
COMMUTATIVE ALGEBRA METHODS AND EQUATIONS OF REGULAR SURFACES 

(Fabrizio CATANESE - Universit~ di PISA) 

0. INTRODUCTION 

The aim of this paper is to describe a rather general method to write 

down explicit equations for regular surfaces of general type; the me- 

thod applies also to the (much more restricted) class of weak Del Pez 

zo surfaces. 

Though at first sight this method does not seem to be classical, on the 

other hand its geometrical counterpart is deeply related to the treat- 

ment of surfaces via generic projections to ~3 using the theory of 

adjunction, a point of view appearing e.g. in the book of Enriques ([El). 

The basis of our analysis rests on two wider notions, the notion of a 

good (weighted) canonical projection, and of a quasi-generic canonical 

projection. 

Given a surface S, a good canonical projection is a morphism ~:S + ~ , 

where ~ is a weighted projective space of dimension 3, ~ =~ (eQ,el,e2,e 3) 

(cf. [Do]), and # is given by 4 sections y0,Yl,Y2,Y3, with 

Yi6H° (S,0s(eiKs)); ~ is said to be quasi-generic if moreover either 

i) ~ is birational onto ~ = ~(S) or 

ii) ~ is of degree 2 and ~ = ~(S) is a normal surface. 

To illustrate our results, let's assume S to be a (minimal) regular 

surface of general type. 

To S we attach its canonical ring R = 

model X = Proj (~). 

co 

H ° (S,0 S(mK S)) 
rrr=O 

and its canonical 

Given a good canonical projection ~, R can be naturally viewed as a 

graded module over the polynomial ring A = ~[Y0,Y1,Y2,Y3], graded in 

such a way that Yi has degree equal to e i (hence ~=Proj(A)). 

The assumption that S be regular implies that the A-module R has a 
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minimal free resolution of length I, given by a square matrix e of ho- 

mogenous polynomials. 

An application of Serre's duality theorem in the more general form gi- 

ven by Delorme (cf. [Se] ,[ De]) allows us to show that the matrix ~ can 

be chosen to be symmetric when ~ is quasi-generic. From these first re- 

sults we deduce immediately some information about degrees of generators 

and relations for R (we refer the reader to [Ci 3]for more complete re- 

sults in this direction). Later on we assume the projection # to be qua 

si-generic. We show then that the matrix ~ is subject to the following 

(closed) rank condition: 

(R.C.) Let h be the size of ~, and let ~' be the matrix obtained by 

erasing the first row of ~: then the entries of Ah-1(a) belong 

to the ideal I generated by the entrees of Ah-1(~'). 

It turns out that condition (R.C.) is necessary and sufficient in order 

to give a ring structure to the A-module R determined by the matrix e. 

Our main result is that, given a satisfying (R.C.), and the (open) con 

dition that X = Proj(R) have as singularities only Rational Double Points 

(R.D.P.'s for short), then X = Proj(R) is the canonical model of a sur- 

face of general type. This result on the one hand gives a way to show 

the existence of surfaces with given numerical invariants, on the other 

hand can be used to study the moduli spaces of these surfaces, since 

they can be parametrized by locally closed sets of matrices ~. 

As an easy application of this result, we show that the surfaces with 
2 

K = 6,7, Pg--4, q=0, such that IKI is free from base points (plus a 

further condition in case K2=6), have a unirational irreducible moduli 

space. 

We should remark that the method presented here owes much to the ideas 

and work of several authors. 

The use of projective resolutions to study equations of curves appears 

in the work of Arbarello and Sernesi ([A-S]) and was later clarified 

by Sernesi ([Sn]), whereas the idea that the resolution could be taken 

to be symmetric (since R is a commutative ring) appears in our paper 

[Ca I], where it is mainly treated (though not in the greatest genera- 

lity)the case when ~ is a quasi-generic projection of degree 2. 

Ciliberto ([Ci I]) extended the methods of [Sn] and [Ca I] to describe 
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some surfaces birationally mapped to 3 by the complete canonical system 

IKI, but under the assumption that the image Z should have only ordina- 

ry singularities (i.e. the singularities of a generic projection). 

The present method, which is a combination of the ideas appearing in 

[Ca I] and [Ci I] , has been used in our joint paper with Debarre ([C-D]) 

to describe regular surfaces with K2=2, pg=1: we refer the reader to 

[C-D] also for a treatment of the non quasi-generic case. 

We want finally to point out two directions in which the present inve- 

stigations can be extended. 

The first centers around the following remark: let e" be the minor of 

obtained by deleting the first row and the first column. F=det(~") is 

called the adjoint surface to Z and, if ~ is smooth, for a generic 

choice of (e"), the only singularities of F are nodes, exactly at the 

points where rank (e")=h-3; in these points must be rank (~)=h-3 and, 

once this condition is satisfied, then ~11 is determined (modulo I) 

by ~12,...,~Ih. 

When for generic e", and generic ~12 ..... ~lh such that rank (e')=h-3 

when rank (e")=h-3, e11 exists, one sees that there is defined a natural 

irreducible unirational component of the moduli space, and it would be 

interesting to see whether there are other irreducible components. 

Another interesting direction is towards the investigation of the re 

lation between the determinantal equation of Z and the deformation theo 

ry of S, thus generalizing Kodaira's work ([Ko]). We hope to return on 

these problems in the future. 

The paper has grown out of oral expositions given at the week of Al- 

gebraic Geometry in Bucharest and, later, at Warwick University: I want 

to thank L. Badescu and M. Reid for their interest and encouragement, 

also A. Coppoli for her excellent typing. 

Notations 

We shall work over the field ~ of complex numbers. 

Given a projective variety X, 0 x is the sheaf of regular functions, and 

~X the Grothendieck dualizing sheaf. 

When ~X is invertible, i.e. when X is a Gorenstein variety, we denote 

by K X (or simply K when no confusion arises), an associated Cartier d! 
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visor, and call K a canonical divisor. 

For a coherent sheaf of Ox-modules F we denote by H i (F) the cohomology 

group Hi(X,F) and by hi(F) its dimension as a complex vector space; if 

D is a Cartier divisor on X, by abuse of notation we denote Hi(X,0x(D)) 

simply by Hi(D). Let D,D' be Cartier divisors on X: D'ED means that 

D' is linearly equivalent to D, D'~D means that D' is numerically equi- 

valent to D, and IDI denotes the linear system of all the effective di- 

Visors linearly equivalent to D. 

Pic(X) is the group of Cartier divisors modulo linear equivalence, and 

if s is a section of an invertible sheaf, div(s) denotes the (Weil) di- 

visor of zeros of s. 

If C is an effective divisor on a smooth surface S, the arithmetic genus 

p(C) is by definition p(C)=I-X(0c). Given a graded module M= $ Mm,M(r), 
m6~ 

for re2Z , is M with a shift of degrees given by (M(r))m=Mr+m,A shall be 

throughout the paper the polynomial ring ~[Y0,YI,Y2,Y3] (the symbol 

~{...} denoting the ring of converging power series),endowed with a gra- 

ding A=k=0 ~ Ak and,if gEA k,A(g)= {a/gn I a e Ank}. 

Standard notations are: G.C.D. for the greatest common divisor of a set 

of positive integers, - for congruence, 6.. for the Kronecker symbol 
13 

(~ij=1 for i=j, ~ij=0 for i~j). 

~n is the Segre-Hirzebruch rational ruled surface ]P (0~I $ 0]p I (n)), 

and o its section corresponding to the projection of 0]p I @ 01p I (n) onto 

0~p I : o has self-intersection -n and is the unique irreducible curve 

on ~ with negative self-intersection. 
n 

If S is a smooth surface and p is a point on S, BZp(S) denotes the blow- 

up of S at p, and BZ (S) is defined inductively as follows: Pr 
Pl ' " " " 'Pr 

is a point in the surface Bi (S) and BZ (S)= 
Pl ' " " " 'Pr-1 Pl ' " " ''Pr 

B£ (B£ (S)); moreover, if j>i, pj is said to be infinitely 
Pr Pl ' " " " 'Pr-1 

near to Pi if the surjective morphism (S) onto ~. . of B£ 
3'i Pl .... 'Pj-I 

B£pl,...,Pi_l(S) maps pj to Pi" 

Further notations shall be introduced in the course of the paper. 

Standard abbreviations are: "s.t.,("such that"), "i.e." ("id est"), 

"resp."("respectively"), "cf."("compare"), "e.g."('%xempli gratia"). 
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I. REGULAR SURFACES OF GENERAL OR OF ANTIGENERAL TYPE. 

Throughout the paper S will be a complete smooth algebraic surface such 

that either: 

(1.1) 3 an integer m>0 s.t. Im KSI defines a morphism ~m onto a 

surface Z 

or 

(1.2) 3an integer m>0 s.t. l-m KSI defines a morphism ~m onto a 

surface Z. 

The two cases are clearly mutually exclusive, and hypothesis (1.1) for- 

ces S to be a minimal model, since then Ks-C~0 for each irreducible 

curve C; conversely, (cf. [Bo]) if S is the minimal model of a surface 

of general type, (1.1) holds. We shall furthermore make the assumption 

that S be a regular surface, i.e. q(S)=hI(0s)=hI(Ks)=0. 

This lastcondition is automatically verified in case (1.2) by virtue 

of the following lemma. 

Lemma 1.3. If S is a regular surface satisfying (1.1) or (1.2), then 

H1(n K)=0 for each nE~ . Moreover a surface satisfying (1.2) is regular. 

Proof. By Serre duality h I (r K)=h l((1-r)K) . 

Moreover, by the vanishing theorem of Mumford-Ramanujam ([ MU 2], [ Ra] ) 

H l(r K)=0 for r<0 in case (1.1), for r>0 in case (1.2). 

Therefore, in case (1.2) H1(r K)=0 for all r6~, in particular 

HI(0s)=HI(K)=0 and S is regular. 

In case (1.1) H1(r K)=0 for r<0, r~2 always, and for r=0,1 under the 

assumption that S be regular. 

Q.E.D. 

We digress now briefly on the case of a surface S satisfying (1.2), 

usually called a weak Del Pezzo surface. 

