J. reine angew. Math. 395 (1989), 1355 Journal fir die reine und
angewandte Mathematik

© Walter de Gruyter
Berlin - New York 1989

Surfaces with K*=2, p,=1,g=0

By Fabrizio Catanese at Pisa and Olivier Debarre at Orsay

Introduction

In the classification of algebraic surfaces of general type, one of the most chal-
lenging problems is the complete description of the surfaces with small K2.

Also, surfaces with K? =1, 2; p,=1, ¢ =0 have provided counter-examples to both
the local and global Torelli problems ([Cal], [Ca2], [Ch], [To 1], [Us2]). But, whereas
the geometry of surfaces with K*=1, p,=1, ¢=0 is completely understood ([Cal],
[To2]), there is no systematic treatment of the case K> =2.

This paper is devoted to the study of the geometry of these surfaces. The results
published here have already partly been used in the study of Torelli problems ([Ca3],
[O1], [8-S-U], [Us1]).

These surfaces were investigated first by Enriques ([En], p. 316—321) and then
Bombieri established some general properties ([Bo], Theorems 6, 8, 15). Special con-
structions appear also in [Ca4], [Ch] and [Tol]. However, Enriques for instance
claims that the bicanonical map cannot be of degree 4 and therefore overlooks the
entire family of surfaces with torsion Z/2Z. Todorov was the first to construct examples
with torsion Z/27 in [Tol1].

Our investigation is based on a detailed study of the bicanonical map, thereby
following Enriques’ original ideas. We first prove that the bicanonical map @ is a
morphism onto a surface X in /P> and we are then led to consider the following 5 cases
(each of which does, in fact, occur):

0) @ has degree 4 and X is a quadric cone.

1) @ has degree 4 and X is a smooth quadric.
2) @& has degree 2 and X is a rational quartic.
3) @ has degree 2 and 2 is a K3 quartic.

4) @ is birational and X has degree 8.

Recall also that by Theorem 15 of [Bo], the torsion of Pic(S) is either 0 or Z/227Z.

We show that the torsion is Z/2Z if and only if the surface is of type 0), and
accordingly we examine this case first.
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Using methods similar to those employed by Reid in [Re], we prove that these
surfaces are quotients of weighted complete intersections of type (4, 4) in the weighted
projective space [P(1, 1, 1, 2, 2), by a fixed point-free involution. Proceeding as in [Ca 1],
[Ca2], we prove that their moduli space is an irreducible rational variety of dimen-
sion 16, and that their topological fundamental group is Z/27Z. The surfaces for which
the bicanonical map @ is a Galois covering correspond to an irreducible 12-dimensional
subvariety. Todorov’s examples quoted above belong to this subfamily.

In case 1), we prove that @ is a (Z/2Z)* Galois covering with branch locus
consisting of three curves of respective types (1, 1), (3, 1) and (1, 3). These surfaces form
an irreducible unirational family of dimension 11. We prove that they are all topolo-
gically simply connected. Their bicanonical map factors through two different double
covers of rational surfaces and also through a double cover of a K 3 surface. Using this
property, we prove that case 1) is a specialization of cases 2) and 3).

In case 2), the rational quartic X~ has a double line and, in general, four nodes. It is
the image of /2% under the system of plane quartics having a fixed double point and
passing through 4 more given points with preassigned tangents. The surface S is ex-
pressed as a double plane branched along a curve of degree 10 with 4 points of type
(3, 3) and a quadruple point. These surfaces form an irreducible unirational family of
dimension 13.

In case 3), the K3 quartic X has in general 10 nodes. Its equation is expressible as
a symmetric determinant of linear forms (classically called a symmetroid). The surface S
is a double cover of X branched over the 10 nodes and a hyperplane section (cf.
Theorem 3. 15 for a precise statement). These surfaces form an irreducible unirational
family of dimension 12.

In cases 0), 1) and 2), the canonical curve of S is hyperelliptic (cf. 1. 3 for a precise
definition) but not in case 3). When @ is a birational, either of the two situations can
occur.

Notice that by Kuranishi’s theorem, the dimension of the moduli space is at least
16 at each point. It follows that in the zero torsion case, there is an everywhere dense
Zariski open subset of the moduli space which corresponds to surfaces for which & is
birational.

