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Introduction

Our present work consists of two tightly related but different parts: the first is geo-
metrical, and concerns fibrations f : S → B of a smooth complex algebraic surface over 
a smooth complex curve B, with special attention to the case where the base curve B
has genus at most 1.

The second part is of algebraic nature, and determines which powers of products of 
certain standard transvections are a commutator in the symplectic group Sp(2g, Z).

In the first section we begin describing the algebraic version of the so called Zeuthen-
Segre formula, relating the topological Euler-Poincaré characteristic e(S) with the num-
ber μ of singularities of the fibres of f (counted with multiplicity).

Then in Proposition 1.2 we consider the case where the genus b of the base curve B
is 1, and describe the cases where μ is minimal (μ = 3 or = 4). Both cases occur, the 
first case due to the existence of the Cartwright-Steger surface [5], the second due to 
Theorem 3.5 of section 3.

We proceed observing that if the base curve has genus b ≥ 2, then there are non 
isotrivial fibrations without singular fibres; we also recall some basic lower bound for the 
number s of singular fibres of a moduli stable fibration when the base curve B has genus 
b = 0, 1. That s = 1 occurs for b = 1 was shown by Castorena Mendes-Lopes and Pirola 
in [6] (in their examples the singular fibre is reducible, and either with fibre genus g = 9, 
or with very high genus, here we show an example with g = 10), and we use a variant 
of their method in Theorem 3.5 to construct an example with g = 9 and irreducible and 
nodal singular fibre.

In section four we recall how to such a fibration corresponds a factorization in the 
Mapping class group Mapg, hence also in the symplectic group Sp(2g, Z); and we recall 
several results, referring to [26] for results concerning symplectic fibrations.

The main point is that, if f : S → B is such that b = 1, and the fibre singularities are 
just nodes, we get that a product of Dehn twists is a commutator in Mapg, respectively 
a product of transvections is a commutator in Sp(2g, Z).
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In the next sections we treat rather exhaustively the purely algebraic question to 
determine which powers of the standard transvection, and of the product of transvections 
on homologically independent and disjoint circles, are a commutator in the Symplectic 
group Sp(2g, Z).

While [26] states that the product of two Dehn twists cannot be a commutator in 
Mapg, we show that the corresponding product of transvections is a commutator in 
Sp(2g, Z), for all g ≥ 2.

1. Fibrations of compact complex surfaces over curves

Definition 1.1. Let f : S → B be a holomorphic map of a compact smooth (connected) 
complex surface S onto a smooth complex curve B of genus b.

By Sard’s lemma, the fibre Fy := f−1(y) is smooth, except for a finite number of 
points p1, . . . ps ∈ B (and then the fibres Fpj

are called the singular fibres).

(1) f is said to be a fibration if all smooth fibres are connected (equivalently, all fibres 
are connected). In this case we shall denote by g the genus of the fibres.

Consider a singular fibre Ft =
∑

niCi, where the Ci are distinct irreducible curves.

(2) Then the divisorial singular locus of the fibre is defined as the divisorial part of the 
critical scheme, Dt :=

∑
(ni − 1)Ci, and the Segre number of the fibre is defined as

μt := degF + DtKS −D2
t ,

where the sheaf F is concentrated in the singular points of the reduction (Ft)red of 
the fibre Ft, and is defined as the quotient of OS by the ideal sheaf generated by the 
components of the vector dτ/s, where s = 0 is the equation of Dt, and where τ is 
the pull-back of a local parameter at the point t ∈ B.

More concretely,

τ = Πjf
nj

j , s = τ/(Πjfj),

and the logarithmic derivative yields

dτ = s[
∑
j

nj(dfjΠh�=jfh)].

The following is the algebraic version of the Zeuthen-Segre formula, expressing how 
the topological Euler Poincaré characteristic e(S) of S, equal to the second Chern class 
c2(S) of S, differs from the one of a fibre bundle (for a topological fibre bundle e(S) =
4(g − 1)(b − 1)) (see [7], [10], [9]).
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Theorem 1.1 (Modern Zeuthen-Segre formula). Let f : S → B be a fibration of a smooth 
complex surface S onto a curve of genus b, and with fibres of genus g.

Then

e(S) = c2(S) = 4(g − 1)(b− 1) + μ,

where μ =
∑

t∈B μt, and μt is the Segre number defined above.
Moreover, μt ≥ 0, and indeed the Segre number μt is strictly positive, except if the 

fibre Ft is smooth or is a multiple of a smooth curve of genus g = 1.

The importance of the formula lies in the fact that the difference μ := e(S) − 4(b −
1)(g − 1) is always non negative.

It leads to an interpretation of μ as the total number of singular points of the fibres, 
counted with multiplicity, in the case where g �= 1 (observe that if g = 0, then S is 
an iterated blow up of a P 1-bundle over B, hence μ is equal to the number of blow 
ups, and also to the number of singular points on the fibres taken with their reduced 
structure).

Indeed, if the singularities of the fibres are isolated, then μt is the sum of the Milnor 
numbers of the singularities; in particular, it equals the number of singular points of the 
fibre if and only if all the singularities are nodes, i.e., critical points where there are local 
coordinates (x, y) such that locally f = x2 − y2 (equivalently, f = xy).

Most of the times, the formula is used in its non refined form: if g > 1, then either 
μ > 0, or μ = 0 and we have a differentiable fibre bundle.

The formula is well known using topology (see [2]), but the algebraic formula is very 
convenient for explicit calculations.

Let us look at the particular case where the base curve B has genus b = 1, hence 
e(S) = μ ≥ 0. If moreover g ≥ 2, then we have the following proposition (using also 
some arguments from [8]):

Theorem 1.2. Let f : S → B be a fibration of a smooth complex surface S onto a curve 
of genus b = 1, and with fibres of genus g ≥ 2.

Then either e(S) = μ = 0, or e(S) = μ ≥ 3, equality holding if and only if S is a 
minimal surface S with pg(S) = q(S) = 1 or pg(S) = q(S) = 2, and with K2

S = 9. In 
particular S is then a ball quotient. Moreover, either

(I) all fibres are reduced, and the singular points of the fibres are either
(I 1) 3 nodes, or
(I 2) one tacnode (f = y2 − x4 in local coordinates), or
(I 3) one node and one ordinary cusp (f = y2 − x3 in local coordinates), or

(II) we have one double fibre, twice a smooth curve of genus 2 (hence g = 3), plus one 
node.

If instead e(S) = μ = 4 and S is minimal, then necessarily either
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(1) pg(S) = q(S) = 1 or
(2) pg(S) = q(S) = 2, or
(3) pg(S) = q(S) = 3, and then g = 3, the fibration has constant moduli and just two 

singular fibres, each twice a smooth curve of genus 2; or
(4) S is a product of two genus 2 curves in this case pg(S) = q(S) = 4.

Proof. If S is not minimal, every (−1)-curve maps to a point, hence f factors as p :
S → S′, where S′ is the minimal model, and f ′ : S′ → B. Since e(S) equals e(S′)
plus the number of blow ups, it suffices to prove the inequality in the case where S is 
minimal.