Clearly S is then a rational surface, K2>0, K-C<0_ for each irreducible 

curve C. By the Index Theorem (K 2) (C 2) ~ (K-C) 2, equality holding iff 

C%IK with 16D , and by the genus formula 2p(C)-2=C2+CK; hence for an 

irreducible curve C one has C 2 > -2, and C 2 > I if C is not isomorphic 
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I 
~o ~ (since then C2+CK>0, so C2> -CK > 0: but if C2=CK=0 the Index 

Theorem implies C~0, a contradiction since C is an effective divisor), 

moreover C.K=0 implies C 2= -2, C~ I . Now S dominates a minimal model 

S' and, afortiori, D2> -2 for each irreducible curve D on S', there- 

fore S' can only be ~2, ~I x ~1 ~2 

In fact, if S is not minimal• we can assume S'=~ 2 since if pe~Ix~ I 

B£p(~lx~ I) ~ BZ (2) where P2 is not infinitely near to P1' 
PI,P2 

whereas, if qe~ 2 - q , Bq(~ 2 ) ~ Bi (~2) , where q2 is infinitely 
ql,q2 

near to q1" Therefore if S is not minimal, there exists a sequence 

pl,...,pr of (possibly infinitely near) points on ~2 , with r<8_ (since 

~ (2) Since C2~ -2 for every irreducible K >0!), s.t. S = BZpl,...,p r 

curve C on S, one must have 

(1.4) no more than 3 p~ 's lie on a line 
l 

(1.5) no more than 6 Pi'S lie on a conic 

(1.6) the set {pl,...,pr } can be partitioned into subsets {pi 1,...,pi k} 

with Pi e~2 ' Pi(j+1 infinitely near to Pi but not lying 
I ) j 

on the proper transform of Pi 
(9-I) 

Since clearly for ~lx I and ~2 there exists a divisor H with 

2H ~ -K, and s.t. IHI defines a birational morphism onto a quadric in 

~3 one asks whether• given r<8, pl • "'Pr satisfying (I 4) (1.5) t __ .. . , , 

(1.6), S=BZ (2) is a weak Del Pezzo surface. 
Pl,.--,Pr 

Let E. be the total transform of Pi in S• and let H be the total tran- 
1 r 

2 
sform of a line in 2 . and thus KS=9-r>I , : since -K S E 3H - Z E 1 

i=I 
(1.2) is verified if Ks-C~0 for every irreducible curve C on S. If C 

is one of the exceptional divisors, then by (1.6) either C 2= -I or 

C 2= -2, hence Ks-C~0. 

By the Riemann-Roch Theorem h ° (-Ks)=I0-r , therefore I-KsI is at least 

a pencil; if Ks.C>0 , C is not exceptional and is a fixed part of I-KsI : 

hence C is the proper transform either of a line, or of a conic• but 

then Ks'C>0 contradicts (1.4)• (1.5). 

We can summarize the foregoing discussion in the following 
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1 1 
Proposition 1.7. A weak Del Pezzo surfaee is either ~ x ~ , or ~2 ' 

or is the blow up BZ (2) of 2 at r<8 points, possibly infin~ 
pl,...,p r 

tely near, but satisfyin~ (1.4), (1.5), (1.6). 

To our surface S is naturally attached a graded ring 
oo 

the canonical ring R = @ H ° (m K) in case (1.1), 

m=0 

the anticanonical ring R = @ H ° (-m K) in case (1.2). 

m=0 

By the results of [ Za] ,[ Mu I] these are finitely generated and one calls 

X = Proj (R) the canonical (resp.: anticanonical) model of S. 

X can also be obtained as follows: by the Index theorem, if D is a 

divisor with K-D=0, then D2<0 unless D%0. Therefore the irreducible 

curves C with K-C=0 are independent in Pic(S) @ ~ (cf. [Bo] , prop.l), 

and, as we already noticed before, they are smooth rational curves 

with C 2= -2. X is obtained by contracting these curves and has only 

Rational Double Points as singularities (cf. [Ar I] , [Ar 2], [Bo]) : 

in particular X is normal, the dualizing sheaf ~X is invertible, and, 

~: S ÷ X being the contraction morphism, one has Os(Ks)~*(~X ) . 

Every morphism ~m: S ÷ ~ as in (1.1), (1.2) factors through ~ and 

: X ÷ Z .  
m 

Remark 1.8. ~m is ~ ~inite morphism, being proper and quasi-finite, 

moreover ~X (resp. : WX 1) is ample on X. 

We refer to reader to [Bo] and [Sa] for more precise results on the 

structure of these morphisms. 

§ 2. GOOD (WEIGHTED) CANONICAL PROJECTIONS. 

The set up being as in the preceding section, we denote, for m>0, by 

R the homogenous part of degree m of the graded ring R (i.e. R =H ° (mK) 
m m 

in case (1.1), Rm=H° (-mK) in case (1.2)). 

We choose then y0,Yl,Y2,y 3 homogeneous elements of R such that 

(2.1) yieRee , where e,e0,...e 3 are positive integers and the greatest 
l 

common divisor of e 0' el' e2' e 3 is I 
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(2.2) the four divisors Ci=div(Yi) have empty intersection (we can 

easily assume then that three of them have an empty intersection). 

It will also be convenient in the sequel to assume that each Yi does 

not belong to the subring of R generated by the other yj's. 

Let A be the ring 6[Y0,YI,Y2,Y3] graded so that Y'I is an homogeneous 

element of degree e.. 
1 

Then (cf. IDol ,[De] ) ]P (e 0,e 1,e 2,e3)=Pro j (A) , (which in the sequel we 

shall simply denote by ~? ), is a 3-dimensional weighted projective spa- 

ce and the four sections y0,...,y 3 define a morphism ~: S ÷ ~P which 
2 

we shall call a ~ood canonical projection. By (2.2), since KS>0, the 

image of @ is a surface Z c ~ and ~ factors as 

(2.3) S ..... , ~ c IP where ~ is a finite morphism 

X 

being an hypersurface in ~ , the projecting weighted cone is defined 

by an homogeneous element f in A of degree n, hence Z = Proj(A/ (f)). 

R, being via ~ an overring of A/ (f), can be naturally viewed as an A-module. 

From now on, since H° (X,Ox(m [X)) ~ H ° (S,Os(m KS)), we shall restrict 

our considerations to the finite morphism ~: X ÷ Z. 

Definition 2.4. We shall say that (e0,el,e2,e 3) are normalized if the 

greatest common divisor of every three of them is equal to I. We remark 

that in fact ~ = ~ (e0,el,e2,e 3) is isomorphic to a weighted projective 

space • (d0,dl,d2,d 3) with (d0,dl,d2,d 3) normalized. For example, 

= ~ (I,2,2,2) is isomorphic to ~3, but this isomorphism does not 

give an isomorphism of O~ (I) with 0p3(I) (this last is isomorphic to 

O~ (2), while Op= ~ (I)). Also, in general the sheaves Op (n) are not 

necessarily invertible (cf. [Do], 1.3.1, 1.3.2). 

. 's are normalized, then to O~ (I) corresponds a Weil divisor a In the e I 

multiple of which is a very ample Cartier divisor. 

.'S are normalized, we have in case (1.1) Y*(0~ (1))=0x(e ~), the e l 

~*(0~ (1))=0s(e ES) , (e has to be replaced by -e in case (1.2)). 

Via the Serre correspondence (cf. [De], prop. 4.2) to every finitely 

generated graded A-module M is naturally associated a coherent sheaf 

of ~-modules M such that 
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(2.5) Mn = HOmo] p (0 F (-n), M). 

In the case when e>1, we can split R as a direct sum of graded A-modu- 

les 

e-1 
(2.6) R = @ R (i) where R (i) 

i=0 m Rme+i" 

Proposition 2.7. 

(1.2)). 

~(i) =~ ~,(0X( i KX)) (resp. ~,(0x(-i KX)) in case 

Proof. It suffices to consider case (1.1) (S of general type) and we 

have to show then the following: 

Hom0F (0 m (-n),~, 0x(i K)) = H ° (0x((ne+i)K)). 

Clearly the term on the left equals H ° (F , Hom o (0 F (-n),~,0x(i K))). 
F 

NOW, for every element geA, homogeneous of degree d, and with f~g, 

we can consider the principal affine open set D+(g)=Spec(A(g)). 

Since ~ is finite onto ~, ~-1(D+(g)) is also affine. The assumption 

that G.C.D. (e0,el,e2,e3)=1 guarantees the existence, for each n, of an 

integer k>0 and of a monomial X(Y)= X(Y0,...,Y3 ) of degree kd+n. 

We observe the following facts: 

H ~ (D+(g), 0 m (-n) = {p.g-h ipeAhd_n } 

H ° (D+(g) 0F ) = {Q g-h iQeAhd } 

H Q • (D+(g),~,0x(iK))= H ° (~-1(D+(g)) 0x(iK )) 

Setting Y=(Y0'''''Y3 )' we have ~* (Q.g-h)=Q(y).g-h(y). 

To ueH ° (D+(g) Horn^ (0~ (-n),~,0x(iK)) we associate a section u of 
' u F 

0x((ne+i)K) on ~-1(D+(g)) defined as follows: 

for every PeAhd_n , with f~P, set u = u(P-g -h)'gh(y)-p(y)-1. 

We claim that u i8 well-defined. 

In fact, assume PI,P2 are such that f~i' PiEAh.d-n ' and let X(y) be 
l 

as above : 
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then u (PI P2 ~ "g-(k+h1+h2))= u(PI g-hl)'P2(Y)l(Y)g-(k+h2>(Y) = 

= u(P 2 g-h2)P1(y)l(y) g-(k+hl) (y). 

Since l(y) is non zero, and X is irreducible, the definition is im- 

mediately seen to be well posed. 
^ -I 

Moreover the rational section u i8 regular on ~ (D+(g)), since its 

polar locus is contained in n div(P). 
P,fXP 

Conversely, any such u defines" u via: 

u(P g-h)= u P(y) g-h(y). 

Hence Hom_om (0 (-n),~,Ox(iK))= ~, (Ox((ne+i)K)) 

and we are through. 

Q.E.D. 

Proposition 2.8. R is a Cohen-Macaulay A-module. 

Proof. Again we treat only case (1.1), and we can assume, by 2.2, that 

C0~CInC2=@ (Ci=div(Yi)): since dim R=3, it suffices to prove that 

y0,Yl,Y2 form a regular sequence. 

