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CONNECTED COMPONENTS OF MODULI
SPACES

F. CATANESE

0. Introduction

Let S be a minimal surface of general type (complete and smooth over C),
and let # = .#(S) (resp., # %) be the coarse moduli space of complex
structures on the oriented topological (resp., differential) 4-manifold under-
lying S.

By Gieseker’s theorem [5], #(S) is a quasiprojective variety, and the
number »(S) of its irreducible components is bounded by a function vy(K 2, x)
of the two (topological) invariants K = K2, x = x(0).

Let A(S) be the number of connected components of .#(S): this short note
answers a question raised in a previous paper [1], showing that the above
number A(S) can be arbitrarily large.

As in [1], to which we shall constantly refer, again we restrict our attention
to bidouble (i.e., Galois with group (Z /2)?) covers of Q = P! X P!: indeed,
(cf. [2]) we conjecture a stronger result to hold true, namely that many of the
different irreducible components of .# we thus obtain are in fact connected
components of .#.

The idea of proof is rather simple: if S and S’ are deformations of each
other, then there exists a diffeomorphism f:S — S’ such that f*(K/) = K
€ H*(S,Z), and, in particular, if r(S) = max{r € N|(1/r)Ks € H(S,Z)},
then r(S) = r(S’).

In view of Donaldson’s recent result [3], it is possible that the integer r(S)
could be an invariant of the differentiable structure for these surfaces; it is not
clear at the moment whether nicer properties are enjoyed by the moduli spaces
M 4(S). Nevertheless, when the complex dimension is at least 3, it seems (cf.
[6], [7]) that similar phenomena of high disconnectedness should appear also
for A 4,
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1. Statement and proof of the main result

Theorem. For each natural number k there exist minimal models S,,- - -, S}
of surfaces of general type such that

(a) S, is simply-connected (i = 1,- - -, k),

(b) fori # j, S; and S; are (orientedly) homeomorphic but not a deformation
of each other.

Remark 1. From the proof it shall also follow that the number of moduli of
S; (cf. [1, p. 484]) differs from the number of moduli of S; for i # j.

Let us recall an arithmetical result, proved by E. Bombieri in the Appendix
to [1].

Lemma 2. For each positive integer k, there exist integers m, T, and k
distinct factorizations of 6™,

u,’.v,’.=6"‘ (i=1,---,k),

together with integers w;,, z; (i = 1,---, k) such that, setting u,= Tu; and
v; = Tv;, the following system of equalities and inequalities is satisfied for
i=1,---,k:

uv,=T6™=M, wz,—2(u,+v,)=N,
(u;+2)/3<w,<u;—4, (v,+2)/3<z<v—4

Corollary 3. In the notations of Lemma 2, the greatest common divisors
(u;, v;) assume at least k /2 distinct values.

Proof. Set u] = 2%3”%. We can clearly assume x, < m — x,, hence (u;,v;)
= T2%3min(yom=y)_Since the factorizations are distinct, (u;,v;) = (u > 0;) for
i#jifandonlyif x;, = x;, y,=m —y. qed.

Given a smooth projective variety X we denote by NS(X) the Neron-Severi
group of divisors modulo numerical equivalence (which we shall denote by ~ ,
leaving the symbol = for linear equivalence). Note that, more generally on a
compact complex manifold X,

NS(X) = (ker(H*(X,Z) > H*(X, 04)))/torsion.

Lemma 4. Let X, Y be smooth projective varieties and let m: X — Y be a
finite Galois cover with group G. Then

(i) 7* :NS(Y) = NS(X) is injective, maps to L = (kerm,)* = NS(X)%, and
L/imm* is a torsion subgroup of exponent at most the order of G.

If B,,---, B, are the irreducible components of the branch divisor B of m,
let (for i =1,---,k) e; be the order of the inertia group of any divisor in
7-Y(B,), let d; be the order of divisibility of the class of B, in NS(Y) (d, =
max{d |3T; s.t. dT;, ~ B;}), and set m, = g.c.d(e;, d,), a;, = e;/m,.
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Assume furthermore H(X,Z) = 0 and H*(G,C*) = 0 (e.g., if G is cyclic).
Then

(ii) the exponent B of L/Imx* is the least common multiple a of the numbers
ay,-,ay.

Proof. If m is the order of the group G, we have m,7* = m (Identity),
hence #* is injective, and im#* C (kerm,)* by the projection formula
7T*x -y = x - m, y. Moreover, since 7*m, = ¥, g*, tensoring over Q, ker 7,
is the kernel of the projector onto the subspace of invariants, and (kerm,) * =
NS(X)C. If x € L, then g*x = x Vg € G; hence mx = 7* (m,x) and the first
assertion is proven.

Since H,(X,Z) = 0, any element x in L is represented by a divisor D s.t.
g*D =D Vg eG.

