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We give a structure theorem for projective manifolds W0 with the property of 
admitting a 1-parameter deformation where Wt is a hypersurface in a projective 
smooth manifold Zt.
Their structure is the one of special iterated univariate coverings which we call of 
normal type, which essentially means that the line bundles where the univariate 
coverings live are tensor powers of the normal bundle to the image X of W0.
We give applications to the case where Zt is projective space, respectively an Abelian 
variety.
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r é s u m é

Nous donnons un théorème de structure pour les variétés projectives W0 avec la 
propriété d’admettre une déformation à 1 paramètre où Wt est une hypersurface 
dans une variété projective lisse Zt. Leur structure est celle des revêtements 
univariées spéciales itérées que nous appelons de type normal : ce qui signifie 
essentiellement que le fibrées en droites où les revêtements univariées sont plongée 
sont des puissances tensoriels de le faisceau normal à l’image X de W0. Nous donnons 
des applications au cas où Zt est un espace projectif, respectivement une variété 
abélienne.

© 2018 Published by Elsevier Masson SAS.

✩ The present work took place in the framework of the ERC Advanced grant n. 340258, ‘TADMICAMT’. Both authors would also 
like to acknowledge the support and hospitality of KIAS, Seoul which they visited as Research Scholar, respectively as Affiliate 
Professor. The second author was also supported by Basic Science Research Program through the NRF of Korea (2016930170).
* Corresponding author.

E-mail addresses: fabrizio.catanese@uni-bayreuth.de (F. Catanese), ynlee@kaist.ac.kr (Y. Lee).
https://doi.org/10.1016/j.matpur.2018.06.024
0021-7824/© 2018 Published by Elsevier Masson SAS.

https://doi.org/10.1016/j.matpur.2018.06.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/matpur
mailto:fabrizio.catanese@uni-bayreuth.de
mailto:ynlee@kaist.ac.kr
https://doi.org/10.1016/j.matpur.2018.06.024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.matpur.2018.06.024&domain=pdf


176 F. Catanese, Y. Lee / J. Math. Pures Appl. 125 (2019) 175–188
1. Introduction

Many years ago Sernesi [7] showed that small deformations of complete intersections in projective space, 
of dimension n ≥ 2 (the case of curves, n = 1 is of quite different nature, see e.g. [8]), are again complete 
intersections, unless the complete intersection defines a K3 surface (i.e., n = 2 and the canonical bundle 
is trivial). Hence, in particular, smooth hypersurfaces in projective space Pn+1 form an open set in the 
Kuranishi space, respectively an open set in the moduli space when they are of general type, unless n = 2
and the degree equals 4. In considering the closure of this set in the moduli space, we have to deal with 
varieties W0 of the same dimension, given together with a generically finite rational map φ0 : W0 ��� P

n+1.
As shown by Horikawa in [5], already in the easiest nontrivial case n = 2, deg(W0) = 5 the situation 

becomes rather complicated. But we show here that things are simpler in the case where φ0 is a morphism.
A similar result to Sernesi’s holds for hypersurfaces in an Abelian variety (Kodaira and Spencer’s theo-

rem 14.4 in [6]), and we can consider the closure of the locus of hypersurfaces X in Abelian varieties (for 
n ≥ 2 the Abelian variety is just the Albanese variety of X) observing that in this case any limit W0 has a 
generically finite Albanese map φ0 : W0 → A0 (see for instance lemma 149 of [3]).

Also in this case we can ask the question of characterizing the morphisms φ0 admitting a deformation 
which is a hypersurface embedding in some Abelian variety, deformation of the original one.

The main motivation for posing this question also in higher generality comes from the theory of topological 
methods to moduli theory, cf. [3]; and, more specifically, the theory of Inoue-type varieties, introduced in 
[1]. In the theory of Inoue-type varieties, one can describe their moduli spaces explicitly in the case where 
the morphism φ0 has necessarily degree one onto its image. This is however a big restriction, and one would 
like to consider also the case where the morphism φ0 has degree at least two. We strive therefore towards 
a theory of multiple Inoue-type varieties and, in order to do this, we restrict ourselves in this paper to the 
special case where φ0 is a morphism which is generically finite onto its image, and where the canonical 
divisor of W0 is ample.