For surfaces of type 4), explicit determinantal equations for the bicanonical image
2 are given in § 4.

This fourth paragraph is devoted to a general study of the canonical ring # of a
surface S. We describe generators and relations for this ring, using a method inspired by
[Ca4] and [Cil], and developed in [Ca5], where it is applied to any regular surface of
general type. Since [CaS] has already appeared, we will freely refer to it. Here is a
rough outline of this method.

Let .o/ be the ring C[W, Y,, Y,, Y;] graded by degW =1, degY,=2 for i=1, 2, 3.
Then # is a Cohen-Macaulay «/-module and therefore admits a minimal resolution by
two free o/-modules of rank h+1=>5 if the canonical curve is not hyperelliptic, 6 other-
wise. The determinant of the square matrix (x) giving this resolution is an equation of X
raised to the power (deg ®).



Catanese and Debarre, Surfaces with K* =2, p,=1,q=0 3

Using the fact that # is a commutative .o/-algebra, we show that the matrix («)
can be chosen to be symmetric and to satisfy the following Rank Condition:

(R.C.) Let («') be the hx(h+1) matrix obtained by deleting the first row of ().
Then the ideal I generated by the (h x h)-minors of (¢') contains the (h x h)-minors of ().

Conversely, in cases 3) and 4), the datum of such a matrix (x) determines an /-
algebra structure on £. If X =Proj(#) has at most rational double points as sin-
gularities (open condition), it is the canonical model of a surface S. For surfaces of
type 4), I is the conductor ideal of & (classically called the adjoint ideal), X is the blow-
up of X along I, and S is the minimal desingularization of X.

We also work out the special forms that the matrix («) takes in cases 1) to 4).

Now it follows from the smoothness of the moduli space at a point corresponding
to a surface of type 1) that there is a unique 16-dimensional irreducible component .#y
of the moduli space which contains surfaces of type 1), 2) and 3). The corresponding
surfaces are all topologically simply connected.

In §5, we give a geometric construction of the surfaces corresponding to the
general point of .#g, following [En]. In this case, the surface X~ has ordinary singu-
larities. The ideal I is the ideal of its double curve I', of degree 14. There is a surface =
of degree 7, again with ordinary singularities, which is a projection of a Del Pezzo
surface of degree 7 in /7 and has I' as double curve. There is a quartic symmetroid F
(adjoint of smallest degree) such that F-Z=2I. The surface 5 is the biadjoint of
smallest degree.

There is a 15-dimensional subvariety of .#; for which the corresponding surfaces
have a hyperelliptic canonical curve.

Finally, we consider in § 6 étale double covers S of numerical Godeaux surfaces
(K?>=1, p,=¢q=0) with torsion Z/2Z, the existence of which was shown in [Ba] and
[O-P]. The surface S has invariants K*=2, p,=1, ¢=0 and torsion 0. We show that
the bicanonical map is birational and that the canonical curve is hyperelliptic. We
expect the corresponding family to be irreducible, 8-dimensional and contained in .#g
but could not prove it.

Our initial goal was to prove that the moduli space of our surfaces with torsion
zero is irreducible, hence equal to .#g. Some of the consequences of the connectedness
of .#¢ would then be:

— Al surfaces with K*=2, p,=1, ¢=0 and torsion zero are topologically
simply connected.

~—  All numerical Godeaux surfaces (K? =1, p,=¢=0) with torsion Z/2Z have
topological fundamental group isomorphic to Z/27.

However, after some unsuccessful efforts (which explains the delay in the publi-
cation of this article), we will state this as a conjecture, hoping to return to this matter
in a subsequent paper.
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§ 0. Notation

We work over the field of complex numbers €. For any scheme X proper over C,
its canonical sheaf will be denoted by wy. If X is Gorenstein, wy is invertible and an
element of |wy| (if any), is called a canonical divisor, usually written as K.

For any projective smooth surface X, we write p, = h°(X, wy) and g =h* (X, Oy).

Throughout this article, S will be a projective smooth minimal surface of general
type with K¢=2, p,=1, ¢=0. Tt will be shown in § 1 that the bicanonical system |2 K|
is base-point-free. Therefore, the bicanonical map:

oS — P3
is a morphism; the image of @ is a surface 2.