Since S is non ruled, we have (recall that χ(S) = 1 − q(S) + pg(S)) K2
S ≥ 0, χ(S) ≥

0.
By Noether’s formula 12χ(S) = K2

S + e(S), while the Bogomolov-Miyaoka-Yau in-
equality yields K2

S ≤ 9χ(S), equality holding if and only if S is a ball quotient. 
Hence e(S) ≥ 3χ(S); and if χ(S) = 0, then necessarily also K2

S = e(S) = 0. Oth-
erwise, e(S) = μ ≥ 6 unless χ(S) = 1, which is equivalent to saying that pg(S) =
q(S).

If e(S) = 3, then χ(S) = 1, K2
S = 9 and we have a ball quotient. The map to B shows 

that q(S) ≥ b = 1.
On the other hand, the classification of surfaces with pg = q shows that pg = q ≤ 4, 

equality holding if and only if S is a product S = C1 × C2 of two genus 2 curves, in 
which case K2 = 8 [4].

Moreover ([11], [20], see especially [14]) if pg = q = 3 either K2 = 6 or K2 = 8; 
hence in the first case e(S) = 6, and in the second case e(S) = 4. In the lat-
ter case S is a quotient (C × D)/(Z/2) where C, D are smooth curves of respec-
tive genera 2, 3, and the group Z/2 acts diagonally with B := C/(Z/2) of genus 1, 
and E := D/(Z/2) of genus 2. The only fibrations onto curves of strictly positive 
genus are the maps to B, respectively E. For the map S → B all the fibres are 
isomorphic to D, except two fibres which are the curve E counted with multiplicity 
2.

Hence, if e(S) = 3, then necessarily pg = q = 1 or pg = q = 2. Moreover, since we 
have a ball quotient, KS is ample and we claim that Dt = 0 for each non multiple fibre 
(this means that all ni are equal to n ≥ 2).

In fact, if Ft is not multiple, Dt · KS =
∑

i(ni − 1)KSCi, while by Zariski’s lemma 
D2

t < 0 if we do not have a multiple fibre. Since S is a ball quotient, it contains only 
curves of geometric genus ≥ 2, in particular of arithmetic genus ≥ 2: if Ci is not a 
submultiple of Ft, then C2

i < 0, hence KS · Ci ≥ 3. This obviously contradicts μ ≤
3.

If a fibre is multiple Ft = nF ′, then

DtKS = (n− 1)KSF
′ = (n− 1)(2g′ − 2),
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and this contribution is even, and ≤ 2 if and only if n = 2 and g′ = 2. F ′

must be smooth, else its geometric genus would be ≤ 1, contradicting that S is 
a ball quotient. Hence there is only one multiple fibre, and a node on another fi-
bre.

In fact, if a fibre is reduced, then μt is the sum of the Milnor numbers of the fibre 
singularities. Each point of multiplicity at least 3 has Milnor number at least 4, so all sin-
gularities are An singularities, i.e., double points, with local analytic equation y2−xn+1. 
Their Milnor number is equal to n. �
Remark 1.2.

(a) There exists a ball quotient with q = pg = 1: it is the Cartwright-Steger surface [5]. 
For this Rito [22] asserts that there are exactly 3 singular fibres, each having a node 
as singularity.

(b) Ball quotients with q = pg = 2 are conjectured not to exist (this would follow 
from the Cartwright-Steger classification if one could prove arithmeticity of their 
fundamental group).
The claimed proof of this fact in [29] is badly wrong.1

(c) a fibration with e(S) = 4 and with S a product of two genus 2 curves is constructed 
in a forthcoming section. For this the singular points of the fibres are exactly 4 nodes.

(d) Fibrations with e(S) = 4 and with pg = q = 2 and fibre genus 4, 10 can be obtained 
using a surface introduced by Polizzi, Rito and Roulleau in [21], as we now show.

Theorem 1.3. Let p : S → E×E be the degree 4 map of the Polizzi-Rito-Roulleau surface 
to the Cartesian square of the Fermat elliptic curve. Set ε to be an automorphism of order 
three of the Fermat elliptic curve acting on a uniformizing parameter via multiplication 
with a primitive third root of 1, that we also call ε.

Then the maps

φ1, φ2 : E × E → E, φ1(x, y) := x + y, φ2(x, y) := εy + x

produce fibrations f1, f2 : S → E with fi defined as the Stein factorization of φi ◦ p. 
They have the following properties:

• f2 has fibre genus g = 4, and two singular fibres, each consisting of a smooth genus 
2 curve intersecting a smooth elliptic curve transversally in two points.

• f1 has fibre genus g = 10, and only one singular fibre, having only nodes as sin-
gularities, consisting of a smooth genus 6 component intersecting two genus one 
components transversally each in respectively two points.

1 According to two editors of Crelle, the article was indeed withdrawn, but published because of a technical 
error of the printer, which has not been publicly acknowledged by the editorial board of Crelle.
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Proof. Recall that S is constructed in [21] through a degree two étale map A → E ×E, 
corresponding to a character χ : π1(E × E) → Z/2, and then S is a double cover of the 
blow up X of A in the two points which are the inverse image of the origin, ramified on 
the strict transforms of the four elliptic curves

{x = 0}, {y = 0}, {y = x}, {y = −εx}

which meet pairwise transversally and exactly at the origin (observe that the authors 
use the primitive sixth root of 1, ζ := −ε, in their notation).

The fibres of φ1 intersect these curves in respectively 1, 1, 4, 3 points, those of φ2
intersect these curves in respectively 1, 1, 1, 3 points.

Hence the general fibre of f1 has genus g satisfying 2g− 2 = 4 · 9
2 ⇒ g = 10, while the 

same calculation would seem to show that the general fibre of f2 has genus g satisfying 
2g − 2 = 4 · 6

2 ⇒ g = 7: however the fibres of φ2 ◦ p are, as we shall now show, not 
connected, and consist of two connected components of genus g = 4.

The only singular fibre of f1 is the one over 0, which contains the inverse images of 
the two exceptional divisors D1 and D2 and of the fibre of φ1 over 0.

Blowing up the origin in E ×E we see that the exceptional divisor D intersects each 
of the four curves in one point, while the fibre of φ1 intersects the last two curves in 
respectively 3, 2 points.

Hence the singular fibre of f1 contains two genus one components which are disjoint 
and intersect the rest of the fibre transversally respectively in two points. The rest of the 
fibre is an irreducible smooth component of genus equal to 6, because, as we shall now 
show, the inverse image in A of the fibre of φ1 is a connected elliptic curve, and then we 
take a double covering branched in 10 points.

While the authors take a basis ζe1, ζe2, e1, e2 of the lattice π1(E × E), we take the 
more natural basis e1, εe1, e2, εe2. In the second basis, and using an additive notation, 
the character χ takes values (0, 1, 1, 1) on the four basis vectors.

It follows then easily that the restriction of the double covering is nontrivial on the 
five curves

{x = 0}, {y = 0}, {y = x}, {y = −εx}, {y = −x},

(and their translates). In particular, the fibres of φ1 ◦ p are connected.
While, for the fibres of φ2, like {εy + x = 0}, the values of the character χ on the two 

periods (e1 − e2 − εe2), (εe1 − e2) are equal to 0 + 1 + 1 = 0, 1 − 1 = 0.
Hence the inverse image of fibre of φ2 splits into two components and we get a fibration 

f2 whose fibres are of genus g = 4, f2 : S → E′, where E′ is an étale cover of degree 2
of E.

