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Introduction

This paper reproduces with few changes the lectures I actually delivered at the
C. LM, E, Session in Montecatini, with the exception of most part of one lecture
where Italked at length about the geography of surfaces of general type: the reason
for not including this material is that it is rather broadly covered in some survey
papers which will be published shortly ([Pe], [Ca 3], [Ca 2]).

Concerning my original (too ambitious) intentions, conceived when I accepted
Eduardo Sernesi’s kind invitation to lecture about moduli of surfaces, one may
notice some changes from the preliminary program: the topics '""Existence of
moduli spaces for algebraic varieties' and '"Moduli via periods'' were not treated,
The first because of its broadness and complexity (I realized it might require a
course on its own, while I mainly wanted to arrive to talk about surfaces of general
type), the second too because of its vastity and also for fear of overlapping with the

course by Donagi (which eventually did not treat period maps and variation of

>kA member of G.N, S, A, G. A, of C,N.R,, and in the M, P, L. Research Project in
Algebraic Geometry,

The final version of the paper was completed during a visit of the author to the
University of California, San Diego.
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Hodge structures), Anyhow the first topic is exhaustively treated in Popp's lecture
notes ([Po]) and in the appendices to the second edition of Mumford's book on
Geometric Ivariant Theory {[Mu 2]), whereas the nicest applications of the theory
of variation of Hodge structures to moduli of surfaces are amply covered in the
book by Barth-Peters-Van de Ven ([B-P-V]).

Also, Imainly treated moduli of surfaces of general type, and fortunately
Seiler lectured on the results of his thesis {([Sei 1,2,3]) about the moduli of (polarized)
elliptic surfaces: Ihope his lecture notes are appearing in this volume,

Instead, the part on Kodaira-Spencer's theory of deformations and its connec-
tions with the classical theory of continuous systems started o gain a dominant
role after Igave a series of lectures at the Institute for Scientific Interchange
{I.S. L) in Torino on this subject. In fact, after Zappa {cf. [Zp], [Mu 31}) discov-
ered the first example of obstructed deformations, a smooth curve in an algebraic
surface, it was hard to justify most of the classical statements about moduli (and
in fact, cf, lecture four, some classical problems about completeness of the char-
acteristic systerm have a negative answer),

Interest in moduli was revived only through the pioneering work of Kodaira-
Spencer and later through Mumford's theory of geometric invariants., Mumford's
theory is more algebraic and deals mostly with the problem of determining whether
a moduli space exists as an algebraic or projective variety, whereas the trans-
cendental theory of Kodaira and Spencer (in fact applied in an algebraic context by
Grothendieck and Artin) applies to the more general category of com plex mani-
folds (or spaces), at the cost of producing only a local theory, In both issues, it is
clear that it is not possible to have a good theory of moduli without imposing some
restriction on complex manifolds or algebraic varieties.

Surfaces of general type are a case when things work out well, and one would
like first to investigate properties and structure of this moduli spaces, then to
draw from these results useful geometric consequences, I is my impression that
for these purposes (e,g. to count number of moduli) the Kodaira-Spencer theory is
by far more useful, and not difficult to apply in many concrete cases, In fact, it
seems that in most applications only elementary deformation theory is needed, and
that's one reason why these lecture notes cover very little of the more sophisti-
cated theory (cf. §10 for more details), The other reason is that the author is not
an expert in modern deformation theory and realized rather late about the existence
or importance of some literature on the subject: in particular we would like to

recommend the beautiful survey paper ([Pa]) by Palamodov on deformation of



complex spaces, whose historical introduction contains rather complete informa-
tion regarding the material treated in the first three lectures,

Since the style of the paper is already rather informal, we don't attempt any
discussion of the main ideas here in the introduction, and, before describing with
more detail the contents, we remark that the paper (according to the C. LM, E.
goals) is directed to and ought to be accessible to non specialists and to beginning
graduate students., Of course, reasons of space have obliged us to assume some
familiarity with the language of algebraic geometry, especially sheaves and linear
systems,

Finally, in many points references are omitted for reasons of economy and
the lack of a guotation of some author's name {or paper) should not be interpreted
as any claim of originality on my side, or as an underestimation of some scientific
work,

§1-5 summarizes the essentials of the Kodaira~Spencer-Kuranishi results
needed in later sections, following existing treatments of the topic ([K-M], [Ku 3]),
whereas §6 is devoted to a single but enlightening example., §7 deals with defor-
mations of automorphisms, whereas §8-9 are devoted to Horikawa's theory of
deformations of holomorphic maps, with more emphasis to applications, such as
deformation of surfaces in 3-space, or of complete intersections, and include some
examples of everywhere obstructed deformations, due to Mumford and Kedaira.

§10 is a "'mea culpa' of the author for the topics he did not treat, §11-13 try to
compare Horikawa's and Schlessinger-Wahl's theory of embedded deformations,
whereas §12 consists of a rewriting, with some simplifications of notation, of
Kodaira's paper ([Ko 3]) treating embedded deformations of surfaces with ordinary
singularities, §14-17 give a basic resumé on classification of surfaces and §18-19
are devoted to basic properties of surfaces of general type and a sketchy discus-
sion of Gieseker's theorem on their moduli spaces, §20-23 include a rough outline
of recent work of the author and a result of I, Reider: §20 deals with the number
of moduli of surfaces of general type, 3§22 outlines the deformation theory of
{’Z/Z)z covers, $21 and 23 exhibit examples of moduli spaces with arbitrarily many
connected components having different dimensions, and discuss also the problem
whether the topological or the differentiable structure should be fixed,
Acknowledgments: It is a pleasure to thank the Centro Internazionale Matematico
Estivo and the Institute for Scientific hterchange of Torino for their invitations fo
lecture on the topics of these notes, and for their hospitality and support., I'm also

very grateful to the University of California at San Diego for hospitality and support,
and especially to Ms, Annetta Whiteman for her excellent typing.




LECTURE ONE: ALMOST COMPLEX STRUCTURES and the
KURANISHI FAMILY

In this lecture I will review the construction, due to Kuranishi, of the complex
structures, on a compact complex manifold M, sufficiently close to the given one.
To do this, one has to use the notion of almost complex structures, of integrable
ones: in a sense one of the main theorems, due to Newlander and Nirenberg, is a
direct extension of a basic theorem of differential geometry, the theorem of

Frobenius,

§1. Almost complex structures

w
Let M be a differentiable (or C, i.e. real analytic) manifold of dimension

equal to 2n, T its real tangent bundle,

M

Definition 1.1. An almost complex structure on M is the datum of a splitting

T, ® C = o0 g0l iy 10 01

Naturally, the splitting of TM % € induces a splitting for the complexified cotan-
\% v 1,0V, s )

gent bundle TM ®C = (Tl’ O)V D (TO’ 1) ((T"°7) is the annihilator of T’ 1),z:md for

all the other tensors. In particular for the rth exterior power of the cotangent

v v v
2¢)= & AP OVeatr®ly
M ptq=r

We shall denote by P9 the sheaf of C° sections of /\p(T

.

bundle, one has the decomposition AT(T

1,0 v

v
TGRS
{resp. by a9 the sheaf of Cw sections}, by 7 the sheaf of Cm sections of
v
r
2
A (TM ).

2
b3

The De Rham algebra is the differential graded algebra (€, d), where & =

2n

e ef , and d 1is the operator of exterior differentiation. For a function f, df €
1%L L01
€77 ®E7' " and one can write accordingly df = 8f + 5f; the problem is whether for

all forms % one can write d = 8 + 5, with 0: £P 9, 8p+1’q, 5. P9, ep'q”

2

2 = - 2
(then one has 8 =8 =89 + 88 =0, since d = 0). Hence one poses the following

Definition 1. 2, The given almost complex structure is integrable if

a@EP 9y c eptlha g gpatl

As a matter of fact, it is enough to verify this condition only for p=1, q = 0.

Lemma 1.3, The almost complex structure is integrable <> d(Sl’ O) ces?l &

1,1 . , 0 s s
£ . [Hence another equivalent condition is: 81 generates a differential ideal. ]



Proof. The question being local, we can take a local frame for el 0, i e, sections

, 0 .
! whose values are linearly independent at each point {locally,

Wo,..., 8 of £
1 n 0
€1, 0 i5 a free module of rank n over £ , and {wl’ . ,wn} is a basis), Qur
weaker condition is thus that
(1.4} dw = ZCQ ;Uf\stqu’J AW
a o8 8
8y By Y o3 e a8y 8 v
, . 1,0 .

and L}; — are functions) since every w & € can be written as

2,0 -
, {wB/\wy]

(where ©

B ayB

Eq 1f wa, and {w f\w \1S8<y£n} is a local frame for €

B
o, “1,0
1<B,vy<n} isa local frame for E‘ll 1 . Now € 1 = 51 hence

1,1 0,2 ptl,q ® 6p,q+l

0,1 , , . .
a({e yco & D £ and one verifies d(Fip q) c 8 by induction

n
on p,q, since locally any 7 € eP 9 canbe written as ZCL-I T]a/\ w, o+

n - -1 -1
. ¢ P14 pP:q
Za=1 S AW, with n €8 S . O.E.D,.

At this stage, one has to observe that if M is a complex manifold, then

v1,0 1,0V
(T) = (T ) is generated (by definition !) by the differentials df of holo-

morphic functions (at least locally, 1f one has a chart (z seees Zn): U= c” ,

.0
dzl' .es ,dzn give a frame for (T ) }. Conversely, one defines, given an almost
- 1,0
complex structure, a function f to be holomorphic if 8 =0 (i.e., df € &€ 7); one

sees easily, by the local inversion theorem of U, Dini, that the almost complex
structure comes from a complex structure on M if and ouly if for each p in M
there do exist holomorphic functions Fl’ e Fn defined in a neighborhood U of

p and giving a frame of 81’ 0 over U, This occurs exactly if and only if the almost
complex structure is integrable: we have thus the following (cf. [N-N], [H3r] for

a proof).

Theorem 1.4 (Newlander-Nirenberg). An almost complex structure ona C

manifold comes from a (unique) complex structure if and only if it is integrable.

Following Weil ([Wel, p. 36-37) we shall give a proof in the case where
everything is real-analytic, because then we see why this is an extension of the

theorem of Frobenius that we now recall (see [Spiv I} for more details, or [HL] ).

Theorem 1.5, Let cPl,, N ’mr be 1-forms defined in an open set Q in R"” and
linearly independent at any point of Q. Then for each point p in O there do exist
local coordinates x_,..., x such that the spanof ®_,...,% equals the span of

r

1 1

dx ..., dx , <= ®s...,®  span a differential ideal (i,e., Yi=1,...,r 1

T
= = I
forms ”ij (G=1,....7), s.t. 40, ijlcpj z9ij).



Proof. The usual way to prove the theorem is to cousider, ¥ p’ in O the space
Vp, of tangent vectors killed by CQI, N ,CPr: then in a neighborhood U of p there

exist vector fields X X  spanning Vp' for any p’ in U. Since
n

SVSTERRE

(D6 X D) = X0, (X)) - X (9,(X)- dw (X, X))

we see that the vector field {Xj,Xk] at each p' in U liesin V ,. One looks then
p

for coordinates Xppeeen X s.t. Vp, is spanned by 8/8xr+1, . e

coordinates are obtained by induction on (n-r}. In fact, by taking integral curves of

. a/axn , and these

the vector field Xn’ one canassume X =03/0x , and replaces X by Y =X, -

T n 1 1 1
(X.x )X , which span the subspace W , of vectors in V_, killing x_ , and so

in n p p n
also the vector field [Yi’Y'] at each point p’ in U lies in Wp' (if X(Xn) =0,
J

Y(Xn) =0 = |X,Y] (Xn) = 0!). By induction there are coordinates (Yl’ - ,yn) with
1

n
W 8/o =%
P‘ spanned by 38/ yr*l‘l’ e 8/8yn_ We can replace Xn i=1 aj(y) (3/3?3.) by

Y = Z;l aj(y) (aiayj) ta_(y) (8/8yn); since [(a/ayi),Yn] (i=r+1,...,n-1) equals

z 3aj(y) s

i Fatl, a1 Y

but on the other hand, this vector field is in V;, thus it is a multiple of Yn by a
function f. But then, on the one hand, [(B/Byi),Yn] (xn) = 0 ({since Yn(xn) =
Xn(xn) = 11!}, on the other hand this quantity must equal fYn(xn) = f, Hence the
functions aj(y) (i=1,...,r,n) depend only upon the variables Yyreees¥ oV 80
by taking integral curves of the vector field Yn , we can assume Yn = E)/E)yr1 also.

Q.E.D.

We have given a proof of the well known theorem of Frobenius just to notice
that the only fact that is repeatedly used is the following: if X is a non zero vector
field, then there exist coordinates (Xl, e Xn) s.t, X = 6/8xn . This follows from
the theorem of existence and unicity for ordinary differential equations and from
Dini's theorem, Both these results hold for holomorphic functions (they are even
simpler, then), therefore, given a non zero holomorphic vector field Z =

n
z:i=l
there exist local holomorphic coordinates z

Z =8/8z .
n

a,(w) E)/awi on an open set in c” (i.e., the ai's are holomorphic functions),
i
17 %y around each point such that
The conclusion is that the theorem of Frobenius holds verbatim if we replace
RrR" by (Iln, we consider holomorphic (1, 0) forms Cpl, . ,QDr , and we require local
holomorphic coordinates z

12 s.t. the C-span of © .,Cpr be the C-span

TREE e
of dzl' o dzr . The proof of the Newlander -Nirenberg theorem in the real ana-

lytic case follows then from the following.



Lemma 1.6, Let Q be an open setin IRzn, let LSRR be real analytic com-
plex valued 1-forms defining an integrable almost complex structure (i.e., 1.4
holds). Then, around each point p € Q, there are complex valued functions

PP U
1’ 'Tn

Fl’ PN Fn s.t. the gpan of dFl’ ...,dF equals the gpan of W
n
Proof. Take local coordinates XyrooorX around p s.t. each wa is expressed
2n u

by a power series [}, ., f xK dxj , where K = (k

j=1 K “aj, K 'k

) denotes a multi-
Zn

’

177" "2n

index. Then w_a :Zj K focj KX dxj and, if we consider [Rzn as contained in C
upon replacing the monomial x— by the monomial zK and Xj by dzj (here Xj is

the real part of zj! }, w. and :dz extend to holomorphic 1-forms w_, ﬂa in a neigh-

& a
borhood of p in q:Zn . Since wl’ ceas wn , 51, ce e En are a local frame for & ,
the wa's , na‘s give a basis for the module of holomorphic 1-forms, therefore one

can write

dw:Eco w/\w+z¢ w/\'r]«!»Zé n.AM
@ aBy B v B’YQBY 8 v aBy '8 v

2
By restriction to R © , using {1.4) we see that & = 0, hence wl, .. "wn span

a8y
a differential ideal, hence Frobenius applies and there exist new holomorphic coordi-
2
nates in €7, w.,...,w s.t. the span of dw_,...,dw_ equals the span of
1 2n 1 n 2n

w w . We simply take F, to be the restrictionof w, to R, Q.E.D.

1;...;

Remark 1.7. Assume that for t = (tl, e ,tm) in a neighborhood of the origin in

C one is given real analytic 1-forms w , W as in lemma 1.6 which are

t,17 % n

expressed by convergent power series in tl' e tm, and define an integrable almost

complex structure when t belongs to a complex analytic subspace B containing the
origin, Then, for t in B, the conclusions of lemma 1.6 hold with Ft e "Ft o

expressed as convergent power series in (t ..t ), In fact, if a vector field Xt
m

1

T
ciated differential equation are power series in t

is given by a convergent power series in t . 'tm also the solutions of the asso-

EEEE tm: moreover, by the local
inversion theorem for holomorphic functions, if f{x,t): O » Q 1is locally invertible,
real analytic in x and complex analytic in t, then the local inverse is also complex

analytic in t.

§2. Small deformations of a complex structure

If U is a vector subspace of a vector space V, and W is a supplementary
subspace of U in V (thus we identify V with U ® W), then a1l the subspaces u’,

of the same dimension, sufficiently close to U, can be viewed as graphs of a linear



map from U to W: we apply this principle pointwise to define a small variation of

an almost complex structure (hence also of a complex structure).

Definition 2.1. A small variation of an almost complex structure is a section ® of

v
Tl’ 0 @ (TO’ 1) (the variation is said to be of class ct if © is of class Cr).

Remark 2,2, To a small variation © we associate the new almost complex struc-

1,0 0,1
ture s.t. TO’1= {wvmerT T l

®
, 0
morphism of T1

u =®(v)), since there is a canonical iso-

0,1V 0,1 i,
® (T }  with Hom(T , T 0}.

We assume from now on that M is a complex manifold: theun, in terms of local

holomorphic coordinates (Zi’ ...,% ) one can write © as
n

(2.3) o= Y 95 (e 4z, @ -
a,B “q,
so that
01 (z D) ._a__) :zﬂév
o Yo bz ° Y8 8z Ya P B
o a B B 3
: i, 1,0V ) LB .-
and is annihilated by (Tcp ), the span of [wa—dz -0 dzs}. On the other

a2 3 «a
Z

0,
© 1 's, where

hand, by what we've seen T is spaunned by the

- 9 ¥ 9

R )
Y 0z n Oz
Y Q o4

Since dwa: -ZB dcpfc A dZ ,, we are going to write down the integrability condition

B
(1.4), which can be interpreted as
(2. 4) dwa(gy,gé) =0 Y a,v,8(y<8).
We have
8®i 8@'8
- = —_— A dz —_— z A dz
dw Bze ( 57 dz,e dz 8 + oz dze dzB> ,

R 2
which belongs to 81 lg e , hence kills pairs of vectors of type (1,0). We get
thus the condition

8 9 ¥y _® 8

—_—, = + E

dwgy (ez '’ oz ) dwa( o’ Bz, B2 >
v 3 a a 5

boiling down to



g v 5 v
3P aY Y - feXeo] g
(2.5%) e % E © Y 2% L
: 82'\{ 826 5 aze € aze € )

The condition that (2.5°) holds for each @ , and v <8, can be written more simply

as
(2.5) ip = 1lo0]
where
_ o acpz R
aco:z z (8_“-8->d'z' NaE ) B —
o Yy <38 Zs Zy Y %

5 ¥
SIS L
5 -
[co,co]:ZZ z (Za“mY-*a_@, )dz /\dzé®58—
T v<s e -4 [4 ze [ kY Z(x

v

1] < /99

8

= z dz_ ©' X)) Aaz ® =2 a4z 0 ) raz @ =2,
Y € oz 8 oz 5 a Oz v 9z

a,e,v,d € a a

We shall explain these definitions while recalling some standard facts on Dolbeault
cohomology and Hodge theory (harmonic forms).
So, let V be a holomorphic vector bundle, and let (Uc.) be a cover of M by

s e a4 . r .
open sets where one has a trivialization V = UOLX C , hence fibre vector co-

ju
a

ordinates Voo related by v qu vg where go.{B is an invertible r X r matrix

a -~
of holomorphic functions, We let e0, P(V) be the space of (Cm) sections of

0,1V - = .
vV & Ap(T 1) : since 8 gC(.B = 0, it makes sense to take 8 of (0,p) forms with
values in V (i.e,, elements of 80’ E:’(V)), and we have the Dolbeault exact sequence

of sheaves B _ _
3 3 i)
0ssW =@ — 2t S . By a0,

where 8(V) is the sheaf of holomorphic sections of V. We have the theorem of

0,k
Dolbeault {the & (V) are soft sheaves).