The canonical ring # of S is the graded ring P HO(S, mKy). It is finitely

mefY
generated and X = Proj(#) is the canonical model of S. There is a canonical morphism
7 : S — X through which every pluricanonical morphism factorizes.

The vector space #, = H°(S, Kj) is generated by w and we will write:
diviwy=C=I+2
where Z and I' are effective and Z < C is maximal such that Ky - Z =0.
The vector space #Z, =~ H°(S, 2Kj) is generated by y,=w?, y,, y, and y;.
The graded ring &7 is the ring C[W, Y,, Y;, Y5] graded by
degW=1,degY, =deg¥,=deg Y, =2.

The scheme [P=Proj(s/) is a weighted projective space /P(1, 2, 2, 2) and is iso-
morphic to /3.

The natural homomorphism of graded rings o/ — # induces a morphism
¥ . X =Proj(#) — [P=Proj(«/) and @ is the composition:

S5 X X pxp3,

Finally, to any graded «/-module .#, one can associate ([Gr], 2.5) a sheaf .#
on [P.
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Segre-Hirzebruch surfaces. The surface F, (d € N) is the rational ruled surface
P(Opr ® Op:(d)). Tt is minimal for d#1. To the two quotients Up: and Op:(d) of
Op1 @ Opi(d) correspond two sections of F, — /P!, the images of which are denoted
respectively by B, and B,. If F is a fibre, we have:

F-B,=F-B, =1,
BOO = BO - dF,
Bi=d, BZ=-—d,
PicF,2Z[Bol ® Z[F].
Double coverings. If 7: X — Y is a finite morphism of degree two between two

connected smooth varieties, we will usually write 4 for the branch locus of = (on Y). It
is a smooth reduced divisor and we have:

T, Ox =0y ® Oy(—0) and 4 ¢€|24].

Conversely, given a connected smooth variety Y and a divisor 4 on Y with
A€ |26|, 6 € Div(Y), one can construct a double cover n: X — Y with ramification 4,
where X = Spec(oy @ oy(— 8)), the algebra structure being given by 4. We have:

X normal <= A reduced,

X smooth < 4 smooth.

§ 1. The bicanonical map

Let S be a minimal surface of general type with K=2, p,=1, g=0.

We will write the canonical curve C of S (i.e. the unique element of the linear
system |Kg|) as C=TI + Z where KZ =0 and either:

a) I isirreducible and K- I'=2, or

b) I'=I't+TI,and K- I')/=K I,=1.

We first show the following basic result.

Proposition 1. 1. The linear system |2 Kg| has no base-point.

Proof. By Lemma 12 of [Bo], |2Kj| has no fixed part. Therefore, if x is a base-
point, we have x € C (because 2C € |2K|) and x ¢ Z (any component of Z through x
would be fixed), hence x € '\ Z.

There is an exact sequence:

(1.2) 0— H°(S, K5) — H°(S, 2K5) — H°(C, wc) — 0,
so that x is a base-point for |w|.

Assume first that x is smooth on C. Then, by Riemann-Roch, we have

hO(C, Op(x)) = 2.
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Let C, be any irreducible component of C which meets the irreducible component of I’
on which x lies. Then there i1s a non-zero section s of ()-(x) which vanishes identically
on C,. By Proposition A of [B-C], there exists a decomposition C=C,; + C,, C;>0,
with C, - C, = degc, (Oc(x) ® Oc,) =1, which contradicts the 2-connectedness of C ([Bo],
Lemma 1).

Assume x is singular on C but I' is reduced. Again, there is a surjection
HO(S., 2KS_Z) I HO(F, a)r)

so that x is a base-point for |w,|. It follows from Theorem D of [Ca6] that I is
reducible, I', - I', =1 and I'; n I, = {x}. But then, for any decomposition C=C; + C,,
one has C,C,>1=(C, - C,), (by 2-connectedness of C), and, by Proposition B ii) of [B-
C], x cannot be a base-point for |w|.

