Fabrizio Catanese, Keiji Oguiso and Tuyen Trung Truong

Unirationality of Ueno-Campana's threefold

Received: 4 December 2013 / Revised: 7 April 2014 Published online: 14 May 2014

Abstract. We shall prove that the threefold studied in the paper "Remarks on an Example of K. Ueno" by F. Campana is unirational. This gives an affirmative answer to a question posed in the paper above and also in the book by K. Ueno, "Classification theory of algebraic varieties and compact complex spaces".

1. Introduction

Let k be any field of characteristic $\neq 2$ containing a primitive fourth root of unity $\sqrt{-1}$. We shall work over k unless otherwise stated. Let [x : y : z] be the homogeneous coordinates of \mathbb{P}^2 and let

$$C := \left(y^2 z = x(x^2 - z^2)\right) \subseteq \mathbb{P}^2$$

be the harmonic elliptic curve, having an automorphism g of order 4 defined by

$$g^*(x:y:z) = \left(-x:\sqrt{-1}y:z\right)$$

whose quotient is \mathbb{P}^1 . When *k* is the complex number field \mathbb{C} , we have

$$(C,g) \simeq \left(E_{\sqrt{-1}}, \sqrt{-1}\right) \;,$$

where $E_{\sqrt{-1}} = \mathbb{C}/(\mathbb{Z} + \sqrt{-1}\mathbb{Z})$, the elliptic curve of period $\sqrt{-1}$, and $\sqrt{-1}$ is the automorphism induced by multiplication by $\sqrt{-1}$ on **C**. This is because the complex elliptic curve with an automorphism of order 4 acting on the space of global holomorphic 1-forms as $\sqrt{-1}$ is unique up to isomorphism.

Let (C_j, g_i) (j = 1, 2, 3) be three copies of (C, g). Let

$$Z = C_1 \times C_2 \times C_3.$$

F. Catanese (🖾): Lehrstuhl Mathematik VIII, Mathematisches Institut, Universität Bayreuth, Bayreuth, Germany. e-mail: fabrizio.catanese@uni-bayreuth.de

K. Oguiso: Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan. e-mail: oguiso@math.sci.osaka-u.ac.jp

T. T. Truong: Department of Mathematics, Syracuse University, Syracuse NY 13210, USA. e-mail: tutruong@syr.edu

Mathematics Subject Classification: 14M20 (primary), 14E08 (secondary)

For simplicity, we denote the automorphism of Z defined by (g_1, g_2, g_3) by the same letter g. Then g is an automorphism of Z of order 4 and the quotient threefold

$$Y := (C_1 \times C_2 \times C_3) / \langle g \rangle$$

has 8 singular points of type (1, 1, 1)/4 and 28 singular points of type (1, 1, 1)/2. Let X be the blow up of Y at the maximal ideals of these singular points. Then X is a smooth projective threefold defined over k. In his paper, Campana [1] proved that X is a rationally connected threefold when $k = \mathbb{C}$. We shall call X the Ueno-Campana's threefold.

In [1, Question 4], Campana asked whether X is rational or unirational (at least over \mathbb{C}). See also [4, Page 208] for this Question and [3] for a relevant example and applications to complex dynamics. The aim of this short note is to give an affirmative answer to this question:

Theorem 1.1. Ueno-Campana's threefold X is unirational, i.e., there is a dominant rational map $\mathbb{P}^3 \cdots \to X$.

We shall show that X is birationally equivalent to the Galois quotient of a conic bundle over \mathbb{P}^2 with a rational section, while X itself is birationally equivalent to a conic bundle over \mathbb{P}^2 without any rational section.