Theorem 2. 6.

o -
um, 6 W) = wer sy

Im HY(8,)
So & is well defined for our @ € 80’ 1(Tl’ 0

1’ . - -
notation @ = 6(T O). To explain the bracket operation, we notice that this is a

). For further use, we shall use the

bilinear operation
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[ o1 SO’p(’Il’O}X SO’q(Tl'O) N 8o,p+q(,rl,0}

which in local coordinates (Zl’ w2 ), if

. a T _A
o = Zf;(di./\..,/\di‘)@——:zfl dzlaoai
1:{51<—”<1p} 53 1 p a Lo © %y,

and

is such that

- g
AN A
lo,v] = z dZI/\dEJ’@[f;a — -
LJ,x,¢ Za 7%

The bracket operation enjoys the following properties
. +1
By, o] = (1P (o, )

(2.7) i) 8lo,u) =[8o,4] + (-1)F [0, Bu]

- 3 190 Y . .
ii3) if 3 isin £77T(T™’"), theun the Jacobi identity holds, i.e.,

0P o, lu, 21 + (DL, (2,00 + 17 g, [0, 8]l = 0.

Before recalling the Hodge theory of harmonic forms, we remark that, if we
have a small variation @ (t) of complex structure depending on a parameter
t = (tl’ . ,tm), setting B = {t| dot) =3 low), ot)1}, B is precisely the set of
points t for which ©(t) defines a complex structure: but in order that the complex
charts depend holomorphically upon t for t in B (we assume, of course, that

®(t) be a power series in t ,... ,tm), we want (cf. remark 1.6) B to be a complex

1
subspace, The Kuranishi family, as will be explained in the second lecture, is a

natural choice to embody all the small variations of complex structures with the
smallest number of parameters,

Now, let V be again a holomorphic vector bundle on M, and assume that we
choose Hermitian metrics for V and Tl’ 0, so that for all the bundles V® (TO’ p)v
is determined a Hermitian metric (if M is CUU , we can assume the metric to be
Cw). Thus a volume form du is given alsoc on M, and thus, for o,y € e P(V)
a Hermitian scalar product is defined by (o, ) ZfM<CD , 4J>X du. ({o,d >x is the

) 2
value which the Hermitian product, given for the fibre of V® (TO’ p) at the point x,

takes on the values of © and ¢ at x).



o,ptl

It is therefore defined the adjoint operator 5 : € (V) » 2 P(V) by the

usual formula (5CD , 8)= (%, 5* £), and one forms the Laplace operator

0=53 +3 3.

We have [ : 80'p(V) - 8o’p(V) and the space of harmonic forms is

(2.8) ®P(V) = (o€ e”Pv)|ov=0}=(o]ap =50=0])
The main result is that one has an orthogonal direct sum decomposition (where we
simply write e®P for 630’p(V))

Lo
(2.9) eP =P g 3Pt 85 P!

1 _ 4 - _
Remark 2.10. xP ® 5eP ! consists of the space T (ker 8) of all the 9 closed
- =% PR - 2 s

p-forms: in factif 88 ® = 0, then 0=(80 ©,p) = “8 0] H = § ® = 0, Therefore,

in view of Dolbeault's theorem one has the following
Theorem 2.11 (Hodge) . “GC(V) is naturally isomorphic to HP(M, 6 (V). More-
over for each © € €% P(V) there is a unique decomposition
- : - € P - ¢ (1Pt
P =mn+0¢, with n=H@® €KX, & =G(p) € (X7)

H is obviously a projector (the '"harmonic projector'') onto the finite dimensional
space XP, whereas G is called the Green operator. We refer to [K-M] again

for the proof of the following

Proposition 2.12. 5, d commute with G, and the product of 5, 3 or G with H

on both sides gives zero.

§3. Kuranishi's equation and the Kuranishi family
1,0

Fix once for all an Hermitian metric on T’

1,
and let XP be }CP(T O): we

can therefore identify, by Hodge's theorem, harmonic forms in %P with cohomology

classes in HP(M,® ). Recall also that, by (2.7.ii), a bracket operation is defined

[ 1: BP0, 9) xH%M,0) » P9, @),

1 m
Let m EE ,nm be a basis for ¥, so that we can identify a point t € € with
the harmonic form 21—1 l:i ni . Consider the following equation
]_ -
(3.1) ®(t) = Ztini +-Z—8 G[QO(t),CD(t)]

[o-]
It is easy to see that one has a formal power series solution ©® = Zm:I Cpm(t) s
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where Com(t) is homogeneous of degree m in t: in fact by linearity on t of

st
s

8 ,G

_ R i =% , B -
0 (1) = Ztini . 0,0t =5 B G{@I(t),@l(t)], w, =8 G[@l,ﬂ?z],

The power series counverges in a neighborhood of the origin because G is a regular-
izing operator of order 2 {with respect to Holder or Scbolev norms).

We want to show that B = {t \CD (t) converges, and defines a complex
structure on M} is a complex subspace around the origin in c™ . We know that

B={t] Bow) - 2lo®), o)) = 0} and we claim that the following holds
Lemma 3.2, 89(t) - 5[0 (t), o)) = 0 if and only if H[w(t), ©)] = 0

Proof. The "only if" part is clear, since H8 = 0. Conversely, we want to show
that ¢ = 5(,0— lo,0) equals zero. Now © 5“01 + & 506[@,@] by Kuranishi's

equation, and col is harmonic: hence

= (55°G - id)i[o,9]).

i

351 Kol

> 1
36 Glo,n] - E[w,ml

But the identity id equals H + UG = H + 35 G + 3 5G, thus (since Hl®,9]=0 by
assumption) -2 = adﬁgG[CD,"@] = {since 9, G commute) = 5);:(3 5[@,@] = (by 2.7)
= 25°G[30,0] = (since [[©,0],5] =0 by Jacobi's identity) = 25 Gy, ®]. We
have therefore reached the conclusion that ¢ {t) = og*G{QJ(t), @)}, in particular
for any Sobolevnorm || ||, 9@ = cost. |4t} Jjo®)|l. But since |o®)] is
infinitesimal as t - 0, we get that for t small [[Lli(t)“ < |]Lp(t)||, hence “LIJ(t)“ =0

and Y(t) = 0 as we want to show. Q,E.D,

We use now the standard notation h1(3) = dimc HI(M, F), for a coherent

sheaf on M, and we state an immmediate consequence of (3.2).

Corollar){ 3.3, If m =h1(®) as before, k = h2(®), then B is defined by k holo-
morphic functions gyre0 8y of t = (tl’ cees tm) which have multiplicity at least 2
at the origin., Moreover, if we identify ™ with Hl(@), Ck with H2(®), the func-
tion g(z): <™ s (Ifk given by the quadratic terms of gyreer 8y corresponds to the

quadratic function associated to the symmetric bilinear function

2
[, 1. 5o x 1) » H (9) .

2 0,2,.1,0
1""'§k be an orthonormal basis for X . If w isin & (T ),

Hw=0 is equivalentto {w, @i) =0 for i=1,...,k. Therefore, by lemma 3.2, B

Proof. Let &

is defined by the k functions g (t) = (lo (13, )], £.)=0. Since
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ot) = ¢ ti ny + oft), gi(t), which is clearly a convergent power series in t, has a

McLaurin expansion

m

2
g, (t) = Z ([ﬂj.ﬂk], %i)tjtk+o(t ). Q.E.D.

jr k=1
The final step is to observe that the varying complex structures on M, parametrized

by t € B, can be put together to give a structure of complex space to the product
M XB, we have

Theorem 3.4. On MXB there exists a structure of complex space % such that the
projection on the second factor induces a holomorphic map I: £ » B such that
i} each fiber Xt = H-I(t) is the complex manifold obtained by endowing M
with the complex structure defined by ©({t);
ii) for each point p € M = XO there exists a neighborhood U in M anda
neighborhood V in % such that V is biholomorphic to UX B under a

map Y: UXB » V s, t. To§ is projection on the second factor.

Sketch of Proof. By remark 1.7, for each point p in M there is a neighborhood
U and functions Ft i(x) (i=1,...,n)s.t. for any t in B they give a local chart
L

for the complex structure defined by ®(t). Let F(t,x) = (Ft 1(x), e Ft n(x)):

U-c” ; we use (F,t): UXB - C"x B to give the local charts for the complex

structure %. The inversion theorem of U. Dini ensures then that the complex

structure on X is globally well defined, and that ii) holds. Q.E.D
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LECTURE TWO: DEFORMATIONS OF COMPLEX STRUCTURES AND
KURANISHI'S THEOREM

In this lecture I will review the notion of deformation of complex structure
introduced by Kodaira and Spencer, the notion of pull-back, versal family,...,
define the Kodaira-Spencer map, and state the theorem about the semi-universality

of the Kuranishi family.

§4. Deformations of complex structure

Let M be as usual a compact complex manifold.

Definition 4.1, A deformation of M consists of the following data: a morphism
of complex spaces II: ¥ » B, a point 0 € B, an isomorphism of the fiber XO =
H_l(O) with M s.t. T is proper and flat.

Remark 4.2, 1 is said to be smooth if ¥ b € B the fibre Xb = H‘l(b) is smooth
(and reduced, of course!). A deformation [ is smooth (at least if one shrinks B)
by virtue of the following

Lemma 4.3. Let T : @B o A > @x o = R be a homomorphism of local rings of

complex spaces, and assume that T makes R a flat A-module, and that more-

over [l has a smooth fibre, i.e. R/H%WZA = C {il, R I '77ZA being the rmaxi-
n
mal ideal of A. Then R = A{xl,...,xn} .

Proof. Let Eive o X be such that x, maps to 'ii through the surjection R -»

o) ” i
R/I W?A . Thus [ defines a homomorphism f: A {xl, . ..,xn} to R. f is surjec-
tive by Nakayama's lemma, and we claim that flatness implies the injectivity of f.

Let K = ker f, so that we have an exact sequeunce

0 —»K—»A{xl,.._,xn} - R-> 0.

Tensoring with the A module A/WZA = € we get, since Tor{(R,A/mA) =0 (see

[Dou 2}, proposition 3) an exact sequence

1 *
0-»K®AM, » €{x,...,§} > R/TM, » 0,
A 1 n
Since m is, by assumption, an isomorphism, K ® A/’77?A = 0, hence K =0, again

by Nakayama's lemma {applied to K as an R module!).
Q.E.D,
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Remark 4.4. A deformation is said to be smooth if B is smooth: in this case 1
is just a proper map with surjective differential at each point. Lemma 4.3 shows
that property ii) of theorem 3.4 holds for every deformation, In the case when B
is smooth, a classical theorem of Ehresmann ([Eh]} asserts that I is a differ-
entiable fibre bundle. This is a local result, and to give an idea of the proof
{especially to stress the importance of vector fields!), we canassume B tobea k
cube in [Rk . Then one wants to show that % is diffeomorphic to MXB vis a map
compatible with the two projections on B: one assumes % to have a Riemannian
metric, so that, if xl, e ,xk are coordinates in !Rk , one can lift the vector field
(’)/E)xk to % to a unique vector field § that is orthogonal to the fibres of TI. Then

k-1
one proves the result by induction on k: if B’ =B N R , one takes the integral

1

curves of § to construct a diffeomorphism of N "(B’')x (-1,1) with Z, and then

applies induction (H_l(B') = MX B’) to infer that X =MXB_ If everything (the
w
Riemannian metric included) is Cw, the above proof yields a C  diffeomorphism.

An analogous result holds in the general case.

Theorem 4.5. Given a deformation [I: X » B (shrinking B if necessary) there
W
exists a real analytic (C) diffeomorphism y: MxB > X with [Iey = projection

of MXB - B, and such that v is holomorphic in the second set of variables,

Idea of proofs. In the Cw case (cf. [Ku 3}, p. 19-23) the proof is easier: there
exists a finite cover Va of % such that, if Ua =M N VOL (M is identified with XO),
Va% UQXB under a biholomorphism CPQ. We can assume % C IRN: using these

S
Cﬂa’s and a partition of unity subordinate to the cover Vo: we can define a C morph-
ism of % to a tubular neighborhood T of M in R, and then we compose with a
retractionof T to M to get w: X » M such that Cle = ideuntity, Then © X1
gives the required diffeomor phism.

In the real analytic case, one can use the fact that, if T is the real tangent

M
bundle of M, HI(M,TM) = 0; then the power series method of [K-M], pp. 45-55

gives the desired result.

Using the diffeomorphism y: MXB = %, for each b € B one gets a2 small

0,1

variation of com plex structure ®(b) € A (Tl’ O) which depends holomorphically

upon b, If (B,o0) © (€",0) and tl, ...,t are coordinates on €  (r = dim ’77ZB 0/
2 r r i

i =Lt + i ¢t =T
WlB, 0) one can write ©(b) i ’ﬂi oft), and the linear map ¢ from B.o

(Zariski tangent space to B at 0) to Hl(@)) such that -p (a/ati) = class of T]i in
H1(®M)’ is called the Kodaira-Spencer map, and we shall soon give an easier way

to define and compute it.
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Definition 4. 6. Let [I: Z > B be a deformation of M, and let Va be a {finite) cover
of X which locally trivializes I, i.e. such that there exists a biholomorphism

CDOL: VOL - UOLXB (Uct = ch. NM, and we tacitly assume I o Cpczl to be the projection
of UOLX B -5 B). Let £ be a tangent vector to B at 0, and let e?a be the unique
lifting of £ (viewed as a constant vector field in c’ o B) to Vc. given by the trivi-
alization CPa . Then z?a— &, restricted to Uaﬂ UB , is a vertical vector field,

g

thus (9 _ - 95)€ Hl(Ma, ®). We define p: T. - HY(8) to be the linear map such

B,o
that p(g) = z?a- 196 and it is easy to see that 0 is well defined, independently of
the choice of the cover and of the trivializations (for instance, changing trivializa-

tions, ¢ is replaced by 190: such that z?a— 19& is a vertical vector field, therefore

29(1 - 198 is cohomologous to 19(; - v?é). p is called the Kodaira-Spencer map.

The Kodaira-Spencer map gives the first order obstruction to the global lift-
ability of a vector field, and its importance lies in its functorial nature, that we are

now going to explain,

Definition 4.7. Let [I1: Z » B be a deformation of M, andlet f: B’ » B be a
morphism of complex spaces, O’ a point of B’ with f(O’) = 0, Then the pull back
£5(%) is givenby X' = [(x,b')|x €%, b"€B’ s.t. T(x) = £(b")} C XX B’ , with
N’ induced by projection on the second factor,

Let £, : T ;) TB be the differential of f at O, and let p, p’ be

s

B',0
the respective Kodaira-Spencer maps of X, % ": we have

(4.8) o/ =po £,
as it is immediately verified.

Grothendieck's point of view was, in particular, that in order to compute
p{E) it suffices to choose B' = {t ec l 'c2 =03}, and f the unique morphism of
B'5B s,t. £,(8/8t) = £; also, in the context of pull-back, the meaning of p=0 is
that, if BI is the subspace of B defined by Wlé o iz BI - B is the inclusion,
then i*(:C) = BIX M if and only if 0= 0, ’

We can thus verify that the two definitions we have given of p do, in fact,

coincide, limiting ourselves to l1-parameter deformations.

Lemma 4.9, Let T: Z > B be a deformation of M with base B = [t EC\tZ =0},
whose associated small variation of complex structure is given by the form ©{t) =t7,
with 1 € A% (!0
of M in H1(®).

}: then, using the Dolbeault isomorphism, p(98/8t) is the class



o) a . A
Proof. We choose trivializing charts on UQX B, with =z Sz coordinates in

T
Q
Ua, given by Q;’“(z,t) = z? + th_ . ®(t) on UCL is expressed by

aj . 9
¢ Zn,sz‘?oa_E
7 T N P

1

a - a
and the condition that Qi be holomorphic is that (9 +CD)(Ci) = 0, i.e.

5w +Z g = 0,
i ; i j

hence locally 7N can be expressed as

- 3
B z Bw, @ a
i ! oz,
1

In view of the way the Dolbeault isomorphism is gotten, it suffices to verify that, if

—Ew,a@a = A
T 1 o

a
0z,
i

we set

then A(x - A is cohomologous to 191 - 798. Now z?a = 8/08t in the a-chart, there-

B

8
a
in the a-chart, we get, if Q? = fj B(Q ,t) is the change

fore, expressing 19@— P

B

of coordinates,

aB, .8
2 of, (6, 1) e =_Z 08,8, 2
i ot t=0 BzrI i b az?
if we set
f?B(QB,t) = hJ.“B(gB)Hg;‘B(QB)

a
But this last expression equals Qj = zjOL + twja, hence, by the chain rule,

af
a_ aB, B ahi B
w, =g, (z )+ —_— . w ,
i i © 9z B k
k
and we are done, since
3 BhEIB 9
= = z IB — Q.E.D
sz i azk 3zi
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§5, Kuranishi's theorem

Definition 5.1. A deformation [I: L » B of M is said to be complete if for any
other deformation N°: X’ » B’ , there exists a neighborhood B” of O’ in B’ and
f: B” 5 B suchthat 27 =%’ IB" is isomorphic to the pull-back f*(?C). The de-
formation [: X > B is said to be universal if it is complete, and moreover f is

{locally) unique {(respectively: semi-universal if it is complete and

£,: TB',o' - TB,o is unique).
Remark 5. 2, In view of (4.8), a complete deformation is semi-universal if the
associated Kodaira-Spencer map ¢ is injective. Let us see that p is surjective

for a complete family; in fact, by lermma (4. 9) and the Kuranishi equation (3. 1), the
Kuranishi family has a bijective Kodaira-Spencer map: hence, if a complete family

exists, it must have a surjective Kodaira-Spencer map.
Proposition 5.3. A semi-universal family is unique up to isomorphism,

Proof. By completeness, if T: X =B, 1I’: X' 5 B’ are semi-universal, there
exist f/:BoB’, f: B’ 5 B with %' = £ (%), X =f (%'). Hence %= (£'f) (%),

and by semi-universality (f’f), = identity, but also (f £’)

= id, therefore, by the

. . ! . N
local inversion theorem, £, f° are isomorphisms, Q.E. D,

We can now state the theorem of Kuranishi, referring the reader, for a com-

plete proof, to [Dou 1}, [Ku 31, [Ku 2], and to L K-M] and [Ku 1] for weaker versions.

Theorem 5.4 {Kuranishi)

i} The Kuranishi family is semi-universal, and f* coincides (up to sign)
with the Kodaira-Spencer map o.
ii) The Kuranishi family is complete for b € B - {0}, when viewed as a
deformation of Xb .
ii1) 1 H%(®

M) = 0, the Kuranishi family is universal.

Let's draw some corollaries of the above theorem, noting that by proposition 5. 3,
the Kuranishi family is ''the" semi-universal family of deformations, and that, by

(3.3), the Kuranishi family is smooth if HZ(@)) = 0.

Corollary 5.5. If a deformation T’: X’ B’ has a smooth base B', and surjective
Kodaira-Spencer map p’, then it is complete and moreover the Kuranishi family of

deformations is smooth,
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Proof., Let f: B’ » B be such that Z'= f*(Z). By taking a smooth submanifold of
B’ , wWe can assume f* to be bijective. But then B is a neighborhood of O € Cr R
and we have f: € - B ¢ € with f, invertible: by the local inversion theorem
f(O:r) contains a neighbourhood of O € c’ , hence gives a local isomorphism

r r

e =c"Se=c. 0.E.D.

Finally, we mention a refinement of part iii) of the theorem ({Wav}).