To illustrate our main theorem, let us consider two simple examples, the first one where the image of 
W0 is the smooth hypersurface X := {σ = 0} ⊂ P

n+1, σ being a homogeneous polynomial of degree d. We 
let then W0 be the complete intersection in the weighted projective space P(1, 1, . . . , 1, d) defined by the 
equations

W0 = {(z0, z1, . . . , zn+1, w)|σ(z0, z1, . . . , zn+1) = 0,

P (z0, z1, . . . , zn+1, w) := wm +
m∑
i=1

wm−iai(z0, z1, . . . , zn+1) = 0}. (I-1)

We can easily deform the complete intersection by deforming the degree d equation adding a constant 
times the variable w, hence obtaining the following complete intersection:

P (z0, z1, . . . , zn+1, w) = 0, tw − σ(z0, z1, . . . , zn+1) = 0, t ∈ C.

Clearly, for t = 0 we obtain the previous W0, a degree m covering of the hypersurface X = {σ = 0}, 
whereas for t �= 0 we can eliminate the variable w and obtain a hypersurface Wt in Pn+1 with equation (of 
degree md)

P (z0, z1, . . . , zn+1, σ(z)/t) = 0.

Example 1.1 (Iterated weighted deformations). Now, one can iterate this process, and consider, in the 
weighted projective space
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P(1, 1, . . . , 1, d, dm1, . . . , dmk), m1|m2| . . . |mk,

a complete intersection W of multidegrees (d, dm1, . . . , dmk, dm), where mk|m =: mk+1.
Then, necessarily, there exist constants t0, t1, . . . , tk such that the equations of W have the following 

form, where the Qj ’s are general weighted homogeneous polynomials of degree = dmj (in particular we 
assume them to be monic, so that the rational map to projective space is a morphism):

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ(z) = w0t0

Q1(w0, z) = w1t1

· · · · · ·
Qk(w0, . . . , wk−1, z) = wktk

Qk+1(w0, . . . , wk, z) = 0.

(I-2)

Again, if all the tj ’s are �= 0, we can eliminate the variables wj , and we obtain a hypersurface {F (z) = 0}
in Pn+1.

We claim that the above description generalizes, and the main idea of the following main theorem is that 
one can replace weighted projective space P(1, 1, . . . , 1, d, dm1, . . . , dmk), m1|m2| . . . |mk, by the total space 
of a direct sum of line bundles over some projective variety X, or Z0 ⊃ X, or over a family Z of projective 
varieties.

The first assertion of the main theorem is that, in order that φ0 : W0 → Z0 deforms to a hypersurface 
embedding, a necessary condition is that φ0 : W0 → X := φ0(W0) is a smooth iterated univariate covering 
of normal type (see the next section for this very restrictive condition).

The main theorem also gives sufficient conditions, given such a covering, for the existence of a deformation 
to a hypersurface embedding.

We then give the proof, and in the final section, we discuss the first applications to the case where the 
target manifold Z0 is projective space or an Abelian variety.

We defer the applications to the theory of multiple Inoue type varieties to a future paper.
We work of course over the complex numbers, and in several situations we consider also more general 

compact complex manifolds than projective manifolds.

2. Statement of the main theorem

To give a clear statement of our results, we need to introduce the following terminology.

Definition 2.1.
i) Given a complex space (or a scheme) X, a univariate covering of X is a hypersurface Y , contained in 

a line bundle over X, and defined there as the zero set of a monic polynomial.
This means, Y = Spec(R), where R is the quotient algebra of the symmetric algebra over an invertible 

sheaf L, Sym(L) = ⊕i≥0L⊗i, by a monic (univariate) polynomial:

R := Sym(L)/(P ), P = wm + a1(x)wm−1 + a2(x)wm−2 + · · · + am(x).

Here aj ∈ H0(X, L⊗j). The univariate covering is said to be smooth if both X and Y are smooth.
ii) An iterated univariate covering W → X is a composition of univariate coverings

fk+1 : W → Xk, fk : Xk → Xk−1, . . . , f1 : X1 → X,

whose associated line bundles are denoted Lk, Lk−1, . . . , L1, L0.
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iii) In the case where X ⊂ Z is a (smooth) hypersurface, we say that the iterated univariate covering is 
of normal type if

– all the line bundles Lj are pull back from X of a line bundle of the form OX(mjX), and moreover
– m1|m2| . . . |mk, and the degree of fj equals mj

mj−1
.