2. Proof of Theorem 1.1

The curves (C_i, g_i) (i = 1, 2, 3) are birationally equivalent to (C_i^0, g_i) , where C_i^0 is the curve in the affine space $\mathbb{A}^2 = \operatorname{Spec} k[X_i, Y_i]$, and g_i is the automorphism of C_i^0 , defined by

$$Y_i^2 = X_i \left(X_i^2 - 1 \right) , \ g_i^* Y_i = \sqrt{-1} Y_i , \ g_i^* X_i = -X_i.$$

The affine coordinate ring $k[C_i^0]$ of C_i^0 is

$$k\left[C_{i}^{0}\right] = k\left[X_{i}, Y_{i}\right] / \left(Y_{i}^{2} - X_{i}\left(X_{i}^{2} - 1\right)\right).$$

We set $x_i := X_i \mod (Y_i^2 - X_i(X_i^2 - 1)), y_i := Y_i \mod (Y_i^2 - X_i(X_i^2 - 1)))$. We note that $y_i^2 = x_i(x_i^2 - 1), g^* y_i = \sqrt{-1}y_i, g^* x_i = -x_i \ln k[C_i^0]$. Then $(Z = C_1 \times C_2 \times C_3, g = (g_1, g_2, g_3))$ is birationally equivalent to the affine

threefold

$$V := C_1^0 \times C_2^0 \times C_3^0$$

with automorphism (g_1, g_2, g_3) , which we denote by the same letter g, and with affine coordinate ring

$$k[V] = k[C_i^0] \otimes k[C_2^0] \otimes k[C_3^0]$$
 generated by $x_1, x_2, x_3, y_1, y_2, y_3$.

The rational function field k(Z) of Z is

$$k(Z) = k(V) = k(x_1, x_2, x_3, y_1, y_2, y_3).$$

In both k[V] and k(Z), we have

$$y_i^2 = x_i \left(x_i^2 - 1 \right),$$
 (2.1)

$$g^* y_i = \sqrt{-1} y_i , \ g^* x_i = -x_i.$$
 (2.2)

Since *X* is birationally equivalent to $V/\langle g \rangle$, the rational function field K(X) of *X* is identified with the invariant subfield $k(Z)^g$ of k(Z), i.e.,

$$k(X) = k(Z)^g = \{ f \in k(Z) \, | g^* f = f \}.$$

Consider the following elements in k(Z):

$$b_2 := \frac{x_2}{x_1}, \quad b_3 := \frac{x_3}{x_1}, \quad a_2 := \frac{y_2}{y_1}, \quad a_3 := \frac{y_3}{y_1},$$
 (2.3)

$$u_1 := x_1^2, \quad w_1 := y_1^4, \quad \lambda_1 := x_1 y_1^2,$$
 (2.4)

and define the subfield L of k(Z) by

 $L := k(b_2, b_3, a_2, a_3, u_1, w_1, \lambda_1).$

Here we used the fact that $x_1 \neq 0$, $y_1 \neq 0$ in k(Z).

Lemma 2.1. k(X) = L in k(Z).

Proof. By (2.2) and (2.3), b_2 , b_3 , a_2 , a_3 , u_1 , w_1 , λ_1 are g-invariant. Hence

$$L \subseteq k(X) \subseteq k(Z). \tag{2.5}$$

Note that $k(Z) = L(y_1)$. This is because

$$x_1 = \frac{x_1}{y_1^2}$$
, $x_2 = b_2 x_1$, $x_3 = b_3 x_1$, $y_2 = a_2 y_1$, $y_3 = a_3 y_1$,

by (2.3) and (2.4). Since $y_1^4 = w_1$ and $w_1 \in k(Z)$, it follows that

$$[k(Z):L] \le 4, \tag{2.6}$$

where [k(Z) : L] is the degree of the field extension $L \subseteq k(Z)$, i.e., the dimension of k(Z) being naturally regarded as the vector space over L.

On the other hand, the group $\langle g \rangle = \text{Gal}(k(Z)/k(X))$ is of order 4. Thus, by the fundamental theorem of Galois theory, we have that

$$[k(Z): k(X)] = [K(Z): k(Z)^g] = \text{ ord } (g) = 4.$$
(2.7)

The result now follows from (2.5), (2.6), (2.7). Indeed, by (2.5), we have

$$[k(Z) : L] = [k(Z) : k(X)][k(X) : L].$$

On the other hand, $[k(Z) : L] \le 4$ by (2.6), and $[k(X) : L] \ge 1$. Hence [k(X) : L] = 1 by (2.7). This means that L = k(X) in k(Z), as claimed.

Lemma 2.2. $L = k(u_1, b_2, b_3, a_2, a_3)$ in k(Z).

