CONNECTED COMPONENTS OF MODULI SPACES

F. CATANESE

0. Introduction

Let S be a minimal surface of general type (complete and smooth over \mathbb{C}), and let $\mathcal{M} = \mathcal{M}(S)$ (resp., $\mathcal{M}^{\text{diff}}$) be the coarse moduli space of complex structures on the oriented topological (resp., differential) 4-manifold underlying S.

By Gieseker's theorem [5], $\mathcal{M}(S)$ is a quasiprojective variety, and the number $\nu(S)$ of its irreducible components is bounded by a function $\nu_0(K^2, \chi)$ of the two (topological) invariants $K^2 = K_S^2$, $\chi = \chi(\mathcal{O}_S)$.

Let $\lambda(S)$ be the number of connected components of $\mathcal{M}(S)$: this short note answers a question raised in a previous paper [1], showing that the above number $\lambda(S)$ can be arbitrarily large.

As in [1], to which we shall constantly refer, again we restrict our attention to bidouble (i.e., Galois with group $(\mathbb{Z}/2)^2$) covers of $Q = \mathbb{P}^1 \times \mathbb{P}^1$: indeed, (cf. [2]) we conjecture a stronger result to hold true, namely that many of the different irreducible components of \mathcal{M} we thus obtain are in fact connected components of \mathcal{M} .

The idea of proof is rather simple: if S and S' are deformations of each other, then there exists a diffeomorphism $f: S \to S'$ such that $f^*(K_{S'}) = K_S \in H^2(S, \mathbb{Z})$, and, in particular, if $r(S) = \max\{r \in \mathbb{N} | (1/r)K_S \in H^2(S, \mathbb{Z})\}$, then r(S) = r(S').

In view of Donaldson's recent result [3], it is possible that the integer r(S) could be an invariant of the differentiable structure for these surfaces; it is not clear at the moment whether nicer properties are enjoyed by the moduli spaces $\mathcal{M}^{\text{diff}}(S)$. Nevertheless, when the complex dimension is at least 3, it seems (cf. [6], [7]) that similar phenomena of high disconnectedness should appear also for $\mathcal{M}^{\text{diff}}$.

Received December 27, 1985. Research partly supported by Ministero Pubblica Istruzione.

F. CATANESE

1. Statement and proof of the main result

Theorem. For each natural number k there exist minimal models S_1, \dots, S_k of surfaces of general type such that

(a) S_i is simply-connected $(i = 1, \dots, k)$,

(b) for $i \neq j$, S_i and S_j are (orientedly) homeomorphic but not a deformation of each other.

Remark 1. From the proof it shall also follow that the number of moduli of S_i (cf. [1, p. 484]) differs from the number of moduli of S_j for $i \neq j$.

Let us recall an arithmetical result, proved by E. Bombieri in the Appendix to [1].

Lemma 2. For each positive integer k, there exist integers m, T, and k distinct factorizations of 6^m ,

$$u_i'v_i'=6^m \qquad (i=1,\cdots,k),$$

together with integers w_i , z_i $(i = 1, \dots, k)$ such that, setting $u_i = Tu'_i$ and $v_i = Tv'_i$, the following system of equalities and inequalities is satisfied for $i = 1, \dots, k$:

$$u_i v_i = T6^m = M, \quad w_i z_i - 2(u_i + v_i) = N,$$

$$(u_i + 2)/3 < w_i < u_i - 4, \quad (v_i + 2)/3 < z_i < v_i - 4$$

Corollary 3. In the notations of Lemma 2, the greatest common divisors (u_i, v_i) assume at least k/2 distinct values.

Proof. Set $u'_i = 2^{x_i} 3^{y_i}$. We can clearly assume $x_i \le m - x_i$, hence $(u_i, v_i) = T2^{x_i} 3^{\min(y_i, m - y_i)}$. Since the factorizations are distinct, $(u_i, v_i) = (u_j, v_j)$ for $i \ne j$ if and only if $x_i = x_i$, $y_i = m - y_i$. q.e.d.

Given a smooth projective variety X we denote by NS(X) the Neron-Severi group of divisors modulo numerical equivalence (which we shall denote by \sim , leaving the symbol \equiv for linear equivalence). Note that, more generally on a compact complex manifold X,

$$NS(X) = \left(\ker \left(H^2(X, \mathbb{Z}) \to H^2(X, \mathcal{O}_X) \right) \right) / \text{torsion.}$$

Lemma 4. Let X, Y be smooth projective varieties and let $\pi: X \to Y$ be a finite Galois cover with group G. Then

(i) $\pi^* : NS(Y) \to NS(X)$ is injective, maps to $L = (\ker \pi_*)^{\perp} = NS(X)^G$, and $L/\operatorname{im} \pi^*$ is a torsion subgroup of exponent at most the order of G.

