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THE MODULI AND THE GLOBAL PERIOD MAPPING

OF SURFACES WITH K2 = pg = 1:
A COUNTEREXAMPLE TO THE GLOBAL TORELLI PROBLEM

F. Catanese*

0. Introduction

In the theory of algebraic curves one of the most celebrated results
is the theorem of R. Torelli (see [1], [22]), stating, in modern language,
that two curves are isomorphic iff their Jacobians are isomorphic as
polarized Abelian varieties.

In the general trend to extend this kind of result to higher dimen-
sional varieties some difHculties are encountered (e.g. for surfaces of

general type with q = pg = 0 the Hodge structure is trivial though they
depend on some moduli), but some positive results have been

obtained [18], [11] and some problems have been raised [9], [10] on
the restrictions to impose in order that Torelli type theorems should
be valid in the theoretical set up of Griffiths [8], [10].
Here we exhibit the pathology of a class of simply connected

surfaces of general type for which the moduli variety is a rational

variety of dimension 18, and the period mapping, assigning to the
isomorphism class of a surface S the class of its polarized Hodge
structure, is a generally finite map of degree at least 2.

In this paper we essentially draw the consequences of the study of
the geometry of these surfaces and the local behaviour of the period
mapping, pursued in our previous paper [3].
We mention again that our interest was aroused by Griffiths who

showed us a paper of Kynef [14] where was constructed a particular
surface of this kind such that at the point corresponding to it the
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differential of the local period mapping was not invertible. Another
particular example of these surfaces was also known [5], [6]: in [3] we
proved, using results of [2], that the canonical models X of our
surfaces S are all the weighted complete intersections (w.c.i.) of type
(6, 6) in the weighted projective space P(1 , 2, 2, 3, 3) (see [4], [15] as a
reference about the theory of w.c.i.) with at most rational double
points as singularities, and proved, among other things, that the local
period map was invertible outside a hypersurface of the local moduli
space.

For the reader’s convenience we reproduce some proofs of [3],
since we need to analyze closely the isomorphisms of two surfaces of
our family (to ensure that the ramification of the local period mapping
is not, generally, due to automorphisms).
We then show that an open dense set of the coarse moduli variety
M is isomorphic to a Zariski open set of the affine space of dimension
18, over it lies a family which is the universal deformation family of
Kodaira-Spencer-Kuranishi, and the restriction of the period map to
this open set is a (generally finite) map of degree at least 2. We refer
to [3] for more details on our surfaces, as an explicit description of
the "special" surfaces, those for which the bicanonical map is a

Galois covering of the plane, of their geometric construction (giving
as a corollary the result that they are simply connected). However, in
[3], the discussion of the restriction of the period mapping il, to the
subvariety N representing special surfaces was misleading. In fact
theorem 5 of [3] is false, hence the conclusions of theorem 6 do not
hold. Indeed, an easy extension of the arguments employed in the
proof of theorem 6 gives the result that 1/I’IN is a fibration with smooth
rational fibres of dimension 2.
We want to mention that this last fact has been shown by A.

Todorov in a research independent of ours: he views the special
surfaces as double ramified covers of K3 surfaces to infer that when
the branch curve moves the periods are not changing.

Notations throughout the paper
S is a minimal smooth surface with pg = K2 = 1,
so e HO(S, O(K» the unique (up to constants) non zero section,
C = div(so) the canonical curve,
R the graded ring C[xo, YI, Y2, Z3, Z4], where deg Xo = 1, deg yi = 2,

deg Zj = 3 (i = 1, 2, j = 3,4),
as elements of R,

Rm the graded part of degree m of R,
Q = Q(l, 2, 2, 3, 3) = proj(R),
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the non

singular part of Q,

R(S) = EB HO(S, Os(mK» the canonical ring of S,
m=O

h’(S, L) = dim H’(S, L) if L is a coherent sheaf on S,
i : Q - Q the automorphism which permutes Z3 with z4, p the one

which permutes yi with Y2.

1. Surfaces with K2 = pg = 1, their canonical models
and their isomorphisms

LEMMA 1.1: Pm = h°(S, Ùs(mK)) = )m(m - 1) + 2, and S has no
torsion.

PROOF: Pm = !m(m - 1)K2 + X(S, Os) (see [2] p. 185, or [ 12]) and by
Theorems 11, 15 of [2] q = 0 and S has no torsion, so in particular
X(S, Os) = 2.

