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ON A PROBLEM OF CHISINI

F. CATANESE

0. Introduction. The objects of this note are generic multiple planes, defined
according to the following

Definition 1. A multiple plane is a pair (S, f) where S is a compact smooth
connected complex surface and f is a finite holomorphic map f" S--)p2= p.
(S, f) is said to be generic if the following properties are satisfied:

(li) the ramification divisor R of f is smooth and reduced
(lii) f(R)= B has only nodes and ordinary cusps as singularities
(liii)* JR R - B has degree 1.
Moreover, two multiple planes (S, f), (S’, f’), are said to be isomorphic if

there is an isomorphism q: So S’ and a projectivity g: 2_..)[2 such that

f’ q g f, and strictly isomorphic if furthermore g identity.

Obviously, a necessary condition in order that two multiple planes be
isomorphic is then that the two branch curves B,B’ be projectively equivalent.
Without loss of generality, therefore, we shall consider pairs of generic multiple
planes (S, f), (S’, f’) such that B B’, and we will investigate the problem of
deciding whether they are strictly isomorphic, i.e., there does exist an
isomorphism q:S---)S’ such that f’ f. Such a problem was considered by
Chisini (cf. [C]) who conjectured that two generic ,multiple planes with the same
branch curve would be strictly isomorphic "under some suitable conditions of
generality."
The problem has a negative answer in general (contrary to the statement of the

main theorem of [L]), as it is shown by a very nice example of Chisini himself in
[C] (a previous example given by B. Segre in [S] yields a nongeneric triple plane).
Our result consists in giving a necessary and sufficient condition for strict

isomorphism: at the end of the paper we shall discuss Chisini’s example to
illustrate our theorem. To explain our condition, we need a technical definition.

Definition 2. A marked curve (C, Pl,... ,Pv) consists of a (compact
connected complex) curve C, together with an ordered set of 7 points of C.
A marked line bundle .’ (L,h hv) on (C, Pl,..., Pv) consists of the

datum of a holomorphic line bundle L on C, and of isomorphisms h
(i 1,..., 3’) of the fibre Lp, of L over Pi with C.

Partly supported by M.P.I. and C.N.R. (contract no. 82.00170.01).
*As pointed out by the referee, if f: SP is generic, and h" S’S is finite and etle,

fo h: S’1a2 satisfies (li), (lii), but not (liii).
Received February 26, 1985. Revision received September 16, 1985.
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It is easy to guess how all the standard notions (isomorphism, tensor
products,... ) extend from the case of line bundles to the case of marked line
bundles.

Let’s go back and consider two generic multiple planes (S, f), (S’, f’) with the
same branch curve B. SinceR" R- B, ’g’" R’ - B give the desingularization of
B, there is a natural isomorphism ’" R- R’, thus to the invertible sheaves
n (R), gn,(R’) are naturally associated two line bundles L, L, on R (the normal
bundles). One easily sees that L (R)2 is isomorphic to (/])(R)2; moreover, if
p,..., pv are the points of R mapping to the cuspidal points of B, we show that
the datum of f and f’ determines (non canonically) a pair of marked line bundles
.W and .W on the marked curve (R, pl,... ,p) in such a way that
,/= /(S,S’)-.W -1 (R) . is a marked line bundle with (R)2 trivial (,/ is now
canonically associated to f, f’). We can now formulate our main theorem.

THEOREM. The multiple planes (S, f), (S’, f’) admit a strict isomorphism
q" S- S’ (i.e., with f’ o q f) if and only if the marked line bundle I(S,S’) is
trivial.

It seems necessary to digress on results stated about the problem in the existing
literature.
Our interest about the problem was aroused by the paper [L], where appears

the nice idea* that, R, R’ being ample divisors, the complements X S- R,
X’= S’-R’, are affine varieties" therefore, once one has an isomorphism
q" U U’ of some tubular neighbourhoods U (resp.: U’) of R (resp." R’), this
isomorphism can be extended to a global isomorphism " S- S’.
The error in [L] lies in the fact that it is not always possible to construct such a

local isomorphism @: as a matter of fact, Lanteri refers to the first part of [C],
where it is wrongly asserted that such a local isomorphism @ always exists.