If I is non-reduced, we write I'=21". Consider the blow-up n: S — S of x. Let E
be the exceptional divisor, ['=n*I'"—E. By Lemma 6 of [Bo], D=27"+7*Z is
numerically connected; therefore, by Lemma 3 of [Ra], H°(S, 05~ H°(D, (p) and,
since H' (S, 05) =0, we obtain H! (S, Og(— D))=0. By Serre duality, we get:

0=H'(S, n*(2Ks)— E)=H*(S, m, ® 0(2Ky))

and x cannot be a base-point for |2 Kg|. Q.E.D.

Now, since h°(S, 2Ks)=K?+ x(05) =4 ([Bo], page 185), the bicanonical system
defines a morphism @ : S — /[P onto a surface X such that deg X - deg @ = 8. Moreover,
the surface X has irregularity 0 and geometric genus O or 1. Therefore, we are in one of
the following cases, each of which will be shown later to occur:

0) The morphism @ is 4-to-1 onto a quadric cone.

1) The morphism @ is 4-to-1 onto a smooth quadric.

2) The morphism @ is 2-to-1 onto a rational quartic.

3) The morphism @ is 2-to-1 onto a K3 quartic.

4) The morphism @ is one-to-one onto an octic surface.

The morphism @ induces a morphism ¢ : C — [P? with image C’, which contracts

each connected component of Z to a point. The induced map I' — C’ is finite. Since ¢
is the morphism associated to the canonical sheaf w., we set the following definition.

Definition 1. 3. We shall say that C is hyperelliptic if for a general point y of
C’' = ®(C), the scheme theoretic fibre @ ! (y) has length two.

Proposition 1. 4.  The canonical curve C is hyperelliptic if and only if there exists
an irreducible quadric Q in [P such that ®*Q = C.

Proof. We start with two remarks:

i) Let X be the canonical model of S. There is a factorization (cf. Notation and
[Bo], page 176):
d:S = XX ¥ p3,
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and 7, I € |wy|, n*wy=wg hence n*(n, )= C. Therefore, if H is any divisor in />
such that &*(H) =T, we have:

¢*H=2T = Y*Hz=zn, T
= ¢*H 2 n*(n, I')=C.

ii) If I' is non-reduced, we write C=2I"+ Z. By the Index Theorem, (I'"')* <0,
and we are in one of the following two cases:

a) p(I'')=0, and ¢|;- is an isomorphism onto a conic,
b) p(I'')=1, and ¢|,- is a double cover of a line.

Now, assume there is an irreducible quadric Q such that ®*Q = C. Let IT be the
plane corresponding to the element y, of H°(S, 2K) with divisor 2C, and let C” be the
scheme theoretic intersection (Q - IT). Since Q is irreducible, C” is a curve of degree 2
in 71. For a general hyperplane H in 3, H- C” is a scheme of length 2, while

@ YH-C")

has as subscheme ®*(H) - C, which is of length four. Since C' = C”, we have proved that
C is hyperelliptic in the sense of Definition 1.

Conversely, if C is hyperelliptic, deg C’ is less than 2. Let Q be an irreducible
quadric distinct from X such that C"=Q - IT is either C’ or 2C’ if C’ is a line. In case I
is reduced, it is clear that @*(Q)=1 hence ®*(Q)= C by Remark 1) above. If '=2T71",
we are in case ii) above. In case ii) a), C is hyperelliptic if and only if C’ is contained
in the ramification locus of @&, hence ®*(Q)=2I". In case ii) b), C’ is a line hence
Q-1I=2C" and @*(Q)=21". Q.E.D.

Remark 1. 5. 1) If C is not hyperelliptic, deg @ <2 and the only quadrics Q such
that @*Q = C are the ones which are divisible by y,.

ii) If C is hyperelliptic, the affine space of quadrics Q such that ®*Q = C has
dimension exactly 4.

Proof. Complete y, to a basis {yo, ¥, v2, y3} of H°(S, 2K). Then one can always
add to Q a product y, -y with y € H°(S, 2Kj). But if the dimension were bigger than 4,
one would get two independent quadratic forms gq,(yy, ¥2, ¥3), 42(¥1. V2, ¥3) such that
g;= C’. Therefore g, and ¢, would be reducible, say g, =y, y,, and C'={y,=y, =0}.
Then dim(I' n ®*(y,))=0 hence ®*(q)=C = P*(y,)=I = ®*(y;)=C. We would
obtain y,, y, € H°(2K — C), which is absurd. Q.E.D.

