
PLURICANONICAL - GORENSTEIN ~ CURVES 

Fabrizio Catanese 

§ o. Introduction 

Some of the most classical results in algebraic geometry deal with 

the pluricanonical mappings of a complete smooth curve. 

Classically, if X is a smooth curve of genus p ~ 2 the sections 

of HO (X, (r/)8n ) give the th pluricanonical map n <l>n X 

x->- Ii!' (Ho (X, (rI~)8n)v) of X into the projective space associated to 

the dual of HO (X, (rI~) I3n) • 

It is well-known that this map is an embedding if 

i) n > 3 

ii) n = 2 and p ~ 3 

iii) n = 1, P ~ 3 and X is not hyperelliptic. 

Indeed, iii) characterizes hyperelliptic curves because if X is 

hyperelliptic then the canonical map <1>1 yields a double cover of a 

rational normal curve. The need for extending these results to sin-

gular and reducible curves appears if one studies families of smooth 

curves and the possible degenerations of the generic fibre. 

The first result in this direction, namely the extension of i) 

above for certain curves with nodes, was proved by Deligne and 

Mumford ([4]) in their work on the irreducibility of the moduli space 

of curves of genus p. F. Sakai ([10]) encountered similar problems in 

his study of open surfaces and his work shows the usefulness of having 

results of this kind for reduced curves lying on a smooth surface. 
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The object of this paper is to investigate in more detail this 

problem, with a greater generality which we hope suffices for most 

applications. 

The correct analogue of pluricanonical mappings in the case of 

reducible curves with singularities is obtained replacing the sheaf 

n~ of I-forms by the dualizing sheaf wX ; in order that sections of 

this sheaf, or tensor powers of it, define a map to some projective 

space, one has to assume that Wx be an invertible sheaf (cf. [8], 

lecture 5). Notice that Wx is invertible if and only if X is 

Gorenstein. We call the mapping associated to the linear system I wxllln I 

the th pluricanonical mapping of X. n 

In order for these mappings to be well defined on X one should 

not have components of X along which all sections of 

This leads naturally to the following definition. 

llIn 
Wx vanish. 

Definition 0.1: X is said to be semi-canonically positive (s.c.P. 

for short) if and only if, for each component Y of X, the degree of 

Wx I y = Wx 1lI l:>y is non negative. If, for each y, this degree is 

positive, X is said to be canonically positive (C.P.). 

It is clear that if some pluricanonical mapping is an embedding, then 

X must be C.P. 

Now we can state our simplest results. 

T eorem A: If X ~s S.C.P h . Iwxlllni is base point free for each 

n > 2. 

Th f · I wxllln I eorem B: I X ~s C.P. gives an embedding of X for 

each n > 3. 

We shall also study in more detail the structure of the maps 

associated with and and indeed the greater part of this 
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paper will be devoted to prove tQe analogue of ii), and of iii) 

above under suitable conditions of connectedness. We shall also show 

that our conditions of connectedness are close to being necessary and 

sufficient for the validity of our statements and we shall produce 

several explicit examples. 

This paper is organized as follows: In § I we recall known 

basic facts about Gorenstein curves, we show how to obtain a S.C.P. 

Gorenstein curve out of an arbitrary Gorenstein curve by destroying 

some components that we call negative tails, and we describe S.C.P. 

curves of genus one. In § 2 we discuss the behavior of I Wx IIlIn I , 
for n > 2, using Riemann Roch duality and some explicit interpreta-

tions of first cohomology groups: we prove the above Theorems A and B, 

IWXIIlI2
1 and also (Theorem C~ describe when does not give an embedding. 

§ 3 is devoted to the study of the canonical map IWxl and, in par-

ticular, we describe explici tly the "hyperelliptic curves" (the ones 

for which the canonical map is not birational). Finally, in § 4 

we show by means of an example that even the simplest Theorems A and B 

do not carryover to the non-reduced case without additional hypothese& 

Our notation is as follows: 

k is an algebraically closed field over which all the varieties 

in question are defined. 

If V is a k-vector space, VV is its dual. 

If X is a projective scheme, with structure sheaf Gx' Wx is 

the dualizing sheaf of X (see [7] p. 242); moreover, if;j is a 

coherent sheaf on 

the dimension of Hi 

X, we denote by ~* = ~6 ('I, Gx )' by hi ('!-) 
X 

(X,~) as a k-vector space, by 

If X is a reduced curve, X = YUZ, with dim (YnZ) = 0, we will 

denote Z by X - Y. Also, y·z is defined to be equal to the length 
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of 6ytlz ' and if X€X, (Y'Z)x is, by definition, the length of 

GyIIZ,x. 

If y is a subscheme of X, 21 is coherent on X, jfl y stands for 

;/sGy. 
If s is a section Of:t, s:= 0 means that the stalk of s is 0 

at any point of X; _ is also used to denote linear equivalence of 

divisors. Without explicit mention we shall assume all the schemes 

under consideration to be complete. 

R. R. is an abbreviation for the Grothendieck-Serre-Riemann-Roch 

duality theorem (see [7], [11]) which, in the case of curves, readR 

out as follows: 

'" vl,J. 1", v 0 ,.., Hom (21"' wx) ,;; H (X,..,.), Ext (.:1", WX) =.H (X,.::t). 

The arithmetic genus p (X) of a curve X is, by definition, equal to 

1 2 - p (X). If X is Gorenstein 

§ 1. Gorenstein Curves 

Lemma 1.1: Let W be a projective variety (possibly non connected), 

F an invertible sheaf on W, ~a torsion free sheaf on W such that 

for each invertible sheaf L on WHom (L, F);:; Hom (L, Y-): then 

F ;:;~. 

Proof: Assume W to be connected. Then Hom (F, F) = k hence there 

is a non trivial homomorphism a 

~ is torsion free, hence, if K 

F-+I. a must be injective since 

coker a, we have, upon tensoring 

wi th b w (n), the following exact sequence 

For n 

o -+ F (n) -+ j (n) -+ 

large enough Hi (W, P (n)) 

K (n) -+ o 

o for i ~ 1, and 
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(F(n)) by our hypothesis, since e.g. (1 (n)) :: HO 

(F(n)) = Hom 

enough, hence 

((;w(-n), F). Then HO (K(n)) = 0 for all n large 

K = 0 and F :: I. If W is not connected, it suf-

fices to show that if y is a connected component of W, then our 

hypothesis holds true for y, Fly'Yly. But, for any invertible sheaf 

L' on y, consider L on W to be equal to L' on y, and to ~(n) 

on W-y: then for n large enough Hom (L' ,FI'y) ::: Hom (L,F), and the 

same is true for 1. 
Q.E.D. 

Proposition 1.2 (Noether's Formula): Let TI: y-+ X be a finite 

* birational morphism of Gorenstein curves. Then wy ~ TI (W x ) III C, 

where C is the conductor of TI viewed as an ideal sheaf on y. 

Proof: By the previous lemma, it suffices to prove that, for every 

invertible sheaf L on y, 

* Hom (L, Wy ) = Hom (L, TI (W X ) III C) • 

Taking the dual vector spaces, the left hand side is HI (y,L), while 

the right hand side is 

~ (L, 

Gy 

therefore it is enough to show that 

* TI 

This equality indeed is of local nature and follows from the fact that, 

at the finite set of points x where TI is not an isomorphism, the 

conductor ideal C 

very definition. 

TI* C is equal to ~6 (TI* Gy ' Gx )' by its 
X 

Q.E.D. 
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Assume now that X is Gorenstein and reduced, and that y = X is 

the normalization of X. 

We have then the standard exact sequence 

(1.3) 6-
X 

-+ l!. -+ 0 

where l!. =. l!. 
x singul~r 

and one usually denotes by Ox the length of l!.x' 

by 0 the one of l!. (0 = ~x ox), 

Applying the functor ~X ,6~ one obtains the dual exact 

sequence 

(1.3') 

1 
( 11* 6x ,6x) 0 -+ ~Gx 

-+ 

Let M 6x/C ' m length (M ). 
x x 

* 6 X' hence l!. :: l4t 1 (~I, Gx). Lemma 1.4: C = 11* 

~: For any ideal;f C G of finite colength, if contains a non 
x 

zero divisor f. Then::l * C Kx' where Kx is the full ring of frac-

tions of G 
x 

in fact if IjJ €.:/"', h €:I, IjJ (h) f = IjJ (hf) = h IjJ (f), 

and thus IjJ (h) h (ljJ(f)/f) and we can write IjJ = (1jJ (f)/f )€ Kx' 

* Consider now IjJ € C 

.'rI f € C, we have IjJ g f € G x' then IjJ f € C. 

So IjJ C,C, and IjJ is regular on X. The last statement follows 

by taking the dual of the exact sequence 

o -+ C -+ Gx -+ M -+ 0 

Q.E.D. 

Theorem 1. 5: U1X is invertible at x if and only if the following 

equivalent conditions are satisfied: 
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b) Ox = mx 

c) for each coherent sheaf F with supp (F) x, 

length C~ 1 CF, Gx)) = length CF). 