However, in the second part of [C], Chisini proves the unicity of the multiple
plane (i.e., the existence of ) under a very strong assumption about the
possibility of having a good degeneration of the multiple plane (and,
furthermore, if the degree of f is at least 5).

These assumptions boil down to a nice van Kampen presentation of
rl(P2 B).
These global methods have been recently taken up again in a series of papers

by Moishezon, who e.g. (cf. [M] cot. 3), proves unicity in the special case when

f" S "--)p2 is a generic projection of a smooth surface in p3 (in this case f can
degenerate in a slightly worse way than the one allowed by Chisini).

In this special case unicity seems to depend upon the well-known result that
the alternating group n is simple for n > 5. In fact Moishezon proves that
7/’I(P2- B)--" , the quotient of the braid group 9n by its cyclic centre;
therefore, in this case, the global monodromy homomorphism/ associated to a
generic multiple plane must factor through the canonical surjection of , onto
the symmetric group .

Pointed out by A. Andreotti many years ago, according to the referee.
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Chisini’s problem deserves to be better understood: in particular the
connection between the local condition of triviality of rI(S,S’) and the global
structure of rl(P2- B) should be investigated.
A final remark is that everything holds verbatim for generic finite morphisms

f" S---> Y where is any algebraic surface other than p2, provided the
ramification divisor R of f is ample.

1. Auxiliary results ("Locally around the cusps"). Let B be a plane curve and
let q be an ordinary cusp: then there are local holomorphic coordinates around
q, say (x, y), such that, if W W is a ball in G2 with centre the origin (i.e., q)
and radius ,

B ((x, w,l v=- o). (1.1)
It is well known that the fundamental group ’r/’l(W --B) is isomorphic to the
abstract group

(cf. e.g., [La p. 76) (1.2)
i.e., II is the group with generators , r/(corresponding to the two generators of
rrl((W B)N (x 2))) with relation r/= r/r.
A normal irreducible finite covering f: Y--)IV, unramified outside B, is

determined by a monodromy homomorphism /x:lI--)d, where g(II) is a
transitive subgroup of d.

It is easy to see that above the origin q there lies only one pointp of Y (in fact,
if ’< , r(W,,- B) r(W- B)) and that p is the only possible singular
point of Y.
We let f" IV be the standard covering of W given by the normalized

equation of third degree"

{ (x, .,V,z) (x, )’) W, z3 3xz + 2y-- 0),
/(x, y,z) (x,

(1.3)

Y is smooth, x and z being coordinates, the ramification divisor R is smooth,
R ((x,z) lx-z2=0), and if F is the curve in with F= ((x,z)
14x-z2=0), f*(B)=2R +F. corresponds to the homomorphism

/x II ---> (R)3 such that, setting

(1.4)
one has a (1, 2), fl (2, 3).

Remark 1.5. There are plenty of transitive homomorphisms g:II--)d, e.g.,
one can take in (R)6 tt (1,2,3,4), fl (2,5,4,6), which satisfy afla flail.
However, with some restrictions upon a and fl, one is left only with the previous
homomorphism g onto 3, and the related one into (R)6--((R)3), g’ (such that,
for g II, h 3, g’(g) (h)= g(g)- h).
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LEMMA 1.6. Let a, fl (R)d be such that afla flail, and let ’ be the subgroup
generated by a and ft.

(i) 1’ is abelian iff a ft.
(ii) if the cycle decomposition of a, resp. fl, consists of a product of transpositions,

and F is transitive, nonabelian, then F 3 and after renumbering, one has either
d 3, ot (1,2), fl (2,3), or d 6, with 3 acting on itself by left translations.