The singular fibres lie over the origin in E, hence we get two singular fibres for the 
two points of E′ lying over the origin in E. Thus the number of singular fibres s of f2
equals 2, and each singular fibre is the inverse image of the union of an elliptic curve and 
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an exceptional curve (∼= P 1). Since the double covering of the elliptic curve is branched 
on 2 points, while the double cover of the exceptional curve is branched in 4 points, we 
obtain the desired assertion. �
2. Number of singular fibres of a fibration

Once we fix b, g and we consider fibrations f : S → B with fibres F of genus g, and 
genus b of the base curve B, the Zeuthen-Segre formula which we have discussed in the 
previous section gives a relation between the topological Euler characteristic e(S) and 
the number of singular fibres of f , counted with multiplicity.

In particular, if there is only a finite number c of critical points of f , it gives an upper 
bound for the number c.

This upper bound must obviously depend on e(S), as shows the case where b = 1: in 
fact, in this case there exist unramified coverings B′ → B of arbitrary degree m, and the 
fibre product

f ′ : S′ := S ×B B′ → B′

has both numbers c′ = m · c and e(S′) = m · e(S).
The Zeuthen-Segre formula says also that if there are no singular fibres, for g ≥ 2, 

then necessarily e(S) = 4(b − 1)(g − 1). There are two ways in which this situation can 
occur (see [10] for more details), since then S is relatively minimal and one can apply 
Arakelov’s theorem asserting that

K2
S ≥ 8(b− 1)(g − 1),

equality holding iff all the smooth fibres are isomorphic.
As a consequence, there are two cases when e(S) = 4(b − 1)(g − 1):

Étale bundles: K2
S = 8(b − 1)(g − 1), and there is a Galois unramified covering B′ → B

such that

S′ := S ×B B′ ∼= B′ × F,

Kodaira fibrations: K2
S > 8(b − 1)(g − 1), and not all fibres are biholomorphic.

The only restrictions for Kodaira fibrations are that b ≥ 2, g ≥ 3, and for all such 
values of b, g we have Kodaira fibrations.

Assume now that b ≤ 1, and assume that not all smooth fibres are biholomorphic. 
Let then

B∗ := {t ∈ B|Ft is smooth }.
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Then the universal cover of B∗ admits a non constant holomorphic map into the Siegel 
space Hg, which is biholomorphic to a bounded domain.

The conclusion is that, for b = 1, there must be at least one singular fibre, whereas 
for b = 0 the number of singular fibres must be at least 3.

With the stronger hypothesis that the fibration is moduli stable, i.e., all singular fibres 
have only nodes as singularities and do not possess a smooth rational curve intersecting 
the other components in two points or less, one gets a better estimate [3], [28], [30]:

Theorem 2.4. Let f : S → B be a moduli stable fibration with g ≥ 1. Then the number 
s of singular fibres is at least:

(1) s ≥ 4 for b = 0, g ≥ 1,
(2) s ≥ 5 for b = 0, g ≥ 2,
(3) s ≥ 6 for b = 0, g ≥ 3,
(4) s ≥ 2 for b = 1, g = 2.

For b = 1 Ishida [15] constructed a Catanese-Ciliberto surface with g = 3, K2
S = 3, 

pg = q = 1 having only one singular fibre: but in this case the singular fibre is not a 
stable curve, it is isomorphic to the union of 4 lines in the plane passing through the 
same point (note that here the Milnor number is 9, and that for a plane quartic curve 
the number of singular points is at most 6, so that there is no stable curve with g = 3
and with 9 nodes).

Parshin [19] claimed that for a moduli stable fibration with b = 1 one should have 
s ≥ 2, but the claim was contradicted by [6] who constructed an example with s = 1
and with reducible singular fibre.

In the next section, using a variation of the method of [6], we construct an example 
where there is only one singular fibre, irreducible and with 4 nodes (the number of nodes 
should be the smallest one, see Remark 1.2).

This example will play a role also in the later sections.

3. A fibration over an elliptic curve with only one singular fibre, irreducible and nodal

Theorem 3.5. There exists fibrations f : S → B, where B is a smooth curve of genus 
b = 1, and the fibres of f are smooth curves of genus g = 9, with the exception of a 
unique singular fibre, which is an irreducible nodal curve with 4 nodes. Moreover, S is 
the product C1 × C2 of two smooth genus 2 curves.

Proof. We achieve the result in three steps.

Step 1: we construct, for i = 1, 2, a degree 4 covering

fi : Ci → B,



F. Catanese et al. / Journal of Algebra 562 (2020) 200–228 209
branched only over O ∈ B, and with f−1
i (O) consisting of two (necessarily simple) 

ramification points.

Step 2: taking O to be the neutral element of the group law on the genus 1 curve B, we 
set, as in [6],

S := C1 × C2, and f(x1, x2) := f1(x1) − f2(x2).

Hence x := (x1, x2) is a critical point for f if and only if both x1 is a critical point 
for f1 and x2 is a critical point for f2.

By the choice made in step 1, we have 4 such critical points, and for each of them 
f(x) = O. Hence f has only one singular fibre FO := f−1(O), which possesses exactly 4
singular points.

By simple ramification, there is a local coordinate t around O, and there are local 
coordinates zi around xi such that in these coordinates fi(zi) = z2

i . Therefore, at a 
critical point x, there are local coordinates (z1, z2) such that

f(z1, z2) = z2
1 − z2

2 ,

and we have a nodal singularity of the fibre FO = {f(z1, z2) = 0}.

Step 3: we shall show, based on the explicit construction in step 1, that the singular fibre 
FO = f−1(O), which is the fibre product C1 ×B C2, is irreducible.

We observe moreover that the fibre Fy over a point y ∈ B is the fibre product of C1
and C2 via the respective maps f1−y and f2: hence there are exactly 2 ·2 ·4 = 16 simple 
ramification points for the map Fy → B, hence g(Fy) = 9.

Construction of step 1: We construct the two respective coverings fi : Ci → B using 
Riemann existence’s theorem, and we let B be any elliptic curve, with a fixed point O
which we take as neutral element for the group law.

Since the local monodromy at the point O is a double transposition, the monodromy 
μi : π1(B \ {O}) factors through the orbifold fundamental group

Γ := πorb
1 (B; 2O) := 〈α, β, γ|[α, β] = γ, γ2 = 1〉,

where γ represents a simple loop around the point O.
We define then two homomorphisms,

μ1 : Γ → S4, μ1(α) := (1, 2, 3, 4), μ1(β) := (1, 2)(3, 4),
μ2 : Γ → S4, μ2(α) := (1, 2, 3), μ2(β) := (1, 4)(2, 3).

In both constructions μi(β) is an element of the Klein group K ∼= (Z/2)2, consisting 
of the three double transpositions and of the identity, as well as μi(αβα−1) = μi(γβ). 
We have respectively
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μ1(αβα−1) = (2, 3)(4, 1), μ2(αβα−1) = (2, 4)(1, 3),

so that μ1(αβα−1) �= μ1(β) and μi(γ) is the third nontrivial element in K, a double 
transposition as desired.

The conclusion is that μi(Γ) contains the normal subgroup K and is generated by K
and μi(α).