Theorem 5.6 (Wavrick)., If the base B of the Kuranishi family is reduced,and

ho(X,E s ®t) is constant, then the Kuranishi family is universal.

In the next paragraph we shall discuss the example of the Segre-Hirzebruch sur-
faces, which illustrates how certain statements in the above theorems cannot be im-
proved, We only remark here that if M is a curve (n=1), the HZ(@) =0 and the
Kuranishi family is smooth of dimension h1(®) = 3g-3+a, where g is the genus

of the curve and a = h0(®) is the dimension of the group of automorphisms of M,

§6. The example of Segre-Hirzebruch surfaces

The Segre-Hirzebruch surface E‘n (where n € N} is, in fancy language, the
1
P bundle [P(Vn) associated to the rank 2 vector bundle Vn such that @(Vn} ==

=8 1 36 1(m). By abuse of language we shall identify V with 6(V), therefore we
i) P
get a split exact sequence

(6.1) O -6 -V -6 @n) >0,
IPI n [Pl

We consider all the rank 2 vector bundles V which fit into an exact squence like
(6. 1), which are classified by H1(® 1(-n)), a vector space of dimension (n-1), and
we consider the family of ruled surffces P(V), thus obtained, as a deformation of
Fn . In concrete terms, we take B = (En_l, with coordinates tl’ P ’tn-l’ and we
obtain % glueing P' X €X B (= @' x (P'- {»})xB) with P' x Cx B (=P’ x

7

1 .
(" - {0}) X B) by the identification of (yO'YI’ z,tl, rsest } with (Y(;,YI » Z,

-1
tl"”’tn-l) i
-1
- 1 r -1 L Z ~i.
6.2) 2E =, Y FY 2, YO-YO*Y1i~1tiZ

ot ool . n-i
(note then that Vo =Yg + Yy Zi ti z ).
Now we shall compute the Kodaira-Spencer map of the family II: X > B we

have just constructed.
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E
(L) - (_8_) (_3_.)
Ploe) = Vet V&) -
i i i
where the prime means we are writing a vector field using the second chart, So,

expressing (B/Bti) using the first chart, we get

0 ; n-i, 9 -i, 9
p(‘—-):-(yz Yo = ey, 8 ) o —
ati 1 Byo 1 8y0

We shall now show that these vector fields generate the Céch cohomology group

Hl( {u,u’}, 8 ), where U= P! X € of the second chart, and we notice that, since
H (®P1 y (E) = ’8 , the Céch cohomology group we are going to compute is indeed
ut (IF @Fn), hence the Kodaira-Spencer map will be bijective, and the constructed

family will be the Kuranishi family,

Let's work on [, where z'= 1/z, yl' = ylz-n, Y(; = y,¢ since on P
we have the Euler exact sequence
To
: e
X mil BXO""’BX
(6. 3) 0 -6 _—=5 & () > m>®m->o
P P P
. . 1 . 3 3 9
vector fields in P~ have as basis x, — , x. —— , x. — ., Therefore the
0 axo 0 8x1 1 8x0
holomorphic sections of O on UN U’ can be written uniquely as

n
i 0 9
6. 4) Z z (a, vy, — +a, Yy, v -—) z b 7 = .
i€z i00 "0 ayo i0l 70 Byl #1071 Byo i€z oz

where a, bj € €. These sections are holomorphic also on U if

100° %301 *i10°
only non zero terms occur with i €[N, j €N, Since

6 .5 o _ 23, 5 2 _ o =n
8y0 ayo’az'--z 8z nZYO&y ’ r - g

we write a regular section on U’ in terms of the first coordinate, and we have

9 ’ ’r 9 J.__.
E(Z)( y. —F4al .y y! ) Zb( )
TN 20070 ay i01 oay 110 1ay0 i€

_ ' 9 -i ' 5 \ n-i ' 9 ) -n-i z ;0\ -j+2
- Z (aiOOYOZ)yO)Z +("‘101Y0 Byl)z +(a‘imyl 8y0>z - 53z )"

i EN ;e
+ 2 (nbf Yo L )z";Hl .
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- 1 _ 0 ' o 0, s
Since H (®[F‘ y=H(UNU", ®Fn)/H (U, ®[E‘ Y+ H (U, ®|Fn), we see that

n n

-1 9 -(n-1) 3 . ) 1

(6.5) {y Z T L, ...V 2 -—} is a basis of H (@__ ) .
1 oy, 1 oy, F_
Furth ince H°(F =H(U,®_ ) NH(U’, 0 ) have that
urthermore, since ( 0’ OF Y} = (U, E : O ) we have tha
n n n

9 3 n 3 9 ¢} 2 9 ¢}

— —— —_— —_ —_ —— -1 7 —
(6.6) Yo oy, ’ Voayl"‘“z Yo ayl’az’zaz’z oz o ay_

: ~ . )
(and vy (a/ayo) if n=0) are abasis of H(F _, @IFn).

Corollary 6.7. h'(® ) =n-1, h(6F ) =n+5 if n>0, 6 if n=0, hence
n n
F o= lE‘m if and only if n=m. Furthermore, the family defined through the glueing

n
(6. 2) is the Kuranishi family of [Fn .

Let now T, € B be the determinantal locus

k
By e

1
t
(6.8) T, = qt|rank 2 2 < k

- .

tn-k-l tn-l

We refer to ([Ca 1], §1) for the proof of the following

Proposition 6,9, T, is an algebraic cone of dimension min(2k,n-1), and if

k
t €T, -T  ,,then X, =F

n-2k *

Remark 6,10, This example illustrates how the Kuranishi family can be semi-
universal only for t=0, and complete for t #0, In this case h1(®X ) has a strict
maximum for t=0, and we notice that t
(6.11) h1(®X ) is an uppersemicontinuous function in t, in general,

and if h1(®X ) is constant on B for the Kuranishi family,

then the Kurafnishi family (cf., 5.2) is also semi-universal

for t #0,

In this case, as we have seen, h°(®Xt) is not constant: this was, in Wavrik's
theorem (5, 6), a sufficient condition for the universality of the Kuranishi family,
We are going to show that for the above surfaces the Kuranishi family is not

universal,
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Example 6,12, Take n=2 and our given family X%, obtained by the glueing

-2 -
z’'=1/2, yl' =V Z yé =Yq + yltlz l. Consider the local biholomorphism of
B to B sending tl to tl f(tl) , where f(tl) is a holomorphic function with £(0) =1,

-2
Then the pull-back is the family %’ given by the glueing ¢’ = 1/C, n{ =N lg ,
1
To

-1
=Nty tlf(tl)g . But we obtain an isomorphism of %’ with X, compat-
ible with the projections I, 1’ on B, if weset { =z, ('=2z", Vo= Mg 'y'0’= Tl’oy

v, = n 1f(tl), y{ = T]1' f(tl). The condition f£(0) = 1 ensures that the given isomorph-

ism of [E‘n with the central fibre X _ has not been changed.

0



23

LECTURE THREE: VARIATIONS ON THE THEME OF DEFORMATIONS

§7. Deformation of automorphisms

As an application of the theorem of Kuranishi, let's assume that G is a finite
(or compact) group of biholomorphisms of M, Then we clearly have a natural action
of G on MXB, where G acts trivially on the second factor, the base of the

Kuranishi family.

09
If 0 €G, t €B, clearly ¢ is holomorphic on Xt if and only if O Tt v,

0,1

T » l.e. <> 0,0(t) = 9(t). Therefore GC Aut(Xt) for the set BC =

{t ]c* ©(t) =o(t)} (note that it makes sense to talk of Oy since 0 is an automorph-
ismof M = XO). This set is not so weird in general, since o, o(t) - ©{t) is a power

series in t, we can only say that it is a complex subspace if G is compact, since,
1,0
M

be endowed with a G-invariant Hermitian metric. For G 3 0, ¢ being holomorphic

by integration with respect to the invariant measure of G, we canassume T to
on M, Ty commutes with 5, but now the G-invariance of the metric implies that
ik
o, 2also commutes with 8 , O, G, H,
Now G acts naturally on the cochomology groups Hq(@)), and we shall write,

as customary,

1(0)° = {n] € uY(9)

o,n=m ¥ o €G] .

If we ideutify B with a complex subspace of H1(®), we have

G G

(7.1) {(t€B o is holomorphic ¥ c € G} =B =B ﬂHl(@)G = B

Xy

In fact, since ®{t) = t + & 3 G Lo@), o)) ,

1k
o, 0(t) = ot + S 8 Glo o), o,00)]

Ed

therefore O‘*CO(t) solves the Kuranishi equation for o_,t, and c*w(t) = Co(c;,it). Thus
G*CD(t) =@(t) if and only if t = C!*t, as we had to show,
But we can be more precise, because we have that
G 1
B = {t€H (9) |V 0 €G, t=o,.t, Hlow), o)) =0

o
¥

but
o, Hlow, o] =Hlow, 1), 00, 0] = f t=0,t) = Hlow), o)1 ,

G G 2, .G
therefore we get that B is a complex subspace of Hl(@}) defined by h (8)
equations of multiplicity at least 2 and such that their quadratic parts are associated

to the symmetric bilinear mapping



0,1 58 @Y%« ul(n)° - HZ(@))G.

We get thus a lower bound for dim BG, and we observe that the family % G
-1 .G B
I "(B7) has an action of G which is holomorphic, fibre preserving, and such

that the diffeomorphism type of the action is constant.

§8. Deformations of non-degenerate holomorphic maps

Assume we are in the following situation: we are given a family of deforma-
tions of M, II: X -» B, and let's assume that, W being a fixed complex manifold,
one is given a holomorphic map F: X » W xXB, such that I = P, ° F, P, W B
being the projection on the second factor of the product, This general situation has
been considered by Horikawa (IHor o1, [Hor 11, [Hor 2}]), here we shall limit our-

selves to the case when

(8.1} ft = pl o F x * Xtc»W is generically with injective differential (ft)"»‘
t

(here P WX B> W is the first projection).

{(8.1) is equivalent to saying that Y ¢t (ft)“= D, = (f)t)ﬂ~ @W is an injective homo-

X
morphism of sheaves, where (ft)'F denotes the analytic pull-back of a coherent

sheaf. In particular, for t = 0, we have an exact sequence

€),

(8.2) 0 - @Xo —_— (fO) ®W - Nfo—> o .

Definition 8.3, The cokernel Nf of the homomorphism (fo),,( in (8. 2) is called

o
the normal sheaf of the holomorphic map, and HG(Nf } is called the characteristic
o

system of the map.

Proposition 8.4. There is a linear map ¢ T 0 > HO(Nf } such that, if ¢ is
ZTOoposition ©. = o

F B,

the Kodaira-Spencer map of the given deformation, and 8 is the coboundary map

9 HO(N ) > H1(® ) of the long exact cohomolo sequence of (8, 2), then one has
£, Xq g gy seq

a factorization p = 8o DF . Sucha DF is called the characteristic map of the

family.

Proof. Let's take a finite cover (Va) of Z such that VO. 2= UaX B as usual, so

a
that, locally on ch' if z are local coordinates in U@ = Xo , we can write

(8.5) Fiz™ 0 = (17, 0, 8

Let § be a tangent vector in TB o which can be extended as a vector field on B
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{we always work with (B, o) as a germ of complex space}, and let e?a be the lift of

£ to VOL determined by our choice of coordinates (za,t) on Va. We know that

p(g) = (éa— ﬁa) Xo , and that in fact (since one can change coordinates), 0(& is well

defined only up to adding a vertical vector field. The differential F, sends 19(1 in

a pair (L!Ja, £) where Lp& is a section of f*(®w), ,
Restricting ¢ to Uy X {01, I geta global section ¢ of Nfo = fo(®W)/@X

o

and by definition, since (fo)*(ﬁ , we get

o Uax {0}) = q’on
) = (¥, - 195) x = p(E)
O

So it suffices to set QF(i) =y, and pF is well-defined and linear. Q.E. D,

The situation considered up to here embodies the classical theory of deforma-
tions of plane curves with nodes and cusps, and of surfaces with ordinary singulari-
ties, therefore we shall now give a definition which is consistent with the classical
one in the second case, but is not a generalization of definition 5.1 {also we shall

denote by % the map ®: M -» W corresponding to fO via the isomorphism M == X),

Definition 8, 6. The characteristic system HO(NQP) of the map ©: MW is com-
plete if there exists a smooth deformation of the holomorphic map {i.e. B is

) . o e
smooth) such that QF' TB o -» H (Ncp} is surjective,

Remark 8.7. I—IO(NCD) is the exact analogue of H1(®M) in the case of deformations
of a manifold. In general, a sufficient condition in order that the Kuranishi family
be smooth is the sharp assumption H2(®M) = 0: in a similar fashion Horikawa
proves the following generalization of a previous theorem of Kodaira:

Theorem 8.8. The characteristic system of a map is complete if Hl(Nw) =0,

In the next paragraph we shall discuss some particular example in the special
case when ®© is an embedding: before doing so, we just make the following observa-

tion {in view of the long exact cohomology sequence associated to (8. 2}).

(8.9) a necessary condition in order to deform © on a complete family
%
% of deformations of M is that H'(® (O ) = Hl(Ncp) be

injective,
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§9. Examples of embedded deformations and obstructed moduli

Assume now that M is a subvariety of W, that dim W =r, dim M =n, and
that M is the locus of zeros of a section of a rank (r-un) vector bundle V, We
shall write V
that, if the N

6 (V) ® it 3 ;
!M for W( ) @M , and it is an elementary computation to see

M| W denotes the normal sheaf for the embedding of M into W, then

9.1) N =V
hence we have an exact sequence

0 -9 3 A %6

VI A VIR VERg

and clearly the characteristic system is complete if there is a surjection

HO(W, V) » HO(M, Vind -

M
Example 9. 2.
r-n
wW=P , V = 6 _(m.) (m,=2)
i=1 Pr1
The ideal JM admits a Koszul resolution
- \'4 -~ v 2.V v
(9.3) 0 5 ATV s AT s s a SV s Vs g s 0
fl
A .
k fn k+1
dual to AV - V , the fi's being the sections
of GIP!' m) s.t. M = {f =-.o=f =0}
From (9. 3), by induction, follows that
(9. 4) H‘(&M(k)) =0 ¥ k€ Z andfor i<n .

In particular, Hl(JM - V) = 0, hence, by the sequence

OaJMV-aV—»VlMAO ,

we infer that Ho(lPr, V) goes outo HO(M, V,..). Alsoc, from the sequence
(M 4

0~ JM(k) -> @Pr(k) - @M(k) - 0

follows that
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(9. 5) HY(6 (k) =0 Y k€ Z if i<n1 (e.g. H(V, )=0)
M | M

It will be true that the family given by HO(V) is complete if and only if, in view of

the long exact cohomology sequence associated to (9, 1), Hl(@) . ® @M) = 0. Now,
14

in view of the Euler sequence (6. 3), and of (9,5), we have an exact cohomology

sequence giving

(9.6) H'@ ®6 )=0 if n>3, orif n=2 and
Pr M
2 2 +
H (@M) » H (@M)r ! is injective.

i i 1,0V
But in this last case (we use the standard notation Q;/I for & ((;’\1 TM } ), by

Serre duality an equivalent condition is that the following map be surjective

r+i o, 2

0, .2
HO(0 (-1 > B2 ) .

But, by adjunction, QZ

M= Gy (T m - r - 1), and since Ho(@P(k)) > H°(®M(k)) is

onto ¥ k, we get that
1

r-2
2
H™ (B ® = = i, e. z = s
(9.7) (f.)[Pr ®M) 0 unless QM @M (i.e 4 m, rt+1

an equation which has only the following solutions for the mi's: (4), (3,2), (2,2,2)).
In this last case Hl(@)M) = HO(Q;A) =0 (M is a K&hler manifold via the Fubini-
Study metric), but, since QM E= @S , H2(®M) is dual by Serre duality to
o 1 2 o, 1
H ((QM)® QM)—H (QM)—O

The conclusion is the following well known fact (cf. [Ser]),

{9.8) If M is a {smooth) complete intersection in PT of dimension n= 2,
the characteristic system is complete, and the embedded deforma-
tions give a complete deformation, exceptifn=2 and Ql?;d E @M: M
is called then a K3 surface, and embedded deformations give a 19-

dimensional subvariety of the Kuranishi family, which is smooth of

dimension 20,

So, for instance, every small deformation of a smooth surface S of degree m in
IP3 is still a surface in (P3: but what happens in the large, according to the follow-

ing definition?
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Definition 9. 9. Two manifolds M, M’ are said to be a deformation of each other

{in the large) if they lie in the same class for the equivalence relation generated by:

Def
M “E' M’ <> there exists a deformation: I: £ > B of M with irreducible B
and such that 3 b € B with X isomorphicto M', If M Def M’, we shall also

b
say that M’ is a direct deformation of M . The upshot ([Hor 3]) is that already

for degree n=5 the surfaces which are deformations of quintic surfaces need not be
surfaces in IP3 any more !
The rough idea is as follows: Horikawa considers all the smooth surfaces
such that pg (Q ) = 4, and such that KZ 5 (K, here and in the following, is a
divisor of a (regular here, rational in other cases) section of Q ) these numerical
conditions, as we shall see, are invariant under any deformatlon, and indeed any
complex structure on a surface orientedly homeomorphic to a smooth quintic surface
in IP3 must satisfy these conditions,
Studying the behaviour of the rational map @: S = IP3 associated to the sec~
tions of Og , Horikawa shows that either
I) ¢ gives a birational morphism onto a 5-ic or
Ila) ® gives a rational map 2:1 onto a smooth quadric or
Ib) © is 2:1 to a quadric cone,
Note that for a smooth 5-ic Qg == @S(l}, hence @ is just inclusion in !P3 and
one is in case I, Surfaces of type Ibelong to one family of deformations, and their
Kuranishi family is smooth of dimension 40: the same holds for surfaces of type Ila).

2
For surfaces of type 1b), instead, h1(®s) =41, h (®S) = 1 therefore we know that the

Kuranishi family gives a hypersurface in € : Horikawa computes
1 1 2
X
[, TH (99 xH (8y » H (),

finding that, in suitable coordinates, the associated quadratic polynomial is Z, %,
Now, by the Morse lemma, there do exist new coordinates on H (@ } s. t the equa-
tion g of B is of the form g(t) = tl 2 +LlJ(t yeeas 41), where Y(t) = o(t ). Since
Ho(®s) = 0, the Kuranishi family is universal and surfaces of type Ib) form, as it
is easy to show, a 39-dimensional variety which is contained in the singular locus

of B by Horikawa's computation of [ , ]. Now the singular locus of B is given
by t =t, = 8\1}/8‘53 T oeee = 84;/81:41 = 0, hence it has dimension 39 iff ¢ = 0, Thus
g =88, with gi(z) = zi+ o(z). The conclusion is now easy: when g, = 0, g, #0
we have a surface of type I (a 5-ic), when g, = 0, g, # 0 we have a surface of

type Ia, when g, 58, = 0, we have a surface of type Ib,

2
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We end this section showing a nice example due to Mumford (IMu 1], cf.
also appendix to Chapter V of [Za]) of varieties for which the Kuranishi family is
everywhere non reduced, We notice that the terminology most frequently used

adopts the following

1
Definition 9. 10. A manifold M is said to have obstructed moduli if dim B <h (8)
(if and only if B is not smooth), i.e. if "not all infinitesimal deformations are

integrable, !