Proof. First of all, fl aa-lo -1 (a)a(a)-1, hence a and fl are
conjugate permutations, in particular (i) follows immediately.
We can assume that a permutes with 2" we shall later consider the case when

exactly one of them is left fixed by ft. Assuming fl(1)= 1, fl(2)= 2, we get
afla(1) 1, flail(l)= 2, and we have a contradiction. If neither nor 2 are left
fixed by fl, there are elements A, B 1,..., d) such that fl permutes 2 with B,
with A, and, by our assumptions in (ii), the set (1,2,A,B) has 4 elements.
If one of the two elements A, B is left fixed by a, say that a(A)= A, then we

have flail(l)= 1, afla(1)= a(B)=/= 1, a contradiction; on the other hand, if a

permutes A with B, we get afla(1)= A, flail(l)= 2, again a contradiction.
If, instead, a(A)= A’, c(B)= B’, where the six elements 1,2,A,A’,B,B’ are

distinct, one has afla(1)= B’, flail(l)= fl(A’), hence B’= fl(A’), and we are in
the case where d 6 and, as it is easily verified, 3 acts on itself by left
translations. Finally, if/3(1) 1, and fl(2)=/= 2, we can assume/3(2) 3 and we
conclude since a(3)= afla(1)= flail(l)= 3, hence (1,2,3) is a F-orbit and
a (1,2), fl (2, 3). Q.E.D.

Let Z be the smooth cover of W, W branched on B given by the ordered
triples of roots of the normalized equation of third degree, i.e:,

Z-- ((z ,22,23)12 -- z2 q- 23 0,x--- -(2,122 q- ziz3 q- z223)/3,

y 1/2zzz3 are such that (x, y) W)
with f(z l,z2,z3) (x,y). (1.7)

We can now rephrase the previous lemma as follows

LEMMA 1.8. Let W, B be as above, and let f" Y--> W be a normal irreducible

finite cover with ramification divisor R, and with branch curve B (i.e., B f(R)).
Assume R to be reduced: then one of the following holds

(i) deg f 2, and R is isomorphic t__o B (in particular, R is singular)
(ii) deg f 6, Y is isomorphic to Z, and R is singular
(iii) deg_f 3, R is smooth, and there exists only one biholomorphism g" Y--> Y

such that f o g f.
Proof. If R is reduced, one can easily see that the monodromy of each of the

two generators ,r/ of II rl(W-B) is given by a product of commuting
transpositions, hence lemma 1.6 applies (F is transitive by the irreducibility
of Y).
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Since there are only 3 choices for the monodromy, and moreover Y is normal,
Y is either isomorphic to Z, or to Y, or to the cyclic cover T of degree 2, i.e.,

{ (t, ,,, y) l(x, y) e re, t’- (y’- x ).
To prove the last assertion, it suffices to show that the covering f" W has

no automorphism.
But this is in fact more generally true for the unramified covering

Y- R---) W- B, since, the monodromy homomorphism/z" II (R)3 being given
by/(0- a (1,2),/(r/) =/3 (2, 3) the 3 associate subgroups of the coveting
are all distinct (they map onto the 3 cyclic subgroups of order 2 in (R)3)- Q.E.D.

[}2. Isomorphism of generic multiple planes. In this section, (S, f) being a
generic multiple plane with branch curve B, we shall denote by ql,..., qr fhe
cuspidal points of B, by cl,..., c the nodes of B. By assumption (liii), there is
exactly one point Pi R mapping to qi (for 1,..., 7), and there are exactly
two points aj, bj R mapping to cj (j v).
For each cusp qi we choose, by virtue of lemma 1.8, respective neighbourhoods

IV,. of qi, Yi of Pi, such that

there are holomorphic coordinates (Xi, Yi) on IV/giving
an isomorphism ’i of IV,. onto W mapping W/N B to
the curve ((x, y)ly2 x3 0) c w (2.1)

there exists an isomorphism (a unique one, by 1.8) of
the covering jir" Yio IV,. with the standard one
zi- . Wi. Hence on Yi there are coordinates x
and z such that (2.2)