One can choose therefore si, S2, S3, s4 such that SÕ, s}, S2 are a basis
of HO(S, Cs(2K)), and SÕ, sosl, SOS2, S3, s4, are a basis of H°(S, Cs(3K)).

Write now C = div(so) = F+ Z, where F is irreducible and K . F =

1,K-Z=0.

LEMMA 1.2: If

PROOF: Write D=D’+F and let D" be the movable part of

ID’I: D" - K = 1, so by the index theorem either D" is homologous
(hence linearly equivalent, as S has no torsion) to K, or D,,2:5 - 1,
hence in both cases ho(S, Os(D"» = 1.

PROOF: Because P4 = 8 it is enough to prove that the two vector
subspaces have no common line. Supposing the contrary, there would
exist a section s E HO(S, Ùs(3K)), and constants AI, &#x3E;i, À2, J.L2, such

that so - s = (À1SI + Às)(&#x3E;i si + .G2S2)·
Taking the associated divisors, C + div(s) = Dl + D2, where Di E

12KI, and one of the Di, say Di, is therefore -F.
By lemma 2 Dl = 2C, hence AISI + À2S2 = CS2 0 for a suitable c E C,

contradicting the independence of 0 s t, S2.
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THEOREM 1.4: 12KI has no base points, so that 0 = 02K: S - p2 is a
morphism of degree 4.

PROOF: If b were a base point of 12KI, then SO, SI, S2 would vanish
at b ; by Corollary 3b would be a base point of 14KI, contradicting
Theorem 2 of [2].

Define an homomorphism a*: R --&#x3E; R (S) by sending xo to so, ..., z4
to s4: by Theorem 1.4. a* induces a morphism a: S --&#x3E; Q =
Q(l, 2, 2, 3, 3). Remark that Q is smooth outside the two phS (xo =

Z3 = Z4 = O}, {xo = YI = Y2 = 0}, and on their complement P =

P(I, 2, 2, 3, 3) CQ(m) is an invertible sheaf for every integer m and Va,
b E Z one has an isomorphism CQ(a) 0 6Q(m)®b - CQ(a + bm)
(compare [15], exp. pages 619-624, and also cf. [4]).
Denote by I the ideal ker a*: because dim R6 = 19, P6 =

dim R(S)6 = 17 there exist two independent elements f, g E 16.

PROPOSITION 1.5: f, g are irreducible and a(S) = Y = {f = g = 01.
In particular 15 = 0, 13KI has no base points, so a(S) C P.

PROOF: If f is reducible, by Corollary 1.3 f = Xo . f’, fe 15, f’
irreducible, and a(S) C {f’ = g = O}. Denote now by p:Q-&#x3E;P the

rational map given by (xÕ, YI, Y2): clearly 0 = p 0 a. Now one gets a
contradiction considering that

(i) p : :{f’ = g = 0} ___&#x3E; p2 is of degree :52, because f’ = 0 is irreducible
and the variables Z3, Z4 appear at most quadratically in g, and linearly
in f’ (observe that (-x°, YI, Y2, - Z3, - Z4) == (xo, Yi , Y2, z3, za)).

(ii) a is a birational because the tricanonical map is such ([2], p.
202).

(iii) P is of degree four.
As 15 = 0, SO, SI, s2, s3, s4 generate H°(S, Os(5K» so a base point for

13KI would be a base point of 15KI, against Theorem 2 of [2].
Finally Y has dimension 2, contains a(S) (a(S) C P) and has its

same degree, 1 ([15], Proposition 3.2): therefore a(S) = Y.

PROPOSITION 1.6: The subscheme of P weighted complete inter-
section of type (6, 6), Y = {f = g = O} is isomorphic to the canonical
model X of S. Therefore I is generated by f, g, and a* induces an
isomorphism a* : R’ = R/I - R(S).

PROOF: a : S - y is a desingularization such that the pull-back of
the dualizing sheaf on Y is the canonical bundle K of S (as ldy =
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’ 

CQ(l) by [15], Proposition 3.3): therefore Y has only rational double
points as singularities and is the canonical model of S (cf. [2], [161).

THEOREM 1.7 : The canonical models of minimal surf aces with
K2 = pg = 1 correspond to weighted complete intersections X of type
(6, 6), contained in P( 1, 2, 2, 3, 3), with at most rational double points
as singularities, and two surf aces are isomorphic iff their canonical
models are projectively equivalent in P.