It frequently occurs that B may be singular at 0, but the phenomenon

pointed out by Mumford is not so common (at least for the time being),

Example 9,11, ([Mu 1]), Let F be a smooth cubic surface in IP3 , E a straight
line contained in ¥ (hence EZ = .1, KE = -1}, and let H be a hyperplane section of
F. The linear system |4H + 2E| has no base points {this is clear outside E, on
the other hand by the exact sequence 0 -> 6 (4H) - 6 (4H+E) - @ (3) - 0 since
u! (6L(4H)) = 0, we get that |4H 4+ E| has no base points and ut (@ (4H+E)) = 0,
then we conclude by the exact sequence 0 - @F(4H+E) - @F(4H +2E) » @E(Z) - 0,
where @E(i) is the sheaf of degree i on E = !Pl), so that we can pick a smooth
curve C inside |4H42E|. Since the canonical sheaf of C is @C(3H +2E}, we
easily find that

(9. 12) C T F is a smooth curve of genus g = 24 and degree 14,

Since the normal sheaf of C in F, N is @C(4H + 2E}, which is non special,

C|F
we get an exact sequence of normal sheaves

(9. 13) 0 - HON ) » BN Q) - H°(@C(3H)) -0

clr cle

and also HI(N B Hl(@c(’:‘H)), a dual vector space to HO(@C(ZE)), which has

p3
dimension I by virtue of the exact sequence

o o 1
0~-H (@F(ZE)) - H (@C(ZE)) -~ H (@F(-4H)) =0,

We see that the hypothesis in theorem 8.8 is not verified, and in fact the character-
istic system is not complete, as we shall see., (9, 13) gives dimq: HO(NC IP3) = 57
moreover F moves in a 19-dimensional linear system in IP3, C varies in a 37-
dimensional linear system on F, hence C belongs to a 56-dimensional family,
Mumford shows that C cannot belong to an algebraic family of dimension 57 by the

following arguments:
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1) if C' is a smooth curve of genus 24, degree 14, @C,(4H) is non special
and has 33 independent sections, so that c’ belongs to 2 independent quartic sur-
faces G, G’. Clearly, C’ is nota plane curve, and it is easy to check that C is
not contained in any quadric surface,

2} Thus, either

a}) C' is not contained in any cubic surface or
b) C’ belongs to a (unique) smooth cubic surface or
by ¢’ belongs to a singular cubic surface,

3) Assume now that C belongs to an irreducible family of dimension 2 57:
since condition b’) is a closed condition on the base of the family, there would exist
a family of curves C’ of type a), with dimension 2 57, But in case a), G * G' =
c’+ ', where T is a conic, Thus the complete intersection of G, G', being
Cohen-Macauley, is reduced and has at most triple points as singularities, so that
G and G’ have no singular points in common, Since G and G’ intersect trans-
versally at the points of C’- ', we can assume G to be non-singular around c’.

4} By Noether's theorem, not all surfaces of degree 4 contain a conic, hence
G belongs to a family of dimension at most 33 (in fact, much less, see [G-H]),
moreover it is easily verified that the characteristic system of ¢’ in G has dimen-
sion 24, so that the dimension of such pairs (C’ © G) is at most 57, and since c’

belongs to a l-dimensional system of quartic surfaces, we are done,

Example 9,14 ([Ko1l, [Mu1]), ¥ M is the blow-up of e with centre a curve C

as 9,11, then the base B of the Kuranishi family of deformations is non reduced.
Before even setting up the notations, let's give a useful

Definition 9,15, Let Y be a subvariety of a smooth variety X, We define ®X
(-log Y) to be the sheaf of tangent vectors on X which are tangentto Y (i.e.,
£ € @X (~log Y) if and only if, R being the ideal sheaf of ¥ , V g € ~3Y,

E(g) € 3.

Remark 9,16, Clearly, =9Y®X < @X(-log Y) and, by the definition, @X/®X(-log Y)
s PR 1 . ! 2

is the equisingular normal sheaf NYIX of Y in X, (NYIX is the usual normal
sheaf when Y is smooth, cf, §11,) We have thus the exact sequences

(9. 17) 0 > @X(-log Y) >0, > N/ -0 .

Y|x

Moreover the tangent sheaf of Y, @Y is by definition the quotient
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@X(-log Y)/cﬁY @X .

Let's now set up the notation: we have II: M > IP3 the blow-up map, E is
the exceptional divisor HJ(C).

We have therefore two exact sequences

0 - 0 3(—logC)—>(® 3

P P Cc/P

} » N 3—>0

O»@M(-logE)—>®M—>N -0 .

E|Mm
First of all, by the exact sequence

0-&;9C®‘P3»>® 3(-logC) »@C—>O .

since C has genus bigger than 2, u° (® ) = 0, thus also 1° (® 3(-log chy=0,
since H° (J ® 3,) = 0 (this is the Lie algebra of the group of prOJECthLtlES leaving
C fixed, wh1ch is the trivial group since C contains 5 independent points),

Let's look at the exceptional divisor E: E is the projectivized normal
bundle of C in 1P3 , E= IP(N 3), i,e. points in E are lines in the normal
bundle of C In particular, 1f (9 (1) is the dual of the tautological invertible sheaf
¢ ( 1}y < II (N 3), then H*@E(l = Nv 3 (V denoting the dual sheaf).

clp
It is easy to verify that
(9. 18) NE|M = @E(-l) ’
hence we have
(9.19) BN ) = BN )= 0
. EiM ol .Y S

Proof of {9.19). Since a sheaf of degree {-1) on I}?l has 0 cohomology in all

degree, I N_, = ®'1_N_, =0, Q. E. D.

E|M E|M

Corollary 9,20, i o ok .
H (@M) =H (@M(-log E)) for i=0,1,2,

Proposition 9,21, I @ (-log E}) = 8 ,{(-log C), Rlﬂ, ® {(-log E) = 0, hence
% M IP3 % M
H'(® (-log E)) =H (8 ,(-log E) for i=0,1,2
M P
and H°(®M(-1og E) =0,

The proof of proposition 9,21 follows immediately from the following.
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Lemma 9.22, Let [I: X~ 0:2 be the blow up of the origin O, M the maximal

ideal of the point O, E the exceptional divisor H-I(O). Then

1
1,0 (-log E) = M ®c2 , R IO (-logE) = 0.

Proof, X is covered by two affine pieces A, A’ with coordinates (u,v), resp.

(w’,v’) and 1 is givenby x =u, y =uv (resp. x=u'v’, vy =u’), Thus

2.2 9 o _ 8 + 8
‘au_8x+vay ' T oy Yo
l._a__u_a_ 5 _ .8
ov T oy av’ dx

Since E is defined by the equation u =0 (u’=0), 8(-log E) is generated by

8 3 3 8 8
Uae T X e +y ay and by 5y - X dy on A, and by
0 ) 9 e a ’

on A

1=Yé—y-+x5; and —a“;‘,:yg

Let & be a section of @X(-log E) defined in a neighborhood of E: then we can

express é as

& = afu,v)u 2 + bu,v) % and also

du

5

I ’ ¢
=

5 @vu'ss

afu,v) = Z a,, u’ v
i,jzo0 Y

e]
+ B(u',v')@ , where

and similarly for b, a, 8, We musthave

3 8 F 9
ax - + (ay + bx) oy " (ax + By) 5=+ (ay) By

Hence, expressing § as a rational section of © 5 » We see that the coefficient of
€

8/0x can be any function f of the type

X . a, x y3
i,jzo M
such that it can also be expressed in the form
% o xh £-h + z 8 xh £-h
ht Y Y he Y -
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It is immediate to see that the coefficient of 3/8x is a power series in x, y, van-
ishing at the origin, and, by symmetry, the same holds for the coefficient g of
8/8y. Itis also easy to verify that two such f,g € MG , can be chosen arbi-
trarily, Instead, to show that Rl H>:=(®X(-log E) =0, f‘c ;?J:ffices to show that any
section A of @X(-log E) on A NA’ can be written as a sum A+ +07 , where 1\Jr is
regular on A, A’ is regular on A’. Now, A can be written as

afu,v) us—u + blu,v) ;—V ,

where

afu,v) = Z a.. ul VJ

i=o M
j€z
can be written as
4 ..
afu,v) = a (u,v) +a’fu,v) at = Z a. ut v s
i,jzo Y
. + ’ .
and similarly b{u,v) =b (u,v) +b{u,v). Since
+ + 9 + 8
A =a u o +b v

is regular on A, it suffices to verify {we omit this) that A’ is regular on A’

Q.E. D,
From 9,20 and 9,21 we infer that

o 2 1 1 o o
H (® =0, H (@ =H (N , H (® = H (N H (@ .
(8) (B =H (N 5) H @) = HOWN | s)/HT@ )

L3 12
These isomorphisms are natural, in fact one can verify that for each deformation
of the embedding C C»IP3 the Kodaira-Spencer map for the family of blown up
3-folds is the composition of the characteristic map of the deformation with the sur-
jection of HO(N 3) > H1(®M) (the kernel HO(® 3) is due to the fact that blow-
c|P P
ing up projectively equivalent curves one obtains isomorphic 3-folds). Now,
Kodaira ([Ko 1], thm, 6) proves that every small deformation of M is the blow-up
of ll‘-’3 with center a curve which is a deformation of C in [PS, thereby showing
that the Kuranishi family of M has dimension equal to 56-15 = 41, whereas, by
what we saw, hl{@M} = 42 for each blow-up M of a curve C as in 9,11. Thus
the Kuranishi family B of M is singular at each point (hl(®M } being constant
for t €B, B is the Kuranishi family for each M), ’
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§$10, Further variations and further resulis

We have seen in §9 a 3-dimensional variety such that its Kuranishi family is
universal at each point, but its base B is everywhere non reduced. We remarked
in §5 that the base B of the Kuranishi family of curves is smooth: for surfaces
Kas {[Kas]} found, using Kodaira's theory of elliptic surfaces, an example of a
family of elliptic surfaces such that the generic dimension of H1(® } would be
strictly bigger than dim B, The family is constructed by deforming a certain
class of algebraic surfaces, We suspect that this should not happen for surfaces of
general type with HI(S,[R) arn%'\lf(rgﬁpllicmre seven); it is anyhow clarified by Burns
and Wahl ([B-W]) how the fact that KS is not ample, in particular the existence
of many curves E such that @E(KS} == @E , forces the dimension of Hl(®) to be
bigger than dim B : in particular, using classical results of Segre on the existence
of surfaces T in [P3 with many nodes (also called conical double points, i.e. with
local equation xZ + yz + z2 = 0), they show that the blow-up of I at the nodes is a
surface S with obstructed deformations (the rough idea being that nodes contribute
by 1 to h1(®), but all the small deformations are still surfaces in [P3). We al-
ready noted in the introduction that Zappa ([ Zp]) was the first to show that the
characteristic system of a submanifold does not need to be complete, His example

is as follows {we follow, though, the description of [Mu 3]):

Example 10,1, Let E be an elliptic curve and let V be the rank 2 bundle which

occurs as a non trivial extension
(10.2) O»@E—>V~«>@E—>0

(in fact, these extensions are classified by (E% orbits in Hl(GE) = €, so there is
"only'! one non trivial extension), The subbundle @E defines a section C of the
1
= v i . =3 == .
P bundle S=P{(V) over E, and, since V/@E @E , NC‘S @C ;
less, there is no embedded deformation of C in S, since HI(GS) = H (@E), and,

Neverthe~

if C’ is algebraically equivalent to C, then there is a divisor L of degree 0 on
E such that (II: S » E being the bundle map) C' =C +H*(L}. But then
H*(@S(C,)) =V ® @E(L), and, tensoring 10.2 with @E(L), we infer that there are
no sections if L # 0, whereas, for L = 0, the condition that the extension splits

ensures that 10,2 is not exact on global sections {(or geometrically, if

h°(@S(C)) 22, S=ExP 1) .
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As far as deformation theory is concerned, the Kodaira-Spencer-Kuranishi
results were extended first in the direction of the deformations of isolated singular-
ities (cf. [Po], [Gr 1]), and then the result of Kuranishi was extended to the case
of compact complex spaces ([Gr 3], [Dou 3], [Pa]). On the other hand, Grothen-
dieck ([Gro 1], [Gro 2]) contributed significantly to extension of the deformation
theory, especially through the construction of the Hilbert schemes, parametrizing
projective subschemes with fixed Hilbert polynomials {cf. §19 for a vague idea):
his results were extended to the case of (compact subspaces of) complex spaces in
Douady's thesis {[Dou 4]). Since the variations in the theme of deformations can
be arbitrary, Schlessinger ([Sch]) approached the problem abstractly developing
a general theory giving necessary and sufficient conditions for finding ''‘power
series solutions' , i,e, finding a formal versal deformation space for a deforma-
tion functor: this theory is usually coupled with a deep theorem of Artin ([Ar]),
giving criteria of convergence for the power series solutions, We don't try to
sketch any detail, nor to mention further very interesting work, but we defer the
reader to the very interesting article ([Pa}]) of Palamodov already quoted in the
introduction (and plead guilty for ignoring the post '76 period), We simply remark
the importance of Palamodov's theorem 5,6 giving an algebraic description of the
higher order terms in the Koranishi equations.

As far as ITknow, this result has not yet been applied in concrete geometric

cases, but its validity should be tested in some example,
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LECTURE FOUR: THE CLASSICAL CASE

8§11, Deformations of a map and equisingular deformations of the image
{infinitesimal theory)

We let, as in §9, ©: X =+ W be a non-degenerate holomorphic map, and we
set T =@(X). Since W is a smooth variety, we have in general, for every sub-
variety T, the exact sequences
0-9 (- ) w2 0

W( log T) W’)NZ|W

(11.1)
Q0 - @W(- Zy - @W(-Iog z) - ®z~> 0.

On the other hand, by dualizing {i.e., taking Hom (-, @2)) the exact sequence

(SZ
O-an —>Q1 ® 6 —>Ql -0
W w b b
\,/
where NZ |w is the conormal sheaf of % in W, we get the long exact sequence
050 8. ®6_ > (No, ) =N 5 Extial, ) - 0
by w z zlw’ T Tz|w £’ L
which splits into the short exact sequences
’
0 - @Z—> ®W® ®E—>NZ|W - 0
(11,2)
’ 1 1
0 —>N2|W _)NZIW - Ext (QZ’ @Z) - 0

Example 11,3. Assume Z is a hypersurface in W, locally defined by the equa-
o ’ . :
w o @2( 2}, and NZ is the subsheaf defined by

the ideal sheaf (af/axl, e es Bf/axn). Thus if g is a section of Né lw then

ft = f{x} +tgx) = 0 gives an infinitesimal deformation of £ which is "equi-

2
singular," i,e. , modulo (t ), the locus of zero has not changed. In fact, if

tion f(xl,...,xn) = 0, Then NZI

of
vl ui(X) ,
1 1

glx) =

then, setting u(x) = (ul(x), vee ,un(x)), we have that ft(x) = f(x + tu(x)) (mod tz) by

Taylor expansion,

Definition 11.4. The morphism © is said to be stable if the direct irnage sheaf

¢

Cp*(Ncp) is isomorphic to the equisingular sheaf N2 lw

I
si|w 1
point of I, such that @ has differential of maximal rank at the points in @ (p),

Remark 11.5. By looking at the stalks of N and of CQ\,‘(NCD) at p, a smooth



37

we see immediately that if © is stable, then ¢ is birational onto its image {(other-
wise one should equip the locus T with a scheme structure with nilpotent elements).

We shall assume from now on @ to be birational onto its image.

Proposition 11.6, Assume dim X = 1, and that p is a singular point of Z: then

if ® is stable, then p is an ordinary double point (node) and dim W = 2,

Proof, In fact, the rank of N at rank % =dim . &F/M &, M_ being the
Proof plw 2t P (rank, c”Tp P /g
maximal ideal of p) is n=dimW, since 8/3):1, a/axz, e 3/3XY1 generate NZIW local-

1y, while vector fields in @2 vanish at p (cf. [Ro}, thm. 3. 2); whereas the rank of

(N_)
z dimc v4q

CP(Q) P *

QD*(NQD) at p is just the sum

If ®(q) = p, then we can take local holomorphic coordinates t at q ,

(Xl,...,xn) at p, such that

172 1 2

a a,+a a, +a,t...ta
1 r
co(t)=(t . t Fanisaasst .. ,0,0

where 2, >0, and r is the smallest dimension of a local smooth subvariety contain-

ing the branch of T corresponding to gq {clearly,a =1<>r=1,andr Zal}. It is easy

1

then to see that dim(N)
9a 2na, -1 .

—_—
N
e cp)q

Hence if this dimension has to be less than n, we get already a, = 1; moreover,
since the sum over all these points g has to be less than n, we infer that n=2 and
there are exactly two smooth branches, Either the two branches are transversal,

and we have a node (x %2 = 0 in suitable coordinates on W), or we have a double

¢ 2 2k 42
point of type {we set x = X1 ¥ = xz) y =x (k 21}, In this case
N
9, (N,)
2 ?
N
ENC
though, has dimension 4 whereas
N 2k+1
Z,p . vy, x )
2 2k+1,, 2 2 2 2k+2
sz Neo v, x Wy ,xy,x)+ly -x )
td

Z 2
has dimension 5 (since v, xv, yz, x k+l, X k1

+y are a C-basis), Q. E. D.
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2
Example 11,7, The morphism t + (t ,ta), giving an ordinary cusp, is not stable

3
ot tz, bO +blt + t ) gives a node: in fact

2
Bxl/at = 2t, axz/at = b1 +t , and t= % -bl are two points of X mapping to

since in fact the deformation t » (a

the same point,

Remark 11,8, We refer to [ Math 1, 2] for a thorough and general discussion about
stable map germs: here we shall limit ourselves in the sequel to discuss ordinary
singularities when dim X = 2, Before dealing with this special case, let's see what

is true in general,

14

Theorem 11.9. There is a natural injective homomorphism of N2 lW N

if you assume @ to be finite and birational onto I,

Proof., We have the two following exact sequences, with the homomorphism ¢

induced by pull-back CP’E: @E - Q) @X o

o ’
(11,10) 0—>®Z—>OW® GZ.)NE|W->O
L
1
a & 1 A ® =
OAQD*JX—>®W \p'GW")‘D*NCQ—)R CP*OX 0

and we have to verify that LlJ(@E) = @X . Le,, this is what we need to verify:
if JZ is the ideal sheaf of £, and (Xl"” ,xn) are coordinates in W, whenever

al(x), vee ,an(x) are functions such that VY f € CQZ .

n
of
—_— s
izaaﬁm o, £
then there do exist, for each point y s.t. ©{y) = %, functions Bl(y), . Bm(y)

fm =dim X, y = (yl, . ,ym) are coordinates on X) such that

= 8:>«:i
al) = 2 B (=) .
i . dy,
j=r 75
Since X is smooth, by Hartog's theorem it will suffice to show the existence of
such functions outside a subvariety ' of codimension at least 2 in X.
We first remark that, since we are assuming ¢ to be birational onto I,
the subvariety Z € X where © is not of maximal rank has image ©{Z) C Sing(ZX)

(if w: dJnO - Cno has local degree 1, then it is a local biholomorphism), I
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x € £ - Sing(Z), there is nothing to prove, otherwise there exists a codimension 2
subvariety A of T with
i) A < Sing(Z),
ii) if x € Sing(Z) - A, I is locally biholomorphic to 21 X Cm-l where
21 is a curve in cn-m+1 R
iii) QP_I(A) = ' has codimension at least 2 in X (this follows from the
assumption that @ be finite,
iv) if x € Sing(Z) - A, v € Cp-l(x), then there are coordinates (yl,... ,Ym)
around y such that, using the local biholomorphism = sl x gm-1,