--y2 q" X? "-(X Z2i )2(Xi- 1/4Z2i )

(since yi’- 1/2(3xizi 23i)).
We consider now (cf. def. 2) the marked curve (R, Pl,...,Pr) and remark

that the choice of coordinates (xi, Yi) on W defines a marking 4/of the normal
bundle NR of R in S, since on Yi there is a unique choice of coordinates (xi,zi)
(cf. 2.2, 2.3), and then the fibre of NR at Pi is naturally identified to the complex
line spanned by / xi.

Remark 2.4. It is clear that if there exists a strict isomorphism q," S- S’ of
the generic multiple planes (S, f), (S’, f’), then l ql" R R’ induces an
isomorphism of the marked normal bundles /U, U’.

PROPOSITION 2.5. Let (S, f), (S’, f’) be generic multiple planes with the same
branch curve B. Then the marked line bundle ,/= U - (R) (q’),(U’) is of
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2-torsion (i.e., (R)2 is trivial). Moreover 1 is trivial if and only if there does exist an

isomo.rphism q" U U’ between respective neighbourhoods of R,R’ such that

f’ o , =f.
Proof. In order to treat in a uniform way all the mul,tiple planes with branch

curve B, we shall consider a suitable "neighbourhood" V of the normalization of
B at the nodes. To construct #, we shall take local coordinates (uj, ,j) around cj
and a neighbourhood Tj s.t.

Tj ((iS., .)[ [zS.[, ltd.[ < ), Tj C3 B ((uj, t.) Tjlzft). 0). (2.6)

We set j the closed polydisc of radius^l -l(,/2), and B # B- (1,3= Tj)- ((.j,r.= W). Furthermore we choose
a small tubular neighbourhood. V# of B #, set V V#~t3 ((.Jj Tj) t3 (I,.Ji IV/), and
construct a smooth manifold V with an immersion p" V V by simply replacing
in V each Tj by 2 copies of Tj (we are obviously assuming all the Tj’s, W,.’s to be
disjoint), labelled by the two branches of B at ., and glueing them to V# by the
obvious identification of points in V# fq Tj.

Definition 2.7. We shall say that the datum of p" V V, of the I,V’s and of
isomorphisms -i" W/ W for 1,..., 3’ is a monk’s belt for the generic
multiple plane (S, f) if, d being the degree of f,

(1) f-(W/) has (d-2) connected components (one of them being Yi, the
remaining ones mapping isomorphically onto IV,.)

(2) f-(V-032 IV,.)), has (d- 1) connected components of which only one,
denoted here by U, intersects R.
We shall moreover say that U t_J ((3= Yi) is the balanced neighbourhood

of R associated to the monk’s belt.
Now, let us choose a common monk’s belt for (S, f), (S’, f’), for which we

shall use the notations introduced before, denoting by U, (resp. U’) the
associated balanced neighbourhood of R (resp. R’).

Notice that f" Uo V factors through g" U V and p" V V (respectively"
f’ 0 g’).

Before proceeding to an explicit computation with covers and 1-cocycles, let’s
explain geometrically why the normal bundles of R and R’ differ only by a
2-torsion bundle. We have in fact

f*(B) 2R + F, (2.8)

where F is reduced, intersects R transversally at the points aj, bj, intersects R at
the points Pi with intersection multiplicity equal to 2 (being smooth there).

Let b be the degree of B, and H be the divisor on R which is the pull-back of a
line in
We have then, by (2.8), a linear equivalence of divisors on R, namely

2N =-- bH- (aj + bj) 2 Pi (2.9)
i=1 i=l
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where N is a divisor associated to the normal bundle of R in S" the upshot is that
the right hand side depends only on Jg, the normalization map for B.
We choose open covers (U) of U, (resp." (U) for U’), V for V, such that:

forct=i< 7 V= W/, U= Y/, (U= Y/), for a>7
g(U,O 1/’ and there are coordinates (u, w) on U,
(v,,w,) on V, such that g(u,,w,O=(u2,w,) (hence
u =0 is the local equation for R on U).