Note first of all that R is an integral domain: then also, by lemma 1.3, 

R/y 0 R is isomorphic to R' = m=O~ H° (CO'OCO(m KS)). Since Yl vanishes 

only at a finite number of points of C0, we get the exact sequences 

Yl 
0 " ÷  H r + R' ~ R'/YIR' + 0 

0 ' R'/YIR' ~ m=0~ H° (ConCI'OConCl (mKs)) .... 

- - ~  m=0~ HI(c0'0C0 (m-el)Ks)) 

where, by the Riemann-Roch theorem, since ~c0=Oc0((I+e0)Ks), in the 

last direct sum the terms with m>1+e0+e I are zero. 

Since Y2 does not vanish on C0nC I, Y2 i8 not a zero-divisor of 

R '/yl R '. 

Q.E oD. 

Since A is a polynomial ring, we can choose a minimal set of homogeneous 

generators of R as a graded A-module, vi=I , v2,...v h, homogeneous of 
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respective degrees ZI=0 < Z2 < £3 "'" < £h" 

By Hilbert's syzigy theorem (cf. e.g. [ Z-S] p. 240, [A-N] pp. 575-588) 

and by prop. 2.8 the v.'s determine a free homogeneous minimal resolu- 
l 

tion of the graded A-module R. In case e=1, the resolution reads out 

as 

h h 
(2.9) 0 ~ @ A(-rj) ~ ~ @ A(-~ i) -~ R ÷ 0 

j=l i=I 

(where ~ is a square matrix with ~ . a homogeneous polynomial in A of 
13 

degree r~] - ei if rj>ei, aij=O other~ise)h. 
In fact the kernel of the surjection of @ A(-hi) onto R is locally free 

i=I 
by prop. 2.8, must be of rank < h by the injectivity of a, and of rank 

at least h since dim R =3; moreover clearly ai~ = 0 if rs<ei, but also 

when rj=e i since {v I .... ,v h} is a minimal set of generators. 

In case e>0, instead of (2.9) we have a direct sum on k=0,...,e-1 of 

the following exact sequences 

(k) 
h ~ h 

(2.10) 0 ---+ ~ A(-r (k)). ~ @k A(_£(k)). .......... ~ R (k) ÷ 0 
j=1 3 i=I l 

Lemma 2.11. det e=(f)deg ~ (resp. : det(a(k))=(f) deg ~ in case e>0). 

Proof. Localization being flat, we get an exact sequence of sheaves on 

~, by proposition 2.7: 

h (k) hk 

0 ÷ 9 =1@k 0~? (-r(k))J ~ ~ i=1@ 0~? (_£(k))i + Y* (Ox(kK)) ÷ 0 

Now, ~ being non singular in codimension I, 0~,~ is a discrete valua- 

tion ring, and the stalk of ~,(Ox(kK)) at the generic point of E is a 

• (2)-vector space of dimension equal to deg(~), and we get the desired 

result from the structure theorem of modules over principal ideal rings 

( of. [Ja I] , th. 3.8, p. 176). 

Q.E.D. 

We can derive a very easy, but useful corollary of (2.11), which we sta 

te now for e=1, but holds also in case e>1 upon replacing h by hk, £ 

by £(k) by r (k) ] 
j ' ri i 

We have already assumed ~i~£2~ ... ~ ~h' and we can assume 
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r1>r2 >_ _ ... _> rh; we stress again the fact that if deg(~ij)=rj-~i<0,_ 

then ~.. must be zero. 
13 

Corollary 2.12. £j<rh_j+l, Wj=I ..... h. 

If ~ is birational (deg ~=I), then also zj<rh_j+ 2 • 

Proof. If £t~rh_t+1, then aij=0 for i~t,j~h-t+1; therefore, for each 

permutation s of {1,...,h} we must have an element ai~(i) which equals 

zero, hence det(a)=O, a contradiction. 
h 

In case et_>rh_t+2, expanding det(a) as Z e(~) ~ ai~(i) the only o's 
o i=1 

contributing a non zero term are those for which ~({t ..... h})= 

={I ..... h-t+1}, therefore det(a) = det(~) det( ), where a is the minor 
^ 

formed by the rowe (t,...,h) and columns (1,...,h-t+1) ~ is the minor 

formed by the rows (I ..... t-l) and columns (h-t+2, .... h). 

We conclude by lemma 2.11. 

Q.E.D. 

In order to prove a weak symmetry statement about resolutions (2.9) 

and (2.10), we adopt for the time being the notations cf. [ G-D] III, 

2.1, pp. 95 and following. 

Let U be the open affine cover of X given by the sets Ui=X-{Yi=0} 

and let F be the sheaf 0x(k K) (in case (1.2) replace k by -k). 

We set F(*)= @ F~ 0x(n e K) (analogously in case (1.2)): obviously 
n@ 

we have Hi(x,F( *))=Hi(U,F(*)). 

Then H a (X,F(*)) = R (k) , 

H I (X,F(*)) = 0. 

We denote by (y) the maximal ideal (y0,Yl,Y2,Y3) in A and by Hi((y),...) 

the local cohomology group (Koszul cohomoiogy). 

From (2.10), since Hl((y),A(r))=0 for i_<3, and since, by prop. 2.1.3 

of [G-D], we have 

H i((y), R(k)) =~ I 

0 for i<2 

H2(X,F(*)) for i=3, 

we obtain, by the long exact sequence of local cohomology 
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e~) H 4 (2.13) 0 ÷ H3((y),R (k)) ÷ H4((y),L I) ((y),L °) ÷ 0, 

where we have set for convenience (when e>1, the case e=1 being a spe- 

cial case, 

h (-r !k) L°= ~ (-Z !k) (2.14) L I = @k A ), A ). 
j=1 3 i=1 l 

Now, given a graded module M, according to [Se] , p. 263, we define the 

dual M v to be the graded module s.t. (M V ) is the dual vector space 
m 

of M , and we recall that the functor M ÷ M v is exact and contravariant. 
-m 3 

By the duality theorem for ]P ([ De ]) , thm. 5.2), if s= ~ e. 
1 

i=0 

H 4 (A(-r))V = ~ Hom(0]p (-n-r) , 0 p (-s))= A(-s+r). 

Since 

n~ZZ 

H3((y),R(k)) V =~ H2(X,F(,)) V _~ 

(X,0x(+(en+k +(k-en)K))V% (by Serre dual ! ( ~ H 2 )K))) v~ 8 H2 (X,0x (- = 

neZZ nEZZ ty on X) 

I R l-k) in case (1.1) 

R(-1-k)in case (1.2) 
nEZZ 

H ° (X,0x((+(en-k)+1)K)) 

we obtain, dualizing (2 .13) , another minimal resolution of R, R (k) , na- 

mely 

(2.15 e=1 (where, as usual, ~ means: ..... in case (1.1), "+" in case 

(1.2)) 

h t h 

0 ----+ S A(Zi-szl)T ÷ @ A(rj-s~1) ÷ R .... + 0 
i=I j=1 

(2.16 e>l, case (1.1) k=0,1 

h !k)_s) t (k) h . (k) , (l-k) 
)- • k A(ll ~ 1 @k A[rj -s) ÷ R ÷ 0 

i=I j=1 

(2.17 e>1, case (1.1) k>2, or case (1.2) 

t (k) h k 
~ ~ A(Z (k)_s+1) e ~ ~ A(r -s R (k) +1 )---~ (e-k+ I ) 

i=I l j=1 ] 
, 0. 

At this point we remark that for each of the graded modules under con- 

sideration we have obtained two minimal free resolutions, which must 
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be necessarily isomorphic, and therefore we obtain a bunch of equalities 

between the ~!k)- - 's and r (k) 's 
l 3 

For the applicatiorswe are going to illustrate in the sequel of this 

section, it will suffice to notice that (2.9) and (2.15) give, when e=1: 

( 2 . 1 8 )  ~ .  = s + 1 - r . .  
1 - -  1 

The following results are an easy application of (2.18), but they are 

already contained in a recent preprint of Ciliberto ([Ci 3]), where more 

general results are given. 

Corollary 2.19. If Pg~4 and IKI is free from base points, then R is g~ 

nerated by elements of degree ~3. If pg=4, R is generated by elements 

of degree ~2 if the image of the canonical map is not a quadric. 

Proof. In fact then one can choose 4 independent sections Y0' .... Y3 

of H° (K) giving a good projection ¢ : S + p3. 

We have then e0=...=e3=l , so £i=5-ri by (2.18). Since we claim that 

R is generated as a ring by the elements of degree ~3, this will hold 

if R is generated as an A-module by such elements, i.e. if rh~2. 

Assume rh<l : since by (2.12) rh>£1=0, rh=l. But then, since £2~I, 

det(a) would be divisible by a linear form, absurd. Finally, if pg=4, 

then £2~2 and, if rh=2 , it follous that det(a) is divisible by a qua- 

dratic form, and we conclude by lemma 2.11. 

(Moreover, in this last case, one would have rh_1=3) 

Q.E.D. 

We recall now a recent result of P. Francia ([ Fr] ) : 

Theorem. If S is a minimal surface of general type, then 12KI is free 

from base points if pg>_2 or if pg=l and q=0. 

Hence, if S is also regular, and pg>_1, one can choose a good projec- 

tion ~ with (e0,el,e2,e3)= 

a) (1,1,1,2) if pg>3 and IKI has no fixed component 

b) (1,1,2,2) if pg>2 

c) (1,2,2,2) if pg=1, K2>2 



82 

In all these cases, except if pg=2, k2=I, we can assume that det(~) 

has no factor of degree less than, respectively, I, 2, 3 (notice that 
2 

we can assume, since h ° (2K)=1+pg+K , that the yj's of degree 2 are li- 

nearly independent modulo quadratic monomials in the Yi's of degree I ). 

2 
Remark. Surfaces with K=pg=1 are studied in [Ca 2,3], those with 

pg=2,K2=1 are studied in [ Ho], and for them R is generated by elements 

of degree less than 3, resp. 5. 

With an entirely analogous argument to the one used in the proof of 

corollary 2.19 we obtain 

Corollary 2.20. R is generated by elements of degree less than 4 in 

case a) or case b) with pg=2, and of degree less than 5 in the remain- 

ing cases. 