Proof. Since $u_1, b_2, b_3, a_2, a_3 \in L$, it follows that $k(u_1, b_2, b_3, a_2, a_3) \subseteq L$. Let us show that $L \subseteq k(u_1, b_2, b_3, a_2, a_3)$. For this, it suffices to show that $w_1, \lambda_1 \in k(u_1, b_2, b_3, a_2, a_3)$.

Recall that, by (2.1), $y_1^2 = x_1(x_1^2 - 1)$; hence, squaring both sides of the equality and using (2.6), we obtain that

$$w_1 = y_1^4 = x_1^2 \left(x_1^2 - 1 \right)^2 = u_1 (u_1 - 1)^2.$$
(2.8)

Hence $w_1 \in k(u_1, b_2, b_3, a_2, a_3)$. From $y_1^2 = x_1(x_1^2 - 1)$ again, we have that

$$\lambda_1 = x_1 y_1^2 = x_1^2 \left(x_1^2 - 1 \right) = u_1 (u_1 - 1).$$
(2.9)

Hence $\lambda_1 \in k(u_1, b_2, b_3, a_2, a_3)$ as well.

Lemma 2.3. Let j = 2, 3. Then, $a_j^2 - b_j \neq 0$ in both k(Z) and k(X).

Proof. By using (2.1), we obtain that

$$a_j^2 - b_j = \frac{y_j^2}{y_1^2} - \frac{x_j}{x_1} = \frac{x_j \left(x_j^2 - 1\right)}{x_1 \left(x_1^2 - 1\right)} - \frac{x_j}{x_1} = \frac{x_j}{x_1} \left(\frac{x_j^2 - 1}{x_1^2 - 1} - 1\right),$$
(2.10)

in k(Z). Recall that $x_i \neq 0$ in k(Z). Thus, if $a_j^2 - b_j = 0$ in k(Z), then we would have $(x_j^2 - 1)/(x_1^2 - 1) = 1$ in K(Z) = k(V) from the equality above, and therefore, $x_j = \pm x_1$ in k[V]. However, this contradicts the fact that x_1 is identically 0 on the set of \overline{k} -valued points $(\{0\} \times C_2 \times C_3)(\overline{k})$ but $\pm x_j$ (j = 2, 3) are not identically 0 on it. This contradiction implies that $a_j^2 - b_j \neq 0$ in k(Z). Since $a_j^2 - b_j \in k(Z)^g = k(X)$ and k(X) is a subfield of k(Z), it follows that $a_j^2 - b_j \neq 0$ in k(X) as well.

Proposition 2.4. $k(X) = L = k(b_2, b_3, a_2, a_3)$ in k(Z). More precisely, in k(Z), we have

$$u_1 = \frac{a_2^2 - b_2}{a_2^2 - b_2^3} = \frac{a_3^2 - b_3}{a_3^2 - b_3^3}.$$
 (2.11)

Proof. By Lemmas 2.1 and 2.2, it suffices to show the equality (2.10) in k(Z). Observe that, for j = 2, 3:

$$y_j^2 = x_j \left(x_j^2 - 1 \right), \ y_1^2 a_j^2 = x_1 b_j \left(x_1^2 b_j^2 - 1 \right)$$

hence multiplication by x_1 yields

$$x_1^2 b_j \left(x_1^2 b_j^2 - 1 \right) = x_1 y_1^2 a_j^2 = x_1^2 \left(x_1^2 - 1 \right) a_j^2$$

and dividing by x_1^2 and observing that $u_1 = x_1^2$ we obtain

$$b_j \left(u_1 b_j^2 - 1 \right) = (u_1 - 1)a_j^2$$

i.e.,

$$(**) u_1 \left(a_j^2 - b_j^3 \right) = a_j^2 - b_j.$$

Using the previous lemma and (**) we obtain $(a_j^2 - b_j^3) \neq 0$, so we can divide and obtain (2.11).