Similarly there are coordinates (u, w) on U, and we have

(2.10)

2 (2.11)

We can now prove the first assertion" in fact, via the isomorphism ;" Yi Yi’
such that x xi, z’ zi, we have that the chosen trivializations of NR on the
cover ( U ), and of N. on the cover ( U, induce the same markings. Therefore
the triviality of r/(R)2 follows directly from (2.11). If " U U’ exists, then ,/ is
trivial (cf. 2.6). Conversely, since we have the exact sequence

>H l(R, ( _-4- 1})----Pic(R )
2

> Pic(R ) > 1,

the marked line bundle r/ is trivial if and only if there do exists numbers
%

_
), with for a < y, such that on R, after identifying R’ with R, we

have

u /u,
(where we set, for a < 7, u x z2). (2.12)

We have now that if is trivial the isomorphisms %" U U given by

xi=xi, zi=z for a=i<
(2.13)

’=%u for a>7Ua

patch together, by (2.12), to give the desired isomorphism " U U’. Q.E.D.

THEOREM. Two generic multiple planes (S, f), (S’, f’) with the same branch
cue B are strictly isomorphic if and only if (S, S’) is a trivial marked line bundle.

Proof. In view of proposition 2.7 is trivial iff there exists " U U’ which
is an isomorphism of respective neighbourhoods of R, R’, with f’ f (on U).

Set X S- R, K S- U, and define similarly X’, K’. Now R, R’ are ample
divisors (e.g., by [L] thm. 3.1 in the case of surfaces, and, more generally, for
every finite morphism to po by [E] thm. 1) therefore X is an affine variety in G"
(resp. X’ G"’). determines n’ holomorphic functions on the complement in X
of the compact set K: since X is Stein, these functions extend to the whole of X
by Hartogs’ theorem (cf. [H6]), and patch with to give a holomorphic map of S
to S’ (in fact X maps into X’ by analytic continuation since X’ is the locus of
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zeros of polynomials on Gn’). Similarly we can^extend ()- to a holomorphic
map 6" S’ S, and the equalities =ids, ids, f’ f hold again
by analytic continuation. Q.E.D.

In the next section we shall show Chisini’s example producing several multiple
planes with the same branch curve, and will compute explicitly that / is a
2-torsion bundle which is nontrivial even as an unmarked bundle. Unfortunately
we don’t have yet an example where the nontriviality of /depends only upon the
marking.

3. Chisini’s example. In this section S will be 102 and S’ a certain ruled
surface X: we shall show that /is nontrivial also as an unmarked bundle.

Let f: 102_ 102 correspond to a generic projection of the Veronese surface, i.e.,
taking homogeneous coordinates (Xo, X,X2) on the domain of f, and (Yo, Y, Y2)
on the range, we assume that

f(xo,x ,x2)= (Q(x), Q l(x), Q2(X)), with

o 2 ( 1.
i,j

(3.1)

The ramification divisor is given by the cubic curve (that we can assume to be
smooth)

kR ((Xo, Xl,X2) ldetj,k(i Qi,jxi) 0) and the normal
bundle of R corresponds to the sheaf ’ (3). (3.2)

To determine f(R)= B it is easier to consider the projective plane (p2), dual to
the 102 with y-coordinates, and to consider on it homogeneous coordinates
(X0, X i, k2) (dual to (Y0, Y I, Y2))"
Now the pull-back of the line k ’kYk 0 is singular if and only if on the one

hand the line is tangent to B, on the other hand if the conic ,kA,kQ(x) is
singular. Therefore, by biduality, B is the dual curve of the (smooth) cubic curve

(3.3)