®(y) = UPHY),YZ,...,YnQo

By our previous remark and iv) above, it suffices to prove our result in the case
when dim X = dim Z = 1, I this case, we denote by t a local coordinate at a
point y of X, according to tradition, and we may assume that, V 1<i <j < n,
projection on the (i,j) coordinates maps I birationally to a plane curve of equation

F..(x.,x,) =0, Since F, , € J_, we have
ijoij ij z

a, Gx(t)) % (e (6), %,(80) + 2, Gel8) g G (8), D) = 0

Assume we show that there exists V i,j, a meromorphic function v(t) with

dx, (t) dx, (t)
%WM)=VM

a (x(t)) = v(t)

i J
dat  ’ dt
then all the (2X2) minors of the matrix

&lm &Jﬁ
dt ot dt

al(x(t) - an(x(t))

vanish, and we can conclude that there is a v(t) with ai(x(t)) =v{t) (dxi(t)/dt) for

each i, provided the following holds true,

Lemma 1,12, Let £ be a germ of plane curve singularity, with equation f(x,y) = 0
and let X = Cpl(t), y = CPZ(t) be a parametrization of a branch of Z, Then, if al(t),

az(t) are functions such that

a)(6) S5 (2,00, 2,0 + &) 5 (0,0, 2, 0) =0,

there does exist a meromorphic function v(t) with
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de (t)
dt

ai(t) = vit) i=1,2) .
Proof, Write f = fle where fl = 0 is the local equation of the given branch.
Clearly

of af1
2 (9,0, 2,0) = 5 (9,(8), 2,(0) « £, (2,(0), ¥, (1))

and analogously for 9f/9y: since fZ(Cpl(t), sz(t) # 0, we can indeed assume £ to
have only one branch, Without loss of generality we may assume
m m+c
P ) =7, 9,00 = gle) =t 4 e
{m is the multiplicity, c¢ the local class)., As classical, we use a base change
2 -
P (CZ > € sending (t,y) to (x = tm,y): then 1(Z) consists of m smooth
branches, of equation y - gltel)y = 0, with ¢ = exp(2Ta/-1/m), i=1,...,m (the
first of these branches coincides with the given parametrization). Clearly the pull-

%k £
backs ¢ (8f/08y) and ¢ (9f/8x) coincide, respectively, with

and m-1 ot

of(t,y) 1 af(t, y)
9y mt

Since

te,y) = [ v -ge'y
i=1
by assumption
af(t y) m-1 8£(t,y)

2, (®) 5o

+ az(t)mt

vanishes identically after plugging in y = g(t). We get

-a,(®) Z TT (v - g(teJne g (e +ay () me ! 2 g (v - g(ted))
i=1 j# i=1 j

and plugging in y = g(t), we obtain

a, (t) ag(t) + a,(0) mt™ = 0

Q. E.D, for the lemma.,

Now

dxi(t)
ai(x(t)) = v(t) it H

let m be the multiplicity of the branch (i.e. m = min ord’{,£ xi{t))) and assume
xl(t} =t : then c;rdt ai(x(t)) 2 m, hence ordt v{t} 2 0 and g is holomorphic,

It remains to be proved that the given homomorphism of N2 |w into @ Ncp is
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injective, In view of (11.10) we have to show that if a section & of ®W @ @E lies

in the image of @ @X , then its image in NZ { equals zero,

w
By 11,2 it suffices to show that its image in N

v
z|w zlw’
since § is tangent to I at the smooth

= Hom(IN (92) is

zero, Let Vv be a section of NZ EW :
points of £, (&, v) vanishes on an open dense set, thus (E,v) =0, I being

reduced, Q. E,D.

We shall not pursue here the analogue of Kuranishi's theory for these
deformation theories {cf. [Sen], [wanl, [B-W1, [Pa] }, in fact, as we have shown
already and will see in the sequel, it is very hard to compute the obstructions in
almost all the examples, whereas geometry can help to find a complete family of

deformations,

§12, Surfaces with ordinary singularities

Here X is a smooth surface and will hence be denoted by S, ®: §> L C W,
where W is a smooth 3-fold is a finite map, birational onto its image I, which
possesses only the following type of singularities:

i} nodal curve {xy = 0 in local holomorphic coordinates)

ii) triple points (xyz = 0 in local coordinates)

iii) pinch points (x2 - zyz = 0 in local coordinates),
A will be the double curve (= Sing(Z)) of ¥, smooth at points of type i), iii), with
local equations x =y = 0, and with a triple transversal point at each triple point.
We let D= (:p~1(A) < S, and notice that a pinch point p’ has just one inverse image

point p, where we can choose local coordinates (u,v) such that
2

(12, 1) pla,vy = {uv,v,u )

hence in particular D = {(u,v}]v =01},

Proposition 12.2. If T has ordinary singularities, the morphism ¢ is stable

. . 2
(i.e., ch. 11,4, CQ*(NQp) = NZIW)°

Proof, In view of 11,6 and 11,9, it suffices to consider the case of triple and pinch
points, and to prove that ‘72;: 1 w goes onto @*Ncp . To do this, we shall explicitly

compute these two sheaves,

Lemma 12.3, N @Z(Z) is the subsheaf of sections g vanishing

! c =
o|w Ng |w
on A and satisfying the further linear condition: 8g/8y = 0 at the pinch points.
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Proof, g € N’ iff it belongs locally to the Jacobian ideal of I, i.e. (x,y) for

zlw
2
the nodal points, (xy, yz, xz) for the triple points, (x, vy , yz) for the pinch points.

2
At the pinch points, g € x, v ,yz) = g =xg, 1veE, with gZ(O,O, 0) = 0 =
dg/dy (0,0,0) = 0, Q. E. D.

Remark 12,4, Since g vanishes on A, clearly 09g/8z = 0 at a pinch point p" .

Hence the condition 8g/8y = 0 can be formulated also as: E{g) = 0 for each tangent
2

vector at p’ lying in the tangent cone to I, {x =01}, Clearly this last formulation

is independent of the choice of coordinates,

Lemma 12,5, Let PpresesPp be the points of S mapping to the pinch points
’ ’ ~
P/s.e0sPy Of I: then Ncp H p 6 (th D).

1

Proof., By 11.9 and 12, 3 we know that Ncp coincides with CP (N ) exceptata

s iw
finite number of points, and that Co (NZ !W) equals to 4’6 (Cp 5. D), where J’ is
an ideal sheaf of a O~-dimensional scheme, Hence Ncp is also of the form Ncp =

J(SS(CQ«\ £- D), with dim(supp(6& To determine the ideal J§, we first notice

that supp(@s/cg) = {pl,...,pk} , then that, at P, Ncp = coker & - 6  where
& = differential of @, sends a pair (gl,gz) to a triple fl =vg, +ug,, fz =8,

_ : 3 .
f3 = Zugl. The homomorphism of 6~ - szi sending (fl’fz’f?a) to (Zv.f1 -vf3)
clearly gives an isomorphism of Nqo with sz‘ . Q.E.D,

i —

We can now finish the proof that (N ) = NZ IW: in fact ¢ @S(-D) =
6 (-A), as it is easy to see, whereas at the pmch points ?7( (9 (-D) = (uv, VZ),

whereas g € N! iff g = xg, tye, with g, € 772 /3 as we have already seen,

w7 pi
CP (g) = uv @ “(g ) + v P g, € 77( S(-D), and we can conclude since both sheaves

*(Ncp) o N have codunensmn 1 in (92( Z-A).

zlw
Q.E. D, for Proposition 12,2,

Corollary 12,6, If I has ordinary singularities only in the smooth 3-fold W, then

there exists an exact sequence
o o, % [+ S 1 1, *
0->H (@S) » H{p SW) - H (NEIW) > H (SS) > H (¢ @W)

—»HI(N )—>H(®)—>H(CP®)”>H(N )0

oW ziw

Proof, Obvious from the Leray spectral sequence for the finite map ©.
Q.E.D.
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Definition 12,7, @W( ©)(-A-c’), where ¢’ stands for "cuspidal conditions, " is
defined to be the inverse image of N/

5 [W under the surjective homomorphism
®W(Z) - @2(2) =N

z

The heuristic explanation for @W( (- A-c’) (cf, [Ko 2]) is as follows:
assume that you deform the singular locus of I by deforming with a parameter ¢
the local coordinates x, y, z; then if X{t)=x +tE 4+ «e0 , Y} =y +tT + ...,

Z({t) =z +t{ + ..., the local equation of £ changes as follows:
XY = xy + t{8y + nx} + o>

XYZ =xyz +t(8yz + Nxz + (xy) + o+

2 .2 2 2 2
X =Y Z=x -yz+t28x-2z2yN-Cy )+ +--

Hence, if f = 0 was the old equation, the new one is of the form f +tg + ... ,
where g is a section of @W( I} vanishing on A and satisfying the cuspidal

conditions,
We clearly have an exact sequence (f is a section with div(f) = Z) .

(12,8} 0 - @WL @W(Z)(-A.c’} > N’ 0,

siw ~

and Kodaira, after Severi, gives the following (cf. [Ko 2]).

Definition 12,9, £ is said to be regular if HI(GW( )(-A-c’)) = 0, and semi-

regular if Hl(GW( ) (-A-c ) - Hl(N ) is the zero map.

o |w

3

Remark 12.10, The two definitions coincide if Hl(@w) = 0, e.g. for W=FP ,
We have the following,

Theorem 12, 11 (Kodaira, [Ko 2]}, ¥ £ is semi-regular the characteristic system
of the map ®: S » £ is complete; moreover, there is a smooth semi-universal
family {Cpt} of deformations of ©: S » ¥ such that the characteristic system is

complete also for t # O,

Unfortunately, the condition of semi-regularity is a very strong assumption
upon £ © W: we shall, following Kodaira ([Ko 2], [Ko 3]), consider from now on
3 .
only the classical case where W =[P~ , and regularity coincides with semi-

regularity.
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Theorem 12,12, X X is a surface in £P3 of degree n with ordinary singularities,

% is (semi}-regular if and only if the cuspidal conditions are independent on the

space of polynomials of degree n vanishing on the double curve A of I (i.e.,
ag/ay

0—>H((9 3(nH)(A c))—>H(® 3(nH)(A)——>-——>@ (Ep: - 0
1 i

is exact, where H is the hyperplane divisor on P ) .
Proof, By assumption

H'(S (mH)(-A-c’) = H (8 mH)-2)) .
P 134

By the exact sequence

0 - @ -+ 8 3(mIrI)(-A) - GZ (nH)-A) - 0

we have thus to show that 1 ((9 (nH-A)) = () Denoting still by H the pull-back of
a hyperplane, we have H (('9 (nH AY) = H (& (nH D)). Since, by adjunction, the
canonical divisor on S is (n-4:)H- D, by Serre duality, our space is dual to
HI(GS(-4H)), which is zero since H is ample (e.g. by Kodaira's vanishing theorem),
Q.E.D.
The preceding criterion of regula;rity is not so easy to apply directly,
thus the usual method is to reiate the equisingular deformations of I to the
{equisingular) deformations of A (observing that sections of 6 3‘(nH) vanishing
on A of order 2 give trivial infinitesimal deformations of A}, r

We have the usual exact sequences (cf, 9,17)

(12, 13,1} 0 - @ ,{-log A) - 8 > N/ -0
p3 8 3 alp?
.o 2 £
(12, 13, i) 0 ”OA - ®1P3 ® N NA}P3 - 0

and moreover {[Ko 3], thm, 4),

Theorem 12,14, There exists an exact sequence

0 > & 3(nH)(~2/_\.} - 6 s(nH)(-A-c Yy - N >0 .
P i34 A!tp
Idea of Proof (see loc, cit, for details)., Let A be A- {triple points and pinch
points of ] , and let I“\'I be the normal bundle of Z in lP3 . Since the conormal
sheaf NV of A is just & 3(~A)/§!P3(-2A), the basic claim is that there exists an
isomorphism of N into NV

A
isomorphism extends at the cuspidal points onto the subsheaf defined by the cuspidal

~® 6 3(nH): and after that one has to check that this
P
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conditions, and at the triple points there is a similar verification. Since N and
v
N A are dual bundles, the key point is that the equation f of I, locally of the
4
form xy = 0, induces locally two sections of N X’ and globally a non vanishing

2.V
section of A N X ® 6 3(nH), thereby inducing a non degenerate pairing
P

N XN - @Z(nH), hence the desired isomorphism, Q.E. D,

The important feature of 12, 14 is that the left term of the exact sequence
depends only upon the double curve A and the degree n of £, but notupon Z.
Moreover, given any curve A in !PS, by Serre's theorem ({Se 1), there is an

integer

(12, 15) nO(A) = min {ani(®P3(kH)(-2A) =0 Y i=1,2, k>2n} .

3
Theorem 12.16, Let L be a surface of degree n with ordinary singularities in P
having A as double curve; if n ZnO(A), Z is regular if and only if Hl(N'[ 3) = 0.
AP
In particular Z is regular if H1(® 3 86,) =0,
il A

Proof., By the cohomology sequence attached to 12,14, and by 12,15,

HI(®P3(nH)(-A -c’y = HI(N' ).

AP’

The other assertion follows from (12, 13.1ii). Q.E,D,

Theorem 12,17, Let I be a surface of degree n with ordinary singularities in lP3
having A as double curve, and let A be the normalization of A,

i) ¥ T is the divisor on Z& given by the sum of the triple points, and H is
the hyperplane divisor, tl’ien if n=z nO(A) and @A(H-T) is non-special
on {every component of) A, then I is regular,

ii) ¥ there exists a surface I’ of degree n’ containing A, and such that

the divisor CP:F(Z’) on S has no multiple components, then

14
no(A)Sn+n - 3.

Proof, i} by 12,16 it suffices to show H1(®P3 ® @A) = 0. By the Euler sequence
(6.3) tensored with @A , it suffices to show that HI(GA(I)) =0, Now, if y: A A
is the normalization map, L})* (@A(H_T)) = ??ZT(SA(I), where ?}?T is the ideal sheaf
of the triple points, Hence Hl(mT @A(l)) = 0 and we are done by the exact sequence

0> Mp6, (1) » 6,(1) = 7 >0

where T is a skyscraper sheaf with stalk = € at each triple point,
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ii) let k be an integer 2 n +n' - 3 and consider the exact sequence

0-6 ,kH-Z)» 6 kH)(-24)~> 6 (H-24) » 0
[p3 [P3 z
Since Hi((‘; 3(kI—I- o)) = Hi(® 3((k-n)H)) =0 for i=1,2, it suffices to show the
vanishing OE? Hl(GZ(kH- ZA)).[P Since @Z(-ZA) =P, @S(-ZD), we want the vanishing
of Hl(@S(kH-ZD))° As in 12,12, since KS = (n-4)H - D, the dual vector space is, by
Serre duality, HI(GS(- (k-n+4)H+ D)), By assumption, n'H = Cp*(Z') =D+T,
hence we want the vanishing of Hl(@s(-aH - T)), where a=-k-n+4-n’21, But
[aH + T'| maps to a surface and |aH + I'| contains a reduced connected divisor,
hence one can apply the Ramanujam vanishing theorem (cf, e.g. [Bol,[Ram]).

Q.E.D.

By 12,14, if n 2n_(A), then HO(®P3(nI—I)(-A—c')) goes onto H (N’ 5):
on the other hand, by (12,8) this surjective homomorphism factors through the one
onto HO(N; [P3)’ which has the subspace C€f as its kernel (f = 0 being the equa-
tion of L), Assume now A to be smooth (thus I has no triple points): then if the
characteristic system of Z is complete, and n =z nO(A), then also the characteristic

system of A is complete; moreover, Kodaira (loc, cit., p. 246) proves the

converse,

3 .
Theorem 12,18, Let I be a surface of degree n in [P with ordinary singulari-
ties and smooth double curve A. Assume n 2 n, (A): then the characteristic sys-

tem of A is complete if and only if the characteristic system of I is complete,

This theorem, corbined with Mumford's example 9,11 of a family of space
curves A for which the characteristic system is never complete for each A, shows
the existence of many surfaces I such that all their equisingular deformations do
not have a complete characteristic system: in fact, given an n such that
(9'P3(n)(—2A) is generated by global sections, it follows by Bertini's theorem that
the general section f € HO(GIP?,(n)(-ZA)) defines a surface Z smooth away from A,
and with ordinary singularities only,

This result, obtained 20 years ago, culminated a very long history of
attempts to show that the characteristic system of a surface L with ordinary singu-
larities should always be complete (we defer the reader to [En}, [Za], especially

Mumford's appendix to chapter V for a more thorough discussion),
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We simply want to remark again that the fact that the characteristic system
is not com plete does not imply the singularity of the base B of the Kuranishi
family: in fact, for t € B one can have a deformation th of the holomorphic map

3 %
P: S P if and only if the cochomology class of H (= ¥ (hyperplane)) remains
of type (1,1) on St .

Example 12,19, A classical case where Kodaira's theorem 12,17 applies is the

case of Enriques' surfaces Z, with equation

3

£ 2.2 2 2 z I )
XO,XI,XZ,X3) —XOXI X, X, e 5 xoxlxzx?)q(x ,

where q(x) is a general quadratic form, Here A consists of the six edges of the

coordinate tetrahedron {x x =0}, n=6, The normalization A of A con-

071723
sists of 6 copies of P, and @&(H»T) has degree (~1) on each component, hence
is non special (HI(GPI(-l)) = 0!). The surface I’ to be taken is a general cubic

surface of equation

3
X X X_X z —-1——0
012" 3\ & ik, T ’
i=0 i

hence no(A) z 6, and T is regular,

The characteristic system has dimension 25 and it is easy to see that a
smooth complete family of deformations of T is obtained by taking images under
projectivities of surfaces in the above 10-dimensional family, Working out the exact
sequence 12,6, we see that the above 10-dimensional family has bijective Kodaira-
Spencer map, so that the Kuranishi family of S is smooth, 10-dimensional, This
last result can also be gotten in a simpler way: since K_=2H - D, and

S

© (x0x1x2x3) = 2D, we get ZKS = 0, On the other hand, if KS

a quadric containing A, what is easily seen not to occur, Hence KS £ 0, ZKS =0,

= 0, there would be

Moreover X(@S) = 1, Taking the square root w of e and then normalizing

2
0 1,x2,x3) Iw = KR XX, f(x) = 0}, we get 2 smooth

surface S’ (called a K3 surface) possessing an unramified double cover I: s’ s,

g = 0, and, since X(64) =2, Hl(@S,) - HO(QIS,) -o0.
Now H2(®S) is the Serre dual of I—IO(QIS ® Q?S,) = HO(Q;,) = 0, hence there are
no obstructions for the Kuranishi family of S (of S’, too).

the surface %’ = {tw,x ,x

It is easy to see that K
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Example 12,20 ([Ko 3], [Hor 4], {Us 1). Let AC P’ be a smooth curve, the
complete intersection of two surfaces, A = {F=G=0}, Then one can consider
the smooth family of surfaces of degree n having A as double curve, By our
assumption, it is easy to check that, if deg ¥ = a, deg G =b, the equation of I

can be written in the form

2 2
(12, 21) AF 4 2BFG 4+ CG
where deg A=n-2a, deg B=n-a-b, deg C=n-2b,

The results of Kodaira-Horikawa and Usui can be summarized as follows:

varying A, B, C one gets a surjective characteristic map, so that
(12.22 i) the characteristic system is complete,

Using the standard Euler sequence, it is possible to prove that, in the exact
sequence
1 %
N ) s H (9 - o' o
il P

o]
S

)
z P>

3)
the homomorphism G is injective, hence in particular

(12,22 ii) The Kuranishi family of S is smooth,

Furthermore,

(12,22 iij) the above surfaces are not (semi)-regular,

(12.22 iv)  the pairing H (8) X HO(Qz) 5 Hl(Qé) is non degenerate in the first
factor ({this result is called Infinitesimal Torelli property, and actually
Usui proves the above result, provided n = no(A), also in the more

general case of theorem 12,17),

This example shows clearly how the condition of semi-regularity is much
2
too restrictive {in fact, as we noticed, it is an analogue of the condition H (@X} =0

in order to ensure smoothness of the Kuranishi family),

§13, Generic multiple planes and equisingular deformations of plane curves
with nodes and cusps

: 2
We consider again a smooth surface S and a finite morphism ¢: S>> #F ,
of degree d; we let, as usual, H be the pull~back of a line, and we denote by R the

ramification divisor of @, i.e., given the exact sequence
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Cp:': E3
{13, 1) 0 - @S —_— @[pz - N(D > 0
- 2 o, 2 % 2 v
the divisor of zeros of (A ©_ ) €H {{A © ® 2) ® {A @S) 3.
B P

The following is a classical

Definition 13,2, ¢ is said to be a generic multiple plane (or a stable morphism) if
R is smooth, ®(R) = B (the branch locus) has only nodes and ordinary cusps as
singularities, ¢ R® R - B is generically 1-1,

At the points of R, the normal form of ¢ {(for suitable local holomorphic

coordinates in the source and in the target) is as follows:

2
{13,3 1) P{x,y) = {x ,y) at the points p € R with @(p) notacuspof B

(13. 3 ii) P x,y) = (v, yx_x3) at the points P; of R with cP(Pi) = Pi' a
cuspidal point of B.