Morever, in general, if x is singular 1 < m <0 • x- x 

Proof: We defer the reader to Serre's book ([lljpp. 76-80) for the 

proof of the more difficult parts, a, b ~wX invertible, mx ~ ox. 
We shall prove instead that Wx invertible ~ ~a,b. 

In fact, if Wx is invertible at x, then~l (F, Gx )::; e,f-(F,WX)' 

h . 1 h· hO C.A- 1 d . 1 hO ence ltS engt lS (yt-l- (F, WX» = 1m (Ext (F, WX» = (F) 

by R.R. 

If c) holds, by virtue of the exact sequence 

and of lemma 1.4., one obtains 

o 

Q.E.D. 

Let xl, ••• xk be the connected (irreducible) components of X; then 

the long exact cohomology sequence associated to (1.3) gives 

(1.6) (k-l) ~ ° p(X) 

Actually, if x' is the disjoint 

Xi of X, one has an exact sequence 

(1. 7) 0-+6 
X 

One associates to X a graph Ixl 

segment Ixil for each component 

Ixil for each singular point y 

k 
= Lh=l p(Xh ) + (o-k+l) • 

union of the irreducible 

analogous to (1.3) 

k 
E& G 

". 1 X. 
6~~ -t 

in the 

f:,' o 

following way: 

components 

take a 

Xi' and mark a point IVil in 

of X belonging to Xi; then, if 
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with ly.1 • 
J 

Proposition 1.8: Let X be a reduced connected curve; then PIX) 0 

if and only if 

a) every component X. is isomorphic to pI , 
~ 

b) the singularities of X are given by r smooth branches 

with independent tangents, 

c) the associated graph Ixi is contractible. 

Moreover, if pIX) = 0, X is Gorenstein iff it has only nodes as 

singularities. 

Proof: By (1.7) pIX) = 0 ~P(Xi} = O. If X is irreducible, by 

(1.6) , pIX) = 0 implies pIX) = 0, ° = 0, hence X is smooth and 

1 
E:P • One can assume clearly that Xl is such that Y = X - Xl is 

connected. Let Z be the disjoint union of Y and Xl' and consider 

the obvious morphism p Z+ X. Again one has the exact sequence 

+ P G + 8' + 0, * Z 

therefore ~" has length 1, hence, first of all, Y and ~l intersect 

in a single point y. Then Gx is a 
,y 

contained in the subring R = {(f,g) 

~ II has length 1, 

dim '1n / 2 y, yV}rt 

R = Gx ,hence ,y 

y,y 

til 6y ,y subring of bx 
l,y 

f (y) = g(y)} since however 

dim ~,Xtm..2 
y,X 

and b),c) are proven by induction on k. 

The converse is also easy. 

If X is Gorenstein at x, Ox + 1 components meet transversally at x, 

but here C ;~, so Ox m 
x 

1, and x is thus a node. 

Q.E.D. 
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Definition 1.9: X is said to be m - connected if, for each decomposi-

tion X = YvZ, with dim Y A Z = 0, one has y·z > m. Y and Z are 

said to meet transversally at x E: X if (Y'Zl x = dim G = 1. 
YnX,x 

Recall now that we are assuming X to be connected, hence always 

I-connected: if X is not 2·-connected, then one can write X = Y u Z 

with Y and Z intersecting transversally at a single point x. 

Proposition 1.10: If X = Y V Z and Y and Z meet transversally at x, 

then x is a node for X if w is invertible at x. 
X 

Proof: The question is local, but, taking a normalization of X at 

the other points of intersection of Y and Z, and at the points 

where wx is not invertible, we can assume that X be Gorenstein 

and that Y 1\ Z = {x} Let. 11 X .... X be the normalization of X 

at. Z -1 
{Z l , Y -1 

{Yl. x, 11 11 

We have the following commutative diagram 

o G .... 
Y 

6 
ZIlY 

o 

-I- -I-

o 

Therefore, if !:,.X = 11* 

defined in the same way, 1 + 

hO {I:,. xl, and OZ,Oy are 

Oz + 0y' Let Cx' Cy ' Cz 

be the conductor ideals of the morphisms 11, 11 I y' 11 I z' and let 

ffiX' my, mz be defined accordingly. 

If Y, Z are smooth at. x our claim is proven, otherwise, since 

'111, X = l1k,y + ~,z' and C em, x x,X 
if they are both singular 

Cx Cy ~ CZ' if y Is smooth Cx = Cz dl 71tx , y; in the first case 

m m + m 
X Y Z 

-1 I in the second mx = m z' 
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In either case we have a contradiction, since Ox 

Q.E.D. 

We are now going to show how a Gorenstein curve can fail to be S.C.P. 

(ef D.l). 

Proposition 1.11: Let y c. X be a connected union of components X. 

of X such that deg wxlx. .::: o. Then pry} = a unless Y = X , 
J. 

deg Wx Ix. = a for each component X .• In this last case p(X} 
]. 

J. 

and Wx - Gx • Conversely, if X is S.C.P. and p(X} = 1, w is 
X 

trivial. 

Proof: Y being connected, prY} = hl (y,0 y ) = (by R.R.) = dim 

Hom G (6 Y' (;.1 x} hO (X, ;! X-y wx ) where;:t X-y is the ideal 
X 

sheaf of X-Y: in fact, by the exact sequence 

-+ 6 
y a 

Assume now that X-Y + ~ : then every section s of ~ X-y is 

1 

identically zero on X-Y, so vanishes at some point of Y; but then, 

by the assumption made on deg w X Ix. for Xi C Y, s is identically 
J. 

zero. The same clearly holds if 3 X. c. Y s.t. deg w Ix < O. Assume 
J. X . 

then X .= Y ; 

conversely if 

p(X} = hO (wX) 

p (X) = a unless deg w X I x. = a 
l. 

]. 

for each i, and 

p(x} = 0, by prop. 1.8, X is not S.C.P. But then 

2:. 1, so there exists a non zero section s 

J. 

Since deg w = X 2 p(X} -2 , if deg wxlx. = (} for each i, s gives an 
l. 
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isomorphism of Wx with the trivial sheaf, and if p(X) 1, X is 

S.C.P., then deg Wx Ix. = 0 for each i. 
J. 

Q.E.D. 

Lemma 1.12: Let Z c X be both Gorenstein. Then the ideal 

''f' 6 
<I' x-z ~ Z is invertible, Wx I z = Wz ~ 

-1 
III G z) , and in 

particular deg deg z • (X-Z) 

Proof: Let W be a normalization of x-z at the points where 

Wx_z is not invertible , let Y be the disjoint union of Wand Z, 

TI : Y + X the natural map. By proposition 1.2 we get that Wz 

C III G Z' and that C III b z is inverti-

ble. 

We have the following commutative diagram 

0 
t 
t1x_z 
t 

0 +G -+6 cb TI* 6\'1 -+ fox -+ 0 X z 
t Sf t t 

0 -+°x -+ 6z cb b x-z -+ 6 z rr (X-Z) -+ a 

t t 
a a 

and, by dualizing (taking ~6~ ,Gx )) we obtain 

a 
+ 

;! x-z cb a -+ C 

+ + 55 

a -+ ;f x-z 

Therefore C III G z :J (X-Z) finally we have an 

exact sequence 

III 6 Z -+ 6 z -+ ~-z ® 6z -+ a 
II 

6 
(X-Z) (') Z 
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and the last assertion follows then. 

Q.E.D. 

Proposition 1.13: Let X be Gorenstein, TI : X + X the normalization 

of a singular point x, Z an irreducible component of X containing 

-1 
(Z) , Oz hO 

(TI * G ZIG). Then deg (C- l h x, Z = TI 
Z 

Z 
= 2 Oz + Z (X-Z) 

x 

Proof: We can clearly assume, as in 1.10, that Z n (X-Z) x. We 

have then the following exact commutative diagram 

0 0 
-} -} 

0 + 6 x + 6 d> 6 x-z + 6 + 0 
Z Z 'I (X- Z ) 

-} -} 

TI* 6-
X - TI* 6 zd> TI* 6(X_Z) 

-} -} 

0+ G + 
Z'l (X-Z) !:'x + !:'z <Il !:'x-z + 0 

-} -} 

0 0 

Taking the dual sequences we obtain 

0 0 

-} -} 

TI* (C I z) d> TI* (C I - -) - C x-z 

-} -} 

0 + :Y x-z d> l' z G x + !!p;l (GZI\(X-Z)' Gx) + 0 

-} I 1 
6 X ) d> f4J::- 1 

(!:, X-Z' Gx ) C'¢tl (!:,X ,bx) O+tp- Wz, + 

-} -} 

0 0 

therefore length (G -I ) 
Z C I z length (TI* 6 zi 6 ) + length (S ZI ::j ) + 

Z x-z 
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+ length (c;ti.l (f', z' bX )) 
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z 

+ 

(X-Z)x + 

z (X-Z)x by 1.5 c). 