– we say that the iterated covering is normally induced if moreover all the coefficients aI(x) of the 
polynomials

Qj(w0, . . . , wj−1, x) =
∑
I

aI(x)wI

describing the intermediate extensions are sections of a line bundle OX(r(I)X) coming from 
H0(Z, OZ(r(I)X)).

Remark 2.2. The property that the iterated univariate covering W → X is normally induced clearly means 
that it is the restriction to X of an iterated univariate covering of Z.

The property that the former is smooth does not necessarily imply that also the latter is smooth.

Definition 2.3. A 1-parameter deformation to hypersurface embedding consists of the following data:

(1) a one dimensional family of smooth projective varieties of dimension n (i.e., a smooth projective holo-
morphic map p : W → T where T is a germ of a smooth holomorphic curve at a point 0 ∈ T ) mapping 
to another family π : Z → T of smooth projective varieties of dimension n + 1 via a relative map 
Φ : W → Z such that π ◦ Φ = p (hence we have the following commutative diagram)

W Φ

p

Z

π

T,

such that moreover
(2) for t �= 0 in T , Φt is an embedding of Wt := p−1(t) in Zt,
(3) the restriction of the map Φ on W0 is a generically finite morphism of degree m, so that the image 

of Φ|W0 is the cycle Σ0 := mX where X is a reduced hypersurface in Z0, defined by an equation 
X = {σ = 0}.

Put in concrete terms, one can take a local coordinate t for T at 0, and write, locally around {t = 0} the 
equation of the image Σ := Φ(W) in Z via the Taylor series development in t, in terms of local coordinates 
z = (z1, . . . , zn, zn+1) on Z0,

Σ(z, t) : σ(z)m + tσ1(z) + t2σ2(z) + · · · + tm−1σm−1(z) + . . . = 0.

W is a resolution of Σ and the next theorems indicates exactly the sequence of blow-ups needed in order 
to obtain the resolution W.
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Theorem 2.4. (A) Suppose we have a 1-parameter deformation to hypersurface embedding

W Φ

p

Z

π

T ,

and assume that KW0 is ample.
Then we have:
(A1) X is smooth,
(A2) There are line bundles L0, . . . , Lk on Z, such that Lj |Z0 = OZ0(mjX) for j = 0, . . . , k, with 

1 = m0|m1|m2 . . . |mk|mk+1 := m (here m is the degree of the morphism Φ0 : W0 → X), and such that 
W0 is a complete intersection in L0 ⊕ · · · ⊕ Lk|Z0 , with Φ0 a normally induced iterated smooth univariate 
covering.

(A3) W is obtained from Σ := Φ(W) by a finite sequence of blow-ups.
Moreover the local equations of W are of the following standard form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ(z) = w0t

Q1(w0, z) = w1t

· · · · · ·
Qk(w0, . . . , wk−1, z) = wkt

Qk+1(w0, . . . , wk, z, t) = 0.

(II-1)

(B1) Conversely, take any smooth iterated univariate covering of normal type

φ0 : W0 → X ⊂ Z0

and take any 1-parameter family Z of deformations of Z0.
Then the line bundle OZ0(X) extends to a line bundle L0 on the whole family Z. And W0 deforms to a hy-

persurface embedding if, for all i ≥ 2, every section in H0(Z0, OZ0(iX)) and every section in H0(X, OX(iX))
comes from a section in H0(Z, L⊗i

0 ).
(B2) This holds in particular, when the family Z is trivial, Z ∼= Z0 × T , if the necessary condition of 

being normally induced is fulfilled.

Remark 2.5. (b1) More precisely, in (B1) above, there is a family W such that W is a complete intersection 
in L0 ⊕· · ·⊕Lk (Li = L⊗mi

0 ), and W is given as above; moreover, for t �= 0 in T , the morphism Φt, induced 
on Wt by the bundle projection on Zt, is an embedding.

(b2) Sufficient condition in (B2) is the surjectivity of H0(Z0, OZ0(iX)) → H0(X, OX(iX)) for i ≥ 2; this 
is implied by H1(Z0, OZ0(iX)) = 0, ∀i ≥ 1.

