GENERIC INVERTIBLE SHEAVES OF 2-TORSION AND GENERIC INVERTIBLE
THETACHARACTERISTICS ON NODAL PLANE CURVES

Frabrizio Catanese*

1. Definitions and statements of the results

Definition 1. Let D be a reduced plane curve of degree n, and L
an invertible sheaf on D such that L2 = OD' L is said to be generic

if the following condition holds:

(2) HO(D, L([Ef- D=0

(here, as usual, square brackets denote the integral part of a real number).
Moreover L is said to be good if the pull back of L to the normaliza-

tion of D is not trivial.

We remark that, if n is at least 3, and L is generic as in

def. 1, then L is not trivial on D.

2

Definition 3. Let c,D be nodal curves of degree n in P (i.e. C,D

are reduced and their only singularities are nodes).

A degeneration of C to D is the datum of a proper flat family

f: S — T, such that

i) T is a smooth curve, S is a reduced divisor in sz T, f 1is indu-

2

ced by the projection of P"x T onto T

ii) there exist t,t in T such that fal(to)EC, f_l(tl)ED

1
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iii) the fibration f is locally analytically isomomorphic to a product except
exactly at a finite set of nodes Pps--orPg of D (here we are using

the isomorphism provided by 1ii)), which are smooth points of 5.

The nodes Pyse++sPy are called the virtual nodes of the degenera-

tion (according to Severi [Sel).

Definition 4. A nodal curve C is said to be of the main stream (according
to the terminology of B. Moishezon, cf. [Mo]) if there exists a degeneration
of C to a nodal curve D consisting of n different lines (D 1is often

referred to as "the union of n lines in general position").

Definition 5. A thetacharacteristic F on a reduced plane curve C of
degree n 1is a rank-l torsion free sheaf on C such that F = HomOC(F,“’ )y
where 0o = OC(n-:}) is the dualizing sheaf on C (cf. [Ba], [Be]).

A thetacharacteristic F is said to be invertible if F is an inver-
tible sheaf: in this case the condition of being a thetacharacteristic reads
out more directly as FZEOC(n—IS). A thetacharacteristic is said to be

generic even if H°(C,F) = 0, generic odd if H°(C,F) = 1.

Definition 6. A nodal curve C is said to be of even multidegree if each

irreducible component D of C has even degree.

Before stating our results, we remark that, for each pair of integers
n,d, with 2d < (n-1)(n-2), the family of irreducible nodal curves of the
main stream Vn,d is a smooth irreducible non empty locally closed subva-
riety of pV (here N = n/2(n+3)) (cf. [Sel,[Wa],{Ta]).  Moreover, if

C and C

1 2 are nodal curves with transversal intersections, then the

union C of C1 and C2 is of the main stream if and only if C1 and

C2 are of the main stream.

It makes threfore sense to talk about a ‘''generic” nodal curve of
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the main stream. We can now state the main results of this paper.

Theorem 7. For a generic nodal curve of the main stream C, there exists
a generic iInvertible sheaf of 2-torsion L. If not all the components of

C are rational, one can also assume that L is good.

We observe here that, when n = degree of C is odd, and L is as
in thm. 7, then L((n-3)/2) is a generic even thetacharacteristic. Of course
a nodal curve C of even degree admits invertible thetacharacteristics if and

only if C has even multidegree (cf. def. 6).

Theorem 8. A generic nodal curve of the main stream with even multidegree

has a generic even invertible thetacharacteristic,

We notice that an entirely similar method can be used to handle
generic odd invertible thetacharacteristics, and that the above results have
corollaries regarding the possibility of writing the equation of C as a deter-
minant of a symmetric matrix of linear (resp.: quadratic) forms (cf. [Ba],
[Cal). We refer to [C~O} for a general discussion and for more complete
results about (not necessarily invertible) thetacharacteristics on plane curves,
and also to [Ha], for a nice tretament of the parity of invertible thetacha-
racteristics. As a final remark, we work over the field C of the complex
numbers, though with minor changes everything works over an algebraically

closed field of char # 2.

2. Two lemmas in linear algebra

In this section we shall work with a vector space over a field

K of char £ 2.
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Lemma 9. Let VisesssVy be independent vectors in a vector space V, and
let Wiseen,Wy be any vectors in V . The one can choose numbers e1=+1 or
=-1, for i=1l,...,k , such that, setting u; = v+ e W the k vec—

tors  uy,...,u, are independent.