(13, 3 i) and ii) imply that Ncp is an invertible @R-shea.f. It is easier though, to

compute @ *(N Cp): we apply @, to 13,1 to obtain

P
0 - $*®S —— > ®1p2 ® Qp*@se Qp:chp_) o .

Proposition 13,4, The trace map ¢: ®[P2 ® @ @S - ® , induces an isomorphism
D

of N _ with ® ,/® _(.log B); in particular, ® N_ = N’ .

% 2 2 ’ Tk 2

® L ? B|P
Proof, The statement is almost obvious for the points of IP2 which are not cuspidal
points of B, At a cuspidal point pi' , if p; € R is such that Cp(pi) = pi’ , we see
immediately that
(@, N, =8 ,®0, 6. /09, 0, ).
© pi Pz * S, Pi * S, pi

These two are 6 2 modules and, if we choose coordinates as in 13.3 ii},
P » Py
i

3
(v,2z) at P, such that z = yx - x , a basis for Py (o} is given by

S,p
2 .5 20 B3 B 230
ax " T ax ox ' oy ' T oy’ oy ’
while a basis for @ 2 ® cp%@S is given by
4 ® spi
o 8 28 b5 5 23
oy ' oy X By’ 9z’ F8z' T Bz °
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0 1
Since the Jacoblan matrix 0. is ( ) , we see that the image of @ is the
‘ (

2
submodule generated by y-3x) x

3 9 il 23 2 3 3
8Y+XBZ’X8Y+X 520 ¥ 8Y—F{y‘x-z)az R
{13.5)
2.8 J 2.8
(y-3x) 5, (32-2xy) 5, (3xz - Zyx ) o .
We use now the symbol = to denote congruence modulo the submodule image (ED),

and we deduce from (13,5) that

x2=_0 20 1 3 9. 290_ 1 28
9z 8y’ 8z 37 bz’ by * 9z "37 bz
2O 8 8 88 8., B_ . 3
oy P8z "8z faz Yoy "%z Tax Yoy
- ® 2 F 2 3
0 = L L= L LY _ =z L
3 55 T BE 5, %% 37 32 -

We readily infer that Py (Ncp) is isomorphic to the quotient of ®IP2 by the sub-
module generated by 2y(0/8y) + 3z(9/82z) and by 9z(8/dy) + Zyz(a/az): it is immed-
iate to check that this last submodule is indeed & >(-log B), since the equation of

B = 9 (R) is given by 4\/3 - 2’722 = 0, " Q. E, D.

The previous proposition shows that infinitesimal deformations of the stable
map © correspond to infinitesimal equisingular deformations of B, On the other
hand, if {Cpt: St - IPZ }t €T is a deformation of @, it is easy to verify that the
condition that ¢, be stable is an open one, and {Bt} = {cpt(Rt}} is an equisingu-
lar family of plane curves with nodes and cusps, Conversely, if {Bt }t €T is an
equisingular family of curves with nodes and cusps which is a deformation of B= Bto,
we see that for t near to to the pairs {IPZ,B) and (!PZ,Bt) are diffeomorphic,
and in particular I 1(!PZ - Bt) = I 1((‘?2 -~ B}, Thus, the associated subgroup of the
covering ®: S - C\O-I(B) » P*.B determines another smooth surface S, with a

stable morphism Cpt: SJC - IPZ and it is not difficult to verify that in this way we get

a deformation of ¢ with base T, We have thus

Theorem 13,6, There is a natural isomorphism between the characteristic system
Ho(Ncp) of a generic multiple plane ¢ and the equisingular characteristic system
HO(N' 2) of its branch curve B, Also, the characteristic system of ¢ is com-

B|P
plete 1_! and only if the equisingular characteristic system of B is complete,
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Again 9,11 and 12, 18 imply the existence of plane curves with nodes and

cusps whose equisingular characteristic system is obstructed: in fact, if

‘s s>z c IP3 is a map to a surface with ordinary singularities, it is well known
that there exists a point p in !P3 such that the projection II: [P3 -{p} -~ IPZ with
centre p malkes ®= [1° @’ into a generic multiple plane. I is then clear that if
{tp;} is a deformation of ©’, then {Cpt = lle Cpt'} is a deformation of ®, Con-
versely, as remarked before example 12,19, if {cpt} is a def(zrma.tion of t, then
there is a deformation cpt' of ' if and only if setting Ht = Cpt {hyperplane in 1132),
of HO(® S(H)) extend holomorphically in t to 4 sec-

3

. o
tions Kopreeer ¥y of H (@St(Ht))'

This property holds in particular if dim HI(GSt(Ht)) is independent of t:

the four sections KareeesX

we defer the reader to [Wah] for more details, as well as for a very precise
account of the theory of equisingular deformations of curves with nodes and cusps,
Again here we have to remark that Enriques tried several times to show that curves
with nodes and cusps were unobstructed, but this is not true, by the example of

Mumford-Kodaira-Wahil,
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LECTURE FIVE: SURFACES AND THEIR INVARIANTS

§14. Topological invariants of surfaces

In this section and the following ones, we shall very quickly review some
basic facts about the topology of compact complex surfaces, and roughly outline
the Euriques-Kodaira classification of (compact) complex surfaces. We defer the
reader to [Bo—Hu] , [Be 1), [B-P-V], and also to the survey papers {ci], [ca 2]
for a thorough, update and exhaustive treatment., Given a {compact) complex sur-
face S, we shall consider its underlying structure as an oriented topological 4-
manifold, and also its differentiable manifold structure.

The main topological invariants of S are

HI(S): the fundamental group of S

bi(S) = dimQ Hi(S,Q), the Betti numbers of S
4

e{S) = Z (~1)i b.(S)=2-2b_ +b,, the topological Euler-Poincaré
S0 i 1 2
characteristic of S

(14.1) T: theztorsion subgroup in Hl(S, Z) {and in HZ(S, Z))

Q = H(S5,Z) » Z, the integral unimodular quadratic form given by
cup product {(composed with evaluation on the fundamental

class of S)

+-
b ,b : the indices of positivity, resp. negativity, of Q

T = b+—b-: the signature of the manifold {note that the rank of Q

is by=b +b)
The differentiable structure determines the real tangent bundle of S and its second
Stiefel-Whitney class WZ(S) (cf. [Mi-Stal), by a theorem of Wu, determines wheth-
er Q(x) is aneven (i.e. Q(x) even ¥ x in HZ(S,Z)) or odd form, since Q(x) =
WZ(S) . x (mod 2), Now, it is known (cf. [Se 2]} that all indefinite unimodular quad-
ratic forms are determined by their rank, signature and party: if they are odd,

then they are diagonalizable over Z t(hence with £1 entries on the diagonal), and

if they are even, they can be brought to a block diagonal form, with building blocks

_ /01
U= {7 o) and 2 0 -1 0!
0 2 -1
-1 0 -1,
E_ = 0 -1 -1 2 -1 or -E
L e S | 8
12 -1
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Notice that 'T(Uz) =0, T(E8) = 8, and, by a theorem of Rokhlin [Rk], if w, = 0,
then T =0 (mod 16) (w2 =0 => Q is even, but not conversely, cf, [Hab] or 17,6).
What can be said about Q when  is definite? Donaldson [Do 1] recently

established the following remarkable result.

Theorem 14.2, Let M be a compact oriented 4-dimensional manifold with definite
inter section form Q: then Q is diagonalizable (i.e., its matrix is * Identity ina

suitable basis).

The importance of the intersection form Q lies in the fact that it is the
unique topological invariant when the 4-manifold M is simply connected. We have

in fact ([Fre} )

Theorem 14.3 (M. Freedman), Let M, M’ be compact oriented topological 4-
manifolds, and assume that they are simply-connected, and have the same inter-
section form Q. If M, M’ have a differentiable structure, they are topologically
equivalent. More generally, given Q, there are at most two topological types of
4-manifolds M with form Q and Il 1(M) = 0: if there are two, they are distin-
guished by the property whether MX [0,1] admits or doesn't admit a differentiable

structure,

§15. Amnalytic invariants of surfaces

Before giving a list of invariants, it is convenient to clarify that in some
cases we are talking about biholomorphic invariants, in others about bimeromorphic
invariants. To explain the notion of a bimeromorphic map, we recall that two
smooth algebraic varieties X and Y were classically said to be birational if
their fields of rational functions €(X), €(Y) would be isomorphic. Such an iso-
morphism does not induce a biholomorphic map, but only a "generalized" graph,
i.e., a closed subvariety T of XXY such that, Py» Py being the projections oun
both factors:

(15.1) i) there exist closed subvarities I, of codimension at least 2 in X

X
(resp.: IY), such that the restriction of P, from

-1
T-p (L) » X-Iy

is biholomorphic (same condition for pz),

ii) I is irreducible (hence ' is the closure of T - pil(IX)).
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Replacing the word ''subvariety'' by the word 'closed analytic subspace' (actually,
in the sequel we shall make little distinction, since by Chow's theorem a closed
analytic subspace of a compact algebraic variety is an algebraic subvariety), we

obtain the definition of a bimeromorphic map,

Definition 15,2. A bimeromorphic map between compact complex manifolds X, Y
is a biholomorphic map ¢ between open sets of X and Y, UX and UY , such

x * Y - UY are closed analytic subsets, and the closure T of the graph
of ® is a closed analytic subset of X XY satisfying properties 15,1,

that X-U

In general, for a compact complex manifold X, we denote by €{(X) its field of

me romorphic functions and we recall the following famous result of Siegel [sie 1].

Theorem 15,3, €(X) is a finitely generated extension field of € with transcend-

ence degree a(X) over € with a(X) < n = dimc X.

Remark 15,4, & is easy to see that a bimeromorphic map between X and Y in-
duces an isomorphism between C(X) and €(Y). Moreover, for an algebraic variety X
C(X) coincides with the field of rational functions and, if dim Y = a(Y), <C(Y) =
€(X), then Y is bimeromorphic to X. Sucha Y does not need to be algebraic if
dim 2 3, and is usually called a Moishezon manifold {(cf. [Moi 1]}, [Moi 2]).

In dimension 2 the bimeromorphic maps are obtained as composition of certain

elementary bimeromorphic maps which we are going now to describe.

Example 15,5, Let X be a complex manifold, p a pointin X, (zl, o ’Zn) coordi-
nates in a neighborhood U of p, with p corresponding to the origin., Let U be
the closure of the graph of the meromorphic map U - [Pn—l sending (Zl’ cooy Zn) to
the line (E(zl, . ,zn). Then, glueing fJ with X - {p} in an obvious way, we ob-
tain a new manifold X, with a proper holomorphic and bime romorphic map

6: X » X such that

i} U-I(p), which is called the exceptional subvariety and denoted by E, is
isomorphic to an-l .

ii} The normal bundle N is isomorphic to 6 n—l('l)'

E|X
iii) © %.p 852 biholomorphism,

¢ is called an elementary modification and c“l is called the blow-up of the point
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The following result is classical,

Theorem 15.6. Every bimeromorphic map of complex surfaces factors as a com-

position of blow-ups followed by a composition of elementary modifications,

Definition 15.7. A complex surface S is said to be minimal if every holomorphic

and bimeromorphic map ¢: S - S’ is a biholomorphism.,

Remark 15,8, If S 3 S is an elementary modification, then the lattice Hz(g, z),
equipped with the quadratic form (3, is the orthogonal direct sum HZ(S, Z) © ZE,
where E is the cohomology class of the exceptional curve E, with DEY=-1. I
particular Q is odd and b,(8) = b, (S) + 1.

Conversely, if a complex surface S contains an exceptional curve E of the

I kind, i.e. E=@ = 6 ,(-1) (or, equivalently Q(E) = -1) then there
el

Ng|§
exists an elementary modification ¢: S » S with ¢(E) = a point in P, and the
second Betti number of S is equal to bz(g) -1, This is the classical result of
Castelnuovo and Enriques, extended by Kodaira in the non algebraic case, and gen-
eralized by Grauert in [Gr 2] ; combining this with another deep theorem of

Castelnuovo and Kodaira, we obtain the following

Theorem 15.9. A complex surface S is minimal if and only if it does not contain
an exceptional curve of the I kind., Every complex surface S’ is a blow~up of a
minimal surface S, and S is unique up to biholomorphism except if S’ is ruled,

1
i.e. S’ is bimeromorphic to a product CXP .

Another biproduct of the structure theorem 15,6 of bimeromorphic maps of

surfaces is the following theorem of Chow and Kodaira,

Theorem 15.10, A (smooth) complex surface S is projective (i.e., a submanifold

of some projective space) if and only if a(S) = 2.

We should also remark that, by the result of Kodaira ([Ko 1], thm, 6)
quoted at the end of §9, all small deformations of a non minimal complex surface
are again non minimal, while we saw (use prop. 6,19, and the fact that Fl is the
blow-up of a point in [PZ) that is is not true for deformations in the large.

We can now start to review some of the classical bimeromorphic invariants

of surfaces. The following are numerical invariants,
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pg , the geometric genus, is h (6 ) = dlmensmnc HZ((SS)
(15.11) q , the irregularity, is h (6 )
2
Pm the rnlCh plurigenus, is n° ((Q )®m :ho(»@s(mK)
A more subtle invariant is the graded ring
(15, 12) R(S) = & HO(GS(mK)), the canonical ring,

m=0

Definition 15.13. Let Q{S) be the field of fractions of homogeneous elements of the
same positive degree in R(S): then, either Q(S) = ¢, or Q(S) is algebraically closed
in €S}, and the Kodaira dimension of 5, Kod(S} is
- if (8 =
{ tr degc Q(S), otherwise,

The above definition is not the unique possible one: denoting by cpm the mth

pluricanonical map, i.e. the rational map P S-- > IPPm'l attached to the

sections of HO(GS(mK)}, one can also define Kod(S) to be max (dim Cpm(S)).
m

. . . et 7,
From the complex point of view, one can consider divisors D, D’ and con-
s . . PR 1 : :
sider the intersection number of two divisors, D« D', as classically defined
through algebraic equivalence: since to a divisor D one associates the invertible

shea.f €] (D), one sees that, denoting by ¢, (I Chern class) the homomorphism of

1
1
H (G ) (cla351fy1ng isomorphism classes of invertible sheaves) to H (S, Z) appear-

ing in the cohomology sequence of the exponential sequence

%k
0 »2mizZz->6 ZBh g 5 0,

the bilinear form of intersection on HZ(S, Z) extends the classical intersection
product. It is in fact true more generally that many of the analytical invariants,
whose definition depends upon the complex structure of S, are in fact determined
only by the topological structure of S.

Notice that, by 15.6 and 15.8, Hl(S), T, bl , b are bimeromorphic
invariants,

Another classical invariant is

2
p(1) -

(15, 14) = K 4 1, the linear genus of S,

2 1 .
K™, as well as p( ), are not bimeromorphic invariants, but, if a surface S’ is

not ruled, one can consider, e,g., the linear genus, and all the possible analytical
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and topological invariants of the unique minimal surface S bimeromorphic to s’
(S is called the minimal model of S').

¥ you perform a blow-up, e = 2 - 2b1 + b2 goes up by 1, KZ drops by 1:
hence K2 + e is a bimeromorphic invariant, and an extension to complex surfaces
of a classical theorem of Noether identifies it with a combination of previously

encountered invariants, We have (cf, [Hi 1]), the following

2
Theorem 15,15, (K +e) =12(1 - g +pg) =12y {(x=1-g9g +pg is the Euler~

Poincaré characteristic of the structure sheaf @S).

Another result of the same type, which represented a real breakthrough in
the classification of complex manifolds, is the index theorem of Atiyah-Singer«

Hirzebruch,
+ - 2
Theorem 15,16, 37 =3k -b )} =K - 2e.

Let's observe now that, by Serre duality, p  is also the dimension of
HO(Q }; in general holomorphic 1 and 2 forms on fsurface are d-closed, so that
there 1s, usmg DeRham's theorem, an 1nc1usxon " (Q ) < I—I (s, €,
H° (QS) < H {S, €}. Moreover, if 1 ex’ {Q ), n a B closed {0, 1) form and gives,
by Dolbeault's theorem, a cohomology class in H (6}, In this way one sees that
b > Zpg, I (QS) < q, (2q -b1 2 0, and the upshot is that, by a clever f’;anipulm
tion, the index theorem tells you that the sum (of positive integers!) (b - Zpg) +

(2q - bi) equals 1: we thus have, (cf. [Ko 4]).

1

Theorem 15,17, ¥ b, is even, 'b1 = 24, bt = Zpg +1, ho(le) =q; if b1 is odd,
b1 =2q-1, b+ = Zpg, ho(ﬂls) =g~-1., Inparticular, if b

1 is even and pg =0, S
is a projective surface,

There are several other results pertaining to inequalities between numerical
invariants, or limitations in their range, but it is more convenient to postpone these
to the next section, as being part of the classification theory.

We just end this paragraph by mentioning a consequence of the previous

theorem

Corollary 15,18, The intersection form of a complex surface S is semi-negative
definite if and only if b1 is odd and pg =
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LECTURE SIX: OQUTLINE OF THE ENRIQUES-KODAIRA CLASSIFICATION

§16. Definition of the main classes of the classification

First of all, the main purpose of the Enriques-Kodaira classification is to
partition all surfaces, considered only up to bimeromorphic equivalence, into 7
classes, in such a way that the knowledge (by explicit calculations) of some numeri-
cal invariant (or some more refined invariant, as the triviality of the canonical
divisor) may allow to draw several conclusions about the structure and the geometry
of some surfaces taken into consideration,

Its analogue in dimension 1 is the rough subdivision of curves according to
the Kodaira-dimension, Kod = -» if the genus g is 0, i, e, the curve is [Pl s
Kod =0 if g =1, i,e, you have an elliptic curve, Kod = 1 if the genus is at least 2,
The classification of curves according to their genus is more refined, but it is
closely related to the knowledge of the topology of algebraic curves; in the surface
case, a complete classification, less rough than the one given by Enriques and
Kodaira, seems for the time being out of reach, due to the problem of classifying

all the surfaces of general type,

Definition 16,1, A surface S is said to be of general type if Kod(S) = 2, or,
equivalently, if Q(S) = €(S) (cf. 15.13).