Remark 2.6. The line bundle OZ0(X) extends to a line bundle L0 on the whole family Z, because of the 
Lefschetz (1,1) theorem, since OZ0(mX) does.

Observe moreover that there is a (non-canonical) isomorphism

Pic0(Z0) ∼= Pic0(Zt),

whereas in general there is no isomorphism of Pic(Z0) with Pic(Zt).
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Remark 2.7. Consider the family of submanifolds of weighted projective spaces given in Example 1.1, with 
equations (I-2), and consider the 1-parameter deformation where we set tj = tnj .

Then the equations considered in the proof of the theorem are many more than equations (I-2), since for 
instance from the equation σ(z) = tn0w0 we recover w0 not directly but only after an iterated procedure: 
we inductively set σ(z) = tava−1, so finally we get w0 = vn0−1.

3. Auxiliary results and proof of the main theorem

The following observation plays an important role in the proof.

Lemma 3.1. Suppose we have a one dimensional smooth family p : W → T of smooth projective varieties 
of dimension n mapping to another flat family q : Y → T of projective varieties of the same dimension 
via a relative map Ψ : W → Y over a smooth holomorphic curve T such that q ◦ Ψ = p, i.e. we have the 
commutative diagram

W Ψ

p

Y

q

T.

Assume that

(1) Y is normal and Gorenstein,
(2) Ψ is birational,
(3) for t �= 0 in T , Ψ induces an isomorphism,
(4) KW0 is ample.

Then we have that Ψ is an isomorphism, in particular W0 ∼= Y0.

Proof. We have KW = Ψ∗(KY) + B. Since we assume that Ψ induces an isomorphism for t �= 0 in T , the 
support of the Cartier divisor B is contained in W0, which is irreducible.

Now Y0 has dimension n and the morphism Ψ0 : W0 → Y0 is generically finite, hence we conclude that 
B = 0. In particular, KW = Ψ∗(KY); restricting to the special fiber, we obtain KW0 = Ψ∗

0(KY0). Since by 
assumption KW0 is ample, Ψ0 is finite, hence also Ψ is finite, hence an isomorphism in view of the normality 
of Y. �
Remark 3.2. Without the assumption that KW0 is ample one can only assert that Y0 is normal with at most 
canonical singularities.

Lemma 3.3. In the hypotheses of Theorem 2.4, we have that σm−i | σi for i = 1, . . . , m − 1.

Proof. Since the map W0 → X is a generically finite map of degree m, given a general point p of X, the 
inverse image of p consists of m points q1, . . . , qm, and at each qi the rank of the derivative of the morphism 
W0 → Z0 is equal to n. Hence we get local coordinates (w1, . . . , wn, t) for W at qi and local coordinates 
(z1, . . . , zn, zn+1, t) for Z at p (not depending on i) such that Φ is given by a function fi

fi(w1, . . . , wn, t) = (w1, . . . , wn, ϕi(w1, . . . , wn, t), t)

such that
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fi(w1, . . . , wn, 0) = (w1, . . . , wn, 0, 0).

Here ϕi(w1, . . . , wn, t) is a holomorphic function.
Hence at p ∈ X, there are variables (z1, . . . , zn, zn+1, t) such that σ = zn+1, and Σ consists of m smooth 

branches with equation

σ − ϕi(z1, . . . , zn, t) = 0, σ = zn+1

for i = 1, . . . , m.
Hence, setting z := (z1, . . . , zn) the local equation of Σ is

m∏
i=1

(σ − ϕi(z, t)) = σm − a1(z, t)σm−1 + . . . + am(z, t) (III-1)

and ti|ai, since t|ϕi. �
Remark 3.4. Since we assume that Φt is an embedding when t �= 0, for a fixed value of z := (z1, . . . , zn)
equation (III-1) yields a plane curve with m smooth branches. Equivalently, we may view equation (III-1)
as giving a plane curve over a non algebraically closed field (the fraction field of the ring of power series 
in z).

Lemma 3.5. Assume the same hypotheses of part (A) of Theorem 2.4 with n = 1. Let p ∈ W0 be any point. 
Then there is a neighborhood U of p in W0 such that φ0(U) is a smooth curve of Z0 at φ0(p).