Proof. ViAL A Y # 0, but, since 2v, = {(v,+w.)+(v.-w,), we have:
— k i 177 i

)

k
ALl A = A ee N 1
0 £ 2 vy Vi (v1+e1w1) A (vK+e!<wk
Since the sum is not zero, there exists a non zero summand, i.e. there exist

€1seeery such that Up = Ve W Wy = VW are linearly independent

vectors.

Q.E.D.

Lemma 10. Let V and W be vector spaces of the same dimension =k .

Assume that there are given

CprevesCy independent linear forms from V to K
ayy-ensdy independent linear forms from V to K
d1 yous ’dk independent linear forms from W to KX
bl""’bk linear forms from W to K.

Then one can choose numbers €= +1 , for i=1,..,k, such that the linear

map a«: Ve W — g2k s given by the 2k linear forms (c, ® d) .

(ai ® eibi) , Is an isomorphism.

Proof. Take on V the basis dual to {cl,...,ck}, and on W the basis

dual to {dl,...,dk}. Let A be the matrix associated, in the given basis,

to the linear map of V to Kk determined by the linear forms a;,...,a,,
and associate in analogous way a matrix B to the linear forms b1 yous ’bk'
Let further E be the matrix diag [CTPETREL 0 g and 1 be the identity

(k x k) matrix.
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Then the matrix associated to a 1is in block form

(4 )

therefore @ is an isomorphism if and only if the matrix A-EB is invertible.

Since A is invertible, we can apply lemma 9 setting v, = ith

row of A, w, = jth row of B.

j
Q.E.D.

3. Auxiliary results

According to def. 1, let D be a reduced plane curve of degree n,
let L be a generic invertible sheaf of 2-torsion, and let R be a line
transversal (in fact this hypothesis is not needed) to D: let then

PprecsPy be the points of intersection of D with R.
We have therefore the exact sequence

n
(11) 0 —— L([(n-3)/2]) — L([(n-3)/2]+1)——— & C_———0
i=1 Py

Remark 12. The exact cohomology sequence associated to (11) gives:

a) for n odd an isomorphism

n
r:  H°(L(n-1)/2) ® C
i=1 Pi
b) for n even an exact sequence
n
0— H(L(n-2)/2) —2» & ¢ —>— ul(L(n-4)/2) — o
i=1 i

where the first and the last vector space are dual to each other by Serre

duality.
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Proof. By Serre duality there is a non degenerate pairing
o : 1 . 1 ~
H(L(1)) x H(L(n-3-i)) ——— H (Op(n-3)) = C

Therefore, for n odd, Hl(L(n—3)/2) = H(L(n=3)/2) = 0, by (2), and for
the same reason when n is even HI(L(n—Z)/Z) = H%(L(n-4)/2) = O.
Q.E.D

Proposition 13. Let D be a reduced plane curve, R a line transversal to D,
and let C be the union of D and R. For every L ePiCZ(D) which is
generic, there exists F EPicz(C) which 1s generic and such that

F®0D = L.

Proof. Let n be the degree of D, and PrreeesPy be the points of inter-

section of D with R. Then we have the following exact sequence

(14) 0———>0C—*OD ® OR

from which one deduces the following exact sequence

whose associated long cohomology sequence yields

n
(16) 1—— @& €* /C* — Pic(C) —— Pic(D) ® Pic(R) —— 1
i=1 i

n
where C* 1is embedded diagonally in @ d?; .
i=1 i

Since the kernel of the exact sequence is 2-divisible, we have a

corresponding exact sequence for the elements of 2-torsion, namely

(17) 1 — & (“z)p./(”z) _— Picz(C) _ PicZ(D)—v- 1
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where (¥,) is the group of square roots of 1 in C*.

-1 possible extensions

Therefore, up to isomorphism, we have 2
F of L. Moreover, if F is any of such extension, then F ® OD =L,
F ® @R = OR, and every other extension is obtained by choosing
e = (el,...,en), with ey = +1 or -1, and modifying the glueing of the
stalk OR’pi with LPi by the automorphism of LPi obtained by multipli-

cation by e,

In this way for each e = (el,...,en) we obtain another extension
)

Fe , and the meaning of (16) is that Fe = FE, if and only if e' = -e.