Hence μ1(Γ) is the dihedral group D4, while μ2(Γ) is the alternating group A4.
We let then fi to be the degree 4 covering associated to the monodromy μi : Γ → S4.

Proof of the assertion of Step 3: The normalization of the singular fibre of f , which is 
the fibre product of C1 and C2 over B, is a degree 16 covering of B associated to the 
product monodromy

μ1 × μ2 : Γ → S4 ×S4 ⊂ S16.

The irreducibility of this fibre product amounts therefore to the transitivity of the 
monodromy μ(Γ) := μ1 × μ2(Γ) on the product set {1, 2, 3, 4} × {1, 2, 3, 4}.

Indeed, the μ(α)-orbit has cardinality 12 and contains Σ := {1, 2, 3, 4} × {1, 2, 3}. 
Moreover, each element not in Σ is of the form (a, 4) and μ(β) sends (a, 4) to an element 
(y, 1) which lies in Σ, whence there is a unique orbit, the monodromy is transitive, and 
the unique singular fibre FO of f is irreducible. �
Remark 3.1. Since we took B to be any elliptic curve, we see that our construction 
leads to a one-parameter family of such fibrations. And since a deformation of a product 
of curves is again a product, we see that any deformation of f which has exactly one 
singular fibre must be as in our construction.

4. Fibrations and factorizations in the mapping class group

Let as usual now f : S → B be a fibration of an algebraic surface onto a curve B of 
genus b, such that the fibres Ft of f have genus g.

As before, we let B∗ be the complement of the s critical values p1, . . . , ps of f . We 
denote the s singular fibres by f−1(pi) =: Fi, and set S∗ := f−1(B∗) = S \ (F1 ∪ . . . Fs).

Then f∗ : S∗ → B∗ is a differentiable fibre bundle, and its monodromy defines 
homomorphisms

π1(B∗, t0) → Mapg → Sp(2g,Z),

where the second homomorphism corresponds geometrically to the bundle J ∗ of Jacobian 
varieties with fibres Jt := Jac(Ft) = Pic0(Ft).

Here Mapg is the Mapping class group Diff+(F0)/Diff0(F0), introduced by Dehn 
in [12], and we let ν : π1(B∗, t0) → Mapg be the geometric monodromy (see also [9]).
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Fixing a geometric basis, the fundamental group π1(B∗, t0) is isomorphic to the group

πb(s) := 〈α1, β1, . . . αb, βb, γ1, . . . , γs|Πs
1γiΠb

1[αj , βj ] = 1〉,

and the image δi := ν(γi) is a conjugate of the local monodromy around pi.
In the case where the only fibre singularity is a node, then δi is a Dehn twist around the 

vanishing cycle, a circle ci, whose image in the Symplectic group is the Picard-Lefschetz 
transvection associated to the homology class c of ci:

Tc, Tc(v) := v + (c, v)c,

(here (c, v) denotes the intersection pairing on the base fibre F0, a smooth curve of genus 
g).

It is customary to view the monodromy as a factorization

Πs
1δiΠb

1[α′
j , β

′
j ] = 1

in the Mapping class group (just let α′
j := ν(αj), β′

j := ν(βj)).
Completing work of Moishezon [18] and Kas [16], Matsumoto showed the following 

result (theorems 2.6 and 2.4 of [17]):

Theorem 4.6. Given a factorization Πs
1δiΠb

1[α′
j , β

′
j ] = 1 in the mapping class group Mapg, 

for g ≥ 1, there is a differentiable Lefschetz fibration f : M → B, whose monodromy 
corresponds to such a factorization, if and only if the δi are negative Dehn twists about 
an essential simple closed curve.

Moreover, two such fibrations are equivalent, for g ≥ 2, if and only if the correspond-
ing factorizations are equivalent, via change of a geometric basis in π1(B∗, b0) and via 
simultaneous conjugation of all the factors δi, α′

j , β
′
j by a fixed element a ∈ Mapg.

In the above theorem a simple closed curve c is said to be essential if it is not the 
boundary of a disk. There are two cases: if its homology class in H1(F0, Z) is non trivial 
(hence the complementary set is connected) then c is said to be nonseparating, or of type 
I. Else, the complementary set is disconnected, the curve is said to be separating, or of 
type II, and pinching the curve to a point one gets the union of two curves of respective 
genera h ≥ 1, (g − h) ≥ 1, meeting in a point.

Remark 4.1. Matsumoto takes the more restrictive definition in which M is oriented, 
and that at the critical points there are complex coordinates z1, z2 such that not only 
F is locally given by z1z2, but also the complex orientation coincides with the global 
orientation. One says then that the Lefschetz fibration is orientable.

Kas does not make this requirement, so there is no requirement imposed on the Dehn 
twists δi occurring in the factorization.
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An important question is whether a factorization comes from a holomorphic fibration: 
the case of fibre genus g = 2 was treated by Siebert and Tian [25].

A similar question can be posed, requiring M to be a symplectic 4-manifold, and 
that there is a local symplectomorphism yielding the local complex coordinates (z1, z2)
(we take here the standard symplectic structure on the target C2). This question was 
however answered by Gompf [13], see also [1], who showed that any orientable Lefschetz 
fibration comes from a symplectic Lefschetz fibration.

Matsumoto showed, for g = 2 orientable Lefschetz fibrations, that the number m
of singular fibres of type I, and the number n of singular fibres of type II satisfy the 
congruence

m + 2n ≡ 0 ∈ Z/10.

Indeed, the Abelianization of Map2 is isomorphic to Z/10.
We refer to [26] for more information about the minimal number of singular fibres for 

an orientable Lefschetz fibration over a curve of genus b, the cases b = 0, 1 being the open 
cases. Stipsicz and Yun state that for b = 1 the number s of singular fibres is at least 
3. The bound would be sharp in genus g = 19 because of the Cartwright-Steger surface. 
Our example in Theorem 1.3 shows that already in genus g ≥ 4 we have a product of 4
Dehn twists which is a commutator.

In the case b = 1, the existence of such a factorization is equivalent to the assertion 
that a product of s Dehn twists is a commutator in the Mapping class group.

In view of this, in the next section we focus on a related question, when is the product 
of certain transvections a commutator in the Sp(2g, Z).

5. Commutators in the Symplectic group Sp(2g, Z), g ≤ 2

5.1. The case g = 1

As a warm up, let us begin with the case g = 1, where Sp(2, Z) = SL(2, Z).
In this case the group surjects to the group PSL(2, Z) of integral Möbius transforma-

tion. It is known, see for instance [23], that PSL(2, Z) is the free product (Z/2) ∗ (Z/3), 
where the first generator comes from the matrix A, the second generator comes from the 
matrix B,

A :=
(

0 −1
1 0

)
, B :=

(
0 1
−1 1

)
.
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We consider the standard transvection T = Te1 , with matrix

T :=
(

1 1
0 1

)
,

giving rise to the projectivity z �→ z + 1.

Proposition 5.7.

(i) One has T−1 = AB, hence the image of T−1 in the Abelianization (Z/2) × (Z/3) ∼=
(Z/6) of PSL(2, Z) is equal to (1, 1) ≡ 1 ∈ Z/6, and no power Tm, for m not 
divisible by 6, is a product of commutators.