Q.E.D. 

Remark 1.14: Passing to the completion of the local rings in con-

sideration, and considering branches of Z through x, one obtains 

an entirely analogous result (with the same proof) for the mUltiplicity 

of C at a point q of X s.t. 1T (q) = x (see also [6] for a 

slightly different proof) • 

Definition 1.15: A negative tail Y contained in X is a maximal 

connected curve in X s.t. deg Wxly<O' and s.t., for each curve 

Xi C y, deg W X I x. ~ O. 
1 

Proposition 1.16: A negative tail Y is Gorenstein with p (Y) 0, 

and Y intersects X-Y transversally at a single point. 

Proof: p (Y) = 0 by 1.11, and if Y is Gorenstein, by 1.12 

deg wxlY = -2+ dim 6 Y I\(X_Y) < 0, hence Y • (X-Y) = 1. 

Since a smooth pI is Gorenstein, and deg W < 0 for some xix. 
1 

component Xi C Y, there exists a maximal connected Y' C Y such that 

Y' is Gorenstein, deg Wxly' < 0: we claim that Y' = Y. In fact 

intersects X-Y' transversally in a point x which belongs to a com-

ponent W of X if W ~ Y, then Y' is a connected component of 

Y, hence Y' = Y, otherwise W is a smooth .1 C Y, and Y'vw is 

Gorenstein c; Y, a contradiction. 

Q.E.D. 

Remark 1.17: Let X be, as usual, reduced and Gorenstein: then 

y' 

X is S.C.P iff X contains no negative tails. By throwing away the 
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negative tails, one can obtain from any X a new connected Gorenstein 

curve X'~ X which is s.c.P. 
n 

It is clear that any section of Wx 

for n 2 1, vanishes identically on the negative tails. 

Let Xl' ... xk be the nodes where x' intersects x-x' then by 

1.12 

Then the rational maps IWxl and Iwx,1 coincide on X', while, for 

n ~ 2, Iwx~1 is obtained by IWxnl followed by a projection. 

To end this section, let me describe the S.C.P. Gorenstein curves X 

with p (X) = 1. 

Proposition 1.18: A S.C.P. Gorenstein curve X with p (X) 1 belongs 

to the following classes: 

all as) (X lien on a smooth surface) 

all X smooth, a2) X is rational with a node 

a3) x is rational with an ordinary cusp 

2 pI,s tangent at a point (X tacnodal) 

a4) X consists of 

as) X has only nodes and is a cycle of pl,s 

b) X consists of k smooth pI,s meeting in a point X where 

the tangents to the branches are linearly dependent, but any 

(k-l) of them are independent. 

~: By (1.7) 

components of X. 

Ifp (Xl) = 1, since, 

Gorenstein wXl -
Gorenstein by 

k 
E p (Xi) ~ 1 , if Xl' ••• Xk are the irreducible 

i=l 

by proposition 1.10, Wx :; Gx , if Xl is 

C; Xl and by 1.12 X = Xl· In fact Xl is 
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~e!lllllal.19: An irreducible curve Y with p (Y) 1 is Gorenstein and 

belongs to one of the classes all, a2), a3). 

~: Assume Y to be singular, and let 11: Y ... Y be the normal-

ization. Then /) = 1, hence Y has only one singular point x, and 

1.5 implies that 1 < m < 
x Ox = 1, so Y is Gorenstein. 

Then, since 1I*6 y/c has dimension 2, C 

either 1I- l (x) = p, or 11_1 (x) = {rrp2} • 

has degree -2; therefore 

In both cases G X = x, 

= k & 1'1tx ,x = k & Cx,x as a subring of 11* 0 y , therefore in the first 

case x is an ordinary cusp, in the second x is a node. 

Q.E.D. 

End of proof of 1.18: Assume then that each X. is a smooth Fl. 
1. 

Then, 

by 1.12 Xi (X-Xi) = 2. Assume that Xl intersects X-Xl in 2 points 

(which are therefore nodes) : then it is easy to see that the same 

must hold for all X. 's (in fact there exists a maximal YC X such that 
1. 

X has only nodes along Y, and if Y" X, 3 W eX, W ¢ Y, s. t. 

W n Y -+ ¢ : then W intersects X-Y-W at a point which is not a node, 

hence W(X-W) ~ 3, a contradiction). It is now obvious that the graph 

associated to X is a cycle, so that we are in case a5). 

Otherwise we have that all the Xi's intersect in a single point x. 

2 
'In x,X has codimension 1 in Then 8 m x x k : so 

6> k )7t., 
i=l x'Xi 

and, by Nakayama's lemma, 'Ill- X = & . k >:\' 2 
x, 1.=1 x,X. 

in particular c;,m 2 
x,X 

, but then equality holds since 

k = dim = dim 6x,X~2 

1. 

Let t. be a 
1. 

x,x 
uniformizing parameter for X. at x, e. the function 

1. 1. 

which is 1 on X. and 0 on the other X. 's. 
1. ] 

We know that~x'X~2 is an hyperplane in 
x,X 

there exist ai c k s.t. 

, so 
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~x,X~2 It a. t. Z a. a. 01 
~-l ~ ~ ~ ~ 

f x,X 

Clearly, also, C&m.2 {L b. t. b. a. 0 ~j} 
x,X ~ ~ J J 

since f £ C iff f' e . £ G X Y j = 1, ••• k. 
J x, 

The conclusion is that every a. is + o. 
J 

Q.E.D. 

Remark 1.20: If X is S.C.P. and has only nodes as singularities, 

one has (cf. [4]) zero tails, i. e. chains of pI,s over which w X is 

trivial, and IWxnl contracts these zero tails to points, so that the 

image of X is just the image of a C.P. X' obtained by taking off 

these tails and setting together the 2 "end points" of the tail to 

bu ild a node. 

If y is a smooth pI tangent to X-Y at a smooth point x, one can 

throwaway Y and obtain X' by putting a cusp in x (i.e. if t is 

a uniformizing parameter at x, one replaces G by the subring x,X-Y 

generated by 1,t2 , t 3). Analogously if Y crosses X-Y in a node, 

one replaces the node by a tacnode to get X'. 

Thus, there is also a natural way to obtain from a S.C.P X a C.P. X', 

such that Iw~ I has the same image of Iw~,I. 

We won't however use this construction. 

§ 2. The Pluricanonical Maps 

To prove the first results (theorems A, B, C) we have to show the 

vanishing of some first cohomology groups: in turn, using R.R. duality, 

these are interpreted as certain homomorphisms, over which a rough hold 

is given by the following lemmas. 
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Lemma 2.1: Let x be a singular point of X, X the normalization of 

X at x, X the blow-up of the maximal ideal ')1t., 1T: X'" X, p: X'" X 
x 

the natural maps. Then ~X ('?;tx' Gx) is naturally embedded in 

1T * 6j{' and actually in the subsheaf p* bx' 

x being a singular point, ~ ~ C, hence there is a natural 
x 

1T 6-. * X 

The fact that this map is injective follows either from the arguments 

of lemma 1.4 or from the sharper statement that this sheaf embeds in 

Let fl'" fr be elements of G which induce a basis of x,X 

~ , and such that flo is not a O-divisor. 
x,X~2 

x,X 
Let 1\J E y-.. ('?7f, /!Ix)' Assume that 1\J (fi ) 

~"""ix x 
1'1" : then,~fEm x,X 

we have 1\J (f f i ) = f 1\J (f i ) = fi 1\J (f), hence 1\J (f) = f ~i/f (we 
i 

are working in the "full ring K of fractions of G x). The first x x, 

thing to remark is that ,. i cannot be a unit, otherwise f" = 
J 

= 'jf i 
2 

"m.x,X· 

f -1 
i ' contradicting the independence of the fi's mod 

But then 1\J is given by multiplication by the rational function 4ri/f" 
1 

A 

which is easily seen to be regular on X. 

Q.E.D. 

Lemma 2.2: 1T x ... X being as in the previous lemma, let M be the 

-1 (invertible) sheaf of ideals generated by 1T (tnx ) then 

2 ~ 
:2.knrv"G x b7L x ' 'X) embeds in 1T* (M ). 

If ::I is an ideal which contains a non O-divisor h, we have 
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g. f I C. 11 * b X' hence 
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r;;7?t. , (g. fl) 
X 

-1 
g r;; 11* (~l ). 

m 
x 

c Gx' so , by 2.1., 

Q.E.D. 

Theorem A: Let X be a S.C.P. reduced Gorenstein curve, n an integer 

~ 2: then Iwxnl is free from base points. 

Proof: By 1.11, we can clearly assume p(X) ~ 2. Consider the stan-

dard exact sequence (kx being the residue field at x) 

(2.3) o ->-

HI n HO I-n By R.R. ( Wx ) = Wx ) 0 

->- k ->­
x 

since X 

o. 

is S.C.P and p(X) ~ 2. 