Now F is generic if and only if H°(C,F([(n-2)/2])) = O.

We have clearly the exact sequence

(18) 0 — H°(C,F([(n-2)/2])) — H°(R,0R([(n-z)/z]))eH°(D,L([(n-2)/2]))

n
2 ., &cC —_—

i=1 Pi

We consider two cases separately:

i) n is odd, hence it suffices to show that ker (a) = 03 in this case
H®(D,L(n-3)/2)) = 0, therefore Ker(a) =1{s] seHo(R,OR((n-3)/2)) and

s vanishes at Pl""’pn} and clearly ker(a) = 0, as we wanted.

ii) n is even = 2k, therefore, by (12) b), both summands in the middle

term of (18) are k-dimensional vector spaces.
We are now able to apply lemma 10.

Set in fact W = H°(D,L((n-2)/2)): by (12) b) again r has rank
equal to k, therefore we can select pl""’Pk such that the k linear
forms dl""’dk obtained by evaluating sections of w on pl,...,pk

are linearly independent (in fact these linear forms are defined only up
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to non-zero scalar multiples, but this does not matter for our purposes).

We set further bi = evaluation of sections of W at Prui’

V = H%R,0_,(k-1)), <c. = evaluation of sections of V at p.» a, = evalua-
R i i i

tion at Prsi and the hypotheses of lemma 10 are clearly satisfied since

R = Pl. The statement of lemma 10 ensures now the existence of e

TERRRELN
such that, if you replace F by Fe, with e = (el,...,ek, 1,000.,1),
then the corresponding a is an isomorphism. In particular then
H°(C,F(n-2)/2)) = 0.

Q.E.D.

Corollary 19. Let C be the union of n lines in general position. Then, if

n is at least 3, there exist L€ Picz(C) which is generic.

Proof. If n=3, then Picy(C) =wu,, and H(C,L) =0 if L is the
non trivial element in Picz(C). By prop. 13 we can proceed by increasing
induction on n.

Q.E.D.

We have two entirely analogous results.

Proposition 20. Let D be a reduced plane curve of even multidegree, and
F a generic even iInvertible thetacharacteristic on D. Let Q be a conic
transversal to D and let C be the union of D and Q. Then there exists

~

a generic even Invertible thetacharacteristic G on C such that G®0D = F(1).

Proof. Let n  be the degree of D and let PyrersPop be the points

of intersection of D with Q.

We only sketch the argument, since it parallels verbatim the one

used in the proof of prop. 13.

We have the exact sequence



2n

(n-1)) ®H°(D,F(1)})— ® T —

0 —n H%C,6) —— HO(Q,
(21) (C,G) H°(Q,0, 2 %,

where by OQ(n—l) we mean the invertible sheaf on Q& Pl of degree (n-1)

Again, by the exact sequence

2n
(22) 0 = H°(D,F(-1)) — ., H°(D,F(1)) — & ¢
i=1 Pi
and since H°(D,F(1)) has dimension equal to n, we can apply lemma

10 and twist G in order to obtain an invertible thetacharacteristic Ge
on C with H°(C,Ge) =0

Q.E.D.

Corollary 23. Let C be the union of n conics in general position,

n> 2. Then C has an invertible generic even thetacharacteristic.

Proof. By prop. 20, it suffices to prove the beginnning step of the induc-
tion, i.e. the statmenet when n=2, C = QIUQZ' In this case if F is
an invertible thetacharacteristic, and HO(C,F) 3 s £ 0, then it 1is well
known that 2 div(s) corresponds to a common tangent line of Q; and
Q2' Since Q1 and Q2 have at most 4 tangents in common, either F
is generic even, or dim H°(C,F) =1 and F corresponds to one of the
common tangents of Q1 and QZ' We conclude the proof by observing that,
by the exact sequence analogous to (17), G has exactly 8 invertible theta-
characteristics.

Q.E.D.

3. End of the proof

Remark 24. 1f D is a nodal curve, and Pys-esPy is any set of nodes
of D, there exists a degeneration f: S— T for which Ppsoe+sPy are

the virtual nodes (this follows from the previously mentioned theory of Severi-
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Wahl, cf. [Se}[wal[Tal). In this case, taking the normalization S' of
2

S by blow-ups in P"x T with center the singular curves of S, one ob-
tains f': $'— T where the fibre f'—l(to) is the normalization of
D at the "effective" nodes of D, 1i.e. at the nodes of D which are not

virtual, whereas f'*l(t) is the normalization of f_l(t) for t;éto.