(ii) T 2m is a commutator in GL(2, Z) ∀m.
(iii) Tm is a product of commutators in GL(2, Z) only if m is even.
(iv) No power Tm, m �= 0, is a commutator in SL(2, Z).

Proof. An immediate calculation shows that T−1 = AB, hence assertion (i) follows.
(ii) follows by taking

C :=
(
−1 0
0 1

)
,

hence

CTmC−1(Tm)−1 = T−2m.

(iv) assuming that

Tm = X−1Y XY −1, m ∈ Z,m �= 0,

equivalently

Z := X−1Y X = TmY.

Setting

Y :=
(
r s
t u

)
,

we get

Z :=
(
r + mt s + mu

t u

)
.
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Since Y and Z are conjugate, they have the same trace, hence:

r + mt + u = r + u ⇒ t = 0.

Since Y has determinant = 1, we obtain

ru = 1 ⇒ r = u = ±1,

and possibly replacing Y with −Y we obtain

r = u = 1 ⇒ Y = T s.

Whence,

T sX = XTm+s,

hence X(e1) is an eigenvector for T s; since s �= 0, X is also upper triangular, hence a 
power of T and we reach a contradiction.

(iii) we observe that reduction modulo 2 yields a projection GL2(Z) → GL2(Z/2Z) �
S3 and that T is sent by this projection to a transposition, hence an odd permutation. �

The fact that the condition of being a commutator changes drastically, if one allows 
orientation reversing transformations, occurs also in higher genus. For instance Szepi-
etowski [27] proved:

Theorem 5.8. Let c be an essential closed circle in a compact complex curve X of genus 
g ≥ 3: then any power of the Dehn twist δc is a commutator in the extended mapping 
class group

Mapeg = Diff(X)/Diff0(X).

5.2. The case g = 2

We consider the lattice Z4 with its canonical basis e1, e2, e3, e4, and define the sym-
plectic form (·|·) on Z4 by setting

(e1|e2) = 1 = (e3|e4)

and

(ei|ej) = 0, for {i, j} /∈ {{1, 2}, {3, 4}}.

The matrix of this symplectic form is then
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J2 :=

⎛
⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎠ .

We denote by Sp(4, Z) the corresponding symplectic group, i.e. the group of 4 ×4 matrices 
X with integral coefficients satisfying

tX · J2 ·X = J2.

Let now T ∈ Sp4(Z) be the matrix

T =

⎛
⎜⎝

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠

We prove in this subsection the following result

Theorem 5.1. Let m ∈ Z be an integer; the power Tm of T is a commutator in the group 
Sp(4, Z) if and only if m is even. In particular, T itself is not a commutator.

One direction of the equivalence will follow from reduction modulo 2: we shall prove 
the following stronger result

Theorem 5.2. The reduction modulo 2 of the matrix T does not belong to the group 
generated by the commutators in the group Sp(4, F2).

The reverse implication in Theorem 5.1 shall result from a simple explicit construction 
given below. Note that as a consequence of this latter implication, every power of T is a 
commutator in Sp4(4, Fp) for every odd prime p.

Here is the explicit realization of even powers T 2m as commutators: set

X =

⎛
⎜⎝

1 0 1 0
0 1 0 0
0 0 1 0
0 −1 0 1

⎞
⎟⎠ , Y =

⎛
⎜⎝

1 0 0 m
0 1 0 0
0 m 1 0
0 0 0 1

⎞
⎟⎠ . (5.9)

Then one verifies that X, Y are indeed symplectic matrices and XYX−1Y −1 = T 2m.
We shall give two proofs of Theorem 5.2. The first proof, which occupies the rest of this 

section, makes use of the isomorphism between the group Sp(4, F2) and the symmetric 
group S6.

This isomorphism has a nice and classical geometric interpretation, which we now 
briefly describe, in the spirit of the first part of our work.

Recall that every algebraic curve C of genus g = 2 has a canonical map which is a 
double covering of the projective line branched in six points, so that there is an involution 
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on C, called the hyperelliptic involution, whose six fixed points P1, . . . , P6 are called the 
Weierstrass points (they are the critical points for the canonical map).

Hence every curve C of genus 2 admits an affine model of equation

y2 = (x− α1) · · · (x− α6)

for pairwise distinct complex numbers α1, . . . , α6 (thus Pi = (αi, 0)).
Given any fibration S∗ → B∗ in curves of genus 2 and a point b0 ∈ B∗, the action of 

the fundamental group π1(B∗, b0) on the fibre of b0 gives, as described above, a morphism 
π1(B∗, b0) → Map2; this morphism also induces a permutation of the six Weierstrass 
points, hence a representation π1(B∗, b0) → S6.

On the other hand, the first homology group H1(C, Z/2) is isomorphic to the subgroup 
Pic0(C)[2] of the 2-torsion points in the Jacobian variety Jac(C) ∼= Pic0(C).

This subgroup is isomorphic to (Z/2)4. Since 2Pi ≡ 2Pj ≡ KC (here KC is the (degree 
two) canonical divisor of C), and since div(y) ≡

∑
i Pi − 3KC , it has a basis given by 

the differences P1 − P2, P2 − P3, P3 − P4, P4 − P5 (indeed, 
∑

i Pi = div(y) ≡ 3KC ⇒
(P1 − P2) + (P3 − P4) + (P5 − P6) ≡ 0).

The morphism Map2 → Sp(4, Z) can be composed with reduction modulo 2, thus 
giving a homomorphism Map2 → Sp(4, Z/2Z), where the symplectic form modulo 2 
is called the Weil pairing on the group Pic0(C)[2], and corresponds to cup product in 
cohomology.

To see that the two groups Sp(4, Z/2Z) and S6 are indeed isomorphic, we observe that 
the half twist on a simple arc joining αi and αj , which yields a transposition exchanging 
the two points Pi, Pj , lifts to a Dehn twist δi,j which maps to a transvection Ti,j on the 
class corresponding to Pi − Pj .

Hence we have defined a homomorphism S6 ↪→ GL(H1(C, Z/2Z)), which is an em-
bedding because a permutation fixes all the basis vectors if and only if it is the identity. 
Moreover, the two groups have the same cardinality, hence we have an isomorphism.

We describe now more formally the isomorphism S6 � Sp(4, F2) following §10.1.12 
of Serre’s book [24].

Let H ⊂ F6
2 be the hyperplane of equation 

∑6
i=1 xi = 0. Consider the alternating 

bilinear form H ×H → F2 sending (x, y) �→
∑

i xiyi. The vector (1, . . . , 1) is orthogonal 
to the whole space, and the induced bilinear form on the four dimensional vector space 
V := H/ < (1, . . . , 1) > turns out to be non degenerate. The group S6 acts naturally on 
F6

2 leaving H invariant; also it conserves the bilinear form and fixes the point (1, . . . , 1), 
so it acts (faithfully) on V as a group of symplectic automorphisms. Hence we obtain 
an embedding S6 ↪→ Sp(V ) = Sp(4, F2). To prove that this embedding is in fact an 
isomorphism, we compare the orders of the two groups.