Consider the sheaf #= 0,(D) of rational functions f with div(f) — D >
0:by assumption, Vg € G there exists an isomorphism between £ and g*%,
hence, defining G(£) = {(8,£)|g € G and § is an isomorphism from g* ¥
to £}, we have a central extension
(5) 0-C*->G(&)—>G-0.

We notice that

Sublemma 6. (5) splits if and only if D is linearly equivalent to a G-invariant
divisor D’ (i.e., g(D") = D’ Vg € G).

Proof. The “if” part is obvious, since then #= @(D’) and the condition
div(f) — D’ > 0 is clearly G-invariant, hence there is an action of G on &
which makes (5) split. Conversely, if (5) splits there is an action of G on 2,
and the sheaf (7,.%)¢ is nonzero.

If H is a very ample divisor on Y = X/G, for m > 0 the sheaf (7,.#)%(mH)
has a section, hence D + ma* H is linearly equivalent to an effective divisor
C, which is G-invariant. q.e.d.

Now the extensions of G by C* are classified by H?(G,C*); hence, if
H?(G,C*) =0, D is linearly equivalent to a G-invariant divisor, and we can
only consider the case of an effective G-invariant divisor C. In this case, if
R, = 77Y(B,) 4> We can write C as C = Cp + C’, where Cg, C’ are effective,
no component of the ramification divisor R appears in C’, and Cx = L*_, bR,
(since g(C) = C Vg € G, this is possible).

We have

7e(C) =mI’' + ) (bm/e;)B,~ mI’ + ) (bdm/e)T,

since B, is exactly d -divisible.

Now
mC = m*m,(C) = ma*(T') + (bid;m/e;)m*(T,),



398 F. CATANESE

hence
oC = a*(al’) + ) (a/a;)b,(d,/m;)7*(T},),

thus aC belongs to im 7 *.

Conversely, we claim that the class of R; in L/im#* has period exactly
equal to a,.

In fact a,R; = (d,/m;)7*(T;), as we have seen, and if there exists a divisor
I and some integer ¢ dividing a; such that cR; = #*(T'), applying =, we get

ml ~ cm(R;) ~ (ecm/e;)B,;.
Hence eI ~ ¢B; ~ cdI;, thus (e; = am;!) amTI ~ (ecm;d,/m;)I' and
(d,/m)T; ~ a,/cT. Since d,/m, and a,/c are relatively prime, I} is a,/c
divisible, therefore a; = c.

Remark. The above proof shows that, in general, 8 > a.

Corollary 7. Let 7: X — Y be a finite Galois cover with group G s.t. = is the
composition of Galois covers as in (ii) of Lemma 4, each such that the corre-
sponding integer a equals 1. Then NS(X)¢ = 7 *(NS(Y)).

Proof. The proof is by induction on the number of steps: in fact if N is a
normal subgroup of G and Z = X/N is smooth, let p: X —> Z, g: Z —> Y be
the quotient morphisms. Since p* and ¢* are injective by Lemma 4, we can
identify NS(Y') and NS(Z) to subgroups of the free abelian group NS( X).

Let T = G/N:by induction NS(Y) = NS(Z)! = (NS(X)¥)T = NS(X)°.
q.ed.

Remark. The result of Corollary 7 can be stated in a greater generality, in
particular one does not need the intermediate quotients to be smooth.

Proof of the theorem. Recall that 7:S - Q = P! X P! is a smooth simple
bidouble cover of type (2a,2b), (2n,2m) if = is a finite (Z /2)> Galois cover,
S is a smooth surface, and the branch locus of 7 consists of two curves of
respective bidegrees (2a,2b), (2n,2m).

Apply Lemma 2 to the integer 2k. Then, for i = 1,---,2k set (in the
notations of the lemma)

a;=(u;+w)/2+1, n,=(u;—w)/2+1,
bi=(v;—2z)/2+1, m,;=(v;+2)/2+1,
and let, for i = 1,---,2k, #,:S; > Q be a smooth simple bidouble cover of
type (2a;,2b,), (2n,,2m;). As in [1], p. 506] we see that
KZ=8M, x(0;)=3up +(u;+0v)+2-3wz,=3M+2-1N.
Moreover,
(8) Ks,- = Wi*(@Q(ui’ vi))



CONNECTED COMPONENTS OF MODULI SPACES 399

and, u;, v, being even, K is 2-divisible: hence, by Freedman’s theorem [4] (cf.
also [1, Theorem 4.6]), all the surfaces S; are (orientedly) homeomorphic.
Applying Corollary 6 to =,:S;, » Q, and using (8), we see that r(S;) =
max{r € N|(1/r)Kg, € H*(S,, Z)} equals the greatest common divisor (u;, v;).

By Corollary 3 there are at least k of the 2k surfaces S,,---,S,,, which
satisfy the requirements of the theorem (S; is simply connected by [1, Proposi-
tion 2.7]), since r(S) is a deformation invariant, as is easy to show.
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