Then is not a base point iff HI (>7Ix 
n 

O. again, x Wx ) By R.R., 

we have to show that 

'm. I-n 
0 HomG x 

, Wx ) 
X 

Assume now that x is a singular point of X. Let 11 : X ->- X be the 

normalization at x by 2.1 it suffices to show that 

Let Y be a connected component of X; on each irreducible component 

that for some i 

181 G - has degree ? 0, so it is enough to prove 
Yi 

this degree is > O. 

But if this were not to hold, Y = 11 (Y) would have p(Y) = 0 by 

1.10 and wxi y would be trivial: hence Y would be contained in the 

base locus of Iwxnl ' in particular there would be smooth base points. 

Let's then prove that a smooth point x cannot be a base point. 

Denote by Z the irreducible component to which x belongs, and set 



for commodity l-n ~-l 
F = Wx !!II x Since p(X) ~ 2 , 

deg F = 1 + 2 (l-n) (p-l) < 0, hence clearly HO (X,F) 0 if 

deg Wx I z ~ 1. On the other hand deg Wx I z = 0 -===> p (z) 

By 1.12 dim Gz " (X-Z) 2, and, since Z _ pI, 

is an isomorphism. 

o (1.11). 

By the exact cohomology sequence associated to the sequence 

o +F + Flz 

we obtain HO (X, F) HO (X- Z , Ho l-n 
(X- Z, Wx I x-z ). 

By the previous argument his vector space is 0 if on every connected 

component Y of x-z deg W X I Y > O. But z (X-Z) = 2 implies that 

there are at most 2 connected components. 

If x-z is connected, clearly deg Wx I x-z > o. 

If x-z has two connected components Yl ' Y2 (thus meeting Z trans-

versally at two distinct points Yl ' Y2 ) and say, deg Wx I Yl 
= 0, 

then p(Yl ) = 0, hence deg Wx I = -1, an evident contradiction. Yl 

Q.E.D. 

Definition 2.4: An elliptic tail of a C.P. curve X is an irreducible 

component Y of X such that p(Y) = 1, Y (X-Y) = 1. 

Theorem B: If X is C.P. gives an embedding of X for 

n ~ 3. 

Theorem C: If P (X) = 2 or X has elliptic tails does not give 

a birational map ¢2. If X is C.P. , p (X) + 2, X has no ellip-
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tic tails, ¢2 is an embedding unless (possibly, cf. 3.23) at a 

point x if 

a) X::> W with W" (X-W) {x} W' (X-W) = 2, P (W) = 1, 

W is either rational irreducible with a cusp at x or a cycle 

of 2pl,s meeting at x, and morever 

b) X;:, W _ pi, W 11 (X-W) {x} W • (X-W) 3. 

Proof of Theorems B,C: Let x,y be 2 points of X and consider the 

exact sequence 

(2.5) 0 +71t In n n n n 
Wx + Wx + Wx /JJt. x 7Jt. y Wx + 0 

x y 

where, if x = y, m..x Pry has to be understood as 7Jt., 2. Since, for 
x 

2, Hl n 
o,lwxnl gives an embedding if and only if n ::. (X, Wx ) 

(2.6) Hom G (7ll m, 
X x y 

o 

We have to consider separately the following cases: 

i) x, y smooth 

ii) x singular, y smooth 

iii) x f y, x, Y both singular 

iv) x = y singular 

i: Let F 
l-n 

be the invertible sheaf Wx on )1t) -1: 
x y 

we have to 

prove that HO (X,F) = o. For every component 

= (l-n) deg W I + p, where p = 2 if x, 
X Xi 

P = 1 in the remaining case. 

X. of X, 
1. 

p o 

deg F I 
Xi 

if 

If n::. 3, X being C.P., this degree is ~ 0, and < 0 on at least one 

component of X: in fact deg Wx 2. 2. 

Let n be equal to 2, and let x, y belong to 2 different components: 
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then deg Fix. .s. 0, and deg F = 4 -
l. 

and only if p (X) = 2 and Gx (x+y) 

2 components with deg W I = 1. 
X X. l. 

2 P (X); therefore 2.6 fails if 

Wx ; but then X consists of 

It is then easy to see that either X consists of 2 elliptic tails, or 

X consists of two pI,s 

The former case though gives a contradiction, sipce then x should be 

a singular point of 
-1 tV> 

X ( W XiX = J X 
1 2 

we get a curve of genus 2. 

~ Gx ), in the latter case 
1 

If x, y belong to the same component Z, either Z = X and p (X) = 2, 

or deg (Wxlz)= 1 ; in this case every section of Flx_z is identically 

zero, so we can apply proposition A of [2], namely the following result 

(2.7) Let L be an invertible sheaf on a curve X, s a non zero sec-

tion of HO (X,L) such that s is identically a (s:: 0) on Y<:. X, 

s $ a on any component of Z = X-Y: then y. Z .s. deg LI Z 

to obtain that Z is an elliptic tail. 

ii: Let 11 : X"" X be the normalization at x. Then 

l-n 0 -
Hom bx (77t x lJt.y ' Wx ) embeds in H (X, L), where 

I-n -1 
ble sheaf 11* Wx III '\ • 

L is the inverti-

Clearly deg LI- < a for every component Xl.' of X, provided n::' 3; 
X. 

l. o -if n = 2 this degree is ~ a and H (X,L) can be non zero only if the 

irreducible component Y of X containing 11-1 (y) is a connected component 

of - * X, and deg 11 Wxly 1. But then HO (y, LI y) 'f a implies that L I y 

is trivial, hence c w- (-y) is trivial: y by a degree argument p(y) ~ 1, 

and actually p (Y) = a since y f x. Then deg C = -3 and 11: Y"" Y 

must be an isomorphism. Then Y fl (X-Y) = {x} , Y • (X-Y) = 3, therefore, 

from the fact that Iw/I has no base points, either HO (X, 2) 
Wx maps 

onto HO 2 
(Y, Wx I y)' so that x and y are separated by the bicanonical 
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map, or this map restricted to Y is a double cover of Fl, hence we go 

back to case i). 

iii: Let n: X + X be the normalization at both x,y. Then 

l-m 0 - l-n 
Hom b X ('711 x '!!i y , Wx ) embeds in H (X, n* Wx ) which is 0 for 

n ~ 2 since X is C.P. 

iv: Let n: X + X be the normalization at x. By lemma 2.2 

Hom (»t2
x ' Wxl - m) is a subspace of HO (x,L), where ~ is the invertible 

l-m -1 
sheaf n* Wx ~ M • 

Let Y be a connected component of X, W an irreducible component of 

Y. If W = n(w).f x, then degci.l w < 0; if w3x, and x is smooth 

for W, deg .tlw 1 + (l-m) deg wx1w: this degree is then < 0 for 

m > 3, and, for m = 2, it is ~ o. If equality holds, deg W I 
X w 

hence either p (W) = 0 or W is an elliptic tail (apply 1.12 to 

W Co Y) • 

If x is a singular point of W, let C' be the conductor of 6-
W 

1, 

in 

GW' (;' 

and let 

n-l (C'). We can write.1.-as wy:-l ~n*(Wx2-m) ~ «(;-1 ~ ~l)-l, 

--1 
d = deg Wyl_' t = deg (C ~ M) Iw. 

W 

since C' c. J?t C' C MI_, dim b,,; ··x, w' W \\. C ~ 2 OW' by 1.13 we conclude that 

t > W (X-W) • Hence either (X-W).,j, x, or - x .,. t > 2 (in fact W (X-W) = 1 
x 

==!:>x is a node for X, but then, W being singular at x, (X-W)~ x). 

In any case degdtl w < - t - d, and if t = 0, then C = M, hence x is 

either a node or a cusp for W (and for X). 

Consider the case when d > 0 : then deg~lw < 0, equality holding iff 

d = t = 0, m 2 (X-w-lX). 

Then, by loU, either W Y is elliptic, or p (W) = o. In the forrrer 

case X = W is of genus 2, in the latter there exists a component 
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Z of if on which deg .i.1 z < 0, so that HO (Y,J...) = o. 

!fd -1, p (ih = 0, w t 

cLl-

y, hence either deg J.., 1- < 0, or there 
W 

exists zc if with deg 
Z 

< 0 : if deg ~Iw = 0, HO (y,~) = 0, if 

deg ol.lw > 0, then t = 0 anc1 therefore W is an elliptic tail. 

Finally, in the case when d = -2, W Y = pl. 

Assume that (X-W) 4 x, Le. W = X; then, since p (X) ? 3, Ox ? 3. 

But then Cc: -me Me 11* 6 wand all the inclusions are strict (IJ( is not 

an ideal in 11* G w)' and since dim);tt/ C = Ox -1, t=dim M/ C 2:. 3, and 

we are done. 