Proof. We have a factorization φ0 = ν ◦ ψ0 near the point p

W0
ψ0−→ Xnor ν−→ X

where ν : Xnor → X is the normalization.
There are respective local coordinates w around p ∈ W0, u around ψ0(p), x, y around φ0(p) such that:

– ψ0(w) = wh = u.
– x(u), y(u) are a Puiseux parametrization of the branch associated to φ0(p). If the branch is nonsingular, 

without loss of generality y ≡ 0 and there is nothing to prove.
– Otherwise the branch is singular, and we have a Puiseux parametrization of the form

{
x = ud

y = ue + g(u)ue+1, where e > d.

Hence the branch is the zero set of a pseudo-polynomial in x,

xd + a1(y)xd−1 + · · · + ad(y).

Now, we can write, locally identifying Z to C2 × T , Φ(w, t) as

Φ(w, t) = (φ(w, t), t)

and φ(w, t) as
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{
x = wdh + tφ1(w, t)
y = weh(1 + g(wh)wh) + tφ2(w, t)

The link of the branch φ0(p) is, by Zariski’s theorem [9], an iterated non-trivial toral knot, running h times. 
However, L0 is isotopic to Lt, which is gotten by the image of the circle |w| = ε under φ(w, t).

Observe that the map φ(w, t), by purity of branch locus, ramifies on a curve R, which is not contained in 
{t = 0}: since Wt is embedded for t �= 0, it follows that R is exceptional and that the curves Wt are a family 
of curves through the origin x = y = 0 ∈ C

2. Moreover, again since Wt embeds, the reduced curve Rred is a 
smooth curve which projects isomorphically to the t-axis, so we may assume without loss of generality that 
Rred = {w = 0}.

The link Lt is contained in the submanifold Wt of a four dimensional ball B around the origin; Wt is a 
smooth holomorphic curve through the point φ(0, t) = 0, hence Lt yields an unknotted circle S1 ⊂ S3. We 
have derived a contradiction from assuming d > 1, and that the branch is singular. �
Lemma 3.6. Assume the same hypotheses of Theorem 2.4. Let

W f
0 = {p ∈ W0 |φ0 is finite at p}.

Then if p �= p′ ∈ W f
0 and φ0(p) = φ0(p′) = y0, then the germs of analytic subsets Y0 := φ0(Up) and 

Y ′
0 := φ0(Up′) coincide.

Proof. Cut now Cn+1 with a general linear C2 passing through y0, so that we get curves C2 ∩ Y0 = C, 
C

2 ∩ Y ′
0 = C ′, passing through y0. Now (C ·C ′)y0 = d ≥ 1, and indeed d is a topological invariant, it is the 

linking number of C ∩ S3 and C ′ ∩ S3.
For |t| << 1, we can deform the curves C, C ′ which are in the image of W0, to curves C(t), C ′(t) in the 

image of Wt: these have the property that in a neighborhood of y0 ∈ C
2 they intersect in d points, counted 

with multiplicities. Hence, if y(t) ∈ C(t) ∩C ′(t), then there are p(t) �= p′(t) ∈ Wt with φ0(p(t)) = φ0(p′(t)). 
This is a contradiction. �
Proposition 3.7. Assume the same hypotheses of Theorem 2.4. Then X is normal.

Proof. X is a hypersurface in a smooth manifold, hence it is normal if and only if it is smooth outside of 
codimension 2 in X.

The image of the points in W0 \W f
0 is a Zariski closed subset of codimension ≥ 2 in X.

Hence it suffices to consider points q ∈ X which are image points only of points p ∈ W f
0 .

By Lemma 3.6 the germ of X at q equals the image of the germ of W0 at p.
Let Ck = {p ∈ W0 | rank(Dφ0)p = k}. Then φ0(Ck) has dimension ≤ n − 2 for k ≤ n − 2, and we conclude 

that X is smooth outside of codimension 2 unless dimφ0(Cn−1) = n − 1.
It also suffices to consider the general point p of C := Cn−1, where C is smooth of dimension n − 1 and 

rank(D(φ0|C)) = n − 1.
Let (d̂− 1) be the multiplicity of C in the locus given by the n × n minors of the derivative matrix.
There are local coordinates (v, w) in a neighborhood of p ∈ W0, with v = (v1, . . . , vn−1), such that 

C = {w = 0} and such that

φ0(v, w) = (v, x(v, w), y(v, w)).