The order of Sp(4, F2) can be computed as follows: the set of non-degenerate planes 
in F4

2 has cardinality 15 · 8/6 = 20, since one can choose a non-zero vector v1 in 15
ways and a second vector v2 ∈ F4

2 \ v⊥1 in 16 − 8 = 8 ways. Hence there are 15 · 8
possibilities for the ordered base (v1, v2) and each plane admits six order bases, hence the 
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cardinality of the set of non-degenerate planes is 20. The group Sp(4, F2) acts transitively 
on the set of non-degenerate planes and the stabilizer of any such plane is isomorphic to 
SL2(F2) × SL2(F2) � S3 ×S3, so has order 36. It follows that

|Sp(4,F2)| = 20 × 36 = 720 = 6!

We then obtain the sought isomorphism S6 � Sp(4, F2).
We want to prove that the matrix T corresponds, via this isomorphism, to an odd 

permutation in S6, hence it does not belong to the derived subgroup of Sp(4, F2).
Now, T has order two, and every even permutation of order two in S6 is conjugate to 

the permutation (1, 2) ◦ (3, 4). To prove the theorem, it then suffices to show that this 
permutation gives rise to a matrix in Sp(4, F2) which is not conjugate to T .

The quotient space V = H/ < (1, . . . , 1) > is represented by the vectors (x1, . . . , x6)
with vanishing last coordinate x6 and vanishing sum of the coordinates. A basis is 
provided by v1 = (1, 0, 0, 0, 1, 0), v2 = (0, 1, 0, 0, 1, 0), v3 = (0, 0, 1, 0, 1, 0) and v4 =
(0, 0, 0, 1, 1, 0).

The permutation (1, 2) ◦ (3, 4) sends

v1 ↔ v2
v3 ↔ v4

hence corresponds to the matrix

S =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ ,

which is not conjugate, not even in SL4(F2), to the matrix T (compare the ranks of T +I

and S + I). This ends the proof of Theorem 5.2.
Actually, it turns out that the matrix T corresponds to a permutation of S6 conjugate 

to (1, 2) ◦ (3, 4) ◦ (5, 6).

6. Alternative proof for g = 2

Our second proof, which will only be sketched here, is more involved but has the 
advantage of admitting some extensions in higher dimensions.

Notation. For a vector space V and vectors v1, . . . , vk ∈ V , we denote by < v1, . . . , vk >

the sub-vector space generated by v1, . . . , vk. When Λ is a lattice (or a Z-module), and 
v1, . . . , vk are k elements of Λ, we denote by the same symbol < v1, . . . , vk > the Z-
module generated by v1, . . . , vk, when no confusion can arise.

For a vector v ∈ Z4 (or more generally in a module with symplectic form (·|·)), the 
symbol v⊥ denotes its orthogonal with respect to the given symplectic form.
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We start with the following Proposition, which in fact holds in arbitrary characteristic 
not dividing the integer m appearing in the statement, and is one of the main tool in 
the proof of the Theorem.

Proposition 6.1. Let m �= 0 be an integer and suppose that

Tm = XYX−1Y −1 (6.10)

for two matrices X, Y ∈ Sp(4, Z). Then either e1 is an eigenvector for both X and 
Y , or the orbit of e1 under the subgroup generated by X and Y is contained in a two 
dimensional sub-lattice of Z4, contained in e⊥1 and invariant under X and Y .

Remarks. (1) The above proposition could be extended in higher dimensions: for the 
analogue in dimension 2g, the result would be that the orbit of e1 under the group 
generated by X and Y would be contained in an invariant subgroup Λ ⊂ Z2g, satisfying 
Λ ⊂ Λ⊥ ⊂ e⊥1 . (2) We have stated the proposition over the integers, but we could have 
worked over any field (of characteristic not dividing m); in that case we would speak of 
sub-vector spaces instead of sub-lattices.

Proof. Let us put Δ : T − I, where I = I4 is the identity matrix. Note that Δ2 = 0 and 
that Δv = 0 for each v ∈ e⊥1 . Also, Tn = I + nΔ, for all n ∈ Z.

We note the useful equality

e⊥1 =< e1, e3, e4 >= ker Δ

(where we identify the matrix Δ with the multiplication-by-Δ endomorphism of Z4). We 
shall also keep in mind that Δ · Z4 =< e1 >.

We can rewrite equation (6.10) in the form

XY − Y X = mΔY X, (6.11)

as well as

X−1Y −1 − Y −1X−1 = mY −1X−1Δ. (6.12)

It immediately follows from the first of the two identities that TrΔY X = 0, which 
means precisely that the coefficient on the first column – second row of YX vanishes. 
This property can be stated as

Y Xe1 ∈ e⊥1 .

Also, interchanging X, Y turns their commutator into its inverse T−m = I − mΔ and 
repeating the argument we also obtain
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Y Xe1 ∈ e⊥1 .

Again using equation (6.10) one gets

XYX−1 − Y = mΔY

and, noting that interchanging X, Y turns their commutator Tm into T−m,

Y XY −1 −X = −mΔX.

From these relations we obtain as above that TrΔX = TrΔY = 0, i.e. Xe1 ∈ e⊥1 , Y e1 ∈
e⊥1 . Summarizing we have

Xe1, Y e1, XY e1, Y Xe1 ∈ e⊥1 .

We now notice that the commutator XYX−1Y −1 does not change if we replace X by 
XZ, where Z commutes with Y , or Y by Y Z, where Z commutes with X; hence taking 
for Z any power of Y in the first case and any power of X in the second case, we also 
obtain that for each n ∈ Z,

XY ne1, Y Xne1 ∈ e⊥1 . (6.13)

The identity (6.12) implies, considering that kerΔ = e⊥1 , that

X−1Y −1v = Y −1X−1v

for each v ∈ e⊥1 .
Also, observing that all monomials in X, Y are symplectic matrices, and that for every 

symplectic matrix F the relation (Fe1|e1) = 0 implies (F−1e1|e1) = 0, we also obtain 
that for all n ∈ Z:

XnY −1e1, Y
nX−1e1 ∈ e⊥1 . (6.14)

We now pause to prove the following

Claim. The orbit of e1 under X (resp. under Y ) is contained in a proper sub-vector space 
of Q4.

Proof of the Claim. This follows from the relations Y Xne1 ∈ e⊥1 , included in (6.13)
and valid for all n ∈ Z, which imply that the orbit of e1 under X is included in the 
hyperplane Y −1(e⊥1 ) = (Y −1e1)⊥. Of course, the relations XY ne1 ∈ e⊥1 imply the same 
conclusion for the orbit under Y . This proves our claim.

We now prove that such sub-spaces must be one or two-dimensional:
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Claim. The vector space generated by the orbit of e1 under X (resp. under Y ) cannot be 
three-dimensional.

Proof of the Claim. Suppose by contradiction that such a vector space has dimension 
3. Then it admits the base (X−1e1, e1, Xe1). Since the three vectors X−1e1, e1, Xe1 all 
belong to e⊥1 , as we have seen in (6.13), (6.14), this vector space must coincide with e⊥1 , 
which then is an invariant subspace for X. But if a symplectic operator leaves invariant a 
subspace, it also leaves invariant its orthogonal, so in this case the line < e1 > would be 
X-invariant, contrary to our assumption that e1, Xe1, X−1e1 are linearly independent.