If, on the other hand, (X-W) 3 x and t = 2, by our previous argument 

,'I (X-W) 
x 

2, M = C', hence x is either a node or a cusp for W, 

which is thus Gorenstein with Ww ;;; G 
w 

In this case, though deg .t Iw = 0 for m = 2, we prove that, unless 

c~~2 , any section of ~(~2 X' w -1) is = 0 on W. Let 
't- x x, X 

z = X - W, and consider the standard exact sequence 

+ b + 
ZIIW o 

L ~ ~b Since ~W~z has length 2, by Nakayama's lemma ,,, x W~Z = 0, and, 

if we set J1p~, we have an isomorphism »1.2 6 x ;; nt ~W dl 1'll2 6z: 

in fact)1l2 ~X injects into nl fJ>w dll!t2 6z, and clearly the projection 

\..2 / -
on each factor is surjective; however H~ ~W = 11* (Clw) is contained 

in C = 11* (C'j, hence lJt2 hw c 'P/2 6x (and our assertion is thus proven) 

unless exists f s C _J.n2 (this cannot hold if conjecture 3.23 is true). 

2 
Tensor ing by w X ' we get 

HI .... 2 2 1 \.,. 2 L 
(X,III WX) _ H (W,IFt Ow 

Use now R.R. duality on W,Z, respectively: this vector space is dual to 

w -2 
X 

26 -2 
Hom <h1 z' W X i!Ii 
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We want to prove that the first summand is 0: but here Ww is trivial, 

hence this vector space embeds into HO (W, M-l n* W -2 1_) 0 (these 
X W 

are the sections of a line bundle of degree -2). 

Thus, given a section of 2 -1 
Hom (J.n x' Wx ), we have proven that it is 

o on any connected component Y of X, except possibly if all irreduci-

ble components w. of Y 
~ 

satisfy the following conditions (i=l, ••• r): 

a) x E Wi and x is smooth for Wi 

It is easy to see that r.:s 2, so that either W" (X-W) {x}, or Wl 

intersects W2 transversally at a node y of X. 

In the latter case, if X Y, then p (X) = 2, otherwise 2 = W (X-W ) = 
1 1 x 

= (by [6]) = (Wl • W2)x + Wl (X-Y)x' hence p (Y) = 1, Y (X-Y) = 2 

and we can repeat the argument given above. 

We are left out with the case W = pl, W 11 (X-W) {x}, W • (X-W) 

Le. b). 

~: To end the proof of theorem C, let's prove the first statement 

Namely, let W be an elliptic tail, and let x be the node of X 

such that W /I (X-W) {x}. 

Then Wx Iw = 6 W (x), and, since x is not a base point for the 

bicanonical map of X, HO (X, wX) restricts onto HO (W, ~w(2X»' 

which has dimension 2, by R.R. 

3, 

Therefore, under the bicanonical map of X, W is a double cover of pl. 

If, finally, p (X) = 2, let o 
so' sl be a basis of H (X, WX). Assume 

that so· sl == 0: then, if Xi is the largest curve c: X s.t si does 

not vanish identically on any component of Xi' dim Xo 1\ Xl = 0, and, 

by 2.7, since X is connected, 1:£ Xi • (X-Xi) :£ deg Wxlxi 
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But p (X) = 2=-> deg Wx = 2, hence deg Wxlx. 
~ 

elliptic tails; since moreover X is C.P. X 

If, on the other hand, Y s, o E: HO (X, WX) , S'O f 
2 2 HO 2 

s , s o sl' sl constitute a basis for (X, Wx ), 
0 

0, 

and 

bicanonical map of X is a double cover of a smooth conic 

§ 3. The Canonical Map 

the 

in 
2 

P . 

Q.E.D. 

Throughoutthis section we will continue to assume that X is a complete 

reduced C.P. Gorenstein curve. 

In order to discuss the behavior of the canonical map of X, we 

need some definitions. 

Remark 3.1: If X is not 2 connected according to def. 1.3, there 

exists, by 1.10, a Z such that ZIl (X-Z) = x, and x is a node for X: 

such an x is called a disconnecting node. 

Definition 3.2: An irreducible component Y of X with p (Y) = 0 

is said to be a loosely connected rational tail (L.C.R.T.) if Y (X-Y) 

equals the number of connected components of X-Yo 

Remark 3.3: If Y is a L.C.R.T., Y intersects (X-Y) in disconnect-

ing nodes. The next result gives necessary and sufficient conditions 

in order that the canonical map be a morphism. 

Theorem D: If X is C.P. the base locus of Iw I 
X 

consists exactly of 

the L.C.R.T. 's and of the disconnecting nodes. So Iw xl is free from 

base points if and only if X is 2-connected. 
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Proof: Consider the exact sequence 

k + x o 

Then x is a base point if HI (lJ1. x WX) + HI (WX) + 0 is not 

an isomorphism, i.e. if and only if hl( 7Jtx wX) = 2, i.e. 

dim Horn (7l1. x ' GX) = 2. 

Step I: Assume now x to be a singular point of X. By 2.1, if X 

is the blow-up of X at x, Horn ('7J/ , GX) + HO (x,6 x), hence x 

x is a base point X is not connected, and a fortiori X is not 

connected ( 1T: X + X being the normalization at x). 

if 

-1 Let 1T (x) = {Pl, ••• Pk} , and let ti be a uniformizing parameter 

at Pi' 

on X. 

mi the multiplicity of C 

Let i'I be the vector space w-
X 

(D)/w X: 

written in unique z: k z: 
mi an way as i=l j.=l 
1. 

dimension of i'I is 2 cS x 

D the divisor 

every element n of i'I can be 

a. 
1., j i 

( d 'Y.'ii) and the 

k 
i'I contains the vector subspace V = {n \lrf f 26x \z: i=l Res (f • n) 

Pi 

of dimension ox' and a local section of w X around x is a local 

section of w X (D) around the Pi's such that its image in i'I belongs 

to V. 

Moreover a local generator W X lifts to a differential with pole of 

O} , 

order exactly mi at each Pi' (so that a. f 0), and via this choice, l.,mi 

one can identify Gx/ c with V. 

Let us denote by U the image of HO (lUx) in 6x/ c by what we just 

said, we can view U as a subspace of V. 

Consider now the exact sequence 

i'I 
d 

(3.4) o + + HO ( w~(D)) +w-(D) + 
X x~ 

tux 
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Let K be the kernel of d. It is clear then that U = K ,. V, and 

proving that x is not a base point amounts to proving that there 

exists a vector in U with some a. f o. We have described the 
l.,m i 

linear equations which define V: we claim now that the elements of K 

are those who satisfy the following equations 

'1 (3.5) E_ai,l = 0, for each connected component of X. 
PiE:Y 

In fact (3.4) is the direct sum of the exact sequences on each '1, 

and then there is a canonical isomorphism of 1 H (w '1) with k, given 

by the trace map. 

Take w w. , where 
~ 

Then 

= E _ wi ' and if you take Ai an open set in Y where the above 
p.a ~ 
ex~ression for wi gives a section of W'1 (D) (assume Ai"f Pj for 

i t j), and set A 
o 

Y - 1T -1 (x), dl '1 (w) is given by the cocycle 

Following the same argument given in [7], page 248, we see that 

we get the zero element in Hl (Y, wy) if E Res wi = 0, i.e. if (3.5) 

holds. 

By 1.14 mi ~ 2 unless x is a node; assume then that x is not a 

node. 

We can decompose W = W, 6> Wil, where w' is the span of the (dti / t . 
~ 

W" is the span of the (dt'/t .), for j ~ 2. 
~ i J 

Consider the equations defining V: if f = 1 we get the equation 

0, if f E:/nx we get an equation involving only the 

(ai,j) 's with j ~ 2. 

) 's, 

We can therefore conclude that K K' e Wil, V ==V' $ V", V'::JK', 

hence U = K II V = K' $ V". 



78 

since there is a vector in V" with a. to, we infer that x is not 
1,m i 

a base point for IWxl If, instead, x is a node which disconnects, 

we have 
-1 

1l (x) mi = 1 and must be, for vectors in K, 

a 2 ,1 = 0, so x is a base point of Iw I • 
X 

Step II: Let x be a smooth point of X, Z the irreducible component 

of X to which x belongs. Let L be the line bundle Gx (x) if 

x is a base point hO (X,L) 2, in particular hO (z,6 (x)) = 2, 
Z 

hence p (Z) O. Let y be a point of Z () (X-Z), and s a non zero 

section of L vanishing at y: then s vanishes identically exactly 

on a curve W which is a union of connected components of (X-Z). 

By (2.7) z· W = 1, so y is a disconnecting node and W is connected. 

Therefore Z is a L.C.R.T. 

Conversely, if Z is a L.C.R.T., Yi' •.• Yr are the disconnecting 

nodes belong ing to z, w X I Z Wz (Yl + •. +Yr)' but since every section 

of Wx vanishes at the Y i I S by Step I, every section of Wx vanishes 

identically on Z. 

Q.E.D. 

Remark 3.6: If X is C.P. and connected, but not 2-connected, one 

can take the normalization of X at the disconnecting nodes, to obtain 
m 

Tf : Y +X, where Y = U 
i=l 

Y. 
~ 

consists of (say) m connected componen ts. 