PROOF: If X is as above, Ox(l) is the canonical sheaf and by
Proposition 3.2 of [151 Ox(I)2 = 1; again by Proposition 3.3 of [15] R’m
is isomorphic to H’(X, Cx(m», so our first assertion follows im-

mediately.
Note that an isomorphism of two surfaces corresponds to an

isomorphism of their canonical rings: this means that their canonical
models are related by an invertible transformation of the following
form

PROPOSITION 1.8: There exists a projective change of coordinates
such that X is defined by 2 equations in canonical form

where F3, G3 are cubic forms.

PROOF: Write

1 claim that the quadratic forms Q1, Q2 are not proportional: other-
wise, by taking a linear combination of the 2 equations one would
have Q2 = 0, but then p : X __&#x3E; p2 would have degree 2 and not 4.
By a transformation Zi - Cj3Z3 + c;4z4 one can suppose QI = z3, Q2 =
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Z4: this is immediate if both QI, Q2 have rank 1, while if, say, Qi has
rank 2, one proceeds as follows.

First take coordinates such that Qi = Z3 . z4, then, subtracting to g a
multiple of f, one can get Q2 = m3z3 + m4z4.

If m3 and m4 are # 0, one takes first new variables V m3 Z3, V m4 Z4,
so that for f/V m3m4 and g, QI and Q2 have now respectively the form
z3z4, z)+ z): then one takes variables zJ, z§ with z3 = z3 - z4, Z4 =

Z3+Z4 so that Qi = z12 - z12, Q2=2(Z32+Z42), and finally 2Q’ + Q2
4 . are in the desired form.

If, say, m4 is zero, one can suppose Q2 = z): but then we have a
contradiction because the point (0,0,0,0,1) would satisfy f = g = 0,
against the fact that X c P.

Finally, if now f = z) + xoz3(âoxô + lÍIYI + lÍ2Y2) + ... one kills the â;’s
by completing the square, i.e. by taking Z3 + !xo(lÍoxÕ + tlIYI + lÍ2Y2) as
new Z3 coordinate, and analogously one then does for g, acting on the
Z4 variable.

Let H be the connected projective subgroup of Aut(P) consisting
of the transformations whose matrix is of the form

The transformation i which permutes Z3 with z4 centralizes every
element of H, and denote by H the subgroup generated by H and i.

PROPOSITION 1.9: If X and X’ are defined by two canonical forms,
they are isomorphic iif their canonical equations are equivalent under
the projective subgroup H.

PROOF: Set yo = XÕ, as usual, and suppose X is given by f = g = 0
where
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X is isomorphic to X’ iff 38 E Aut(P), À, IL, À, IL’ E C such that

Writing

hence c33c3a - C43C44 = 0 and (B) is equivalent to either

or

By looking further at only those terms where Z3, Z4 do appear and

denoting by D the transformation induced by 6 on the p2 of homo-
geneous coordinates (yo, yi , y2),

and these last two equalities are equivalent to c3j = C4j = 0 for

j = 0, 1, 2, and to

Notice that if 5 satisfies (B2), then i - 8 satisfies (BI) and the assertion
is thus proven.

COROLLARY 1.10: If, as in Proposition 1.9, X, X’ are given by
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canonical equations f = g = 0, f’ = g’ = 0 respectively, and are

isomorphic under H, then

LEMMA 1.11: If X is given by f = g = 0, and alb2 - a2bI :;é 0, then
one can assume, after a projective change of coordinates, that a(y) =
Y, Q(Y) = Y2.

PROOF: The transformation leaving Xo, Z3, Z4 invariant and sending
yi - a(y), Y2 -+ I3(Y) is invertible iff alb2 - a2 b 1 gé 0.

LEMMA 1.12: Suppose X, X’ are given by pairs of canonical equa-
tions (f, g), (f’, g’) with a = a’ = y,, 13 = 13’ = Y2, and they are isomor-
phic. Denote by p the transformation which permutes YI and Y2. Then
either f, 15) lJf’, g’) are equivalent under a diagonal matrix 8 with

du = d c2 33 , d22 = d C2 44 , or (g 0 p 0 i, f 0 p 0 i), (f’, g’) are such.dC44’ dC33’ 
’

PROOF: By Proposition 1.9, X, X’ are isomorphic iff either (f, g),
( f’, g’) are equivalent under H or (f 0 i, go i), ( f’, g’) are such.