Remark. To obtain more precise results in this direction, a less rough 

analysis is needed, taking e.g. into account the numerical relation 
2 

K He.=l E (S+I-2Z 3) (obtained by looking at the Hilbert polynomials of 
i j 

the modules occurring in 2.9), and also the ring structure of R. 

§ 3. RING STRUCTURE AND SYMMETRY 

In this section we shall make stronger assumptions on the good projec- 

tion ~ considered in § 2. 

In terms of the associated finite morphism ~ of (2.3) we shall assume 

either 

(3.1) ~: X+Z is the normalization map (~ being finite, this condition 

is equivalent to the requirement that ~ be birational) 

or 

(3.2) ~: X÷Z is of degree 2 and ~ is a normal surface. 

Definition 3.3. ~ is said to be a ~uas/-~ener4c canonical projection 

if one of the conditions (3.1), (3.2) is satisfied. 

Also, for simplicity of notations, we shall assume e=1: we want to show 

that if ~ is quasi-generic, then the matrix a giving the resolution 
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(2.9) can be chosen to be a syn/metric matrix. 

We already remarked that Z is defined by a homogenous polynomial f, 

whose degree we shall denote by n (recalling that s= ~ e i, we have 

h i=O 

(s+1-2i4)=n in case (3.1), =2n in case (3.2)). 
j=1 J 

By [De] prop. 5.9 the sheaf Oz(n-s) is the dualizing sheaf ~ for E. 

Let's first discuss case (3.1), when ~ is birational. 

Let I' C 0~ be the conductor ideal of ~, i.e. I'= Horn (~ Ox,OF) and 

let I be the ±nverse image of I' under the surjective homomorphism of 

O onto O ~ - 

Definition 3.4. I is called the adjoint ideal to ~. 

! 

Now (cf. [Ha] 7.2, page 249, to whose notation we adhere) ~" coZ is a 

d u a l i z i n g  s h e a f  f o r  X, h e n c e  ~ ~ g  = COX, h e n c e  

% i % % 
'~, os x = ~(h[" o~ Z ) = Horn (~, Ox,~O Z) = Hom o Oz (~ Ox, O2(n-s)). 

Since ~ =% (n-s) is torsion-free, we clearly have (since 0~c-~, O x 

taking Horn 0 ) an injective homomorphism ~ : 

P 
(3.5) 0 ÷ ~* ~X ~ ~ = O~ (n-s) 

and, in fact, in view of the characterization of ~Z in terms of residues 

(cf. [ Re] pp. 284-5), 

(3.6) I' ~ c D(~, ~X ), equality of sheaves holding at the points of 

Z where co is invertible. 

For further simplification we shall consider only case 1.1, from now on. 

Definition 3.7. Let v be a homogeneous element of R of degree d; 

noting that R(1) is (by 2.7) the module associated to the sheaf ~, 
X ' 

we have that v, by 2.5, determines a homomorphism v: O~ (-(d-l))+ 

+ ~* coX" and therefore p o v is represented by an element v, homoge- 

neous of degree n+d-s-1, in A/(f). BEA is said to be a li£tin~ of v if 
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the residue class of B in A/(f) is just V (note that a lifting B of v 

therefore always exists, and is unique if d<s+1). 

In terms of the foregoing definition, we can formulate the main theorem 

of this section in the following way. 

Theorem 3.8. Let ~ be a quasi-generic birational projection, and let 

v1=1,v2,...,v h be a minimal set of homogeneous generators for the A-m~ 

dule R. Let moreover B be a symmetric matrix whose entries Bij(i,j=1,...,h) 

belong to A and are a lifting of (vivj)ER. 

One can then choose a minimal resolution of R, corresponding to the 

choice of v I .... ,Vh, such that (of. 2.9) the matrix a is symmetric and 

such that B=Ah'I(~) (and therefore ~=(f)-(h-1) Ah-1(~), since f=det(a) 

~n ~ase (3.1)). 

Remark 3.9. The proof would be immediate if one knew a priori that 

det(B)+ 0 since then, setting ~ as f-(h-1) Ah~I(B), we would have 

aB=f I h (I h being the identity h x h matrix), therefore ~ would be a 

matrix giving all the relations among the v. 's (in fact, since R is an 
3 

• v.=0 in R, conversely integral domain, ~ ai4V~Vh=0j J in R implies ] 
J J 

if ~ yjvj-0 in R, Wh E. XjBjh is divisible by f, hence 3 X h with 

] 3 
f/h = E. yjBjh , and then, since aB=f Ih, and A is an integral domain, 

] 

= Z ajhlh). 
YJ h 

Proof of theorem 3.8. We shall compare the two minimal free resolutions 

of R given, respectively, by (2.9) and (2.15), and we use the notations 

introduced in (2.14), i e. L I h L °= h • = • A(-r,), @ A(-Z.). 

j=1 ] i=I l 

Since two minimal resolutions are isomorphic, using the canonical iso- 

morphisms of H4((y),L~) v with LI(I) (resp. : of H4((y), LI) V with L° (I)), 

and the isomorphism T of R(1) with H3((y),R) V used to prove (2.18), 

we infer the existence of isomorphisms ~I,T0 which make the following 

diagram commute: 
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0 ÷ L I a 5 L ° .~ R +0 

["[1 [ TO II 
t 

(3.10) 0 ÷ L 1 ~ L ° ~ ' ~ R +0 

t 
0 ÷ H 4((y),n ° )V (-1) c~ , H4 ((y) ,LI)V(-I) ---~ H3 ((y) ,R)V (-I)÷0 

Let {E 1 ..... E h} be the canonical basis of L°,{E~ ..... E~} be the canoni- 

cal basis of LI, so that E i maps to the element v. of R. 
l 

We recall now (of. [Se], p. 253 and foll., [Do] p.40) how the local co- 

homology groups with respect to the maximal ideal (y) of A are effecti- 

vely computed. 

Let V be the free A-module having as basis the differentials 

dY0,...,dY3, and graded in such a way that deg(dYi)=-me i, and let lm 

be the homogeneous element of V (of degree O) given by 

3 
: Z ym(dYj ) (3.11) Xm j=0 3 

Then, for every A-module Rj the cohomology groups HW((y),R) are the li- 

mit, for m>>0, of the cohomology of the Koszul complex 

AI 

... , V ®A R ~ ... ÷ A~V ~A R m Ai+1 

We have therefore the following commutative diagram with exact rows, 

and with columns giving the Koszul complexes: 

0 > A2V ~A LI (x ~ A2V ~A L° ' A2V ~A R ' 0 

+ + + 

(3.12) 0 ÷ A3V ~A LI ~ ~ A3V ®A L° ~ A3V ®A R ~ 0 
+ + + 

L1 a A4V ® L° ÷ A4V ~A R ~ 0 0 ~ A4V ®A ~ A 

Let q be any element in H3((y),R): then q is represented by a cocycle 
h 

q' = Z q i v i in A3V ~A R 
i=1 

q1' " " " 'qh eA3V)" (hence 

Letting d be the coboundary map of the long cohomology sequence associa 

ted to (3.12), we have that 
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d(n) is represented by (a) 

h 
-1 

(I m A Z qi Ei)" 
i=I 

Let r be an integer <_h; to compute T o (Er) , we use (3.10): it must hold 

(3.13) < T o (Er),d q >= <<T(Vr),~>> Yq6H 3 ((y) ,R) 

<,> ,<<,>> denoting the two pairings given by Serre duality on ~and X 

respectively. 

To compare the above two pairings, let F be the subsheaf of 0 (n-s) 

which is the inverse image of 0(~, ~X ) (cf. (3.5)) under the surjecti- 

ve homomorphism of 0 (n-s) onto O2(n-s) : we have the following exact 

sequences (where F=IOp (n-s) except possibly at the non Gorenstein points 

0 ; 0 (-s) 

II 

0 ~ O~ (-s) 

of ~) : 

0 0 
+ + 

F ÷ 9*~X ..~ 0 

+ + 

÷ 0 m (n-s) ~ 02(n-s) , 0 

~x)÷H 3 (-S))=~, which give an isomorphism ~:H2(~, (0 as it is easy to 

check. 

Under the natural identifications described before (2.13), 

2: H3((y),R) ----/-~H4((y),A(-s)) is obtained by lifting a cocycle with 

values in R to a cocycle with values in A(n-s), taking its coboundary, 

and then dividing by f. Hence 

h 
-1 

<To (Er),dq> = <To (E r) ,e (ImA Z qiEi)> = 
i=I 

h 
=<(t )-ITo ,(Er), I m~ ~ qiEi >, while 

i= I 
h h 

<<T(Vr),q>> = <<T(Vr) , ~ q.v.>> = 2( ~ qi(VrVi)) = 
i=I i i i=1 

h ,I 

"(~ ^ E ~.B .). 
x m i rl 

i=1 

Therefore, setting 

we conclude that 

I t 
(3.14) To= ~ ~ S, 

h 
T o (E) I r = ~(ta) 2 B. E , we have a lifting of T, and 

0= I 3r O 

1 
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To finish our proof, it suffices to change the given minimal free reso- 

I t 
lution in order to obtain, instead of ~, To~ = f a ~ a, which is now 

a symmetric matrix. 

Also (el. remark 3.9), it is easily seen that ~ A h-1 = ~ gives a lifting 

of the products vivj, and a~ = Ba = f ~. 

C.E.D. 

TO end this section, we indicate how a similar theorem holds in case 

is a quasi-generic projection of degree 2 (cf. [Ca I]). In this case, 

since Z is normal, Z is the quotient of X by a biregular involution 

~: X÷X, and we have a splitting of the functions on X into o*-invariant, 

resp. o*-antiinvariant ones: in other terms 

(3.15) ~, 0 x = 0 Z @ F. 

Accordingly, we have a splitting of B as a direct sum of J-submodules 

(3.1 6) R = R" @ R' 

We have, though, another splitting of R as a vector space: in fact o 

induces an automorphism q* of R, and if we denote by R + (resp.: R-) 

the (+I) (resp.:(-1)) eigenspace for o* , we also have 

(3.17) R = R + @ R- (note that in fact R + is a subring). 

We observe, concerning this last splitting, that o induces the trivial 

projectivity on ~, hence first of all the Yi'S are eigenvectors for ~*, 

moreover, ~ being an involution, q*(Yi )=± Yi' so finally, since o* indu- 

ces the identity on ~, either 

(3.2.a) °*(Yi ) = Yi (i=0,...,3) 

or 
ei 

(3.2.b) q*(yi )= (-1) Yi (i=0 ..... 3) 

Notice that R"=R +, R'= R- if and only if we are in case a). 