If B_1, \dots, B_k are the irreducible components of the branch divisor B of π , let (for $i = 1, \dots, k$) e_i be the order of the inertia group of any divisor in $\pi^{-1}(B_i)$, let d_i be the order of divisibility of the class of B_i in NS(Y) ($d_i = \max\{d \mid \exists \Gamma_i \text{ s.t. } d\Gamma_i \sim B_i\}$), and set $m_i = \gcd(d_i, d_i)$, $a_i = e_i/m_i$.

396

Assume furthermore $H_1(X, \mathbb{Z}) = 0$ and $H^2(G, \mathbb{C}^*) = 0$ (e.g., if G is cyclic). Then

(ii) the exponent β of $L/\text{Im}\pi^*$ is the least common multiple α of the numbers a_1, \dots, a_k .

Proof. If *m* is the order of the group *G*, we have $\pi_*\pi^* = m$ (Identity), hence π^* is injective, and $\operatorname{im} \pi^* \subset (\ker \pi_*)^{\perp}$ by the projection formula $\pi^*x \cdot y = x \cdot \pi_* y$. Moreover, since $\pi^*\pi_* = \sum_{g \in G} g^*$, tensoring over \mathbb{Q} , ker π_* is the kernel of the projector onto the subspace of invariants, and $(\ker \pi_*)^{\perp} = \operatorname{NS}(X)^G$. If $x \in L$, then $g^*x = x \forall g \in G$; hence $mx = \pi^*(\pi_*x)$ and the first assertion is proven.

Since $H_1(X, \mathbb{Z}) = 0$, any element x in L is represented by a divisor D s.t. $g^*D \equiv D \ \forall g \in G$.

Consider the sheaf $\mathscr{L} = \mathscr{O}_{\chi}(D)$ of rational functions f with div $(f) - D \ge 0$: by assumption, $\forall g \in G$ there exists an isomorphism between \mathscr{L} and $g^*\mathscr{L}$, hence, defining $G(\mathscr{L}) = \{(g, \tilde{g}) | g \in G \text{ and } \tilde{g} \text{ is an isomorphism from } g^* \mathscr{L}$ to $\mathscr{L}\}$, we have a central extension

(5)
$$0 \to \mathbb{C}^* \to G(\mathscr{L}) \to G \to 0.$$

We notice that

Sublemma 6. (5) splits if and only if D is linearly equivalent to a G-invariant divisor D' (i.e., $g(D') = D' \forall g \in G$).

Proof. The "if" part is obvious, since then $\mathscr{L} \cong \mathscr{O}(D')$ and the condition $\operatorname{div}(f) - D' \ge 0$ is clearly G-invariant, hence there is an action of G on \mathscr{L} which makes (5) split. Conversely, if (5) splits there is an action of G on \mathscr{L} , and the sheaf $(\pi_*\mathscr{L})^G$ is nonzero.

If H is a very ample divisor on Y = X/G, for $m \gg 0$ the sheaf $(\pi_* \mathscr{L})^G (mH)$ has a section, hence $D + m\pi^* H$ is linearly equivalent to an effective divisor C, which is G-invariant. q.e.d.

Now the extensions of G by C* are classified by $H^2(G, \mathbb{C}^*)$; hence, if $H^2(G, \mathbb{C}^*) = 0$, D is linearly equivalent to a G-invariant divisor, and we can only consider the case of an effective G-invariant divisor C. In this case, if $R_i = \pi^{-1}(B_i)_{red}$, we can write C as $C = C_R + C'$, where C_R , C' are effective, no component of the ramification divisor R appears in C', and $C_R = \sum_{i=1}^k b_i R_i$ (since $g(C) = C \ \forall g \in G$, this is possible).

We have

$$\pi_*(C) = m\Gamma' + \sum_i (b_i m/e_i) B_i \sim m\Gamma' + \sum_i (b_i d_i m/e_i) \Gamma_i$$

since B_i is exactly d_i -divisible.

Now

$$mC \equiv \pi^*\pi_*(C) \equiv m\pi^*(\Gamma') + \sum_i (b_i d_i m/e_i)\pi^*(\Gamma_i),$$

F. CATANESE

hence

$$\alpha C \equiv \pi^*(\alpha \Gamma') + \sum_i (\alpha/a_i) b_i (d_i/m_i) \pi^*(\Gamma_i),$$

thus αC belongs to im π^* .

Conversely, we claim that the class of R_i in $L/im\pi^*$ has period exactly equal to a_i .