Then only three cases must be considered for the proof of the proposition:

(1) The two orbits of e1 (under X and Y ) are contained in a line; this line is then < e1 >

and in this case the assertion of the proposition is plainly verified.
(2) The vector e1 is an eigenvector for X and its orbit under Y is contained in a plane 

W ; in this case we must show that W is contained in e⊥1 and that it is X-invariant. 
Of course, the symmetric situation, when e1 is an eigenvector only of Y , is treated 
in exactly the same way.

(3) The two orbits generate planes WX , WY . In this case we must show that WX = WY

and that this common plane is contained in e⊥1 .

Let us consider now the second case: Xe1 = ±e1 and the orbit of e1 under Y generates 
a plane W =< e1, Y e1 >=< e1, Y −1e1 >. Since X−1Y −1 and Y −1X−1 coincide in e1

and Xe1 = ±e1, we have X−1Y −1e1 = ±Y −1e1, so both e1, Y −1e1 are eigenvectors 
for X, so W is X-invariant. Since Y −1e1 ∈ e⊥1 , the inclusion W ⊂ e⊥1 holds, and the 
verification of the proposition in this case is complete.

In the last case to examine, let

WX =< e1, Xe1 >=< e1, X
−1e1 >, WY =< e1, Y e1 >=< e1, Y

−1e1 >

and again note that WX ⊂ e⊥1 , WY ⊂ e⊥1 . If WX �= WY , then the subspace generated 
by WX and WY would coincide with the hyperplane e⊥1 and would be generated by 
e1, Xe1, Y e1. Now, since XY e1 ∈ e⊥1 , we would obtain that e⊥1 is X-invariant, so again 
e1 would be an eigenvector for X, contrary to our assumptions. So we cannot have 
WX �= WY and the proposition is proved in this last case too. �

Thanks to Proposition 6.1, we can divide the proof of Theorem 5.2 into two cases, 
according to the orbit of e1 under X, Y being a line or a plane.

First case: e1 is an eigenvector for both X and Y . We reduce, possibly after 
changing X, Y by their opposite, to matrices X, Y of the form
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⎛
⎜⎝

1 ∗ ∗ ∗
0 1 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎞
⎟⎠ (6.15)

Put Δ = T − I, where I = I4 is the identity matrix. Recall that Δ is nilpotent, 
satisfying Δ2 = 0 which implies that for every m ∈ Z,

Tm = I + mΔ

The following relations, whose proof is left to the reader, hold:

XΔ = Y Δ = Δ

ΔX = ±Δ, ΔY = ±Δ.

From the above one easily deduces:

XY − Y X = ±mΔ. (6.16)

Our aim now is proving that the relation (6.16) cannot hold for any odd integer m. 
This will follow from an argument modulo 2, leading to the next proposition (where Δ
will denote the reduction of the previous matrix Δ modulo 2):

Proposition 6.2. The equation

XY − Y X = Δ (6.17)

admits no solution in matrices X, Y ∈ Sp(4, F2) satisfying (6.15).

Let us suppose to have a solution (X, Y ) to XY − Y X = Δ in Sp(4, F2) of the form 
(6.15). From the above relations we deduce that Δ, so also T , commute with X and 
Y . Replacing if necessary X by TX, which does not change the commutator, we can 
suppose that the coefficient on the first line – second column on X vanishes. We can 
suppose the same for Y , so X, Y will both be of the form

⎛
⎜⎝

1 0 ∗ ∗
0 1 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗

⎞
⎟⎠ . (6.18)

The following lemma ensures that we can basically choose the form of the second column 
too.

Lemma 6.3. Let k be any field and (X, Y ) be a solution to the equation (6.17) with X, Y ∈
Sp(4, k) of the above form (6.18). Then Xe2 �= e2 and Y e2 �= e2. Also, Xe2 �= Y e2.
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Proof. Suppose by contradiction that Xe2 = e2 (the argument is symmetrical if Y e2 =
e2). Then, since the plane < e1, e2 > is invariant by multiplication by X, the same 
must be true of its orthogonal, which is < e3, e4 >. Now, write Y e2 = e2 + v, where 
v ∈< e3, e4 > (this is certainly possible since Y is of the form (6.18)). The relation (6.17)
applied to the vector e2 gives

e1 = Δe2 = XY e2 − Y Xe2 = X(e2 + v) − Y e2 = e2 + Xv − e2 − v = Xv − v,

which is impossible since v and Xv belong to the plane < e3, e4 >. This proves the first 
two inequalities. Suppose now Xe2 = Y e2. Then from (6.17) applied to the vector e2 we 
obtain, writing Xe2 = e2 + v = Y e2, with v ∈< e3, e4 >,

XY e2 − Y Xe2 = Xv − Y v = e1.

But from Xe2 = e2 + v = Y e2 and (e2|v) = 0 we obtain

(e2 + v|Xv) = (e2 + v|Y v) = 0,

so (e2 + v|Xv − Y v) = 0 which contradicts Xv − Y v = e1 (since (e1|v) = 0 and 
(e1|e2) = 1). �

Let us now go back to characteristic 2. Thanks to the above lemma and the form 
(6.18) for X we can write Xe2 = e2 + w for some non-zero vector w ∈< e3, e4 >. Also, 
again by the above lemma, Y e2 = e2+w′ for some vector w′ �= w in the plane < e3, e4 >. 
Since w, w′ are distinct non zero vector in the plane < e3, e4 >, necessarily (w|w′) = 1, so 
we can suppose without loss of generality that w = e3 and w′ = e4. Then, remembering 
that X, Y are symplectic, we deduce that they take the form

X =

⎛
⎜⎝

1 0 a c
0 1 0 0
0 1 b d
0 0 a c

⎞
⎟⎠ , Y =

⎛
⎜⎝

1 0 e g
0 1 0 0
0 0 e g
0 1 f h

⎞
⎟⎠ (6.19)

for some scalars a, b, c ∈ F2 with ad �= bc and eh �= fg. But then, applying once again 
the relation (6.17) to the vector e2 we obtain Xe4 − e4 = Y e3 − e3 + e1, i.e.⎛

⎜⎝
c
0
d

c− 1

⎞
⎟⎠ =

⎛
⎜⎝
e + 1

0
e− 1
f

⎞
⎟⎠ .

Using the fact that either e = 0 or e −1 = e +1 = 0, at least one of the two determinants 
ad − bc and eh − fg must vanish. This contradiction achieves the proof in the first case.

Second case: a plane containing e1 and contained in e⊥1 is invariant under 
X and Y . Without loss of generality, we can suppose that this plane is < e1, e3 >. It is 
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more convenient to write the matrices with respect to the ordered basis (e1, e3, e2, e4). 
With respect to this new ordered basis, the symplectic form is expressed by the matrix

(
0 I
−I 0

)

where I = I2 denotes the 2 × 2 identity matrix and 0 the 2 × 2 null-matrix.
The conjugate matrices, still denoted by X, Y , will take the form

X =
(
A AR
0 tA−1

)
, Y =

(
B BS
0 tB−1

)

for two matrices A, B ∈ GL2(Z) and symmetric matrices R, S (with integral coefficients). 
The matrix corresponding to T in this new basis is

T ′ :=
(
I E
0 I

)

where E =
(

1 0
0 0

)
. Now the condition XYX−1Y −1 = T ′ is equivalent to XY −Y X =

(T ′ − I)Y X, which amounts to the two conditions

AB = BA, ABS + AR(tB−1) −BAR−BS(tA−1) = E(tB−1)(tA−1). (6.20)

Now we prove that:
The above equation has no solution (A, B, R, S) with A, B ∈ GL2(F2) and R, S sym-

metric.
To prove this claim, rewrite the second equality, after using the commutativity of 

A, B, as

AB
(
S + B−1R(tB−1) −R−A−1S(tA−1)

)
= E(tB−1)(tA−1).