2
Definition 16,2, A surface S is said to be rational if it is bimeromorphic to P,

in particular a rational surface is ruled.

Definition 16,3, A surface S 1is said to be elliptic if it admits an elliptic fibration,
i,e., a surjective morphism f: S - B, with B a curve, and with the smooth

fibres of f being elliptic curves,

Remark 16,4, If S is elliptic, a(S) =2 a(B) = 1; conversely, if a(S) =1, there
exists a curve B with €(S) = C€(B), and an elliptic fibration f: S > B, such that
all the curves of S are components of the fibres of f, K S is elliptic, then

Kod(S) <1, and S is not of general type,

We can now pass to the list of the seven classes of surfaces, some of them

being divided into subclasses,

Class 1): Ruled surfaces (i.e. bimeromorphic to a product C X IPI): these are

distinguished by the irregularity g which equals the genus of C, and
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they are rational if g = 0, Their minimal models are EPZ , and IPI-

bundles over curves C,

From now on, since the minimal model is unique, we shall only talk about

the minimal models.
Class 2): K3 surfaces, defined by the condition g =0, K & 0,

2
Class 3): Complex tori, i.e. surfaces biholomorphic to a quotient € /Q, where

Q is a subgroup generated by 4 vectors linearly independent over R.

Class 4): Elliptic surfaces with b1 even, plZ # 0, K# 0, divided into two sub-

classes distinguished by the Kodaira dimension,

Class 4), Kod = 0: Enriques surfaces, i.e, normalization of surfaces as in 12,19,

or hyperelliptic surfaces (explicitly described in [B-DF], cf, {Be 1],

pgs.112-114), quotients of a product of two elliptic curves E XEZ by

1
the action of a subgroup G of El acting on E1XE2 by sending (XI' XZ) to

(x1+g, g(xz)), for a suitable action of G on E_ such that EZ/G = pl .

2

th
Class 4), Kod = 1: Canonically elliptic surfaces with b1 even: Cplz , the 12

pluricanonical map, gives an elliptic fibration.
Class 5) Surfaces of general type (cf. lecture seven),
Class 6) Elliptic surfaces with bl odd, PIZ # 0, with subclasses

Z
Class 6), Kod = 0: Kodaira surfaces, i.e, surfaces of the form € /G, where G

is a group of affine transformations of the form (zl,zz) >

(z1 + a, z, +a z +b). They are distinguished into primary ones,
with b1 =3, K= 0, and secondary ones, with b1 =1, K # 0; the
secondary ones admit an unramified cover of finite degree which is a

primary Kodaira surface,

Class 6), Kod = 1: Canonically elliptic surfaces with b1 odd: %2 gives an

elliptic fibration.

Class 7): Surfaces with bl =1, P._=0(and Kod = ~= in fact): we shall not say

12
much about these, since their classification has not been yet complete-

ly accomplished,
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§17. Criteria of classification and features of some classes

The following result is the prototype of all criteria of classification

Theorem 17,1 (Castelnuovo's criterion). A surface S is rational if and only if

q = PZ = 0°
Ruled surfaces are also the ones which admit several characterizations,

Theorem 17,2, A surface S with bl even is ruled if and only if one of the follow-
ing equivalent conditions is satisfied:

i) P12 =0,

ii} These exists a curve C, not exceptional of the I kind, with K. C <0,

Moreover, if S is a minimal model and b, is even,

1
2
iii) K < 0 if andonly if S is ruled and ¢ = 2,
The following results hold instead when S is minimal, but without the assumption
that b1 be even,

2
iv) K >0, P2 = 0 if and only if $ is rational

v) KZ > 0, P2 # 0 if and only if S is of general type.

vi) e <0 if andonly if S is ruledand q =2 ,

The definition of K3 surfaces we gave in §16 was one of the less explicit
ones: in fact, we could have chosen to define a X3 surface according to the follow-

ing beautiful theorem of Kodaira {conjectured earlier by Andreotti and Weil},

Theorem 17, 3. A minimal surface S is a K3 surface if and only if S is a direct
3

deformation, with non singular base, of a non singular surface of degree 4 in P™ ,

We notice that some of the K3 surfaces can be elliptic, as well as some com-~
plex tori, and this fact justifies the condition K # 0 used to define Class 4), We
defer the reader to [B-P-V] for an excellent survey about K-3 surfaces and their
moduli space,

The following theorem characterizes complex tori,

Theorem 17.4, A minimal surface S is a complex torus if and only if bl = 4,
K =0, Moreover, a surface with K =0 (necessarily minimal) has q = 0, 2, and
thus b1 =0, 4, 3 according to whether S is a K3 surface, a complex torus, or a

primary Kodaira surface,
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As to class 4), we recall that we have already implicitly remarked that the

two subclasses are distinguished by the value of P being 1 or 22, we have in

12
fact the following,

Proposition 17,5,

Kod(S) = -« if and only if P, = 0.
Kod(S) = 0 if and only if P12 -1,
2
Kod(S) = 1 if and only if P12 2 2 and K =0 for the minimal

model of S,

In particular, for the subclass of class 4), where Kod = 0, we have a rather
nice characterization,

= =2, A
12 L bl

= 0 is a K3 surface if Pg = 1 and an Enriques surface if

Theorem 17.6., A surface S is hyperelliptic if and only if P
surface with Pl

pg = 0 (then P2

Zzl,b
:1).

1

For the subclass of class 4) with Kod = 1, we see from proposition 17,5

that a characterization of a minimal model S is

2

(17.7) K =0, P 22, b1 even

12

but, if we are given a non minimal surface, then the conditions b, even, and

|12K| yielding a rational map with image a curve are easier to t:heck. As a
matter of fact, to detect the exceptional curves of the I kind on a surface with
Kod 2 0 {i,e. P12 # 0), the standard way is to look at the smallest m such that
Pm # 0, and then to look at the fixed part of |mK]|, to check which components of
this divisor are exceptional,

Surfaces of general type being taken into account by theorem 17.2.v)}, we

notice that the surfaces in classes 6) and 7) are the ones with b, odd and, in partic-

1
ular, they cannot be Kahlerian, From surface classification and results of Kodaira,

Miyaoka, Todorov and Siu follows also the remarkable

Theorem 17,8, A complex surface with b1 even is a deformation of an algebraic

surface and is Kahlerian,

The two classes 6) and 7) are distinguished by the value of PlZ’ which is #0
for class 6}, and 0 for class 7) (remark, though, that Kodaira's class VIIis differ-

ent from our class 7), being defined by the condition b1 = 1, and thereby including
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also secondary Kodaira surfaces and some canonically elliptic surfaces)., The sub-
class of Kodaira surfaces is again characterized by

(17.9) P,=1, b odd

and we defer the reader to [Ko 4] for a very detailed description of these surfaces.

For lack of time, we don't attempt to describe the known examples and the
classification results for surfaces in class 7), referring to [Nak 1] for a nice and
updated survey,

Let's just notice that, when b, = 1, then, by a result of Kodaira on elliptic

surfaces, we have pg = 0, and the intlersection form Q is semi-negative definite
by 15,18, More precisely, by Noether's formula 15, 15, since ¥ =0, bé = bz - e

= -KZ . Hence, as in the case of ruled surfaces with q =2 2, KZ < 0 as soon as the
Betti number bz is #0, On the other hand, if S is elliptic, by Kodaira's canoni-
cal divisor formula {cf. [B-P-V], pgs. 161-164), a multiple mK of K is linearly
equivalent to a multiple rF of a fibre I of the elliptic fibration, hence in particu-
lar KZ = 0 (the above canonical divisor formula shows also that a surface S ad-
mits more than one elliptic fibration only if it is not canonically elliptic and in fact
only if Kod = 0, since either r = 0 or K determines the elliptic fibration),

We have thus the following

Theorem 17,10, A minimal surface S has KZ < 0 if and only if either 8§ is ruled

with q 22 (bl odd) or S has b, =1, b2>0.

1

2
Since ¥ = K #4 e, by Castelnuovo's theorem 17,2,.vi) and the above one

follows

Theorem 17,11, A surface S has % <0 if andonly if S is ruled with q 22,
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LECTURE SEVEN: SURFACES OF GENERAL TYPE AND THEIR MODULI

§18. Surfaces of general type, their invariants and their geometry

Let's observe that Noether's theorem 15. 15 and the index theorem 15. 16
ensure that the analytically defined invariants KZ and ¥ are determined by e
and T, therefore KZ and ¥ are topological invariants and the advantage of deal-
ing with them stems from the fact that, unlike KZ and e, they don't have to satisfy
any congruence relation. Also, by theorem 17.2, we have Kz , X 21 for a mini-
mal surface S of general type {these are called Castelnuovo's inequalities), and

two more inequalities are satisfied.

2

(18. 1} K = Zpg -4 = 2%-6 {(Noether's inequality)
2

K < 9% (Bogomolov-Miyaoka-Yau's inequality)

In fact, by classification, the inequality is true for all surfaces, except for ruled
2

surfaces of irregularity g = 2, which have K“ = 8(1-q), x =1 - q. S. T. YaulYa]

proved indeed a much stronger theorem, in particular it follows from his results

the following

2
Theorem 18.2, If a surface of general type S has K~ = 9%, then the universal

2 2
cover S of S is biholomorphic to the unit ball in € .

An easily proven but nice corollary concerns the surfaces S for which the inter-
+ 2
section form Q is positive definite: in fact, if “b2 =b =1, since K < 9%,
2 2 2
4K" =3(12%) = 3(K +e), i.e., K" - 2e £ e, which is in turn equivalent to 37 <e =
2+ - . T - =
b2 2b Zhen ZbZS 2(1 bl) and thus bZ 1, bl

+
=0, =0 =1=1+2p )
1 Py g
hence ¥ =1, ¥ =12-3 =9,

Corollary 18.3. The only complex surfaces for which the intersection form Q is

2 2
positive definite have b_ =1 and K~ =9, X = 1: they are either P or a surface

2
of general type with the unit ball as universal cover.

By a resulf of Kodaira, the plurigenera are completely determined by the

2
invariants K, ¥%; we have in fact

Theorem 18.4, If S is a minimal surface of general type, and m 2 2,

P_=x + (1/2K m (m- 1).
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As a consequence of the theory of pluricanonical mappings, that we are going
now to explain, there follows the result that surfaces with given invariants KZ » Y
belong to a finite number of deformation types,

Let's go back to the canonical ring R{S), defined in 15, 12; 18, 4 tells us that
its Hilbert polynomial is determined by Kz , X, and clearly two minimal surfaces
of general type S, S’ are isomorphic if and only if %(S) and R(S’) are isomorphic
graded rings. Before mentioning directly how to recover S from R(S), let's re-
mark that, €(S) being finitely generated, there exists an m such that every func-
tion in C€(S) can be written as a fraction whose numerator and denominator are
sections of HO(GS(mK)), In other terms, there exists an m such that the mth
pluricanonical map Cpm is birational onto its image Zm . Unfortunately, unlike
the case of curves, one cannot expect Cpm to be an embedding: in fact, though
K. C=2 0 for each irreducible curve on S (17.2.1ii)), there can be a finite number
of curves C = Pl with K- C=0 (C2 = -2), and K is ample iff these curves do not
exist on S. Otherwise, since R(S) is finitely generated, one can take X =
Proj R(S) (its points correspond to maximal homogeneous ideals in R(S)), and

there exists a holomorphic map II: S » X satisfying the following properties

{18.5) i) X is a normal surface
i) if it X° > X is the inclusion morphism of the non-singular part of

X, then the sheaf of Zariski differentials w is invertible

. 2
. X~ l*mxo)
and 1[I (wx) = SS(KS) {i.e., X has only Rational Double Points,
R.D,P.'s, as singularities).
iii} every pluricanonical map CDm: S - Zm factors through I and

& : Xz .
m m
Definition 18.6. X = Proj(R(S)) is called the canonical model of 8.

We defer the reader to [Ca 3] for a survey of recent results on pluricanonical
maps of surfaces of general type, and we content ourself with stating 2 by now
classical result of Bombieri.

Theorem 18.7. If m = 5, CBm: X - Em is an isomorphism.
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§19. Pluricanonical images and Gieseker's moduli variet
g Yy

N . .
Recall that a projective variety £ € P°  is said to be projectively normal if

the restriction homomorphisms

O [s]
H (SPN(k)) »> H (64 (k)

are surjective for each integer k = 0, In the case where T = Zm is the pluri-

canonical image of a surface S of general type we have (cf. [Ci 2]).

Theorem 19.1. If m =8, CEm: X - Zm is an isomorphism onto a projectively

normal surface.

We are going now to discuss very loosely the main line of ideas which lead to
Gieseker's theorem about the existence of moduli spaces of surfaces of general

type. First of all, let's recall Mumford's definition (cf. [Mu 2]).

Definition 19, 2. A variety 7 is said to be a coarse moduli space for sur-

K% % ,
faces of general type S with given invariants K , ¥ if there exists a bijection \

between M 2 and the set of isomorphism classes [S] of minimal surfaces as

K, %
above, satisfying the following property: for each deformation § 8 B of such

surfaces, there is given a unique morphism y: B - 7 2 such that $(b) =
K, x
- p *
A 1([Sb] ), and the correspondence (S » B) - U is compatible with pull-backs

(i.e., to the family f 8 » B’ corresponds pof=u': B ' >m 2 ).
K7,y

Theorem 19.3 (Gieseker). There exists a coarse moduli space 7 2 which is
K7, x

. s . . F . .
a quasi-projective variety. Moreover, two surfaces S, S’ correspond to points in

the same connected component of 7 2 if and only if S is a deformation of S’.

K%

The key point consists in taking all the mth canonical images Zm of our
surfaces (with Kz, ¥ fixed): they are, if m 2 8, projectively normal surfaces of
fixed degree (= msz) in a fixed projective space [P of dimension Prn -1 =
X-1+m({m-1)/2 KZ .

Now, Zm and zrln are projectively equivalent if and only if the correspond-
ing surfaces S, S are isomorphic, and one has to construct a quotient by the group
PGL(Pm) of a variety ';C parametrizing our surfaces Zm . To this purpose, one

has first to use the Hilbert scheme (cf.[Gm2], [Mu 3], [Ser 21) technique: since

these notes are meant to be elementary, let's indicate the main idea.
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Since T = Em is projectively normal, if we denote by 32 the ideal sheaf of

Z in P, the space HO(JZ{n)) has fixed dimension equal to
n + Pm
- P
( P ) nm
m
Now, there exists an integer mn, depending only on the Hilbert polynomial P(n) of
A 2

a variety (here P(n) = ¥ + K /2 um{(nm - 1), hence P depends only upon K ,X,m]),
such that the ideal sheaf rBZ of £ 1is generated by the subspace V‘Z = Ho(c9z(n)) of
the fixed vector space W = HO(GIP(n))_ Let r be the dimension of VZ’.' t the di-

mension of W: then r =t - P(n), and r,t depend only upon K , ¥, m.

th
Definition 19.4. The n ~ Hilbert point of ¥ is the point (P(/\r VE} € {P(ArW),

belonging to a2 Grassman manifold G(r, W) of dimension r - P(n]J.

The Hilbert scheme of subschemes of P with Hilbert polynomial P(n) is the
closed subscheme ¥ of the Grassmann manifold G(r, W) < [P(/\rW) corresponding
to the set of r-dimensional subspaces V of W such that the ideal sheaf J= VSP
generated by V defines a subscheme (V) with Hilbert polynomial P(n). ® is
the basis of a universal family, i.e., there is a2 subscheme Z of XX P such that
the fibre of Z over V € X is just the subscheme I (V), This % is too big, and

first of all one has to take the open set }CO o K

(19.5) }CO = {vew| V@P defines a connected surface Z(V) with only

R.D.P.'s as singularities ] .

Over }Co lies the restriction Zo of the universal family Z, and inside }{o lies

the closed subscheme
(19. 6) K={V[Z=2(V) has w_(-1) = 6_}
The restriction Z of the universal family enjoys the following

19,7. Universal property of Z € X X IP: for each family p: & - B of minimal

2
surfaces of general type, with given invariants K, x, and for each
choice of Pm independent sections of the locally free sheaf

Py (1 8?}13 )}, there does exist a unique pair of morphisms

~ ~

a: 8- Z, f: B> XK

such that the following diagram commutes
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jod
—_—
SN

oy e N

s
ol
B
. . . th R
and such that o gives fibrewise the m -canonical map

Cpm: Sb > P

Now, all the surfaces of general type with those given invariants Kz, ¥ appear as
{(minimal resolutions of) fibres of the family 2 - %C of canonical models; since the
base % is quasi~projective, hence it has a finite number of components, and, by
a result of G, Tjurina [Tjul, the canonical models X, X' of two surfaces of
general type S, S’ are a deformation of each other if and only if S, S’ are defor-

mations of each other, it is thus proven (cf. 19.3).

(19.8) The surfaces of general type with given KZ, ¥ belong to a finite number
of deformation classes. In particular there is only a finite number of

diffeomorphism types.
It is also clear that the group

{19.9) G'= PSL(Pm) acts on ¥, and there is a bijection between the set of
orbits of G and the set of isomorphism classes of surfaces of

2
general type with invariants K, ¥.

Thus, the problem of the existence of the coarse moduli space m 2 is reduced
K™%
to the existence of a categorical quotient (cf. [Mu 2], chap. I) for the action of G

on ¥. This is a problem in the realm of the so-called Geometric Invariant
Theory: in general (c¢f. [Mu 2], Appendix) such quotients always exist as alge-
braic (or Moishezon) spaces (i.e., as complex spaces bimeromorphic to algebraic

varieties). In fact, we recall again, what Gieseker proves is that
(19.10) The categorical quotient »';C}G! exists as a quasi-projective variety.

The idea is as follows, the Hilbert point belongs to

P

P(AT W) = P(AT (Sym™(€ ™))

and one wants to show that the invariant homogeneous functions of degree f, i.e.

the sections in
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o r n prn G’
A=H{(PHA (Sym (€ 1)), 8~ ,
~ ’
for m, n, { sufficiently big separate the orbits, so that ¥ /G sits inside a project-
tive variety. We have here the typical situation of Geometric Invariant Theory: a
vector space P

U= (sym” (€ ™)),

and an action of SL{P )=G . Then
m

(19.11) A point u € U is
1) unstable if Gu 3 0
2) semistable if Gu 3 0
3) stable if it is semistable and the

stabilizer of u is finite,

and then the G invariant polynomials define 2 morphism ¢ from [P(U)ss =

{semi-stable points] to a projective variety Y in such a way that the restriction
of ¢ to the stable points [P(U)S separates the orbits (in fact, the stable points
have closed orbits, and two closed orbits are separated by some G invariant

polynomials.

Remark 19,12, In our case the condition that the stabilizer of u be finite, when
u corresponds to the Hilbert point of 2 pluricanonical image Em follows from a
general result of Matsumura {Mat] . Infact, {g]| g(Zm) = Zm} = Aut(Z) is a
linear algebraic group which, if not finite, would have a non-trivial Cartan sub-
group, which is a rational variety: but then I would be uniruled (X, with

dim X = n is said to be uniruled if there exist Y, with dim Y = n-1, and a domi-
nant rational mapof Y X !’P1 into X), and in particular all the plurigenera of &

would vanish,

The really difficult point is to prove that these Hilbert points are semi-
stable, and this is done with hard combinatorial estimates using the Hilbert-

Mumford stability criterion.