Finally, we recall here that the torsion group of the Picard group of S (which we
shall often call the torsion group of S) is, by Theorem 15 of [Bo], either {0} or Z/2Z.
We begin with the following characterization of case 0) of the above list.

Proposition 1. 5.  The surface X is a quadric cone if and only if the torsion group of
Sis Z/27.

Proof. 1f nePic(S) is such that n=£0, 25y=0, let §-2.< be the associated
unramified double covering. We have Ké =4, y(Oz) =4, thereforc y(S)=0 by Lemma 14
of [Bo].
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Then H'(Kg+#%)=H"(#1)=0, and, by R.R., h°(K +#)=2. Let {x,, x,} be a basis
for H°(Kg+ 7). One can complete {xI, x, x,, x3} to a basis for H°(2Kj) and clearly X is
a quadric cone.

Conversely, let £ be a quadric cone, and v its vertex: composing ¢ with the pro-
jection with center v we obtain a rational map from S to /P!, hence a pencil M without
fixed part such that 2K;=2M +G.

Since ®(G)=v, G is a sum of irreducible curves Z; with KZ,=0, Z? = —2. We
can write G uniquely as 2G'+Z, + - +Z,, where Z;+Z; for i+j. Let A=Z, +---+Z,.
Then A =26, where 6=Kg— M — G".

Let 4'=Z,+ --- +Z, be a connected component of 4. We have
A -Z,=A4-Z,=0(mod?2).

If s=2, since 4’ is connected and reduced, we also have (4'—Z,)- Z;>0for i=1,..., s,

hence 4'-Z,20 and (4')*=4"- ( D Zi> = 0. Since A4’ - Kg =0, this contradicts the Index
i=1
Theorem. Therefore s=1 and we have proven that 4 is a disjoint union of smooth
curves Z,,..., Z,.

We can therefore consider the smooth double cover S’ of S in § branched over the
smooth curve 4 and the surface § obtained from S’ by contracting the r exceptional
curves of the first kind lying over the Z;’s. We have:

K§=r+2(Ks+0)? =4,
1
1O =4+~ S(Kg+0)=4—_,
2 4
p,(S)=h"(Ks+3)+h°(Kg)=h"(M+ G + 4)+1=3.

Since K?<2p, for §, it follows from [De], Theorem 6.1, that q(5)=0, therefore
r . .
1(Og) =1 +pg(§)=4—zg4. It follows that r=0, p,(S)=3, hence S is a connected un-

ramified double covering of S, and ¢ is a generator of the 2-torsion of S. Q.E.D.

§ 2. Surfaces with torsion Z/2Z such their moduli

In this paragraph, we study the surfaces S for which the Picard group has torsion
Z/2Z. Todorov was the first to construct examples of such surfaces ([Tol], p. 303,
Remark 2) but some of his assertions are inaccurate (Lemma 2. 5 of loc.cit.). We have
already proven in 1. 5 that this is exactly the case when the bicanonical image X is a
quadric cone. We shall prove that the canonical model of such a surface can be written
as the quotient of a complete intersection V' in a weighted projective space P (1,1, 1,2, 2)
by a fixed point-free involution. Explicit ,,canonical® equations for V will allow us to
prove that the moduli space for these surfaces S is an irreducible 16-dimensional
rational variety. Their topological fundamental group is Z/27Z. We shall also study the
surfaces for which the covering § — 2 is Galois.
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Let p:§— S be the double étale covering associated to the unique element # of
order 2 in Pic(S) and let t be the involution induced on § by p.

The canonical ring Z of § splits into eigenspaces for ™ as #=%* ® %", where:

Rt = é R = é H°(mKg)~ R,
m=0 m=0

R =P HA, =P H'(mKgs+n).
m=0

I
(=}

m

Let w be a generator of &, {x,, x,} a basis of Z; . Complete {wx,, wx,} to a basis of
J; by adding {z, z,}. Note that, by R.R., dim & = dim Ry =2+m(m—1) for m=2.

Lemma 2. 1. {w? x}, x,x,, x3} is a basis of &#; .