In fact $a_i R_i \equiv (d_i/m_i)\pi^*(\Gamma_i)$, as we have seen, and if there exists a divisor Γ and some integer c dividing a_i such that $cR_i \equiv \pi^*(\Gamma)$, applying π_* we get

$$m\Gamma \sim c\pi_*(R_i) \sim (cm/e_i)B_i.$$

Hence $e_i \Gamma \sim cB_i \sim cd_i \Gamma_i$, thus $(e_i = a_i m_i!) a_i m_i \Gamma \sim (cm_i d_i/m_i) \Gamma$ and $(d_i/m_i)\Gamma_i \sim a_i/c\Gamma$. Since d_i/m_i and a_i/c are relatively prime, Γ_i is a_i/c divisible, therefore $a_i = c$.

Remark. The above proof shows that, in general, $\beta \ge \alpha$.

Corollary 7. Let $\pi: X \to Y$ be a finite Galois cover with group G s.t. π is the composition of Galois covers as in (ii) of Lemma 4, each such that the corresponding integer α equals 1. Then NS $(X)^G = \pi^*(NS(Y))$.

Proof. The proof is by induction on the number of steps: in fact if N is a normal subgroup of G and Z = X/N is smooth, let $p: X \to Z$, $q: Z \to Y$ be the quotient morphisms. Since p^* and q^* are injective by Lemma 4, we can identify NS(Y) and NS(Z) to subgroups of the free abelian group NS(X).

Let $\Gamma = G/N$: by induction $NS(Y) = NS(Z)^{\Gamma} = (NS(X)^{N})^{\Gamma} = NS(X)^{G}$. q.e.d.

Remark. The result of Corollary 7 can be stated in a greater generality, in particular one does not need the intermediate quotients to be smooth.

Proof of the theorem. Recall that $\pi: S \to Q = \mathbb{P}^1 \times \mathbb{P}^1$ is a smooth simple bidouble cover of type (2a, 2b), (2n, 2m) if π is a finite $(\mathbb{Z}/2)^2$ Galois cover, S is a smooth surface, and the branch locus of π consists of two curves of respective bidegrees (2a, 2b), (2n, 2m).

Apply Lemma 2 to the integer 2k. Then, for $i = 1, \dots, 2k$ set (in the notations of the lemma)

$$a_i = (u_i + w_i)/2 + 1, \quad n_i = (u_i - w_i)/2 + 1,$$

 $b_i = (v_i - z_i)/2 + 1, \quad m_i = (v_i + z_i)/2 + 1,$

and let, for $i = 1, \dots, 2k$, $\pi_i: S_i \to Q$ be a smooth simple bidouble cover of type $(2a_i, 2b_i), (2n_i, 2m_i)$. As in [1], p. 506] we see that

 $K_{S_i}^2 = 8M, \qquad \chi(\mathcal{O}_{S_i}) = \frac{3}{2}u_iv_i + (u_i + v_i) + 2 - \frac{1}{2}w_iz_i = \frac{3}{2}M + 2 - \frac{1}{2}N.$ Moreover,

(8)
$$K_{S_i} = \pi_i^* \big(\mathcal{O}_Q(u_i, v_i) \big)$$

398

and, u_i , v_i being even, K_{S_i} is 2-divisible: hence, by Freedman's theorem [4] (cf. also [1, Theorem 4.6]), all the surfaces S_i are (orientedly) homeomorphic. Applying Corollary 6 to $\pi_i: S_i \to Q$, and using (8), we see that $r(S_i) = \max\{r \in \mathbb{N} \mid (1/r)K_{S_i} \in H^2(S_i, \mathbb{Z})\}$ equals the greatest common divisor (u_i, v_i) .

By Corollary 3 there are at least k of the 2k surfaces S_1, \dots, S_{2k} , which satisfy the requirements of the theorem $(S_i$ is simply connected by [1, Proposition 2.7]), since r(S) is a deformation invariant, as is easy to show.

References

- F. Catanese, On the moduli spaces of surfaces of general type, J. Differential Geometry 19 (1984) 483-515.
- [2] _____, Automorphisms of rational double points and moduli spaces of surfaces of general type, Compositio Math., to appear.
- [3] S. Donaldson, La topologie differentielle des surfaces complexes, C. R. Acad. Sci. Paris Sér. I. Math. 301 (1985) 317-320.
- [4] M. H. Freedman, The topology of four dimensional manifolds, J. Differential Geometry 17 (1982) 357-453.
- [5] D. Gieseker, Global moduli for surfaces of general type, Invent. Math. 43 (1977) 233-282.
- [6] A. Libgober & J. Wood. Differentiable structures on complete intersections. I, Topology 214 (1982) 469–482.
- [7] _____, Differentiable structures on complete intersections. II, Proc. Sympos. Pure Math., Vol. 40, Part 2, Amer. Math. Soc., Providence, RI, 1983, 123–133.
- [8] Y. Namikawa, Periods of Enriques surfaces, Math. Ann. 270 (1985) 201-222.

UNIVERSITÀ DI PISA, ITALY