19.13. wu is semi-stable if and only if for each 1-parameter subgroup of G,

%
t€C - g(t), where a
[<2 o)
glt) = A | . a AT {with £ a, = 0)
\0 ¢ P b

one has lim g{t){u) # 0.
t =0
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From the fact that K/G = 7 ) is a coarse moduli space (cf. 19.2) it
K%

follows easily the following

Corollary 19.14. Let S be a minimal surface of general type with invariants

2
K”, %: then, if B is the base of the Kuranishi family of S, then, locally around

the point [S] corresponding to the isomorphism class of S, 7 , s analytically

KX
isomorphic to the quotient of B by the finite group Aut(S).

§20. The number of moduli M(S) of a surface

Definition 20.1. For a surface of general type S, we define M(S), the number of
moduli of S, to be equal to the dimension of the base B of its Kuranishi family,
(i.e. the maximurm of the dimensions of the irreducible components of B.

Remark 20.2. By 19.14, M(S) is the dimension of 7 ,  at the point [S] cor-

responding to S. KX

Remark 20, 3. More generally, Kodaira and Spencer ([K-S], Chap. V, §11) define
the number of moduli of a complex manifold X to be the maximal dimension of the
base T of an effectively parametrized family % » T of deformations of X, i.e.

such that the Kodaira-Spencer map 0_ is injective for each t .

t

It was conjectured by Noether that M(S) would be 10% - ZKZ , whereas
Enriques realized that 10% - ZKZ was only a lower bound for M(S). In fact, by
the Hirzebruch-Riemann-Roch formula (cf. [Hi]), -(10% - ZKZ) equals the Euler-
Poincaré characteristic of 8, i.e. h0(®) - h1(®) + h2(®). In general, Ho(®x) is
the Lie algebra of a real Lie group of biholomorphisms of X: since {cf. 19.12}
Aut(S) is finite, H°(®s) = 0, and, as we saw in 3. 3.

(20. 4) 10% - 2K% = hl(@) - h%(®) < dim B = M(S).

On the other hand, M(S) < hl(®s) , and we indeed conjecture that for the

general surface S in each component of the moduli space 7 2 equality holds,
and K is ample K7, ¥
provided q{S) = 0V{for reasons stemming from [Ca 4] and [Ca 5]), so that 7

1 .
should be aireduced variety. In any case, finding the dimension h™{®) is by no
means easier {and in some cases even more difficult) than to compute M(S),

2 2
therefore we just observe that h (@S) = ho(QflS ® QS), hence
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(20. 5) M(S) < h(8) = 10 - 2%+ %0t e of)

and one can give an upper bound for M(S) by giving an upper bound for ho(Ql® QZ)

in terms of ¥, KZ , q. Itis clear that, doing so, one does not obtain the best esti-
mate, because one is giving an upper bound for the dimension of the Zariski tangent
space of each point of the base B of the Kuranishi family, and not simply an upper

found for dim B, as we already noticed.

2
A way to bound ho(Qé R QS) = ho(Qé(K)) is to use the existence of a
smooth curve C in [2K| as soonas K~ 2 5, or p_ = 1, except possibly if
2

K” = 3, 4 (this follows from recent results of Francia [Fra] and Reider | Rei 2.

In fact then, by the exact sequences

1 1 1
0 - QS(-K) - QS(K) - QS(K)® ®C~>O

0 6.(-K) - Qé(K) 8 6. > 6L(4K) 0

1
since QS(—K) E @S , we get

2
n°(Q(K) s hO(B_(4K)) = 5K
Otherwise, one looks for a smooth curve in imK ‘ , with m =3, and the result is

(with an improvement only of the constant in [{Ca 6], Thm. B).
Theorem 20,6, We have the inequalities

10y - 2K% < M(S) < 10¥ +3K% + 18 .

¥ |K| contains a smooth curve, then M(S) < 10x + g +1.

In the case when the surface S has q # 0, since q = ho(Qé) , surely
ho(Q; ® Q;} # 0, since there is a bilinear map HO(Qé) X HD(Q‘SZ) »HO(QFID ®Qg)
which is non-degenerate in each factor, nevertheless the existence of holomorphic
1-forms can be used for our desired bound.

For irregular (q # 0) surfaces, a powerful tool is given by the analysis of

the Albanese map
o, 1V
a: S > A =Alb(S) = H (QS) /Hl(S, ),
P
such that o (p) = ] (where P, is a fixed point and the linear functional on

|
: [} .
HO(QI) is clearly defined only up to j , for ¥ € HI(S, z)}, The condition that
Y
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2 should have differential of maximal rank = 2 except that at a finite set of points
can also be phrased as

(20.7) there do exist ﬂl,’nzé HO(Qé

is a reduced and irreducible curve (in |[K|1).

) such that € =div(n, A 1N

1 2)

Castelnuovo [Cas] tried to prove the inequality M < p + 2q under the assumption
that o (S) would be a surface, i.e., assuming that the %ifferential of & would have
rauk 2 outside of a curve: we showed in [Ca 6] that there are infinitely many
families of surfaces S for which ®(S) is a surface, and M2 4pg + o(pg). In
fact, we also proved that (20,7) implies M < pg + 3q - 3, and conjectured that
(20.7) would imply the Castelnuovo inequality. We shall now give Reider's simple

proof [Rei 1] of this inequality.
Thecrem 20.8 {Reider)., If S satisfies 20.7, then M s Pg + 2q .

Proof. Since C is irreducible, ﬂl and 1 2 don't vanish simultaneously on a

curve, hence we can assume T = 7. to have only isolated zeros. Let Z be the

1
0-dimensional scheme of zeros of MN: we have then the Koszul complex

i 1 Am 2
(20.9) O*SS——)QSoe—)JZQS—) 0

1
where JZ is the ideal sheaf of Z., Teunsoring with GS(K) , since h (®) =

hl(Qé(K)), we get
1 1 2
(20. 10} h(@s)sq+h($ZQS)-1.

The basic fact is that the ideal sheaf of C is contained in JZ , hence we have an

exact sequence
(20.11) 0~ @S(-C) - Jz > & > 0,

where ¥ is a torsion free, rank 1 sheaf on C. Tensoring (20.11) with @S(ZK)

yields

1 1
(20.12) h (JZ(Z S)) s g+h (F2 JN~-1.

S

Since @C(ZKS) is the dualizing sheaf of C, by Grothendieck duality

hl(Ir'(ZKS)) = dim Hom(¥ (K_), & .(K)) .

S C
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On the other hand, there is a bilinear map
HO(3 (K)) X Hom(¥(K), 6_(K) » H’(6_(K))

which is non-degenerate in each factor; since these are complex vector spaces, a
well known application of the Segre product (projectived tensor product), gives the

inequality

hl(s(zxs)) < h°(@C(K)) ShO(B(K)) +1

Spg+q-1-ho(3(K)}+},

To give a lower bound for h0(3 {K})), we tensor {20.11) with GS{K}, to get
h0(3 {K)) = ho(<9Z(K)) - 12 4g-2 by the sequence {20.9). It suffices to put these
inequalities together. 0.E.D.
We defer the reader to [Rei 1] for other results of this type, and we note in
fact that Reider simply uses the existence of a 1-form 7N with isolated zeros, and
the existence of a reduced irreducible curve C in }Ki such that @S(-C) c &Z s
50 that the method can be generalized taking C € |mK | with such a property. It
would be interesting to give an upper bound for M(S) in the case of a surface S

fibred over a curve B of genus = 1.
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LECTURE EIGHT: BIHYPERELLIPTIC SURFACES AND PROPERTIES OF
THE MODULI SPACES

§21. Moduli spaces of surfaces of general type and their properties

2
Let S be a minimal surface of general type with invariants K , ¥ and

consider the Gieseker moduli space 7 > , which has a finite number of con-
Ko top diff
nected components, We can define two moduli spaces 7 and M which are
contained in M 2 , and are indeed a union of connected components of M 2 ,
K,x

K
(mdit o mtor)

as follows

diff

Definition 21, 1. thop(S) (resp.: M snis {[s’1emn there exists

|
!

KZ, X

an orientation preserving homeomorphism (resp.: diffeomorphism) between

S and 8'1}.

We note (cf, §14.17) that if Q is even and KZ 2 9,then every complex struc-
ture on the topological manifold underlying S corresponds to 2 minimal surface S’
of general type homeomorphic to S, Thus %diﬁ , e.g., is then a coarse moduli
space for all the (integrable almost) complex structures on the differentiable mani-

fold underlying S.

Remark 21. 2, Since the Stiefel-Whitney class w, {cf, 14) is the mod 2 reduction

2
of CI(K} € HZ{S, Z), we see that the intersection form Q is even if and only if

2
cl(K) € 2H"(S,2). Therefore, Freedman's theorem 14.3 has as a corollary that

two simply connected complex surfaces S,, S_ are homeomorphic if and only if

17 T2
they have the same invariants K°, ¥, and for both of them the same answer holds

1
true to the question: does Ki € 2H (Si’ Z) or does it not?

We note that in complex dimension n=1, the notion of homeomorphic and
diffeomorphic are the same, and that the moduli space ?ﬂg of curves of genus g
is connected, also irreducible, and of pure dimension 3g-3 (more of its proper-
ties are known, cf. [H-M], and Harer's notes in this volume).

In the next paragraphs, we shall consider some families of surfaces, some-
how a generalization of hyperelliptic curves, by which we shall see that WZtOp does
not share any of these three good properties with Wzg . We have in fact the follow-
ing (cf. [Ca 6], [Cagl).

Theorem 21.3. For each natural number k, there exists a minimal surface of

top

general type S such that 7 (S} has at least k irreducible components
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1,...,Yk with
i) dim(Yi) # dim(Yj) for i#j

top

ii) Yi and Yj lie, for i #j, in different connected components of 7 (S).

t dif
It is not clear at the time being how smaller than M °P s really 7 iff :

Donaldson [ Do 2] has shown the existence of two homeomorphic, but not diffeo-
diff t
morphic, complex surfaces, so we should expect tc have 7 B # TP g general,

diff
and M could still have some nice properties.

§22, Bidouble covers and their deformations

Definition 22.1. A smooth bidouble cover (it is a fourfold cover) is a Galois finite
cover, ©: S = X with group 4/2 ® Z/2, between smooth varieties.

2 2
Example 22,2, Let ©: P~ » P be the morphism defined by (x,x

0¥ %) 2

2 2
(xo .xlz,xzz) = (zo, zy zz}. The group (Z/2)  acts with the three covering involu-
3 sk
tions 0., 0., 0 such that o, (x.) =x, if i #j, 0.(x.) =-%, . The fixed locus
0 1" 72 i j i i

for a. is the line {x, =07} = Ri plus the point Rj n Rk , if (i,j, k) is a permuta-
1
tion of (1, 2,3), and the branch locus B = }31 + B2+ B3 consists of the 3 coordinate

lines, respective images of Rl’ RZ’ R.3 . This example, though easy, gives all

the ingredients of the geometric picture in the general situation.

As in the example one defines (cf. [Ca 6]) Ty O 9, to be the three non-

trivial elements of the group, and denotes by Ri the divisorial part of the fix
locus of o, by B.1 the set theoretic image of Ri .
If z,1 = (0 is a section of ®X(Bi) with div{zi) =B, , we see from the example
1

above that it is not possible to take directly only the square root x of zi , but

that it is possible to take the square roots w, of zozlzz/zi (these three double
i

2
covers correspond to the three distinct subgroups of order 2 of (Z/2), giving
each a factorization of © as a composition of two double covers). In general, thus,

there are divisors LO, Ll, LZ on X such that ZLi = B
B, +L = + L.+ -
k k LO 1 LZ Lk ’

on X which is the direct sum of the three line bundles corresponding to the Li's,

+B +B_-B_,
0 1 2 i
and S is the smooth surface, in the rank 3 bundle

defined by the equations
2
w, = z@zlzzlzi
(22, 3)

Z, W =www2/w

k 'k 01 k
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There is a natural way of deforming these equations, and, computing NCD and the
characteristic map of the family, one can check whether the characteristic system
of the morphism ¢ is complete.

We refer to [Ca 6} for more details, and observe that equations 22.3 take a
much simpler form, and the natural way of deforming is easier to see if one
assumes one involution, say 9y to have only isolated fixed points, i.e., if one

assumes z, = L.

0

Definition 22.4. A simple bidouble cover is a smooth bidouble cover such that one

of the three covering involutions has a fixed set of codimension at least 2.

The equations 22. 3 simplify then (set x, TW, . X, = Wl) to
g x2 =z
(22.5) ! !
2 "%

and a natural way to deforming them is to set

2
= +
x1 Zl blx2
(22.6) 2
*2

+
z2 ble ,

for bi a section of GX(Bi - Li). In general, applying ©®, to the exact sequence

e

i

0-8 —)Qp%@ > N >0,

S X @
one obtains
B - 2] - [ -
(22.7) 0 - CO*®S - OX ? (@XEB GX( Ll) @X( LZ) GX( L3))
2
- ? (GB.(Bi) 5] GB,(Bi - Li)) >0
i=0 i i

Now, the parameter space for the natural deformations of ¥ is the vector space
2
o
H(6_ (B)® B (B, - L
o HUoy(B) 88,8, - 1)

and one obtains

Theorem 22.8. The characteristic system of the map ¥ is complete if

HO(QX(Bi)) goes onto Ho(sB (B,)), and the same holds for
i
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(o] o]
B0 By - L) = H(5g (B, - L)

If furthermore H'(8,) = H(e

X(-Li)) = 0, then the Kuranishi family of S is

smooth,

Actually the hypotheses in the above theorem are rather restrictive, and
not strictly needed, anyhow they are sufficient for our application {cf. §23). Also,

a similar result should hold true more generally for smooth Abelian covers.

§ 23, Bihyperelliptic surfaces

1
Hyperelliptic curves are double covers of P, aund if we multiply all the

previous terms by two we get

1 1
Definition 23.1. A bihyperelliptic surface is a smooth bidouble cover of P X P~ .,

In the following, we shall limit ourselves to consider simple bihyperelliptic

surfaces. These are determined by the two branch curves Bl’ BZ of respective

bidegrees (2n, 2m), (2a, 2b). One can allow also the two curves Bl’ BZ to
acquire singularities, but in such a way that the bidouble cover defined by equa-
tions (22.5) have only R, D. P, 's as singularities: we shall call the resulting sur-

faces admissible.

(23.2) Denote by 7 the subset of the moduli space

(a,b)(n, m)
corresponding to natural deformations of simple bihyper-
elliptic surfaces with branch loci of bidegrees (2a, 2b),

2n, 2m)., D th t -
(2n, 2m) enote further by 7 (a,b)(n, m) e subset corre
sponding to admissible surfaces (these are the surfaces
whose canonical models are defined by equations (22.6),

and occur precisely when those equations give surfaces

with at most R. D. P, 's as singularities),
An easy application of theorem 22,8 shows

Theorem 23.3. is a Zariski open irreducible subset of the moduli

" (a,b)(n, m)

space. In particular, the closure 7 is irreducible (and contains

(a,b}n, m)
" (a, b)(n, m)) *
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Remark 23.4. i) Clearly

" @) m) = b, a)m,n) - Na,m)a,b) e, )b, a) |

apart from these trivial equalities, all the 7 's can be proven to be dif-

{a,b){(n, m)
ferent (by the inflectionary behaviour of the canonical map of the general surface
in the family), and hence they are disjoint by theorem 23. 3.

ii) Also, since IPl X lP1 = IFO is a deformation of EFZn , one can also show
(cf. [Ca 1] ) that, enlarging the set 7 to the smooth bidouble covers of

(a,b)(n, m)

an , and doing the same for the admissible covers, a result similar to 23,3
holds true.

iii}) If a > 2n, m > 2b , it follows easily from equations (22,6) that all the

~

surfaces in n(a,b)(n, m) are admissible {simple) bihyperelliptic surfaces.

We can now sketch the main arguments for the proof of theorem 21. 3,

(23.5) Bihyperelliptic surfaces are simply-connected, and their
2
invariants K , X are expressed by quadratic polynomials

P, Q of {(a,b,n,m).

{23, 6) Also dim 7] is given by an easy function of

(a,b}{n, m)
(a,b, n, m).

2
(23.7) Letting r(S) = max{ml cl(K) € mH"(S,Z)}, since for a family

85 B, 6 (K)=6. ® w , we have that r is a locally
Spt ¢ 8B

S
constant function on the moduli space. Moreover (cf. [Ca 7]
for the proof, using easy arguments of group cohomology),

if [8] € m(a,b){n’m), then r(S) = G.C.D. {(a +n-2, b +m-2),

(23.8) One has to show (this was done by Bombieri in the appendix to
[Ca 6], that for each k, there exist k 4-tuples (a,b){n, m)
giving the same values for KZ,\( , and k distinct values for
both M(S) and r(S), and one can further assume r(S) to take even
values, But when w, = 0, Qis even, the S's are simply con-
nected, therefore (cf, 21.2) one gets k distinct irreducible com-
ponents, of different dimensions, belonging to the same moduli
space mtoP{S), and lying in k distinct connected components
of WEtOp(S). I conjecture the closures of the 7

fg
{a,b}{n, m)
(at least if a> 2n, m > 2b) to be themselves connected
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components of the moduli space. The following has been proven
up to now ([Ca 7] ), and it is an encouraging result, since one of
the most difficult problems is, in geueral, to describe deforma-

tions in the large of complex manifolds,

Theorem 23.9, If a > 2n, m> 2b the closure of 7 consists of admis-
—— (a,b)(n, m)
sible covers of some FZk , with
n w
ks max (55, o5 ).

In particular is a closed subvariety of the moduli space if

(a, b)(n, m)

a > max(2n + 1, b)

v

m max(2n + 1, m).

Idea of proof: If a > 2n, m > 2b, then (cf. 23, 4.iii) all the surfaces in B

n(a,b)(n,m) are simple bihyperelliptic and, given a 1-dimensional family & = T,

with [St] en for t % to , one wants to conclude that St is still an

(a,b)(n, m) 5 o
admissible cover of some [FZk . The key point is that (Z/2)  acts birationally
on &, preserving the deformation morphism p’, but indeed it acts biregularly on
the family % B T of the canonical models of the previous family p’: 8- T,
What we have to show is that, if Z = Z/(Z/Z)Z , {(then Zt = Plx IPI for t# to),
then Zto = IFZk . To achieve this goal it suffices to show that gt Z » T isa
smooth fibration, since every deformation of & minimal rational ruled surface with
Q even is again a surface of the same type. Now, the singularities that Zto
can have are quotients of R.D,P.'s by Z/2 or (2/2)2, and can be explicitly
classified: but many of them can be shown not to occur since any smoothing of
these singularities would contribute, through the vanishing cohomology of the
Milnor fibre, a subspace of HZ(Zt, Z) of dimension 2 2 over which Q is nega-

! X iPl , and other arguments

tive definite. This is a contradiction, since Zt = P
again by contradiction, eliminate the other remaining possibilities,

I should finally remark that to prove that the closure of 7 is open

{a,b}{n, m)
in the moduli space, it would suffice {by the results of [Ca 6] and [Ca 7]} to prove
also when the canonical model of S is singular (i.e., the bidouble cover is ad-

missible, but not smooth) that the base B of the Kuranishi family of S is locally

irreducible.
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