We also remark that, by the same argument of proposition 2.7 

~* ~X = R(±I), hence 

(3.18) ~, ~X = OZ (±1) @ F ( ± I ) .  

m 
NOW, in case b), since o* acts as multiplication by (-I) on Am, it is 

easy to see that F(±I) corresponds to the sheaf of q*-invariant sections 

of ~X (resp. : 0~(±I) to the sheaf of antiinvariant ones). 

The fundamental fact that we shall use here is that ~* acts as the identity 
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2 S 2 ~H2 X on H ( ,~ )= ( ,~.) This fact can easily be checked workina over ~ as 
S A " ~ ' 

we do, since H2(S,e2)~H4(S, ~ ~ )~H4(S,~ )~ ~ and o~acts as the identity on 

H4(S,~ ) (o gives in o fact an orientation preserving homeomorphism of S). 

duality on X, we have (Rm) V = R~I_m , Therefore, while we apply Serre 

and, in particular, in case b) we have 

+ + 
R2m = R" , = R' 2m R2m+1 2m+I 

(and analogously for R-). 

We choose now a resolution of R given as a direct sum of a resolution 

of R" and of a resolution of R', and let ~ be the matrix giving such a 

resolution (hence e is now in the form <~ ~0~' since R" ~ A/(f)). 

Applying the weak symmetry statement proved in §2, we see that (t) 

gives a resolution for a module isomorphic to R(±I); but further, ap- 

plying the above remarks on duality and o*-variance and looking at the 

computation given before (2.15), we see that t gives a resolution for 

IR ' (+I) @ R"(+I) in case b) 
(3.19) 

R"(+I) @ R' (±1) in case a). 

~n case b), we conclude that, up to a shift of grades, also R' is a 

cyclic module =~' A/ 
(f) - 

SO in case b) R is generated by I, v 2 and, if the matrix a is normalized 

as we did in §2 (with decreasing degrees as the row and column indeces 

increase ), then ~ has the form <0f f) , and deg f= s ±I-~2 

Definition 3.20. Case (3.2.b) is called the standard case (of a quasi 

generic projection of degree 2). Tl~e canonical ring R is then generated 
2 

by y0,yl,y2,Y3,V 2 with the relations f(y0,...,y3)=0, v2=G(Y0,...,y3), 

where G is a homogeneous polynomial of degree equal to 2Z2=2(s±1-n). 

We pass now to the non standard case (3.2.a), which is the only one we 

are going to consider in the next paragraphs. 

In case (3.2.a), first of all, by (3.19), deg(f)=s±1. 

We choose as a minimal system of generators for the A-module R, vi=I 
+ 

as a generator for R , and v2,...,v h a minimal (homogeneous) system of 

generators for R-. 
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+ 
The resolution for R is clearly given by 

f + 
0 > A (-n) > A ~ R .... ~ 0 

while the resolution for R will be of the form 

(n=degree of ~ ) 

(3.21) 0 ___+ L. I ~" .0 - ~ L .~ R- ÷ 0 

The situation is technically simpler here, than in the birational case, 

since the product of 2 antiinvariant functions is invariant, so we have 

_ _ R + ' an A-bilinear map of R x R ÷ hence it is evident how to "lift" 

viv j, for i,j~2, to an element Bij of A. The role of the adjoint ideal 

is taken here by the branching ideal B, the inverse image in A of 

R- - R-CR +, and which is spanned by the B. ,'s (i,j~2). 
13 

The analogous theorem to 3.8 is, in this situation,the following 

Theorem 3.22. Given a non standard quasi-generic projection of degree 

2, and a minimal system of homogeneous generators v2,...,v h of R- as 

an A-module, let 8" be a symmetric matrix of size (h-1)x(h-1) whose 

entries B.. (i,j=2,...,h) dive a lifting of v.v.. Then one can choose 
z3 i ] 

a minimal free resolution of R-, associated to the given choice of ge- 

nerators, such that (cf. 3.21) the matrix a" is symmetric and 

~ " 6 "  = 6"a"  = f % - 1 "  
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§ 4. DETERMINANTAL EQUATION, ADJOINTS AND THE CANONICAL RING. 

Let's assume again that Y gives a quasi-generic projection, and let 

l=Vl,V2,...,vhbe amin/.mal set of homogeneous generators for R. 

Then, since R is a ring, vivjCR , hence, for i,j=2,...,h, there exist , 

for k=1,...,h, homogeneous polynomials Z~ = ~k h lj ji with the property that 

. = E Z k 
(4.1) viv 3 k=1 ij Vk' 

and the £k.'s are defined uniquely modulo the relations 
13 

h 
(4.2) Z = 0 (i=I, h) 

j=1~ijvj .... 

Theorem 4.3. R is generated by I, y0,...,y3, v2,...,Vh, and the rela- 

tions among these generators are generated by the h(h+1)/2 relations 

(4.1) and (4.2). 

Proof. Let D be the ring ~[y0,...,Y3,V2,...,Vh] (graded in an obvious 

way), and let J be the ideal in D generated by the relations (4.1) and 

(4.2). 

Since the relations (4.1) hold, we have that D/J is generated by 

v1=1,v2,...,v h as an A-module. Since the natural homomorphism of D in 

R is onto, R is a quotient of D/J, but on the other hand, since the re- 

lations (4.2) hold in D/J, D/J is a quotient of R as an A-module. Hence 

R = D/J. 

Remark 4.4. Case (3.2) occurs exactly when one has £k.=0 
13 

k=2,...,h, (and then Z . = B.. in case 3.2.a). 
13 13 

Q.E.D. 

for 

Let's consider now the case (3.1) when @ is birational. Since X is the 

normalization of Z, it must be true that the ring R be completely deter- 

mined by the symmetric matrix ~. In fact we know that S = Ah-1 (~) is 

a matrix such that Bij _ is a lifting of vivj, hence (4.1) implies that 

h 
= ~ ~ 

(4.5) ~ij k=1 lj ~Ik 

(the equality should a priori only hold modulo f, but, since 
h 

f = k=IZ alk B1k' we can always modify the Z~lj's in order that (4.5)hold) o 
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It is immediate to see that (4.5) is equivalent to the following Rank 

Condition mentioned in the introduction: 

(R.C.) let a' be the matrix obtained bv erasing the first row oft he ~m~etric 

matrix ~: then the ideal in A generated by the entries of B=Ah-1(a) 

equals the ideal I generated b[ the entries of Ah-i (e'),811,...,B1h. 

Remark 4.6 : in the following we shall see that the (R.C.) {9 directly 

re~ed ~0 the ~heore~ of Rouch~-Capelli. 

Proposition 4.7. Let ~ be a symmetric matrix of homogeneous polynomials 

of degrees as above, and assume that a satisfies (R.C.), that depthi(A)~2 , 

and that f=det(a)~0. 

Let R be the A-module generated by Vl=1,v2,...,v h subject to relations 

(4.2), and define an A-bilinear product on R according to (4.1) and 

the request that vi=I be the identity. Then this product is well defined, 

is commutative and associative, hence makes R into a commutative 

A-algebra R. 

• 's have no common Remark 4 8. The condition depthiA~2 holds iff the ~ij 

factor, and, afortiori, if f=det(a) is an irreducible polynomial. 

Proof. of prop. 4.7. The ideal I has the following minimal free reso- 

lution 

(4.9) 0 > L" a' A h-1 
L' (a') ~ I .... ~ 0 

(L", L' being free A-modules of respective ranks equal h-l,h), by virtue 

of Hilbert's theorem (cf. e.g. [Ei], thm. 2,p. 122). In particular, if 
h 

gt Sit =0 in A, then there do exist, for i=2,...,h, elements u. in 
t=1 i 

As.t. 

h 

(4.10) gt = 2 u i ait, for each t = 1,...,h. 
i=2 

h 
Again since f = E aitBit , we can obtain that the same conclusion hold 

t=1 
h 

if only ~ gt ~It --0 (rood. f). 
t=1 
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To check that the definition of the product is well posed (we have up 

to now only specified the product of a pair of generators), we must 

verify that 

h 

(4.11) ( ~ aijv 3)_ v k = 0 in R , i.e. that 
9=I 

h 
~t 

(4.12) ~ a. v t = 0. 
t,j=1 lj jk 

(4.12) holds if and only if there do exist 

h h 

£3k j=1 aij = 7. u ~ . 
s= I s st 

Ul,...,Uh6A s.t. 

By our previous considerations, it suffices to show that 
h 

t 
aij ~jk Bit ~ O(f), but this is true, since, by (4.5), this expre~ 

t,j=l 
h 

sion equals j=1~ ~ij 8jk = f 6ik" 

The commutativity of the product is obvious since ~ is a symmetric ma- 

trix, hence ~ is also symmetric and ~k k .. = £..; on the other hand, show- 
13 31 

ing that the product is associative amounts to proving that, in R, 

(4.13) (vi'vj)v k = vi(vj'v k) for each i,j,k=2 ..... h, 

h h 
i.e. ( ~ it "Vk = vi ( ~ £s Vs ), or still 

t=1 13 vt) s=1 3}{ 
concretely, more 

t r h s 1 
( h ~ij ~tk ) - ( ~ ~jk is ) v r = 0 in R. 

r=1 t=1 s=l 

By the same remark we used above, it suffices to show that 

h [ h h j k ± ] 
(tE1~t £r13 tK ) - ( ~ s £rs) BIr -= 0 (mod f), or, using (4.5), that 

r=1 = S=I 

h h 
s 

(4.14) ( ~ itj Btk) -( ~ ijk Bis)- 0 
t=1 s=1 

(mod f). 

We notice further that, since f=det(a),~ = A h-1 (~), 8ij ~kt ~ ~jk 6it 

(mod f) (cf. [Ca I], 1.2 p. 437). 
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Hence 
h h 

61U(t~ 1 A~ lj -" £t 8tk) S Z = t=l i3 61t 6uk 

h 
Z zs 

s=1 jk Bls Biu -- = ~ij 6uk ~ Bjk ~iu = 

h 
s 

~lu ( Z AjkSis). 
s=1 

We have thus obtained that the expression g in (4.14) is such that 

61u g 6 (f) ¥ u=l,...,h. Since the 61u'S have no common factor, it 

follows that f divides g, as we wanted. 