The locus given by the n × n minors of the derivative matrix is then just the locus ∂x = 0, ∂y = 0.
∂w ∂w
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Without loss of generality, at the general point of C we can assume that

x(v, w) =
∞∑
i=d̂

ai(v)wi,

and, since ad̂(x) �≡ 0, we may assume that ad̂(0) �= 0. Hence we choose coordinates x, y with

{
x = wd̂,

y = we + · · · with e > d̂ and d̂ � |e.

Then, if y �≡ 0, we get, for any v in a neighborhood of 0, a singular curve branch. The same argument as 
for the case n = 1 applied to x(0, w), y(0, w) gives a contradiction. So we have established the proof. �
Lemma 3.8. Let C be a germ of a plane curve singularity consisting of m smooth branches with non vertical 
tangents, i.e. the local equation of C is F (y, t) = 0, with

F (y, t) :=
=

∏m
i=1(y − ϕi(t))

= ym − σ1(ϕ1, . . . , ϕm)ym−1 + σ2(ϕ1, . . . , ϕm)ym−2 + · · · + (−1)mϕ1 · · ·ϕm.

Here, σi is the i-th elementary symmetric function, and t|ϕi(t), since (0, 0) is the singular point, hence ti

divides σi(ϕ1, . . . , ϕm).
Then the singularity can be resolved by iterated blow-ups of the form:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

y = w0t

D1(w0) = w1t

D2(w1) = w2t

· · · · · ·
Dk(wk−1) = wkt

where the Dj’s are monic polynomials.

Proof. F (y, t) is a pseudo-polynomial. Write

F (y, t) = ym + t b1(t)ym−1 + · · · + tmbm(t).

The first blow-up yields

P (w0, t) = wm
0 + b1(t)wm−1

0 + · · · + bm(t).

Let P (w0, t) = P0(w0) + tP1(w0) + t2P2(w0) + · · · where P0(w0) is a monic polynomial of degree m and 
degw0

Pj(w0) ≤ m − 1 for j ≥ 1. Looking at the two partial derivatives for t = 0, the proper transform C0
is smooth if and only if

P0(w0) = 0, ∂

∂w0
P0(w0) = 0, P1(w0) = 0

have no common roots.
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If not, let D1(w0) = gcd of the above three polynomials, so that P0(w0) = Dr
1 · G for some 2 ≤ r ≤ m

such that r · deg(D1) ≤ m.
To continue, observe that D1 is again monic, so there is no tangent t = 0, and it suffices to blow-up 

t = D1 = 0 setting D1(w0) = w1t.
We get equations

D1(w0)r ·G(w0) + tD1(w0)P̃ (w0) + t2 · · ·
= tr[wr

1 ·G(w0) + wr−1
1 · · · ],

where the divisibility of the second term by wr−1
1 , and similarly for the next terms follows by applying once 

more Lemma 3.3.
We continue this process until all branches are separated. �

Proof of Theorem 2.4. Recall the Taylor series development in t of the equation in Z of the image Σ :=
Φ(W):

Σ(z, t) := σ(z)m + tσ1(z) + t2σ2(z) + · · · + tm−1σm−1(z) + . . . .

Choose a general point p in X. In order to show that the process terminates we shall at a later moment 
consider a germ of plane curve C passing through p, consisting of m smooth branches with non vertical 
tangents, and obtained as a linear section of Σ (i.e., C is obtained by setting (z1, . . . , zn) = constant in 
appropriate local coordinates).

Observe that, by Lemma 3.3, σi|σm−i for i = 1, . . . , m −1. So we can rewrite the equation of Σ as follows:

Σ(z, t) := σ(z)m + a1(z, t)σ(z)m−1 + a2(z, t)σ(z)m−2 + · · · + am(z, t) = 0 (III-2)

where ti|ai(z, t).
Please observe that the above equation is not just a local equation, but that it is a global equation for a 

section of a line bundle on Z (see Remark 2.6)

OZ(Σ) = L⊗m
0 .