Lemma 25. For a generic nodal curve of the main stream C, there exists

a generic L € Pic,(C).

Proof. Let f: S — T be a degeneration of C to D, where D s
the union of n lines in general position. By corollary 19 there exists

L € Picz(D) which is generic.

Now Lo can be extended to an invertible sheaf defined in a neigh-
bourhood of D in S, and such that L2 = 05. In fact, if D is the

union of R ,R

pre-o R,

of prop. 13 one can easily show that, choosing an open cover U = {Ul,...,Un}

using arguments similar to the ones used in the proof

of D with UDR, UnN Rj NR, = @ for i#j#k#, L is determined
. . Loy o« . _ B
by a cocycle g in H™ (U, OD) with g5 = +1 or -1.

By shrinking T to a suitable Zariski open neighbourhood of ty

one can assume that L is defined on the whole of S, and also, by upper-
semicontinuity, that, if Ct = f_l(t), Lt = L®0C , then HO(Ct,Lt([(n—(B)/Z])) = 0.
t

Therefore, for t;éto, we obtain a nodal curve of the main stream
C, of the same type as C, and endowed with a generic L € Picz(Ct).

Q.E.D.

Remark 26. Working in the analytic category over C, we notice that, expo-

nentiating the exact sequence

0 -—————-—»05(—D)
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one sees immediately that the obstruction to the surjectivity of

2

Pic(§) — Pic(D) 1lies in H (OS(—D)), and this last group is zero if you

shrink T.

Proof of theorem 7. In view of the preceding lemma 25, it suffices to consider

the case when C has an irreducible non rational component B.

Step 1I: reduction to the case when C is irreducible and non rational.
Assume in fact that B is a non rational component of C, and assume
that B has a generic good L'e Picz(B). We remark that, obviously,
our assertion is proven if we show the existence of L€ Picz(C) which is
generic and such that L ® OB = L', To accomplish this, we write C

as BuD, and we choose a degeneration of D to D' which is a union

of lines in general position, and is transversal to B.

Prop. 13 ensures that on C' = BuD' there exists a generic
L' € Pic{(C') such that L"® OB = L'. Now we conclude considering the
degeneration of C to (' obtained keeping B fixed and degenerating

D to D', and arguing as in lemma 25.

SteE 11: the case when C is irreducible and non rational.

In this case, let D be an irreducible rational curve of the same

degree of C, and let L0 be a generic invertible sheaf in Picz(D).

Since the normalization of D is Pi, Lo cannot be good, neverthe-

less there exists a node p of D such that, if D' is the normalization
of D at the other nodes, then the pull-back of L° to D' 1is not trivial.

This assertion follows immediately from the isomorphism

m
(27) Picz(D) = @ (W)

i=1 2°p;
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where Pysee+sP, are the nodes of D.

By choosing a set of virtual nodes of D containing p, we can
construct a degeneration {cf. remark 24) to D  of an irreducible curve

of the same genus of C.

Arguing as in lemma 25, (and using remark 26 if one does not want
to repeat the argument which proves that Lo can be extended to L),

we obtain an irreducible C, with L, € Picz(Ct) generic.

We claim that Lt is good: in fact, if f: S ——= T is our dege-
neration, and f': $'—— T is the flat family obtained by taking the nor-
malization of S, we have that the pull back of L to $' 1is non trivial,

-1
by our choice of the virtual nodes, when restricted to f (to).

Hence, e.g. by semicontinuity, the pull back of L to S’ is
not trivial when restricted to Cjc = f'_l(t); but, by remark 24, Ct' is
the normalization of Ct’ and it is immediate to see that the above sheaf
is nothing else than the pull-back of Lt to Ct’. This shows that Lt
is good.

Q.E.D.

Proof of theorem 8.

Again by the Severi-Wahl theory of wvirtual nodes it follows that
a nodal curve of the main stream with even multidegree can be degenerated
to the union of conics in general position. The proof, using corollary 23,
remark 26, is entirely similar to the one of lemma 25.

Q.E.D.
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