Q.E.D. 

Assuming ~ to be a matrix with all the good properties we requested so 

far, we define X to be Proj(R) (cf. 4.7), so that the inclusion of A/(f) 

into R defines a morphism ~:X÷ Z. 

Since our aim is to recreate the situation we started with, we first 

notice that ~ is a finite morphism : in fact R is a finite A/(f)-module 

generated by Vl=l,...,Vh, hence,over any affine piece ofZ,~O x is a fi- 

nite 0Z-module. With the notations we have thus set we have 

Proposition 4.15. Assume the ring R is given as in 4.7, and assume 

that f=det(a)is an irreducible polynomial. Then ~:X=Proj(R) ~ Z = 

= Proj(A/(f)) is a finite birational morphism. 

Proof. By the remarks made previously, it suffices to exhibit a ratio- 

nal inverse for ~. 

We remark that, R being generated as a ring by y0,...,y3, v2,...,v h, 

we have a natural embedding 

(4.16) X C ~ = ~ (e0,...,e3 , Z 2 ..... £h) . 

In this respect, we can view (since V1=1) equations (4.2) as a set of 

inhomogeneous linear equations in the unknows v2,...,v h (therefore the 

rank condition is nothing else than the condition in the Rouah$-Capelli 

theorem): 

h 
~ . .  V .  = - 

j = 2  13 ] a l l  
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The system of equations has a unique solution for the points y in 

where a' has rank = h-l, and then the solution is given, by Cramer's 

rule, for j = 2 ..... h, by 

(4.17)_ v.3 = BIJ/811" 

Since, by the irreducibility of f, the locus defined by I=(611 , .... B1h) 

has codimension I in ~, we conclude that ~-I is given by the restriction 

to Z of the following rational map ~-I: ~ > ~ s.t. 

-1 (4 .18)  (Y) = (Yo 611'Yl  611'Y2 611'Y3 611' 612 . . . . .  61h )" 
Q.E.D. 

Corollary 4.19. 

(611 .... ,Blh ) • 

X is the blow-up of Z in the ideal I generated by 

Proof. Obvious by (4.18). 

Q.E.D. 

Remark 4.20. The ideal ~ , generated by 611,...,61h in OZ, is contained 

in the conductor ideal I'= Hom o (~, OX, 0 Z ). 
Z 

Proof. Since I is generated by the 61j's, it suffices to prove that, 

the isomorphism of ~(Z) with ~(X) being given by (4.17), 61j v k is, 

for every j,k, a regular section (of an invertible sheaf) on X. 

But in fact 61jVk= 61j61k/611 , and 61j61k -B118jk E 0 (mod f), hence 

61jVk=6jk- 

Q.E.D. 

Proposition 4.21. Assume that the only singularities of X are R.D.P.'s: 

then Z = I' (cf. 4.20). 

Proof. If X has only R.D.P. 's as singularities,X is normal and the 

dualizing sheaf w X is invertible. 

Since the local rings of ~ are C-M (Gohen-Macaulay), the conductor 

ideal I' is also C-M, and equals the ideal ~ = (611,...,61h), which is 

also C-M, provided equality holds in codimension I. 

In codimension I we can use Wilson's argument ([Wi], cor. 1.4) to the 



95 

effect that the normalization X equals the blow-up of E in the conductor 

ideal I': we conclude then by cor. 4.19. 

Q.E.D. 

For simplicity, let's assume now that ~Z =0 (n-s) is an invertible 
% 

sheaf: then, as we saw before (cf. (3.6)), Y, w X = l'0z(n-s). 

Furthermore the ring R is such that the A-module R(1) (R(-I) in case 

(1.2)) is isomorphic to the A-module associated to the coherent 0 -sheaf 

~* eX: in fact, if I is the ideal generated by (BII,...,BIh) in 0~ , 

we have the exact sequence (4.9) for the associated A-module I, and 

I/(f)I is easily seen to be isomorphic to R. On the other hand, by the 

embedding (4.16) of X in ~ , one sees immediately that R(±I) is the 

module associated to the invertible sheaf 0 x~ 1). We have thus proven 

Theorem 4.22. Let e0,...,e 3 be positive integers with G.C.D. (e0,...,e3)=l, 

and let A be the graded ring ~[Y0,...,y3] where deg(Y.)=e..1 1 Let moreover 

be given positive integers £I=0<Z2 < ... <£h" and a symmetric matrix 

of size (h x h), with entries aij homogeneous polynomials of degree 

3 
s+1+£.-Z (resp: s-1-£.-Z.), where s= ~ ei; assume further that a sati- 

z ] z 3 i=0 

sfies the rank condition (R.C.), that f=det(~) is an irreducible poly- 

nomial defining 2 c ~= Proj(A) with ~ invertible, and finally that, 

R being the ring associated with ~ as in prop. 4.7, X=Proj (R) has only 

R.D.P. 's as singularities. Then X is the canonical model of a regular 

surface of general type (resp: the anticanonical model of a weak Del 

Pezzo surface) and ~:X ÷~ is a quasi-generic birational projection 

(as in § 2). 

We havenewananalogous~sultdes~gthe c~e (3.2.a) of a non st~dardquasi- 

generic projection of degree 2, but in this case there is a big restri~ 

tion on the degrees i2,...,lh. As we saw in remark 4.4, case (3.2~a) is 

a special case where a11=f (equation of ~), alj=0 for j~2, and det(e")= 
h 

=f , hence f has degree equal to (s±l), while Z (s±1-2Z4)=s±1, more- 
9=2 J 

over (2.12) says that ~j+ih_j+1<s±1 (in particular ~h<S±1), hence 
h h 
Z (s±I-2~)= Z (s±!-£ ~ -(s±l)>h-(s±l) ~ h<2s±2 

j=2 J j=l J-Zh-j+l) 
D 
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On the other hand he~ the rank ~n~tion (R.C.) is t~vi~ly satisfied (s~, ~ the 

notation s~ up in 3.21, 3.22, B11=f, BIj=0 for j~_2, Bij=Bij for i,j>_2). For further 

simpli~cation we assume the, according to def. 2.4,the e. 's are normalized. 
l 

We remark further that Z must be normal (with ~0Z(I) , i.e. Z is a 

canonical surface) and then the ideal B generated by the Bij's, defin- 

ing a locus contained in the singular locus of Z, is such 9/he support of 

0~/B is a finite set of points. Conversely, to a matrix a" as above 

we associate a ring R generated by y0,...,y 3, v 2 .... ,v h with the rela- 

tions 
h 

aij vj = 0 (i=2 ..... h) 
j=2 

(4.23) 

v.v. = B.. 
i 3 13 

((Bij)=B" being the adjoint matrix of a") 

and we denote, as usual, Proj(R) by X. 

Theorem 4.24. Let A, s, be as in thm. 4.22, and let be given positive 
h 

integers 9~2,...,Z h such that 2 7 i.=(h-2) (s+1) (resp. :=(h-2) (s-1)),and 
j=2 3 

let C~" be a symmetric matrix of size (h-1)x(h-1) whose entries aij 

(i,j=2 ,h) are homogeneous polynomials of degree s+I-£ -Z. (resp. : 
'''" i 3 

s-I-9~.-£.). Assume that f=det(a") is an irreducible polynomial defining 

a normal surface Zc ~ with ~7. =07.(I) invertible (and that the ei's are normalized). 

Let the ring R be given as in (4.23), and assume that X=Proj (R) has 

only R.D.P. 's as singularities. 

Then X is the canonical model of a surface of general type (resp. : the 

anticanonical model of a weak Del Pezzo surface), and ~:X+Z is a 

quasi-generic projection of degree 2. 

Proof. ~ is finite since R is a finite A/(f) module. Moreover, when 

• i 0, we ha e : Bii, vi)vi-vZ2:BijB?!   v i, hence is B. 

unramified at the points where the rank of ~" is (h-2). Since ~X" wE" 

are invertible and ~ is unramified in codimension I, we have 

WX = ~ ~Z = ~ OZ (~I), as we wanted to show. 

Q.E.D. 

Remark 4.25. If ~ has only R.D.P.'s as singularities, 

occurs also for X. 

* But, cf. 2.4, if 0(I) ~ 0, Z is a K3 surface! 

then the same 
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In fact this is trivial for t~e points where ~ is unramified, whereas, 

if Bij(P)=0 Wi,j=2, .... h, then the inverse image of P is a single point 

Q. 

Since the germ (2,P) is the quotient of (~2,0)by a finite group 

G c SL(2,~), and (2,P) is a quotient of X by (~/2) and ~ is locally 

ramified only at Q, also (X,Q)is of the form (~2,0)/G', G' of index 

2 in G, hence Q is a R.D.P.. 

Conversely, if the points of ~ where the B..'s vanish are smooth points 
13 

of ~, then ~ has only R.D.P.'s as singularities if X does. 

In fact, the quotient of a rational singularity is again rational, and 

R.D.P.'s are precisely the rational singularities with the Zariski tan- 

gent space of dimension 3 (cf.[Ar 2]). 

5. THE CLASSICAL CASE AND EXAMPLES. 

At the end of last section, we have given two existence theorems, (4.22) 

and (4.24), for regular surfaces of general type (the existence part 

for weak Del Pezzo surfaces is of no interest, in view of prop. (1.17)). 

But whereas the matrices a" in theorem (4.24) are only subject to an 

open condition, the matrices a considered in theorem (4.22) are also 

subject to the closed condition (R.C.). 

Thus we want analyze condition (R.C.), observing first that (R.C.) is 

a global condition, but in fact equivalent to local ones: in this re- 

spect we shall show how the local generic case fits in with the clas- 

sical picture of the "ordinary" singularities occurring for a generic 

projection. 

As a second goal, we want to show that the theory developed so far is 

non vacuous, and that it is in fact, under mild conditions, possible 

to construct smooth X's. 

We denote still by I the ideal in A generated by ~11,...,~ih, by I 

the associated ideal sheaf, and by r=Proj(A/I) : since I is C-M F is a 

scheme of dimension I without embedded points. 

Also, by 4.9, Bij e I if and only if its stalk belongs at I for every 

point P in ~. 