It is straight forward to verify that HO (X, Wx) :; HO (Y, Wy ) 
m 
e HO (Y., W ) and that the Y. I S are 2-connected curves; in other 

i=l 1 Y i ~ 

words the rational canonical map Iwx I consists of Tf -1 followed by the 

canonical morphisms of the Yi , whose images span projective subspaces 

in a skew position. Therefore it is not restrictive to consider only 

the canonical map of a 2-connected curve. 

In the rest of the paragraph we are going to examine necessary and 

sufficient conditions in order that the canonical map be an embedding, 
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and we shall often start with some example just to explain some defini-

tions and results. The first question is whether Iwxl is injective, 

and we have the following 

Definition 3.7: X is strongly connected if there do not exist two 

nodes x,y of X such that X - {x} - {y} is disconnected. In partic-

ular, if X is 3-connected, then X is strongly connected. 

Theorem E: If X is 2-connected, C.P., and the canonical map is 

injective, then X is strongly connected. More precisely, if x, y 

are two singular points of X, they have the same image under Iwxl if 

and only if x, yare nodes and X - {x} - {y} is disconnected. 

Proof: If x, yare not nodes, we can repeat the argument given in 

Step I of Theorem D. Namely, let X be the normalization of X at 

x, y, TI: X + X, C G - (-D - D2 ), where 
X 1 

divisors with supp (Dl ) 
-1 

TI (x), supp (D2 ) 

Dl , D2 are effective 

-1 
TI (y). 

Let WI = luX (Dl + D2)/ ::> bx,x/c= VI' and let W2 ' V2 be defined 
/wX(D2 ) 

in an analogous way. 

Again decompose V.' m " and if is the we can V. as Vi' V VI m V2 ' u 
1 1 

image of HO (wX) in W Wx (Dl + D~_ U K I") V = K' Eb V", 

Wx 
where K'c. V' and U~V" = Vi m v" 2 

, so that there exists sections of 

w X vanishing at x but not at y, and conversely. 

Assume instead that x is a node, and let X' be the normalization of 

X at x: then C = ~,X' therefore HO (X, Wx ~,X) = HO wX,l, and 

x, y have the same image under IWxl if and only if y is a base point 

for IWx,l. The result follows then immediately from Theorem D. 

Q.E.D. 
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Remark 3.8: Let X be 2-connected, C.P., but not strongly connected, 

Xl a node of X such that the normalization x' of X at X is not 

I-connected, but has (r-l) disconnecting nodes x2 , ••• xr • Then, if 

~ is the canonical map, ~ (xi)' for i=l, •• r, is a fixed point p of 

~ (X) C. 

Let X be the normalization of X at the x. 's: then the effect of 
l. 

projecting C from p is the same than to consider the canonical map 

of X. Therefore we obtain easily in this way examples where the 

canonical map is not injective, though being birational. 

We are now going to discuss hyperelliptic curves, i.e. those for which 

Iw I is not birational. 
X 

Definition 3.9: X is hyperelliptic if there exist 2 smooth points 

x, Y (possibly x y) such that HO (G x (x+y)) = 2. 

proposition 3.10: Let X be 2-connected. X is hyperelliptic if and 

only if Iw x I is not birational, and also if and only if two smooth 

points have the same image, or Iw xl is not an embedding at a smooth 

point. 

Proof: The second part follows immediately by the exact sequence 

+ HI (w X (-x-y)) + HI (w X) + 0 , since the dual space 

of HI (w x (-x-y» 

For the first part, notice that HO (6 x (x+y» defines a morphism 

f: x+pl, so that, for a general PEpl, f-l(p) consists of two smooth 
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points x' ,y', which have the same image under IWxl. 
Q.E.D. 

Example 3.11: Let G be a cubic surface in p3 with an ordinary 

quadratic singularity at P, and containing exactly 6 lines through 

P. Let TIl' TI2 be two planes tangent to G at P, and such that 

TI . ' G Y. is an irreducible cubic curve. Let Q be the point 
1 1 

where Yl , Y2 intersect transversally (TI l' TI2 , G = 2P + Q), and blow 

up p3 at Q. 

The strict transform X of Y = Yl vY2 is a genus 3 curve, and it is 

easy to see that the canonical map of X is given by projection with 

center Q, hence the canonical map has as its image two lines in p2, 

and has degree 2 on each component. 

Example 3.12: Notice first that the union of 2 conics in p2 is 

canonically embedded. Here the cross ratio of the 4 points in a conic 

through them determines uniquely the conic in the pencil determined 

by the 4 base points. Consider now, on pl x pl, two irreducible 

curves of type (l,n), (l,m) respectively: they have p = 0, and 

intersect in (n+m) points (possibly infinitely near). It is easy to 

see that the canonical map is induced by the complete linear svstem 

I GIl (0, n+m-2) , hence it is given by the projection on the 
p xp 1 1 1 

second factor of P x P , followed by the embedding of P as a rational 

normal curve of degree (n+m-2). Here the cross ratio of any 4-

of the (n+m) points is the same on both curves. 

Remark 3.13: Let Y be an irreducible hyperelliptic curve: thus 

there exists a morphism f : Y + pl of degree 2. Then f is finite, 

and exists n such that f G = G 1 d> G 1 (-n). * Y P P 
In particular Y is a 
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divisor in a smooth surface (a line bundle over pl), hence Y is 

Gorenstein, and has at most double point as singularities. 

Proposition 3.14: Let X be 2-connected, and let x, y be smooth 

points of X such that hO «9x (x+y» = 2. 

Then either 

a) x, y belong to 2 different components Yl ' Y2 with p (Yi ) = 0, 

and such that for every connected component Zj of X-Yl -Y2 

Z .• Y. 1, 
J 1. 

or 

b) x, y belong to an irreducible hyperelliptic curve Y such that, 

for each connected component Z of X-Y the invertible sheaf 

(~Z ~ ~y)-l is isomorphic to the hyperelliptic sheaf Gy (x+y). 

Proof: Let L be the invertible sheaf bx (x+y). By assumption 

hO (L) = 2 hence, for every z t x, y, hO ("lll L) = l. z,X 

In case a), pick up z either on Yl~Y2 or, if Yl "Y2 = ¢ , in a 

connected component ZlIy.f¢· 
1. 

Let s be a non zero section of HO (X, L) vanishing at z: 

since L\ is trivial, X-YI -Y2 
s vanishes at some point of Yi else 

than x, or y. 

The section s cannot vanish identically on any of the Yi'S : in fact 

it cannot vanish on both Yl and Y2 ' so assume s \ Y f O. 
2 

Let W be the union of connected components of X - Y 2 where s = 0: 

by 2.7 Y2 W ~ 1, hence X would not be 2-connected (W (X-W) ~ 1), a 

contradiction. 

Therefore the restriction map HO (X, L) ~ HO (Yi , L\Yi) is an isomorph­

ism and p (Y i ) = o. 
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By the same argument, for each connected component Z of X - Yl - Y2 ' 

z 'Yi ~ 1, and since X is 2-connected Z (YIUY2) .2: 2, hence Z. Yi = 1-

In case b), if Z is a connected component of X - Y, z. Y ~ 2 by 2.7, 

so equality holds by 2-connectedness. Moreover hO (Y, Liy) = 2, so Y 

is hyperelliptic; hence Y is Gorenstein and by 1.12 ~Z ~ 6y is 

invertible, of degree -2. 

since there exists a non zero section s of HO (X, L) such that 

s e:;Ho (1/z L), we get an inclusion 0 ->- 6y ->- ~L !81 Gy , .and the cokernel 

of the map is a skyscraper sheaf of length 0, therefore 

Q.E.D. 

To sharpen the result of the last proposition, and also prove a converse 

statement characterizing hyperelliptic reducible curves, it is con-

venient to have a digression on cross-ratios and rational normal curves 

(cL 3.12). 

Definition 3.15: An n-tup1e of points on a smooth curve X consists 

of the following data: and ideal sheaf :t of C9 x such that length 

.::: n , together with isomorphisms 

supp ( G XIrJ ) of 

length (G ». 
X,Pi/':! 

Ct i for each 

(where m. 
1. 

Definition 3.16: Two n-tup1es of points on lI"l, (';I,a i ), (:/' ,Ct' i) are 

said to have the same cross ratios if there exists an automorphism of 

lI"l such that g* d) = '::/', and g* : is such that 

Ct 'og* Ct 
i i· 

Let now Y1' Y2 be two smooth rational curves of the same degree d in 
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pN, and X = Y U Y. Then they have an n-tuple of points in common if 
1 2 

length G = n, because, if Pl.' E: Y1llY2, any isomorphism (ll.' of 
YIn Y2 

GYl I)Y2' Pi to k [tl/(tmi) induces an n-tuple of points on Yl and Y2 • 

It makes therefore sense to say that Yl and Y2 have n points in common 

with the same cross ratios. 