In general, given a curve B, with nodes and cusps only, which is the dual curve
of a smooth curve B*, there is a natural multiple plane (,) attached to it, as
follows: c (12)* p2, ff being given by projection on the second factor

X--" (((0,kl, k2) (Y0, Yl, Y2))I X kYk --0’ (h0’l’ k2) B*)k
(3.4)

If p" B* [2_._> B* is given by projection on the first factor, X is the divisor in
B* a2 of a section of p*(#’B.(1) (R) *(#’,2(1)). It is clear that (Yo, Y, Y2) $ B iff

ky, 0 is not tangent to B*, i.e., iff ff-t((yo, Yl, Y2)) has exactly deg(B*)
points, hence B is the branch curve of if: it is easy to see that ff is genetic.
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Furthermore if B* has degree d, and g(X) is a homogeneous equation for B*,
the ramification curve of is the graph of the morphism (Og/OXo, Og/OX1,

Og/Oh2) B* B c p2, which we shall identify thus with the plane curve B*, and
in particular

6"(,(1)) (R) s, s,(d- 1). (3.5)

Given a smooth variety X, let’s denote by 0x its tangent sheaf" if Y is a smooth
subvariety of X let’s denote by Nr/x the normal sheaf to Y in X. We claim that

NB. Ix #’B.(2d 3). (3.6)

In fact, by (3.5), Os.(3(d 1)) det((Os.x,2) (R) s.) det(Ox (R) s.) (R)

(Nx B,,2 (R) ,,) (0, (R) N,, IX) (R) ,,(d).
Let’s return to our specific case. The symmetric matrix Q ,Qi

determines a nontrivial line bundle of 2-torsion on B*, such that the associated
invertible sheaf 1 is the cokernel of the following exact sequence on 02

0 >r,(2)3 (Q)
r,( l)3 ; 0. (3.7)

and (cf. [Tu], [Ca]) there are 3 natural sections of ,/(1), (0’1’2)’ without
common zeros, such that

I(ij.) gives, for X B’, the adjoint matrix of ( "xkQik’j)k
12 2’kQik,jj 0 (for X B*)
(jk

(3.8)

Since ’13( 3)(R) #’B.(3) 1, we have shown that r/= /(S, X) if we prove that

(0, 1, 2) f-ll//(X) where we consider (3.9)

tp f-
the following composition of birational maps, B* ; B > R.

In fact, then, the sheaf R (3) corresponds to the sheaf ,/3(3) on B* under the
isomorphism f-kp:B*---> R, and we are done. So, let’s prove 3.9 and, to this
purpose, set y tp(X). Since y represents the tangent line to B* at X, by 3.8, we
have

)’k
kQi,jti. (3.10)

i,j

(3.10) tells us that y f(0, moreover (3.8) tells us that j Qi,-j is not an
invertible matrix, therefore belongs to R, and f(0 tp(A), Q.E.D.

Our previous considerations allow us to improve upon the Chisini counterex-
ample. Fix in fact the smooth cubic curve B* and thus also the multiple plane
(X,p): now B* has 3 nontrivial distinct line bundles of 2-torsion, each one
occurring (el. e.g., [Ca], thm. 2.28) as a cokernel of an exact sequence like (3.7)



42 F. CATANESE

and therefore giving rise to another generic multiple plane of degree four. We
have therefore (keeping track of translations of order 2 in B*)

PROPOSITION 3.11. Given the dual curve B of a smooth cubic curve B*, there do
exist 4 generic multiple planes with B as branch curve" three of them have degree 4
and are isomorphic but not strictly isomorphic, the other has degree 3.

We end the paper with a curious remark: a generic m.ultiple plane determines~
r’F--)B, hence an unramified (d-2) covering F--)R, where F is the
normalization of F. In turn this corresponds to a (nontrivial) line bundle of
(d-2) torsion : on R" given (S, f),(S’, f’) with the same B how are ,’
related? By our result - () ;, is determined by ,I(S,S’).
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