Now, by setting σ = tw0 and ai(z, t) = tibi(z, t) in equation (III-2), we obtain the equation

Pw0(w0, z, t) := wm
0 + b1(z, t)wm−1

0 + · · · + bm(z, t) = 0.

This is a hypersurface and its singular locus is contained in t = 0 by our assumption. Write

bj(z, t) = bj,0(z) + tbj,1(z) + · · · ,

so that the bj,0(z)’s are sections on Z0 of a line bundle of the form OZ0(iX) (this observation shall be 
repeated in the sequel, leading to the proof that we get a normally induced covering of X).

Hence we can write

P (w0, z) := wm
0 + b1,0(z)wm−1

0 + · · · + bm,0(z).

Hence the equation Pw0 has the development

Pw0(w0, z, t) = P (w0, z) + t
m∑

bj,1w
m−j
0 + t2 · · · .
j=1
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Set P̂ (w0, z) :=
∑m

j=1 bj,1w
m−j
0 ; then the gradient of Pw0 for t = 0 equals

( ∂P
∂w0

, P̂ ,
∂P

∂z1
,
∂P

∂z2
, . . .).

The singular locus is contained in t = 0 and is there given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P (w0, z) = 0
∂

∂w0
P (w0, z) = 0

P̂ (w0, z) = 0
∂
∂zi

P (w0, z) = 0 (for i = 1, . . . , n).

The hypersurface defined by Pw0(w0, z, t) = 0 is normal unless it is singular in codimension 1. Assume 
that the hypersurface defined by Pw0(w0, z, t) = 0 is not normal, so that it is singular in codimension 1. 
Observe that the square free part of P (w0, z) is irreducible because its zero set is the image of an irreducible 
variety W0, hence for t = 0 the vanishing of P (w0, z) should imply the vanishing of the other polynomials.

Since P (w0, z) = 0 ⇒ ∂P (w0, z)/∂w0 = 0, hence P (w0, z) = Q(w0, z)r, for some 2 ≤ r ≤ m.
And Q(w0, z) is again irreducible and Q(w0, z)|P̂ (w0, z). Now, since r ≥ 2,

∂P (w0, z)/∂zi = rQ(w0, z)r−1∂Q(w0, z)/∂zi,

so the last conditions are automatically fulfilled.
If we write the equation Pw0(w0, z, t) in terms of Q(w0, z), then

Q(w0, z)r + tQ(w0, z)P̃ (w0, z, t) + t2 · · · .

Then again by Lemma 3.3, Q(w0, z)r−2|P̃ (w, z, t), and so on.
Observe that Q(w0, z) = 0 gives a covering W ′

0 of X of degree m/r.
In view of Lemma 3.8, we set Q(w0, z) = w1t. Then we get an iterated covering as in Lemma 3.8, where 

P = Dr
1 = Qr. We consider now a germ of plane curve C through the general point p ∈ X consisting 

of m smooth branches with non vertical tangents by taking linear sections. Since the resolution of C is 
obtained by a finite sequence of blow-ups, we get an iterated covering as in Lemma 3.8, which is normal 
and a complete intersection.

Lemma 3.1 implies that we have then obtained W.
Since W0 is smooth, let us set t = 0 in the above equations (II-1), and observe that the matrix of 

derivatives has triangular form. So, smoothness of W0 implies the smoothness of X and of all the intermediate 
coverings.

Therefore we have shown (A1), (A2) and (A3).
Let us show now the converse, (B1) and (B2).
Assume we are given an iterated smooth univariate covering W0 of X which is normally induced, defined 

by equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ(z) = 0
Q1(w0, z) = 0
· · · · · ·
Qk(w0, . . . , wk−1, z) = 0
Q (w , . . . , w , z) = 0.

(III-3)
k+1 0 k
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Claim I): if H0(Z0, OZ0(iX)) surjects onto H0(X, OX(iX)) for each i ≥ 2, then every iterated univariate 
covering W0 of X is normally induced, i.e., it extends to an iterated univariate covering of Z0.