Proof. By virtue of the exact sequence (1.2) it suffices to prove that x, - x,|.
cannot be identically zero (since any quadratic form in two variables is a product of two
linear forms). Choose C; < C maximal such that x;c, =0. By Proposition A of [B-C],
C(C—-C)=(K+n) (C—C,). But C is 2-connected, therefore 2 < C,(C—C,), hence

4<KQ2C—-C,—C,)=4—K(C,;+C,).

We conclude that KC; =0, and in particular x, x,|- £ 0. Q.E.D.

Remark 2. 2. Lemma 2. 1 also ensures that C' = @(C) is a smooth conic.
Lemma 2.3. {w? wx,, x5, x}w, wx3, X, 23, X, 24, X, 23, X, 24} is a basis of &5 .
Proof. By the exact sequence:

0— H°(2Ks) — H°(3Kg) — H°(Cc(3Kg)) — 0,

it suffices to prove that if

then the A;’s are all zero.

Notice that {x,, x,} restricts to a basis of H°(O:(K +7)), {z3,2z,} to a basis of
H°(0.(2K +7)). By changing bases, if necessary, we can assume that our relation is
either

a) x;2z3lc=0

or

b) (x;z3+x3z4)lc =0.

In case a), z; would vanish identically on I', since we saw in Lemma 2. 1 that x,
vanishes only on components C; with K - C, =0.
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Taking C, <C maximal where z; vanishes, we apply again Proposition A of [B-
C]. Since C, =TI, we have KC,=2 and C, (C—C,)<(2K+n)(C—C,)=0. There-
fore C{ = C and w divides z;, absurd.

In case b), observe that H°(C, O-(Kj))=0.

But, if x;z3;+x,2z4)c=0, since x; and x, have no common zeros on C,
z3/Xx, = —z,/x; would define a regular section of ¢(Kj), a contradiction. Q.E.D.

Lemma 2. 4. {x3, x}{x,, x,x3, x3, w?x,, wz3, wz,} form a basis of R .

Proof. By virtue of the following exact sequence
0— H°(2Kg+n) — H°(BKs+n) — H(O3Ks+n) — 0. Q.E.D.
Let #' be the ring C[w’, x1, x5, z3, z4] graded in such a way that
degw =degx;=1, degz;=2.

Let P=/P(1, 1,1, 2,2) (see [DI], [Do]) be Proj(#’'). The homomorphism f*:% — %
such that f*(w')=w, f*(x{)=x;, f*(z})=z;, defines a rational map f:§ — /P; and the
involution (t')*: %" — #' defined by (1')* (W')=w" and (')* (x{) = —x;, (t')*(z})= —z;
induces an involution 7’ of /2 such that fet=1"¢ f.

Proposition 2. 5. The map f: 8 — [P is a morphism, birational onto its image.

Proof. We already know that f is a morphism, by (1. 1). Actually f is birational
since, by [Bo], Theorem 4, the tricanonical map of § is birational, and f*: &, — #,, is
an isomorphism for m < 3. Q.E.D.

Observe that dim(#')f =16, dim #; =14; therefore f* has at least a 2-dimen-
sional kernel in (#£’);. Let F, G be two independent polynomials in (#’)} ~ker f*, and
V be the complete intersection in /P defined scheme theoretically by the two hyper-
surfaces F, G. It is clear that f(S)c ¥, but in fact we have:

_ Theorem 2. 6. The scheme V is isomorphic to the canonical model of S via
f:S—V, hence Z=R/(F, G).

Proof. V is of pure dimension 2, since, if F, G had a common factor, then
f*: R, — R, would not be an isomorphism for m < 3. Since [ is birational, f(S) and V
have the same degree, hence f(§)<=V implies f(S)=V. Finally, since w, = ¢, (1) by Pro-
position 3. 3 of [Mo] and f*(w,)=Kg, V has only rational double points as singulari-
ties and is the canonical model of §. Q.E.D.