X being the blow-up of Z in F, we want first of all Z-F to have at worst 



98 

R.D.P.'s as singularities. To simplify our local computations we shall 

assume that the points of F are smooth points of ~ , e.g. that ~= ~3 . 

We denote again by a" the minor of ~ obtained by deleting the first row 

and column of a, so that det(a")=B11, and we shall denote by F the as- 

sociated surface, called the adjoint surface. 

Remark 5.1. For later use, we observe the following. 

We have showed that the datum of the ring R with an A-module structure 

and with a minimal system of homogeneous generators 1=Vl,...,v h and 

the datum of a symmetric matrix a satisfying certain conditions are 

equivalent to each other. Now, we can pass from one system of generators 

to another by acting with the group G of transformations g s.t. g(v.)= 
h 3 

E gij vi (j=2, ,h) with 6 A 
= i=I .... gij ~.-~." 3 i 

Correspondingly, the matrix ~ is transformed into the matrix 

(5.2) g a tg. 

On the other hand, the group H of graded automorphisms of A also acts 

on the given set of matrices, and G and H give a semi-direct product 

(with G being the normal subgroup) G ~ H s.t. the orbits of the action 

of G ~ H give the isomorphism classes of the morphisms ~:X÷~. 

We notice finally that the action of G is obtained as a composition of 

elementary transformations, of the kind: adding a multiple of a row to 

a given row and then performing the same operation for the correspond- 

ing columns, or multiplying by the same constant a row and the corre- 

sponding column. 

We are now in a position to study, locally at p6~ , the closed and the 

open condition imposed upon the matrix ~: to do this, we shall work 

with the local ring 0p,~ of germs of holomorphic functions around P, 

denoting Mp,~ its maximal ideal. 

* , )2 by the Babylonian theorem, qua- Remark 5.3. Since Op,~ = (0p,~ 

n 

dratic forms on (%,~)k split as ql ~ q2" where the associated matri- 

ces AI,A 2 are s.t. A I = identity matrix, A 2 has entries in Mp, p. Also, 

since we want the ideal spanned by Ah-1(a') to be invariant, we shall 

only allow to change ~ to gatg where g belongs to the subgroup G of 
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t 
GL(h,Op,~ ) of the matrices whose first column is = (I,0,...,0). 

We observe now that, if peF, then a"(P) is not invertible, hence rank 

(a" (P)) < h-2. 

Case I: rank (m"(P)) = h-2 (PeF,also). 

We can assume then, acting with G, that a = 0 z ) y 0 
Ih -  2 

where y, Z6Mp,~? , since P is a point of r. 

l=(y,z), so the (R.C.) implies that 3 a,b@Op,]p 

fore a local equation for Z is given by 

s°t. x=az+by. There- 

(5.4) f = azy + by 2 - z 2 = @.y2 _ ~2 

2 a a 
where ~= z - ~y, A=(b+ -~ ), hence (y,z)=(y,~)= I. 

We impose now the condition that X, the blow-up of Z in I, have only 

R.D.P.'s as singularities, and in particular we ask when is X smooth. 

An easy computation shows that X is wholly contained in one of the two 

charts of the blow-up of ~ along F, hence there are given local coor- 
% 

dinates (xl,x2,x3,t), s.t. 0p,~ = ~{Xl,X2,X3} , where X is defined by 

I A - t2=O where A,~,yE ~{xl,x2,X3} 
(5.5) ' " 

- ty 

Two further possibilities occur: if A(P)~ 0, then P has two inverse 

images Pl,p2 in X, and the local form of the upper left corner of 

can be reduced to (~ ' n ~')with ~ = Ay, ~'= AI/2~. Then P I and P 2 are 

R.D.P.'s (resp. : smooth points) of X ~the surfaces n+~', q-~' have a 

R.D.P. in P (resp. : a smooth point in P). 

If ~(P)=0, then P has only one inverse image in X, which is a smooth 

point of X if and only if {D=~=0} is a smooth curve at P. The local form 

of the upper part of a is (A~ Y~ )and we have a R.D.P. if and only if 

i) A is a local parameter at P, say A=Xl, and then 

~ ( t 2 , x 2 , x 3 ) -  t y ( t 2 , x 2 , x 3  ) d e f i n e s  a R.D.P. 

ii) ~ is a local parameter at P,(say ~= x 3) and x3=ty,A=t2 define a R.D.P. 
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In particular, if P is a smooth point of F, then one can choose coordi- 

nates Xl,X2,X 3 such that the local equation of Z is either 

XlX2=0:(I) =(F double curve of Z ) or 

2 2 
(5.6) x3-xlx2=0:(II)=(P pinch point of the double curve) or 

2 2 t 2 - 
x3-Ax2=0:(III) with A(xl,x2,tx 2) defining a R.D.P. 

(in particular in the first two cases we have smooth points of X, in the third 

ony if A=bx2+c x3+ ~ with b,cE~, ~eM~,~ , and b~0). 

Case II: rank (~"(P)) = h-3 (hence automatically peF). 

We can assume, up to G equivalence, that a has the form 

(5.7) ~" U V 

U X Z ( ) 
~J 

v z y 

Q ih_3 

where x,y,zEMp,~. 

Proposition 5.8. rank (a"(P)) = h-3 ~ rank (a(P)) = h-3. 

Proof. If u(P)~0, then B33(P)= u2(p)~0, against (R.C.). 

An entirely analogous argument yields v(P)=0. 

2 
If X(P)#0, we may assume X =- I (then X is a square X=w , and we can 

2 
divide first row and column by w). I being the ideal (xy-z ,uz-xv,uy-zv), 

we shall derive a contradiction if we show that IC(u,v) TM for each m. 

It suffices then to show that IC(u,v) 3: in fact, by induction, if 
2 

m>3, and IC(u,v) TM, since (X being - 1, and (R.C.) holding true) x-u 

(mod I), z-uv (mod I), y-v 2 (mod I), we have IC(u,v).IC(u,~) m+l. 

We shall show that x,y, z6(u,v) 2 so IC(U,V) 3 will follow a fortiori , • 

We have, by (R.C.), x=u2+i (xy-z 2) + ~. (uz-xv) +~ (uy-zv) , for suitable 

hence x(1-ly+~v) e (u,z,y,v) 2. Hence x6(u,z,y,v) 2, l,~,~ 60p,~, 

2 2 
and analogously we infer that ye(u,z,x,v) , hence y,xe(u,z,v) 

Finally ze(u,v,x,y) 2 c (u,v,z) 2 ~ ze(u,v) 2, thus our claim follows at 

once. 

Q.E.D. 
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Question 5.9. We believe that (R.C.) may imply that rank(a) = rank(a')= 

= rank(~") for each point of F, but we did not check it. 

Remark 5.10. A little b~t more of computation shows that, if F is 

the ideal spanned by (x,y,z) in Op,~ , then u,v, belong to F, while 

Xx,xy,xz belong to F2: then, e.g. if (x,y,z) form a regular sequence, 

also y belongs to F. In this case also, since I has no embedded primes, 

we see that, given u,v 6 F, X is uniquely determined modulo I (if X1,72 

are two solutions, then, if g=y1-X2 , gx, gy, gz E I, ~ g E I). 

Let's assume now that (x,y,z)fo~ a regular sequence in Op : we can, 

by remark 5.10, assume, acting with a suitable element of G, that the 

upper part of the matrix ~ has the form IClX+~Y+C2Z gY dlX+d2Y+d3z I x  z 

\dlx+d2Y+d3z z y 

and an elementary computation shows that (R.C.) is satisfied (cf. remark 

5.10) if 

2 
(5.11) c1=dld 2 , c2=d3g+d2 , c3=d2d3+gdl , 

i.e. X = d2v + g(d3Y+dlZ). 

We are going to describe the nature of the singularity of E when g,dl,d2,d 3 

are general and to make our discussion clearer let's assume that the 

d 's i , g, are indeterminates, as well as x,y,z 

Let's work thus in the ring ~ x,y,z] , where R=~[dl,d2,d3,g] . 

Then the 2x2 minors of the matrix 

a = 2 v + g(d3Y+dlZ) ~ v define conics 

gy x z 

v z y 

in ~2 and they belong to the R-module of conics generated by ~-z 2 
R' 

2 
~z-xv, ~ -zv. 

Since these last three are independent, they span a net with a base 

scheme of length 3 (if we work now on K = alg. closure of R), which 

consists in fact of 3 distinct points. Therefore f=det(~) defines a cu- 
2 ~ .2~ 

bic E in ~K which has 3 do~le points: in fact if B=A a, B vanishes 

f2 at these 3 points by (R.C.), and f2=det B, so that vanishes of order 
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at least3 at these points. 
2 

Hence ~ consists of 3 lines in ~K ' and therefore f splits into the 

product of 3 linear forms in R'[x,y,z] , where R' is an algebraic exten- 

sion of a localization of R. 

fact, even in the special case g~0, we have f=v(x2d1+z2d2+xzd3) , hence In 

the singularity of ~ is that of a triple point, i.e. 

(5.12) f=xlx2x 3 in suitable holomorphic coordinates (Xl,X2,x3). 

Definition 5.13. We shall say that the matrix a is semiordinary if the 

following conditions hold (we assume here that ~ is smooth 

i) rank ~"(P)~h-3 for each point pep and, at the points where a"(P) 

has rank =h-3, Ah-2(a '') generates the maximal ideal M (hence 
P,P 

P is a conical double point for the adjoint surface F), 

ii) F is smooth at the points where rank (a")=h-2, 

iii) F is smooth at these points, 

iv) the entries of Ah-2(a') vanish at the points P where Ah-2(a") is 

zero~ 

v) at the points where rank (a")=h-3, F consists of 3 smooth transver- 

sal branches 

vi) a satisfies (R.C.) 

is said to be ordinary if moreover 

vii) Z has ordinary singularities (i.e. 2 -F is smooth, at the smooth 

points of r Z has singularities of type (5.6) (I)III), and at the 

triple points of r Z has a singular point of type (5.12)). 

Now let's consider, after that integers i2,...,Zh as in thm. 4.24 have 

been fixed, the vector space T of matrices a = t~ s.t. ~ijeAs+1_£ _Z . 

I 3 

We have two natural fibrations T ~ T' "~ T" of vector spaces, 

Sot. ~' (a)=~', ~"(~') = a" with our usual notations. 