In the first case by Corollary 1.10

so that d2I = d20 = dlO = d12 = 0, dll dc44 = 33, d22 dC33 = 44 In the

second case observe that p commutes with i, p belongs to H, and

COROLLARY 1.13: In the hypotheses of Lemma 1.12 (f, g) (f’, g’)
are projectively equivalent iff exist non zero constants d, C33, c44 such
that D: p2 --&#x3E; P’ being the transformation such that yo-dyo, YI -

(C2 33/dc44)yl, Y2 (C2 44ldC33)Y2, being D’ = Do p = po D, either
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Supposing further that the coefficient in F, F’, of y’y, is 1, that the

coefficient in G, G’ of yôy2 is 1, then necessarily C33 = c44 = d3, therefore
either F = F’, G = G ’, or F’ = G c p, G’ = F 0 p.

PROOF: The first part is a restatement of the conclusions of Lemma
1.12. The second follows from the equations stated in the first part,
looking at the coefficients of y)yi, Y’Y2: C’3 = d4(C2 3/dc44), c§4 =

We end this section by giving a model in p3 f or our surfaces:

PROPOSITION 1.14: A surface S with K2 = Pg = 1, whose canonical
model is given by a pair of canonical equations f, g, with

a(yo, Y, y2) 0, is birational to a sextic surface N in p3 defined by the
following equation in the homogeneous coordinates

PROOF: Eliminate z4 from the two equations f, g, and multiply the
resultant by x3 to obtain the above equation. Equation f, as a=t= 0,
guarantees that Z4 is a rational function of (zo, zi , Z2, Z3).

REMARK 1.15: N has as double curve, generally, a smooth plane
cubic, (given by a = F + z3zo = 0), which passes through the point
0 = (0,0,0,1), image point of the whole canonical curve. This is

against the argument of Enriques [5] that the double curve should
consist of 3 coplanar lines passing through 0.

2. Moduli of surfaces with K2 = pg = 1

LEMMA 2.1: If X is given as in Proposition 1.8 by two canonical
equations

for general choice of a, 8, F, G, X is smooth (and contained in P).

PROOF: X C P means that {xo = Z3 = Z4 = O} n X = 0, i.e. that the

resultant of F(O, yi , Y2) and G(O, yi , y2) iS gé o (X fl {xo = yi = Y2 = 0} = 0
is automatically satisfied). If you set a = {3 = 0, X is smooth (and
contained in P) iff the two cubics F, G, and the line {Yo = 0}, in P2, are
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smooth and have transversal intersections (and have no point of
common intersection), as it is easy to verify.

Let U be the Zariski open set in the affine space of dimension 26,
parametrizing the coefficients of a, (3, F and G, such that for

(a, (3, F, G) E U the corresponding X (given as in Lemma 2.1) is
contained in P and has at most rational double points as singularities;
let p : ài- U be this family of canonical models in P.

Before going on, however, we mention some more results con-
tained in [3] (the following being Theorem 3, ibidem).

PROPOSITION 2.2: S is such that 0: S --&#x3E;P’ is a Galois covering iff X
admits canonical equations with a = (3 = 0. The Galois group is

Z/2Z EB Z/2Z, acting by the two involutions z3 H -z3, z4- -z4 (their
product being the involution xo - - xo).

THEOREM 2.2: All the surf aces with K2 = pg = 1 are diffeomorphic,
and simply connected.

PROOF: By Theorem 1.7 every canonical model of such surfaces
occurs in the family ae, whose base U is smooth and connected. By
the results of [19] all the non singular models are deformation of each
other, hence diffeomorphic. The other assertion (Proposition 13 of

[3]) follows from the fact that the surfaces S for which 0 is a Galois
cover are simply connected (Proposition 10, ibidem).

In order to come to the main result of this section, some more
notations are needed. Let V be the Zariski open set, in the affine

space of dimension 18 parametrizing the pairs of cubics (F, G) with
fool = 9002 = 1 (where F = 0:5i:5j:5k:52 fjkYiYjYh and similarly for G), such
that for (F, G) E V the weighted complete intersection (w.c.i.) given
bv

is smooth and CP.

Denote by ir: Y---&#x3E; V the smooth family that one thus obtains,
by p* : V ---&#x3E; V the linear involution such that p*(F, G) = (G 0 p, F 0 p)
(remember Corollary 1.13), whose fixed set has dimension 9. Remark
further that if Û is the open set in U such that for u = (a, (3, F, G) E t7,
Xu is smooth, alb2 - a2b1 1 is 0 0 and, after the change of variables of
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Lemma 1.11, fooi and gOO2 are # 0, then for u E !7 exists v E V such that
Xu is isomorphic to Sv.