Proposition 2.5. *X* is birationally equivalent to the affine hypersurface H in \mathbb{A}^4 = Spec $k[a, b, \alpha, \beta]$, defined by

$$(a^2-b)(\alpha^2-\beta^3) = (\alpha^2-\beta)(a^2-b^3),$$

or equivalently defined by

$$a^{2}\beta\left(1-\beta^{2}\right)=\alpha^{2}b\left(1-b^{2}\right)+b\beta\left(b^{2}-\beta^{2}\right),$$

Proof. By Lemma (2.1) and Proposition (2.4), $k(X) = k(a_2, a_3, b_2, b_3)$ in k(Z), with a relation

$$\left(a_{2}^{2}-b_{2}\right)\left(a_{3}^{2}-b_{3}^{3}\right) = \left(a_{3}^{2}-b_{3}\right)\left(a_{2}^{2}-b_{2}^{3}\right).$$
(2.12)

Expanding both sides and subtracting then the common term $a_2^2 a_3^2$, we obtain

$$-a_2^2b_3^3 - b_2a_3^2 + b_2b_3^3 = -a_3^2b_2^3 - b_3a_2^2 + b_3b_2^3.$$

Solving this relation in terms of a_2 , we obtain that

$$a_2^2 b_3 \left(1 - b_3^2 \right) = a_3^2 b_2 \left(1 - b_2^2 \right) + b_2 b_3 \left(b_2^2 - b_3^2 \right).$$
(2.13)

Since $b_3 = x_3/x_1$ is not a constant in k(Z), it follows that $b_3(1 - b_3^2) \neq 0$ in k(Z), whence also not 0 in k(X). Thus

$$a_2^2 = \frac{a_3^2 b_2 \left(1 - b_2^2\right) + b_2 b_3 \left(b_2^2 - b_3^2\right)}{b_3 \left(1 - b_3^2\right)}.$$
(2.14)

Therefore a_2 is algebraic over $k(a_3, b_2, b_3)$ of degree at most 2. Since X is of dimension 3 over k, it follows that a_3, b_2, b_3 form a transcendence basis of k(X) over k. Thus, the subring $k[a_3, b_2, b_3]$ of k(X) is isomorphic to the polynomial ring over k of Krull-dimension 3. Moreover, the right hand side of 2.14 is not a square in $k(a_3, b_2, b_3)$. Indeed, the multiplicity of b_3 in the denominator is 1 while the numerator is not in k and the multiplicity of b_3 in the numerator is 0. Thus Eq. (2.14) is the minimal polynomial of a_2 over $k(a_3, b_2, b_3)$. Hence X is birationally equivalent to the double cover of $\mathbb{A}^3 = \operatorname{Spec} k[a_3, b_2, b_3]$, defined by (2.14). This means that X is birationally equivalent to the hypersurface in the affine space $\mathbb{A}^4 = \operatorname{Spec} k[a, \alpha, b, \beta]$, defined by (2.14) or, equivalently, defined by (2.13), or by (2.12), in which (a_2, a_3, b_2, b_3) are replaced by (a, α, b, β) .

Corollary 2.6. Let $H \subseteq \mathbb{A}^4 = \operatorname{Spec} k[a, \alpha, b, \beta]$ be the same as in Proposition 2.5. Consider the affine plane $\mathbb{A}^2 = \operatorname{Spec} k[b, \beta]$ and the natural projection

$$\pi: \mathbb{A}^4 \to \mathbb{A}^2$$

defined by

$$(a, b, \alpha, \beta) \mapsto (b, \beta).$$

Then the natural restriction map

$$p := \pi | H : H \to \mathbb{A}^2$$

is a conic bundle over \mathbb{A}^2 . In particular, the graph Γ of the rational map $\tilde{p} : X \cdots \to \mathbb{P}^2$ naturally induced by p forms a conic bundle on Γ over \mathbb{P}^2 . We note that Γ is projective and birationally equivalent to X over k.

Proof. The fibre $\pi^{-1}(\eta)$ of π over the generic point $\eta \in \mathbb{A}^2$ = Spec $k[b, \beta]$ is the affine space \mathbb{A}^2_{η} = Spec $k(b, \beta)[a, \alpha]$ defined over $\kappa(\eta) = k(b, \beta)$. Thus by the second equation in Proposition 2.5, the generic fibre $X_{\eta} := (\pi | H)^{-1}(\eta)$ is the conic in \mathbb{A}^2_{η} , defined by

$$a^{2}\beta\left(1-\beta^{2}\right)=\alpha^{2}b\left(1-b^{2}\right)+b\beta\left(b^{2}-\beta^{2}\right).$$

This implies the result.