Proof. First of all we can put the equations of the iterated covering W0 of X in Tschirnhausen form. Here 
the polynomial equation of a univariate covering is said to be in Tschirnhausen form if a1(x) ≡ 0, and every 
covering can be put in Tschirnhausen form after an automorphism replacing w with w − 1

ma1(x).
Second, the coefficients aj,I of the polynomials Qj are now given by sections of line bundles of the form 

OX(n(I, j)X), where n(I, j) ≥ 2. By assumption, they extend to sections of OZ0(n(I, j)X).
That this holds if H1(Z0, OZ0(iX)) = 0, ∀i ≥ 1, follows immediately from the long exact cohomology 

sequence associated to the exact sequence

0 → OZ0(iX) → OZ0((i + 1)X) → OX((i + 1)X) → 0,

for i ≥ 1. �
Let’s pass to the proof of (B1).
By our assumption, σ(z) extends to a section σ(z, t) of the line bundle L0 on the whole family Z. 

Similarly the sections aj,I extend to sections aj,I(z, t) over Z, hence we can also extend the polynomials 
Qj(w0, . . . , wj−1, z) to polynomials Qj(w0, . . . , wj−1, z, t).

Then we define the iterated univariate covering W of Z via the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ(z, t) = w0t

Q1(w0, z, t) = w1t

· · · · · ·
Qk(w0, . . . , wk−1, z, t) = wkt

Qk+1(w0, . . . , wk, z, t) = 0.

(III-4)

To finish the proof of (B2), observe that if the family Z is trivial, Z = Z0 × T , then obviously

H0(Z0,OZ0(iX)) ⊂ H0(Z,OZ(iX)),

hence there is no problem to extend the iterated univariate covering to one of Z. �
4. Applications

The first applications that we shall give are, more or less, direct corollaries of the previous general results.

4.1. Hypersurfaces in projective space

Corollary 4.1. The smooth manifolds W0 with ample canonical divisor which admit a 1-parameter deforma-
tion to a hypersurface embedding

p : W → T, Φ : W → P
n+1 × T

(here, for t �= 0, Wt is a smooth hypersurface in Pn+1) are exactly the iterated weighted deformations of 
Example 1.1 with md > n + 2, and the family W is a pull back from the family in (I-2).

The class of such manifolds W0 is open in the Kuranishi space for n ≥ 2.
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Proof. Either W0 is a hypersurface, and there is nothing to prove (set m = 1), or the degree of φ0 : W0 → X

is m ≥ 2.
Then Theorem 2.4 applies, and it is easy to see that we get a manifold in the family (I-2). The converse 

is direct (set t = tj ∀j in the family (I-2)).
The proof of the second statement follows imitating quite closely Sernesi’s argument in [7] for the case 

of complete intersections in weighted projective spaces.1 �
4.2. Hypersurfaces in an Abelian variety

Corollary 4.2. The smooth manifolds with ample canonical divisor W0 which admit a 1-parameter deforma-
tion p : W → T where, for t �= 0, Wt is a smooth hypersurface in an Abelian variety At, are, for n ≥ 2, 
exactly the iterated smooth univariate coverings W0 → X of normal type, where X is an ample divisor in 
an Abelian variety A0.

Proof. At is, for t �= 0, the Albanese variety of Wt, since Hi(OAt
(−Wt)) = 0 for i = 1, 2, hence the exact 

cohomology sequence associated to the exact sequence

0 → OAt
(−Wt) → OAt

→ OWt
→ 0

yields h1(OAt
) = h1(OWt

).
We obtain therefore a morphism

Φ : W → A, At = Alb(Wt)

that induces a 1-parameter deformation to hypersurface embedding in Abelian varieties by Lemma 149 
of [3].

Our main theorem applies, in particular (B2) holds since we have H1(OA0(iX)) = 0 for all i ≥ 1. �
4.3. Multiple Inoue-type varieties

We can now extend the definition of Inoue type variety (see [1] and [3]) in the following way:

Definition 4.3. A primary multiple Inoue-type variety W0 of smoothing type is a normally induced smooth 
iterated univariate covering W0 → X, where X is a smooth ample subvariety of a projective classifying 
space Z0.

A multiple Inoue-type variety Y0 of smoothing type is a quotient W0/G, for the free action of a finite 
group, of a primary multiple Inoue-type variety W0 of smoothing type.

We do not give further applications here, hopefully in a future paper.
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