{2}\left(1-t^{4}\right)=\alpha^{2} s^{2}\left(1-s^{4}\right)+s^{2} t^{2}\left(s^{4}-t^{4}\right)\right) \subseteq \operatorname{Spec} k(s, t)[a, \alpha]=\mathbb{A}_{\eta^{\prime}}^{2}
$$

where η^{\prime} is the generic point of $\operatorname{Spec} k[s, t]$. Then $Q_{\eta^{\prime}}$ has a rational point $(a, \alpha)=(s, t) \in$ $Q(k(s, t))$ over $\kappa\left(\eta^{\prime}\right)=k(s, t)$. Hence $Q_{\eta^{\prime}}$ is isomorphic to $\mathbb{P}_{\eta^{\prime}}^{1}$ over $k(s, t)$. Thus, denoting the affine coordinate of $\mathbb{P}_{\eta^{\prime}}^{1}$ by v, we obtain that

$$
k(Q)=k(s, t)\left(Q_{\eta^{\prime}}\right) \simeq k(s, t)\left(\mathbb{P}_{\eta^{\prime}}^{1}\right)=k(s, t)(v)=k(s, t, v)
$$

Since Q is of dimension 3 over k, it follows that s, t, v are algebraically independent over k. Hence, $k(Q)$ is isomorphic to the rational function field of \mathbb{P}^{3} over k. Hence Q is a rational threefold over k, i.e., birationally equivalent to \mathbb{P}^{3} over k. Since the natural morphism $p_{1}: Q \rightarrow H$, i.e., the first projection morphism in the fibre product, is a finite dominant morphism of degree $4, Q$ is birational to \mathbb{P}^{3} and H is birationally equivalent to X, all over k, we obtain a rational dominant map $q: \mathbb{P}^{3} \cdots \rightarrow X$ over k, from the natural projection $p_{1}: Q \rightarrow H$. Hence X is unirational.
Remark 2.9. (1) Colliot-Thélène finally proved in [2] that the hypersurface in Proposition (2.5) is rational, whence Ueno-Campana's threefold X is actually rational.
(2) Hence Ueno-Campana's threefold X provides the second explicit example of a complex smooth rational threefold admitting primitive automorphisms of positive entropy. Actually, automorphisms of $E_{\sqrt{-1}}^{3}$ of the same shape as those in Lemma 4.3 of [3] induce such automorphisms of X.

Acknowledgements. We would like to express our thanks to Professor De-Qi Zhang for his invitation to Singapore where the initial idea of this note grew up.

References

[1] Campana, F.: Remarks on an example of K. Ueno, Series of congress reports, Classification of algebraic varieties. In: Faber, C., van der Geer, G., Looijenga, E. (eds.) European Mathematical Society, pp. 115-121 (2011)
[2] Colliot-Thélène, J.-L.: Rationalité d'un fibré en coniques. arXiv:1310.5402
[3] Oguiso, K., Truong, T.T.: Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy. ArXiv:1306.1590
[4] Ueno, K.: Classification theory of algebraic varieties and compact complex spaces. Notes written in collaboration with P. Cherenack, Lecture Notes in Mathematics, 439 Springer-Verlag, Berlin-New York (1975)