Remark 2.7. The conic X_{η} in the proof of Proposition 2.6 has no rational point over $\kappa(\eta) = k(b, \beta)$, i.e., the set $X_{\eta}(k(b, \beta))$ is empty.

Proof. Suppose to the contrary that $(a(b, \beta), \alpha(b, \beta)) \in X_{\eta}(k(b, \beta))$. We can write

$$a(b,\beta) = \frac{P(b,\beta)}{Q(b,\beta)} , \quad \alpha(b,\beta) = \frac{R(b,\beta)}{Q(b,\beta)}$$

where $P(b, \beta)$, $Q(b, \beta)$, $R(b, \beta) \in k[b, \beta]$ with no non-constant common factor, possibly after replacing the denominators by their product. Then substituting the above into the equation of X_{η} and clearing the denominator, we would have the following identity in $k[b, \beta]$:

$$P(b,\beta)^{2} \beta \left(1-\beta^{2}\right) = R(b,\beta)^{2} b \left(1-b^{2}\right) + Q(b,\beta)^{2} b \beta \left(b^{2}-\beta^{2}\right).$$

Since $k[b, \beta]$ is a polynomial ring, in particular, it is a UFD, it would follow that $P(b, \beta)$ is divisible by *b* and $R(b, \beta)$ is divisible by β in $k[b, \beta]$. Thus $P(b, \beta) = P_1(b, \beta)b$ and $R(b, \beta) = R_1(b, \beta)\beta$ for some $P_1(b, \beta)$, $R_1(b, \beta) \in k[b, \beta]$. Substituting these two into the equality above and dividing by $b\beta \neq 0$, it follows that

$$P_{1}(b,\beta)^{2}b\left(1-\beta^{2}\right) = R_{1}(b,\beta)^{2}\beta\left(1-b^{2}\right) + Q(b,\beta)^{2}\left(b^{2}-\beta^{2}\right).$$

Substitute b = 0 into this equation: we obtain $R_1(0, \beta)^2 \beta + Q(0, \beta)^2 \beta^2 = 0$, which, by the parity of the degree, implies that $R_1(0, \beta) = Q(0, \beta) = 0$. This means that both $R_1(b, \beta)$ and $Q(b, \beta)$ are divisible by b. Similarly, if we substitute $\beta = 0$ into the above equation we find that both $P_1(b, \beta)$ and $Q(b, \beta)$ are divisible by β . Thus we can write

$$P_1(b,\beta) = \beta P_2(b,\beta), \ R_1(b,\beta) = bR_2(b,\beta), \ Q(b,\beta) = b\beta Q_2(b,\beta),$$

where $P_2(b, \beta)$, $R_2(b, \beta)$, $Q(b, \beta) \in k[b, \beta]$. But this implies that all $P(b, \beta)$, $Q(b, \beta)$, $R(b, \beta)$ are divisible by $b\beta$, a contradiction.

The next corollary completes the proof of Theorem (1.1):

Corollary 2.8. Let $H \subseteq \mathbb{A}^4 = \operatorname{Spec} k[a, \alpha, b, \beta]$, $p : H \to \mathbb{A}^2 = \operatorname{Spec} k[b, \beta]$ be the same as in Proposition 2.5 and Corollary 2.6. Consider another affine space $\operatorname{Spec} k[s, t]$ and the (finite Galois) morphism of degree 4

$$f : \operatorname{Spec} k[s, t] \to \operatorname{Spec} k[b, \beta]$$

defined by

$$f^*b = s^2, \quad f^*\beta = t^2.$$

Consider then the fibre product

$$Q := H \times_{\text{Spec } k[b,\beta]} \text{Spec } k[s,t]$$

and the natural second projection $p_2 : Q \to \text{Spec } k[s, t]$. Then p_2 is a conic bundle with a rational section and Q is a rational threefold. In particular, H, hence X, is unirational.