THEOREM 2.3: The coarse moduli variety M for the surfaces with
K2 = pg = 1 is a rational variety of dimension 18.

PROOF: First of all M exists and is a quasi-projective variety by
Gieseker’s theorem [7]. By the universal property of M there exist

unique maps U M, V20132013&#x3E; M: we know that cp is onto, therefore
M is irreducible, moreover, by the above remark 1,(V) =,o(Û), 1,
factors via V---&#x3E; V/ p * -) M and à is injective. The conclusion is that
M is birational to V/p*, a rational variety.

3. Periods of surfaces S with K2 = pg = 1

In this section we adopt notations and terminology from [101, [8], to
which we refer.

The Hodge structure of our surfaces is all in dimension 2, where

H2(S, C) = H2,0 EB HI,I EB HO,2, once fixed a Hodge metric, and is

completely determined by the 1-dimensional subspace H2,1 (cf. [8]). If
Ks is ample (i.e. the canonical model is smooth) there is a natural

polarization on the cohomology, and here the classifying domain D
for the polarized Hodge structure on the primitive cohomology is

==:: SO(2, 18, R)/ U(1) x SO( 18, R), its complex structure being given by
its realization as an open set in a smooth quadric hypersurface in P’9.
The global period mapping is defined on M’, the Zariski open set in
M parametrizing surfaces with K ample, and goes to the classifying
space DIF, where F is SO(2, 18, Z), a group operating properly
discontinuously on D [10], [8].
We want to show that this map is not injective.
We denote then by B the base of the local universal deformation of

a surface S (see [13], [21]): its tangent space at the point b E B
corresponding to S is naturally identified with H’(S, Ts) (TS being the
tangent sheaf of S). The local period mapping is defined on B and
goes holomorphically to D, and (the tangent space to D at the image
point of b being canonically identified to a subspace of

Hom(HO(S, 11i]), H’(S, n 1» its differential IL (by [8]) is obtained via
the bilinear mapping HI(S, Ts) x H"(S, f2 2 )--&#x3E;HI(S, Tso f2 2) and the
natural isomorphism n 1 == Ts(D 2 S.
We quote, without reproducing the proof, Theorem 4 of [3].
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THEOREM 3.1: Suppose S is a smooth weighted complete inter-

section of type (6, 6) given by the vanishing of two canonical equa-
tions

Then the local universal deformation of S has a smooth base of

dimension 18, and g is injective iff for S is ;éO the determinant

L!(a, (3, F, G) of the following generally invertible matrix (actually
more holds: dim ker g = corank of the matrix)

As a corollary, we have

THEOREM 3.2: ’TT’: Y - V is, for v E V, the universal deformation of
Sv.

PROOF: Sv is smooth, hence by the previous theorem the base B of
its universal deformation is smooth: but the dimensions of V, B, are
the same and there is locally a unique map h of V- B inducing the
family g. Observe that h is injective if p*( v) ¥: v, and if p*( v) = v it

has at most degree two: in the first case then h is obviously an
isomorphism, in the second case if it were not a local isomorphism h
would factor through V--&#x3E; Vlp*; this is impossible however since
V/p* has a singular set of dimension 9, hence cannot go injectively to
B (smooth of the same dimension).
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THEOREM 3.3: The global period mapping of surfaces with K2 =
pg = 1 has degree at least 2.

PROOF: If v E V is a point such that p*( v) i= v, L1 (v) = 0, ker g has
dimension 1 and is not tangent to {L1 = 01, then a small neighbourhood W
of v goes (by «/1) injectively into the moduli variety M (by Theorem 2.3
and Corollary 1.13), while the local period mapping from W to D is a
finite covering of degree at least 2 with {L1 = 01 as ramification locus,
being a map between manifolds of the same dimension.

Let’s show that such a point v exists, i.e. that d vanishes on V

(then we are done, since its locus of zeros is a hypersurface, while the
fixed locus of p* has codimension 9, the locus of points where
dim ker g = 2 has codimension 4, in particular is a proper subvariety
of JA = 01), and that ker IL is generally not tangent to {L1 = 01.
We have seen (Lemma 2.1) that for F, G general the points of U of

the form (0, 0, F, G), where L1 does vanish, correspond to smooth
canonical models: so, if we restrict to the subspace U’ of U where
a = aiyi + a2y2, {3 = bi yi + b2 y2, by the remark preceding Theorem 2.3
it is enough to prove that every component of f A = O} meets

û nu’.
But the complement of Û in U’ is given by the equations alb2-

a2b, = bzfm - b,foo2 = alg002- a2gOOl = 0, so it suffices to prove that

these polynomials do not divide L1. For the first set a = a2 = bl = b2 =

1, f1l2 = g122 = 1, and the other variables zero: then the value of L1 is 4.
For the other two notice that the variables f 001, f002, 9001, g002 do not
appear in L1.