Observe that the right-hand side has rank one. We then conclude via the following lemma, 
which implies that the symmetric matrix inside the parenthesis cannot have rank one:

Lemma 6.4. Let T =
(
a b
b c

)
be a 2 × 2 symmetric matrix with coefficients in F2. Let 

X ∈ GL2(F2) be an invertible matrix. Write X · T · tX as 
(
a′ b′

b′ c′

)
. Then

a + b + c = a′ + b′ + c′.

In particular, every linear combination of symmetric matrices of the form T −X ·T · tX
has rank zero or two.
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Proof. Recall that a two-dimensional vector space over F2 contains exactly three non-

zero vectors v1, v2, v3, and that their sum vanishes. To a symmetric matrix T =
(
a b
b c

)
corresponds a symmetric bilinear form (·|·) on F2

2 . The quantity a + b + c equals the sum

(v1|v1) + (v2|v2) + (v1|v2) = (v1|v2) + (v2|v3) + (v3|v1)

which is invariant under permutations of v1, v2, v3, i.e. under transformations T �→
X T tX. �
Remark. Note that the explicit matrices (5.9) correspond to the following solution of the 
equation (6.20) with E replaced by mE:

A =
(

1 1
0 1

)
, S =

(
0 m/2

m/2 0

)
.

7. Commutators in the Symplectic group Sp(2g, Z), g ≥ 3

We now show:

Theorem 7.21. In every dimension 2g with g ≥ 3, for every m ≥ 0 there exist symplectic 
matrices X, Y ∈ Sp(2g, Z) whose commutator equals

Tm =

⎛
⎜⎜⎝
I + mΔ 0 0 . . . 0

0 I 0 . . . 0
...

...
. . . I 0

0 0 . . . 0 I

⎞
⎟⎟⎠

Here, as before, Δ is the matrix 
(

0 1
0 0

)
.

Proof. Clearly, it suffices to prove this statement in the case g = 3, i.e. for Sp(6, Z).
Here is a concrete example:

X =

⎛
⎜⎜⎜⎜⎝

1 0 1 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 1 0 0 1 0
0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎠ , Y =

⎛
⎜⎜⎜⎜⎝

1 0 0 m 0 0
0 1 0 0 0 0
0 m 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 m 1

⎞
⎟⎟⎟⎟⎠ . �

We note that both X and Y are unipotent. In general, we can prove that for every 
symplectic solution (X, Y ) of XYX−1Y −1 = T , both X and Y must have an eigenvalue 
equal to ±1.
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Remark 7.1. We want now to show that without the hypothesis that the matrices be 
symplectic, we have examples even in dimension ≤ 4. For instance, the following pair of 
(unipotent) matrices in SL3(Z)

X =
(1 0 1

0 1 0
0 0 1

)
, Y =

(1 0 0
0 1 0
0 m 1

)

provides a solution to the equation

XYX−1Y −1 =
(1 m 0

0 1 0
0 0 1

)
= Tm.

7.1. The case g ≥ 3, more general

For the sake of simplicity, we introduce the following notation:

Definition 7.2. Using the standard inclusion of Sp(2g′, Z) ⊂ Sp(2g, Z) for g ≥ g′, we 
define T1 as the image of the matrix

T :=
(

1 1
0 1

)
,

in every Sp(2g, Z).
We define, for g ≥ 2, T2 as the image of the matrix

T2 =

⎛
⎜⎝

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎞
⎟⎠

and we define similarly Tk ∈ Sp(2g, Z), for g ≥ k.

We have the following

Theorem 7.22. T2 is always a commutator (g ≥ 2); also T3 is always a commutator 
(g ≥ 3).

Proof. Here is an explicit solution for T2: XYX−1Y −1 = T2 where

X =

⎛
⎜⎝

0 0 1 0
0 1 0 1
1 0 −1 0

⎞
⎟⎠ , Y =

⎛
⎜⎝

1 −1 0 −1
0 1 0 0
0 −1 1 0

⎞
⎟⎠ .
0 1 0 0 0 0 0 1
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For T3 we have: T3 = XYX−1Y −1 with

X =

⎛
⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 1
1 0 1 0 −1 0
0 1 0 0 0 0
0 0 −1 0 1 0
0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎠ , Y =

⎛
⎜⎜⎜⎜⎝

1 −2 0 1 0 0
0 1 0 0 0 0
0 1 1 −1 0 −1
0 0 0 1 0 0
0 0 0 −1 1 −1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ �

The idea for constructing X, Y comes from the following remark: for every non-zero 
complex number λ, setting

A =
(
λ 0
0 λ−1

)
, B =

(
1 (λ2 − 1)−1

0 1

)

we have

ABA−1B−1 = T1.

We then look for a number field K containing a unit (of its ring of integers) λ such that 
λ2 − 1 is also a unit. Letting n = [K : Q] be its degree, we can view K2 as a vector space 
of dimension 2n over Q. The two matrices A, B defined above induce automorphisms of 
this vector space, and in a suitable basis define two matrices Ã, B̃ ∈ SL2n(Z) satisfying 
[A, B] = Tn. The problem is defining a symplectic form K2 → Q inducing the standard 
one on Q2n, after identification K2 � Q2n.

It turns out that for n = 2 there is only one choice for the number field K, namely 
the field Q(λ) where λ is the ‘golden ratio’ satisfying λ2 = 1 + λ. Identifying K2 � Q4

via the basis 
(1
0
)
, 
(0
1
)
, 
(
λ
0
)
, 
(0
λ

)
we obtain from A, B the matrices X, Y of the theorem.

For n = 3, again we have only one choice for the cubic number field, namely the field 
Q(λ) where

λ3 = 2λ2 + λ− 1.

The basis to be used to identify K2 with Q6 is
(

1
0

)
,

(
0
1

)
,

(
λ

0

)
,

(
0
λ

)
,

(
1 + λ− λ2

0

)
,

(
0

1 + λ− λ2

)
.

Again, the matrices X, Y are then obtained from the action of A, B on K2 � Q6.
We can now obtain a more general result using our previous results and the following:

Remark 7.3.

(1) Assume that Ai ∈ Sp(2gi, Z) is a commutator, for i = 1, 2.
Then A1 ⊕A2 ∈ Sp(2(g1 + g2), Z) is also commutator.
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(2) In particular, this holds for A2 equal to the identity matrix.

Summarising, we obtained the following

Theorem 7.23.

(1) Tm
1 is never a commutator for g = 1.

(2) Tm
1 is a commutator if and only if m is even, for g = 2.

(3) Tm
1 is always a commutator for g ≥ 3.

(4) Tk is a commutator for all g ≥ k ≥ 2.
(5) Tm

k is a commutator for all g ≥ 2k, when m is even.
(6) Tm

k is a commutator for all g ≥ 3k, when m is odd.
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