Lemma 3.17: Let Yl ' Y2 be two rational normal curves of degree d in 

pN with n points in common. If n ~ d + 3, or n = d + 2 and the 2 

n-tuples have the same cross-ratios, then Y1 = Y2 • 

Proof: Let's prove the result by induction on d. 

For d = 2 the result is elementary and well known (one has only to remark 

that the hypothesis implies that the 2 conics lie in the same plane). 

So assume the theorem to be true for d-l. 

Take a point p E: Yl n Y2 and consider the projection 
N N-l . 

g: p..,.p IVl. th 

centre p. Then g (Yl ), g (Y2 ) satisfy the hypotheses of the lemma, 

hence g (Y1 ) = g (Y2 ), so Yl ' Y2 are contained in the cone r d_l over 

the rational normal curve of degree (d-l) (in particular d N 
r d-l C P c: P ). 

Consider F = Fd_ l the rational ruled surface obtained by blowing up 

p in r r d - l , Tf: F..,.r being the resolution of singularities. In pic (F), 

let f be the class of a fibre, e the class of the exceptional 

divisor E; Tf* (G;pd (1» = (d-l) f + e, and we have e 2= -d + 1, 

e f = 1, f2 = O. Let's denote by Y'i the proper transform of Yi . 

Since Y'i' «d-l) f + e) = d, Y'i' e = 1, Y'i = d f + e, hence 

1, hence it is a contradiction 

to assume Yl t Y2 if n ~ d + 3. If, on the other hand, n = d + 2 and 

the cross-ratios of the n-tuple of points is the same, then the equations 

of Y'l' Y'2 induce the same element of HO (E,(Op (y' .)/~ IY _ mE»' 
1 \::OF' i 

where m is the length of (; at p: hence again Y'. y' > nand 
Yl"Y2 1 2-
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we have a contradiction. 

Q.E.D. 

Definition 3.18: An honestly hyperelliptic curve is a 2-connected 

Gorenstein curve Y with a finite morphism f: Y + pI of degree 2. 

Theorem F: A C.P., 2-connected Gorenstein curve X is hyperelliptic 

if and only if X contains an honestly hyperelliptic curve Y with 

an hyperelliptic invertible sheaf L on Y such that, for each connected 

component Z of '1 -1 X-Y, ( Z ~ Gy ) is isomorphic to L. Moreover, if 

f : Y+ pI is the morphism associated to HO (Y, L) , then the canonical 

map ~l maps Y to a rational normal curve and factors through f. If 

Y is not irreducible, the above condition is equivalent to : Y = YI UY2 

with p (Yi ) = 0, and s.t. for every connected component Zj of X - Y, 

1, and moreover, if we set P ij = Y ill Zj' the n-tuples 

Proof: Assume X to be hyperelliptic, and let x, y be to smooth 

points which have the same image under ~l. Following the arguments of 

3.14., the invertible sheaf L' = 6x (x+y) defines a morphism f': x+pl, 

which is non constant on a curve Y ( = Yl VY2 in case a) }. f = f'ly 

makes Y a honestly hyperelliptic curve, and it is easy to see that 

~llY factors through f. 

Since L' = f'* (6 1 (I}) and a connected component Z of X - Y is 
P 

f,-l (point), the argument of 3.14 gives L'ly = L ~ (~ ~ by}-l. 

Conversely, we claim that we can extend L to an invertible sheaf 

L' on X 

sequence 

such that L'I = L, 
Y L', X-Y ~ 6 X_Y : in fact we have the exact 
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so choose a section s Z of L not vanishing at Y n Z and identify it 

with IE HO (6z ); in this way we have defined an 6 invertible sheaf, 
YuZ 

so, repeating the operation for each Z, we obtain L with the desired 

property. 

Clearly HO (X, L) o 
H (Y, L'), therefore ¢ll Y factors through f and 

X is hyperellptic. 

Let y. (X - Y) ; 2k, p ; P (Y) : then Wxl Y ; f* (6 p l (k + P - 1)). 

It remains to prove that, via f*, HO (pI, Gpl (I< + P - 1)) 

o 
; H (X, WX ) I Y' 

Observe that X - Y 

; Pj +1, where Pj 

Zl U •• , UZ k , and that by R.R. HO (Zj' Wxl z.) 
J 

In other words, HO (Zj' W X I z/"" W X !81 GYI1Zj has a I-dimensional image 

giving a local generator of Wx at the points of Y 11 Zj' 

From the exact sequence 

if follows easily that HO (w X) I Y has dimension k + p. 

The last assertion follows by definition 3.16: in fact there exist 

isomorphisms gi : Yi ..,. pI and ideals ';/ ,-;Ii on pI such that 

a) 

b) 

when P Ij ; P 2j hence 

of degree 2 such that 

, and on 0p l 

l/:tj 

gl' g2 glue to give a finite morphism f: Y_> pI 

f* (;/.) ;;! !81 G . 
J Zj Y 

Q.E.D. 

Let us assume, for the rest of the paragraph, that X is not hyperellip-
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tic and that X is strongly connected: then the canonical map ~l 

is a birational morphism, is an embedding at smooth points, and separates 

pairs of smooth points as well as pairs of singular points. The next 

proposition ensures that ~l is an injective morphism. 

Proposition 3.19: Let X be C.P. and 2-connected. Then if x is a 

singular point, and y is a smooth point, ~l (x) + ~l (y). 

Proof: Let X be the normalization at x. Since HO (wx) = HO (CwX), 

if HO (l!Jx»iy wX) = HO (1Jzx wx ), y would be o. base point for IWX I • 

If r is the component of X containing y, it follows that r is a 

L.C.R.T. (or contained in a negative tail). 

Take now the normalization of X at the points of r n(X -f), to get 

n: X 7 x,r 7 r, and let n* (wx) wi (D). 

Choose t an affine coordinate on r co pI such that Pl' .•• Pk are the 

coordinates of the points in f Il n -1 (x), ql' ••. "ls the ones of the 

points lying over fll(X -r) (they do not lie in n-l(x)!). 

- - -1 
Let also z l' •• ·z r be the points in (X - n n n (x), ti be a local 

coordinate at z i' let ul ' ••• Us be the points of X - r lying over 

r f) (l{ - r), and let Th be a local coordinate at uh • 

The multiplicity of D at uh ' qh' is one, and let mi be the multi-

plicity of D at Pi' n. the multiplicity of D at z .• 
J J 

Consider the usual exact sequence: 

o ->- w 

An element n in 1,/ can be written in the form 



k 
L a .. 

i=l ~J 

I,::;: j ,::;: mi 

+ 

dt (t-P.)-j 
~ 

+ 
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c dt (t)-n 
e,n e e 

l<n<n --e 

We can clearly assume that mi ~ 2 for each i (otherwise x would be 

a node and X would not be either C.P. or 2-connected). Remark also 

that HO UD-) I - = O. 
X r An element nEW is in the image u 

if and only if it belongs to the intersection of two subspaces, K' and 

V. 

K' is defined by the equations of K = Ker a plus the local equations 

given by the nodes in (X -fJ fl r: since X has at least s + 1 

connected components, there is given, for each h = l, ••• s, a subset 

Ih of {l, ••• r}, and also are given subsets J h, , h'=l, ••• p, such 

that the Ih'S and Jh,'S give a partition of {l, ••• r}and K' is defined 

by the following equations 

k s 

if 1 ail + hfl a h 0 

o (h=l, •• s), bh + 

L c = 0 (h'=l, •• p). 
eEJh , e,l 

The subspace V is defined by the equations L Res (fn) = 0 for fE~ 
x' 

and the variables ail' a h , bh , ce,l do not appear in these equations. 

The conditions that n vanishes at x is given by any of the equations 

a i m. = 0 (these are all equivalent to each other modulo the equations 
~ 

defining V) : again the above mentioned variables do not appear. 

An easy computation around y 00 gives that n vanishes at y if and 

only if 

k s 
(#) L L 

i=l ail Pi + h=l O. 



If then HO (1nx 7.ny wx) = HO (~wx), the equation (i) should be a 

linear combination of the equations defining K', V, and of the 

equations a. = O. 
1.m. 

1. 

By looking at the coefficient of the ail's, we get that all the Pi's 

should be equal. This however is possible only if k = 1, and then we 

can assume PI = o. 

Look now at the coefficient of a12 : a12 appears in the equations 

defining V if and only if r is smooth at x. 

If r is singular at x, a12 appears in(#) with coefficient 1, and it 

has non zero coefficient in the other equations only if m 
1 

2. 

But then, by 1.13., X - r ~ x and x is an ordinary cusp. In this 

case we have a contradiction again since either X = r has genus 1, or 

x is not 2-connected. Assume finally r to be smooth at x. 

Restrict the linear form (i) to the subspace where 

alj = 0 for :::. 2, c e, j = 0 for j :::. 2. 

s 
Then the linear form h~l ah qh should be a linear combination of the 

linear forms 

(h=l, •• s), bh + Lj 

e€Ih 

1, •. p) • 

This is however easily seen to be impossible. 

Q.E.D. 