Finally it is easy to verif y that the restriction of L1 to the affine space of
V is irreducible and that at the point v == (F, G) 1 2 0
yi + YÕY2) ker g is spanned by the tangent vector (6 2 1,
5y2 + 2 y3 + 2YÕYl + 2yo), such that e(,à) = 135.

REFERENCES

[1] A. ANDREOTTI: On a theorem of Torelli. Am. J. of Math., 80 (1958) 801-828.
[2] E. BOMBIERI: Canonical models of surfaces of general type. Publ. Math. I.H.E.S.

42 (1973) 171-219.
[3] F. CATANESE: Surfaces with K2 = pg = 1 and their period mapping, in Algebraic

Geometry, Proc. Copenhagen 1978, Springer Lect. Notes in Math. n.732 (1979)
1-26.

[4] I. DOLGACHEV: Weighted projective varieties, (to appear).
[5] F. ENRIQUES: Le superficie algebriche di genere lineare p(1) = 2. Rend. Acc.

Lincei, s. 5a, vol. VI (1897) 139-144.
[6] F. ENRIQUES: Le superficie algebriche. Zanichelli, Bologna, (1949).



414

[7] D. GIESEKER: Global moduli for surfaces of general type. Inv. Math. 43 (1977)
233-282.

[8] P. GRIFFITHS: Periods of integrals on algebraic manifolds, I, II. Am. J. of Math.
90 (1968) 568-626, 805-865.

[9] P. GRIFFITHS: Periods of integrals on algebraic manifolds: summary of main
results and discussion of open problems, Bull. Am. Math. Soc. 76 (1970) 228-296.

[10] P. GRIFFITHS and W. SCHMID: Recent developments in Hodge theory: a dis-
cussion of techniques and results. Proc. Int. Coll. Bombay, (1973), Oxford Univ.
Press.

[11] E. HORIKAWA: On the periods of Enriques surfaces, I, II. Math. Ann. vol. 234,
235 (1978) 73-88, 217-246.

[12] K. KODAIRA: Pluricanonical systems on algebraic surfaces of general type. J.
Math. Soc. Japan 20 (1968) 170-192.

[13] M. KURANISHI: New proof for the existence of locally complete families of
complex structures. Proc. Conf. Compl. Analysis, Minneapolis, pp. 142-154,
Springer (1965).

[14] V.I. KYNEF: An example of a simply connected surface of general type for which
the local Torelli theorem does not hold. C.R. Ac. Bulg. Sc. 30, n.3 (1977) 323-325.

[15] S. MORI: On a generalization of complete intersections. J. Math. Kyoto Univ. 15,
n.3 (1975) 619-646.

[16] D. MUMFORD: The canonical ring of an algebraic surface. Annals of Math. 76
(1962) 612-615.

[17] C. PETERS: The local Torelli theorem, a review of known results in Variètès

analytiques compactes, Nice 1977. Springer Lect. Notes in Math. 683 (1978) 62-73.
[18] I.I. PIATETSKI SHAPIRO and I.R. SHAFAREVITCH: Theorem of Torelli on algebraic

surfaces of type K3, Math. USSR Izvestija 5 (1971) 547-588.
[19] G.N. TJURINA: Resolution of singularities of flat deformations of rational

double points. Funk. Anal. i Pril. 4, n.1, pp. 77-83.
[20] S. USUI: Local Torelli theorem for some non-singular weighted complete inter-

sections. Proceed. Internat. Symposium Algebraic Geometry, Kyoto, 1977. Ed. M.
Nagata. Kinokuniya Book-Store, Tokyo, Japan, 1978: pp. 723-734.

[21] J.J. WAVRIK: Obstructions to the existence of a space of moduli, Global Analysis.
Prin. Math. Series n.29 (1969) 403-414.

[22] A. WEIL: Zum Beweis des Torellischen Satz. Göttingen Nachrichten (1957) 33-53.

(Oblatum 20-VI-1979 &#x26; 24-X-1979) Istituto Matematica "Leonida Tonelli"
Via Buonarroti 2
1 56100 Pisa, Italia