Remark 2. 7. Conversely, if V< /P is a (weighted) complete intersection of type
(4, 4) with at most rational double points, then its minimal desingularization S has
Ké =4. If moreover V={F=G=0} and F, G € (#;)", then the involution 1’ preserves V
and extends to S. If 7 is free from fixed point, then 5/t =S is one of our surfaces. Notice
that 7 on § is free if and only if V does not intersect the fixed locus of 7/, i.e., the point
(1,0,0,0,0) and the lines w' =z =2z, =0 and w’'= x| =x5=0. In fact it is easy to show
that any involution preserving a fundamental cycle has a fixed point there (look at the
associated Dynkin diagram first, then remember that an involution on /P! always has a
fixed point).
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Assume moreover that there exists an isomorphism ¢:S; => §,. Then ¢ deter-
mines ¢ : S, = §, such that o1, =1, o $, hence there exists ¢ € Aut(/P)” such that ¥
gives an isomorphism of V; with V,, and the converse also holds.

In what follows, we are going to use almost the same arguments used in [Ca2]:
we want to put the pairs of equations F, G in a canonical form in order to have precise
information about the moduli of our surfaces. We are also going to drop the prime ' for
the coordinates in /P.

Theorem 2.8. Any canonical model X of a surface S with K} =2, ¢q=0, p,=1,
torsion Z/2Z occurs as the quotient V/t' of a weighted complete intersection V < [P with
only rational double points as singularities, given by a pair of canonical equations:

{F =z3 +wz l(x;, x5) +bw* + w?q(xy, x,) + B(xy, x,) =0,
G=zi+wz3l'(xy, ;) + b w* +w?q' (x4, x3) + B'(x;, x,) =0,

where I I' are linear forms, q, q' quadratic forms, B, B’ quartic forms without common
factors, and b, b’ are constants not both zero. Moreover two such pairs of canonical

equations (F,, G,), (F,, G,) give rise to isomorphic surfaces if and only if there exists a
projectivity h: [P — [P such that

1) h(w, xq, X3, 23, 2g) =(dw, dy; X1 +d 13 X5, dyy Xy +dpy X3, €3323, CanZa)s

li) elthel‘ C§3F2=F10h, 0421462:G1°ha or C§3FZ=G1°hOi, C‘21_4G2=F10h0i,
where i: [P — [P is the involution permuting z and z,.

Proof. Since V does not intersect the line {w=x,=x,=0}, and F, G are in

(#;)*, which is spanned by the monomials z,z,, z;wx;, w*, w?x;x;, x{ x5 7", we see that,

if we write F =Q/(z;, z,)+ (terms of degree <1 in z3, z,), and G=Q5(z;, z4) + ---, then
01, Q5 do not have a common factor.

Therefore the pencil AQ} + uQ5 gives a double cover P! — P! with 2 distinct
ramification points, i.e. there are two distinct members Q,, Q, of the pencil and new
coordinates (z3, z,), such that Q, =z3, Q, = zj3.

Then, by a transformation of the type:
Z3— Z3+t a3y WX+ a3, WX,
{24 —Zy a4 WX+ A4, WX,
on¢ can put F, G in the desired form.

By Remark 2. 7, assume that there exists ¥ € Aut (/)" such that the ideal (F,, G,)
is the same as the ideal (F; o ¥, G, o V).

Then ¥ is a projectivity of the form:

w—> dw,
2
X Y, diyx;,
j=1
4 2
z, ——>k23 Cox Zn + '21 ap;WX;.
= i=
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. . €33 Cza
If (F,, G,;), (F,, G,) are in canonical form, then
C43 Caa
of P! which preserves the pencil Az3 + uzZ. Therefore either 0, oo are fixed or they are
permuted.

) gives an automorphism

Hence, we can assume, considering if necessary (F, ¢ i, G, o i) instead of (F,, G,),
that C34=C43 =O, al’ld that Fl o lP=C%3I:'2, Gl © T=Ci4G2.

We want to show that a,;=0 (h=3,4, j=1,2), but this is an immediate con-
sequence of the fact that F, does not contain any monomial divisible by wz; and that
G, contains no monomial divisible by wz,. The above conditions on b, b’, B, B" ensure
that ¥V does not meet the fixed points of 7". Q.E.D.

Theorem 2.9. In the notations of Theorem 2.8, ®:S — X is a Galois covering if
and only if one can choose l=1'=0. The Galois group is (Z/27)*.

Proof. If @ is a Galois covering, since its restriction to C is a double cover of a
conic (2. 2), the Galois group has an image of order 2 in Aut(l"). Hence there exists an
automorphism ¢ of order 2 leaving I pointwise fixed. The action of the Galois group
lifts to S, hence to [P, and clearly commutes with . We have therefore an action of
(Z/2Z)? on [P (or on #’) such that:

i) wis an eigenvector,
i) R,%, R, , #;” are invariant subspaces,
iii) the action on #5" is trivial.