Proof. Recall that H is the hypersurface in Spec $k[a, b, \alpha, \beta]$ defined by

$$a^{2}\beta\left(1-\beta^{2}\right)=\alpha^{2}b\left(1-b^{2}\right)+b\beta\left(b^{2}-\beta^{2}\right),$$

or equivalently by

$$(a^2-b)(\alpha^2-\beta^3) = (\alpha^2-\beta)(a^2-b^3).$$

Thus, by definition of the fibre product, Q is a hypersurface in the affine space $\mathbb{A}^4 = \operatorname{Spec} k[a, \alpha, s, t]$, defined by

$$a^{2}t^{2}(1-t^{4}) = \alpha^{2}s^{2}(1-s^{4}) + s^{2}t^{2}(s^{4}-t^{4}),$$

or equivalently by

$$\left(a^2 - s^2\right)\left(\alpha^2 - t^6\right) = \left(\alpha^2 - t^2\right)\left(a^2 - s^6\right)$$

Then the natural projection $p_2: Q \to \operatorname{Spec} k[s, t]$ is a conic bundle with generic fibre

$$Q_{\eta'} = \left(a^2 t^2 (1 - t^4) = \alpha^2 s^2 \left(1 - s^4\right) + s^2 t^2 \left(s^4 - t^4\right)\right) \subseteq \operatorname{Spec} k(s, t)[a, \alpha] = \mathbb{A}_{\eta'}^2,$$

where η' is the generic point of Spec k[s, t]. Then $Q_{\eta'}$ has a rational point $(a, \alpha) = (s, t) \in Q(k(s, t))$ over $\kappa(\eta') = k(s, t)$. Hence $Q_{\eta'}$ is isomorphic to $\mathbb{P}^1_{\eta'}$ over k(s, t). Thus, denoting the affine coordinate of $\mathbb{P}^1_{\eta'}$ by v, we obtain that

$$k(\mathcal{Q}) = k(s,t)(\mathcal{Q}_{\eta'}) \simeq k(s,t) \left(\mathbb{P}^1_{\eta'}\right) = k(s,t)(v) = k(s,t,v).$$

Since Q is of dimension 3 over k, it follows that s, t, v are algebraically independent over k. Hence, k(Q) is isomorphic to the rational function field of \mathbb{P}^3 over k. Hence Q is a rational threefold over k, i.e., birationally equivalent to \mathbb{P}^3 over k. Since the natural morphism $p_1 : Q \to H$, i.e., the first projection morphism in the fibre product, is a finite dominant morphism of degree 4, Q is birational to \mathbb{P}^3 and H is birationally equivalent to X, all over k, we obtain a rational dominant map $q : \mathbb{P}^3 \cdots \to X$ over k, from the natural projection $p_1 : Q \to H$. Hence X is unirational.

- *Remark* 2.9. (1) Colliot-Thélène finally proved in [2] that the hypersurface in Proposition (2.5) is rational, whence Ueno-Campana's threefold *X* is actually rational.
- (2) Hence Ueno-Campana's threefold X provides the second explicit example of a complex smooth rational threefold admitting primitive automorphisms of positive entropy. Actually, automorphisms of $E^3_{\sqrt{-1}}$ of the same shape as those in Lemma 4.3 of [3] induce such automorphisms of X.

Acknowledgements. We would like to express our thanks to Professor De-Qi Zhang for his invitation to Singapore where the initial idea of this note grew up.

References

 Campana, F.: Remarks on an example of K. Ueno, Series of congress reports, Classification of algebraic varieties. In: Faber, C., van der Geer, G., Looijenga, E. (eds.) European Mathematical Society, pp. 115–121 (2011)

- [2] Colliot-Thélène, J.-L.: Rationalité d'un fibré en coniques. arXiv:1310.5402
- [3] Oguiso, K., Truong, T.T.: Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy. ArXiv:1306.1590
- [4] Ueno, K.: Classification theory of algebraic varieties and compact complex spaces. Notes written in collaboration with P. Cherenack, Lecture Notes in Mathematics, 439 Springer-Verlag, Berlin-New York (1975)