Let SCT be the set of semiordinary n~trices ~, 0CSCT the set of ordinary 

matrices: clearly 0 is open in S. We have that S maps into S"={a" I 

s.t. i), ii) of (5.13) hold}, respectively into S' ={~' I i)-v) of (5.13) 

hold}. 

Now S" is a Zariski open set in T" (cf. e.g. [Ca I] thm. 2.8, or [Ba]), 
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and, in order to study the fibration ~": S' ÷ S", we define 

~'={~' [ i),ii) iv) hold}. ~" ^ S" • I~IS'÷ is a vector space fibration and 

S' is open in S', as we are going to see. 

Proposition 5.14. If ~"6S", then z"-1(a")nS ' has codimension in 

-I 
~" (a") equal to 2 t, where t is the number of singular points of 

F={det(e")=0}. 

Proof. Let PI'''''Pt be the singular points of F, and let b:F÷F be the 

blow-up of F at PI'' "''Pt" Denote by A i (i=1,...,t) the exceptional 

curve b -I (P.) : A. = ]P and A = -2. Let ~ be the proper transform of 
l 1 1 

'(0F(1) F in F, and let H be a divisor s.t. 0~(H)-=b ). The symmetric ma- 

trix a" determines a sheaf F on F which is the cokernel of (cf.[ Ca I] , 

§ 2) 

h h 

(5.15) 0 ~ • 0]p (~j-s-1) ~ • 0 (-~i) ~ F ~ 0: 
j=2 i=2 ]P 

we have F=b, 0~(L), where L is a divisor with 2L --- 6H + 

t 

Z Ai, for a 
i=I 

suitable integer ~. There exists then a positive integer m s.t. 

t 
(5.16) ~ -= L + mH - 2 Z A. : 

1 
i=I 

t 
in fact by (iv) 2F + 3 Z A. is linearly equivalent to a multiple of H 

i=I z 

(notice that diVF(Z)=2F , ibidem). 

Since H 1 '~ (F,0~(L+mH))=0 YmeZZ, we have 

t 

0 -7 H ° (0~(F)) ~ H ° (0~(L+mH)) + @ H ° (02A (L)) ~ 0, 
i=I i 

and, since A.I'L= -I, H ° (0A. (L))=0, and then H ° (02A ' (L)) = 
l l 

=~ H ° (0 A (-A.+L) ~ H ° (0ml (I)) = ~2. 
• l 
1 

Q.E.D. 

We remark now that a'6S' iff ~ is a smooth curve in the linear system 
t 

I L+mH-2 Z Ail, which is transversal to the exceptional curves 
i=I 
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AI,...,A t, and such a F can be found, by Bertini's theorem, if the gi- 

ven linear system has no fixed points in F. 

We can conclude our discussion of S concerning ~' : S ÷ S'; by remark 

5.10 a11 is uniquely determined modulo I locally, hence also globally 

modulo I(s+1) : in particular if the degree of F is bigger than (s+1) 

(what holds true in all but a finite number of cases), then a11 is 

uniquely determined by a'. We can summarize our remarks as follows: 

Theorem 5.17. Assume that ~' : S ~ S' is dominant: then S is irre- 

ducible. 

Hence in some cases there is a natural way to define a natural irredu- 

ducible unirational component of the moduli space, as we mentioned 

already in the introduction. 

It is now time to pass to a few examples. 

Example I : We saw in (2.19) that if S is a minimal surface of general 

type with q=0, pg = 4, I K 1 free from base points and with image Z which 

is not a quadric, then ~2 = "''£h = 2, and ~ = 5+(h-I). 

Let's consider the first non trivial case, i.e. when ~=6. In this si- 

tuation, assume first deg ~ = 2. 

Then Z must be normal, since otherwise, ~ : ~ ÷ E being the normali- 

zation map, one would have ~, 0 s = ~, 0~ 8 F and the number of a mi- 

nimal system of generators of R would be at least 3, since then 

~, 0~ 0 . 

Since the degrees of a are {5 3~ , we see that we have a standard 

b / I 

double cover (i.e. case 3b), i.e. the canonical ring R is generated by 

1,v 2 with relations(a being =(0 a121) 
e~12 o / 

{ ~12 (y)=0 
v2=G(y ) 2  , where G is a quartic form. 
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When ~ : X ÷ 2 is birational, we have a matrix a = I~ 11 a12 

J 12 a22 

with deg (~11)=5, deg (a12)=3 , deg (a11) = I. 

Clearly then the a..'s are ~ 0, f=det(a) being irreducible. 
13 

(R.C.) here gives the simple condition that one can write a11 as 

G~22 + Qa12, where G is a quartic and Q a quadratic form. The curve F 

is here a plane cubic, generally there are no triple points and 12 

pinch-points. 

The canonical ring R is generated by 1,v 2 with relations 

~12 + a22 v2 = 0 

Ga22 + a12 (Q +v 2) = 0 

2 
v 2 = G + Q v 2 

and we see that we obtain the double covers of a cubic exactly in 

the special case when {~22 E 0}. 

We have then 

Theorem 5.18. Surfaces with q = O, p = 4, K 2 = 6, such that IKI is 
g 

free from base points and does net map onto a quadrie form an irreduci- 

ble unirational open set of their moduli space of dimension 38. 

Proof. The other assertion being clear, let's compute the dimension. 

Given a12' ~22' a11 belongs to a vector space of dimension (35+10-4)=41, 

hence we have a family depending on (4+20+41-I) = 64 parameters: since 

dim PGL(4) = 15, dim G = 11 (cf. (5 .1)) we reach the desired conclusion. 

~.E . D. 
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2 
Example on assuming _-- = II: we keep pg 4 (q=0), but set ~ 7. 

If I EI is free from base points,then clearly T : X ÷ ~ is birational. 

We have a matrix 
m 

a11 ~12 a13 

a12 e22 ~23 

a13 a23 a33 

where a22' a23' a33 are linear forms, deg(a11 ) = 5, deg(a12 )= deg(a13)=3. 

Our first remark is that the three linear forms a22' ~23' e33 cannot be 

proportional, because then F would not have dimension =I, and by the 

same argument it cannot be a22 E a33 { 0. 

Therefore, either the linear forms are linearly independent, or else 

the datum of a" corresponds to the datum of a pencil of quadratic 
I 

forms on ~ ,hence we can assume to have one of the following cases, (up 

to acting with G) : a) ~33 ~ 0 

b) a23 ~ 0 

c) a22, ~23' ~33 linearly independent. 

Theorem 5.19 Regular surfaces with K2=7, IKI free from base • pg=4, 

points form an irreducible unirational open set of their moduli space M. 

Proof. We recall the well known fact that each irreducible component 

of M has dimension at least 10 X - 2K2=36 (of. [Ca 4,5]), and we shall 

show first that surfaces of type a), b) form a nowhere dense construc- 

tib le set. 

We also remark that I has a resolution of the form 

0 ÷ A(-5) 2 + A(-2)• A(-4) 2 ~ I ~ 0, 

therefore dim~ 15 = 26 (hence a11 depends upon 26 parameters, once a' 
2 

is fixed). In case a) we set x = a22 , y = a23 : by (R.C.) a13EI c (x,Y), 

hence a13 E (x,y) and also then a12 E (x,y) (~11x-a~ 2 E I) . Acting with 



107 

G we can achieve that ai2 ~ 0, then. 

We obtain thus a family depending on 42 parameters, which is left in- 

variant by the subgroup of projectivities for which the linear forms 

x,y are eigenvectors,which has dimension 9, hence surfaces of type a) 

belong to a constructible set of dimension ~ 33. 

In case b), we set ~22=x, a33=Y ; again by (R.C.) ~12' ~13E (x,y) 

and, acting with G, and assuming to have chosen projective coordinates 

(x,y,z,w), we can get that a12 does not contain the monomial x (resp: 

a13 does not contain y). 

Then ~12 = y q(y,z,w), a13=x q'(x,z,w) and we have a family depending 

on 38 parameters, and we conclude by exactly the same argument as above. 

For surfaces of type c) we use the same fibrations we have considered 

to prove theorem 5.17. 

, . . 's belong We set x=~22 y=a33, z=a23 and recall that by 5.8 all the ~13 

to the ideal (x,y,Z). 

We denote by V the space of matrices a with a" = (~ ~) fixed. V con- 

tains the locus Y={aEVla satisfies (R.C.) and ~' ~finesal-dimensional sche- 

me F}, and V fibres onto an open set U={a12,a13E(x,y,z)iF is 1-dimensio- 

nal]C 38, with fibres either empty or affine spaces of dimension 26. 

Y contains an open set (cf. [Elk]) Y' such that, for a11 , a12, a13 in Y' 

the corresponding surface X has only R.D.P. 's as singularities. 

Now,for a12, a13 general, we have r with only one triple point as sin- 

gularity and of degree 7 and to prove that Y is irreducible it suffices 

to show the existence of a11 s.t. (R.C.) holds, what is an immediate 

consequence of formulas (5.11), which indeed, if dl,d2,d3,g are qua- 

dratic forms, give an irreducible rational family an open set of which 

parametrizes all surfaces of type c) (it is easy to see that for gene- 

ral choice of these forms we have 2 with ordinary singularities, and 

hence X smooth). 

Q.E.D. 

Example III: Let S be a weak Del Pezzo surface of degree 7. 

Therefore S is obtained by blowing up ~2 twice, as we noticed before. 

I-KI gives an embedding of the anticanonical model X of S(X=S if P2 is 
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not infinitely near to pl ) into ~7. Taking a projection with centre 

a ~3 not intersecting X, we obtain a surface Z of degree 7 in 3 which 

has a determinantal equation f=det(e)=0, with e =/ G tq~ with (~") 

/ q ~" 

a 4x4 symmetric matrix of linear forms, q a column of quadratic forms, 

G a cubic form. If the projection is generic,Z has ordinary singulari- 

ties (and an extra node if S ~ X) and a double curve F of degree 14 

with 10 triple points at the 10 nodes of the quartic symmetroid 

F=-{det(e")=0}. 

Taking £ to be a general linear form, the surface if-det2(~")=0 is a 

surface with ordinary singularities whose normalization is a simply con- 

nected minimal surface with K2=2, pg=1, q=0 (cf. [E] pp. 316-320, 

[C-D ] §5). 
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