Example 3.20: Let Xl' X2 be two smooth non hyperelliptic curves meeting 

in a point x such that (Xl' ~)x = 2 (a tacnode), set X = Xl vX2, 

Then, if s is a section of Wx vanishing at x, 

six. 
1. 

(2x» hence it vanishes to second order on Xi at x. 
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This shows that X is non hyperelliptic, and the canonical map is not 

an embedding at x. 

This motivates the following 

Definition 3.21: A (C.P.) Gorenstein curve X is said to be very 

strongly connected if 

a) X is strongly connected 

b) there does not exist a decomposition X 

Xl n X2 is a single point. 

Proposition 3.22: Assume that X is very strongly connected and that 

x is a double point (i.e. formally isomorphic to the plane singularity 

y2 _ xk = 0). Then the canonical map is not an embedding at x if and 

only if X is hyperelliptic with f: X + pl not constant on the com-

ponents of X passing through x. 

Proof: Let's prove first the "if" part of the statement. 

Let r be the union of the components passing through x (they are at 

most 2). 

Then by Theorem F the restriction to r of the canonical map of X 

factors through f, hence is not an embedding at x. 

Conversely, let X be the normalization of X at x: then by our 

hypothesis X is connected. 

Moreover, dim Hom rrn2
x ,6x) = 2, and, by lemma 2.2, X is such that 

hO (X, M- l ) ~ 2, hence X is hyperelliptic, with L M-l as hyper-

elliptic bundle. 

We have in fact that if hO (X, L) = 3, then Xl' X2 must be negative 

tails (if they were L.C.R.T. X would not be 2-connected), and then X 
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is clearly hyper elliptic with the desired properties (according to 

Theorem F). So we can assume hO (X, L) 2, and that p (X) ~ 1. 

Observe that there exists an integer r s.t. 'IT* (w x) = wj( 181 Lr 

(in fact r = [k/2]). 

Let (5 be a section of L vanishing on 'IT-I (x), a section of L 

-1 
vanishing at two smooth points p,q of r but not on 'IT (x), n a section 

of HO (w x) such that nl r= a power of T 

By the exact sequence 

o -+ -+ -+ o 

h r-h 
we see that nT C5 (h = l, ••• r) are sections of 'IT* (wX) which, in 

wj(/ -r ' give a basis of w '" • 
M X/~WX Wx 

Therefore the pull-back of sections of wx' when restricted to r, are 

linear combinations of Thl Ohll, hence p and q have the same image 

under ~l and X is hyperelliptic. 

Q.E.D. 

Theorem G: Let X be very strongly connected, not hyperelliptic, and 

such that for each singular point x of X where 
2 

C q:.,\ ' x is a 

double point. Then the canonical map ~l is an embedding. 

Remark 3.23: The hypotheses in Theorem G would only be that X be 

very strongly connected and not hyperelliptic if the following con-

jecture were true: any Gorenstein singular point x where c¢>It 2 is 
x 

a double point. This is obvious if dim ~/ 7?! 2 = 2 and we shall later 
x 

give a proof of this fact when the singularity is unibranch, i.e. 

formally irreducible. Also case a) of Theorem C would be vacuous 

if the conjecture were true. 
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Proof of Theorem G: In view of 3.19, 3.22, we are only left to prove 

where /71 2::J C. 
x that \Ill is an embedding at a singular point x 

consider the exact sequence 

o + Wx/ 
c Wx 

+ H1 (CWX) + HI (Wx ) + 0: since H1 (CWX) 

1 ( ) = HI ) d H 11 * Wi{ (Wi{ , an X is connected, the 

restriction homomorphism HO (Wx ) + Wx/ CWx is surjective. Also Gx/ c 

surjects onto G X/7Jt 2 , and we are done. 
x 

Q.E.D. 

proEosition 3.26: Let (X,x) be a reduced Gorenstein unibranch 

singularity (i.e. if X is the normalization at 
-1 (x) 11: X + x, 11 

is a single point p) • If C¢",2 
x ' 

then x is a double point. 

Proof: Let t be a uniformizing parameter in 6= G- , X,p 
and let M 

be the semigroup M = {ordt f I f E )?lx }. Notice that M-i 1, and we 

can assume that M~ 2, otherwise then x is a double point. Take a 

function 9 E C - ntx 2 such that m = ordt 9 is maximum· (observe that 

(t 40), so ordt 9 ~ 4 0)' 

Then we claim that m ¢ }! -:- M. Otherwise if 

fiE~' there would exist a constant A such that ord t (g - A fl f 2 » fi, 

but, since (g- A fl f 2 ) E c _llt2 (in fact ordt f ~ 2 0# f E C), this 

contradicts the maximali ty of m. 

r 
then the r-dimensional subspace ih Ai t ni If 1 ::. n1 ,··· nr 1- M , 

intersects (i;c G only in 0, and since dim ~/~ = 0, it follows easily 

that 0 > card ( M -II) (actually one has equality). ~!oreover, by 

definition of C, (2 0-1)$ ~!. Consider now the [m/2] pairs {I, m-l} , 

{2, m-2 }, ••• : since m~M + M at least one element for each pair 
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does not belong to M, therefore 0 ::!.. [m/2J, hence 1 + 2 02. m. Since 

m::!.. 2 0, either m = 2 0, but then we have noticed that 1, 2 o-lf. M, or 

m = 26 + 1 but then, 2, 26- IfM. 

Q.E.D 

4. Some Remarks on the Non-Reduced Case 

Let C be a smooth curve of genus g, L, N line bundles on it, and 

consider C as the zero section of V = L m N (a smooth non complete 

threefold with a projection p: V -+ C) . 

The sheaves of sections of L, N, pull back, via p, to invertible sheaves 

of. , Jt on V. The normal sheaf to C in V is clearly (~m #l !81 6 c' 

hence 
,-l/nl 

wvlc = Wc!8I~ !8IOV~. Let X -+ V be the curve (locally com-

plete intersection) defined by the ideal Ix spanned by~ -2 + J,P-2 

(hereL -1,#-1 are viewed as given by linear forms on the fibres of 

p: V-+ C). Therefore Xred = C, and the conormal sheaf to X in V 

is given by iJL-2 tgvff-2) !81 b x ' hence Wx = (WV !8Irl..2 !8I.AP 2 ) Ix 

= (We !8I.l..!81 rAP) 1 X (again here we stands for the pull back via p). 

Let d be the degree of (wc!8IL!8I u1f) e ' then it follows that 

degw X = 4 d, for instance since we have the exact sequence 

a a 

and we can tensor it by to compute 
n 

X (wX ). Since C is a 

subscheme of X, if Iw x nl is free from base points or embeds, the 

analogous statement must hold true a fortiori for IWxnlc l • 

But, if ../,J.!' are chosen to be general in Pic (e) , one needs n d ::!.. 

(respectively n d ~ 2 g + 1). This is a lower bound on n which 

2 g 

however depends on deg (W X 1 C), compared to deg (WC ) = 2 9 - 2, i. e. Or> 

the negativity of the normal bundle to e. 

But consider now the following (non closed) double point of X 



a tangent vector sticking out of a point x € C in the direction of N, 

together with x. 

In other words, we consider the subscheme of X defined by the ideal 

,-1 
J = p* (1'J/.x' C) +d- • 

This double point is not embedded if HO (J wxn) has codimension ~ 1 

in HO (wX n). 

This clearly happens if x is a base point of IW x
n I C I ' and, in the 

other case, one can consider the following diagram: 

Assume that y 

o 
+ 

o 
+ 

(rL -1 m L -lJrl mJJ{ ,)Tl) I ->- J w n ->- n, 
x C X x 

+ y + ex 

-1 ,,--1 1.-1 IIJ-l I n (J... m tK moN ) C ->- W X ->-

induces an isomorphism of HO,s: then 

cod I m HO (ex ) ::. cod I m HO (13) < l. -

HO (y) is clearly an isomorphism iff 

0->- HO (W nJlJ'-l I8IIJt ) ->- HO nB-l 
1816) 

X x,c (W x c 

is an isomorphism. 

A sufficient condition for this to hold is that 

o n -1 /_ 
H (C, Wx J1f Ill! I!7c ) = 0, e.g. if 

degNI > nd = n (2g - 2 + degll + deg.,ffl ). 
C C C 

+ 13 

->- 0 

This condition means that if degJ! I = m, deg.ll = e, m must be very 
c c 

positive, e very negative, and yet the degree of the normal bundle to 

C ,0 = m + e, can be positive. In fact the above inequality is then 

m > n (2g - 2) + n 0 

The conclusion is that the hypothesis of the normal bundle to C being 
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positive still does not give any lower bound for n in order that 

Iwxnl be an embedding. 

If X is a curve lying on a smooth surface, then one can define, 

according to Franchetta and Ramanujam (see [9], [5], [1]) a notion of 

numerical m-connectedness for X: it would be interesting to extend 

this notion for a Gorenstein curve, and to see whether some conditions 

of this kind can give some results of the type of Theorems A, B. 
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