We can therefore choose x,, x,, z3, z, to be eigenvectors and, by iii), x,, x, correspond
to the same character of (Z/22Z)* Since the projectivity wi— —w, x; = —X;, z; > z; is
trivial, and we can assume o to leave the double cover of I' pointwise fixed, our group
must consist of the projectivities x; — x;, w— ew, z;+— £ z; with ¢, &=+ 1. Since the
ideal of V is invariant by the group action, we can assume that F, G are eigenvectors;
this can happen, since z3, z3 are invariant monomials, if and only if /=1"=0. But in this
last case, (Z/2Z)* acts by x; > X;, W &w, z; — g;z; with a trivial action on A5", hence
the Galois group is isomorphic to (Z/2Z)>. Q.E.D.

Remark 2. 10. Let us explain the geometrical meaning of Th. 2. 9. Incidentally we
will also prove that a general V is smooth so that our family is not empty. Assume that
I=10'=0, and consider that the Galois group action on V is generated by the 2 in-
volutions zj > —z3, z,+— —z,. Then @:5 — ¥ is given by y,=w?% y, =xi, y,=x3,
Y3 =Xy Xa.

It is then easy to see that the branch locus of @ consists of the 3 images of the
fixed loci of the 3 non-trivial involutions of the Galois group:

{z3=0}, {z4=0}, {w=0} U {x; =x,=0}.
Let f be a homogeneous polynomial of degree two such that:
B(wW?, x1, x3, x; x5) =bw* + w?q(xy, x,) + B(xy, x,),

and analogously define f'.
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Then the branch locus of ¢ on ¥ consists of:

{B=0}, {p'=0}, {yo,=0} U {yi=y,=y;=0}.

The surface S can be obtained in 3 ways, one of which expresses a general S as a double
cover of a K3 surface with 10 “even” nodes. Assume that the 3 curves {y,=0}=H,
B, B’ have only transversal intersections, and do not pass through the vertex v of .

Take in (y(2) the double covering of X~ branched over f+ f8’; you get two nodes
lying over v, and 8 nodes coming from the 8 intersections of f and B’; we get thus a K3
surface M with a morphism M —£- ¥ such that M admits a double cover S ramified on
p*(H) and on the 10 nodes. S is smooth and Ky is ample, therefore the corresponding V
is clearly smooth (cf. the proof of Theorem 3. 12, which still applies in case X is a
quadratic cone). Q.E.D.

Theorem 2. 11. Surfuces S with K* =2, q=0, p,=1, and torsion Z/2Z have funda-
mental group isomorphic to Z/2Z and are all diffeomorphic. Their moduli space is an
irreducible rational variety .My of dimension 16.

Proof. The assertion on the fundamental group results from the fact that if V is
smooth, by Lefschetz’s Theorem ([Do]), V is simply connected. By Theorem 2. 8, all the
canonical models of our surfaces appear as fibres of a flat family with base a Zariski
open set in an affinc space, hence they are diffeomorphic by G. Tjurina’s result ([Tj]),
and their coarse moduli space .#;, which is a quasi-projective variety by ([Gi]), is
irreducible. Consider the 16-dimensional family:

{F=z§ +wzyax; +wr+w?q(x,, x,)+ B(xy, x,) =0,

G=z;+wzyx,+w*+w?q'(x,, x;)+ B'(x, x,)=0

such that (g, q', B, B') lie in a Zariski open subset % of the 16-dimensional affine space
defined by the conditions on F, G mentioned in Theorem 2. 8. Assume that

(Fy, Gy), (F5, Gy)eu
are equivalent under a projectivity h as in Theorem 2. 8.

<d11 d12>:P1 s p!
dyy  dy,

Since the projectivity

preserves the 2 points {x, =0}, {x, =0} by 2.8. ii), h must be given by a diagonal
matrix. Conditions ii) in 2. 8 read out as follows:
d%1 = d%z =d?,

2 _J. 2 _ g4
¢33 =dcgadyy, c53=4d°, d T
=) 411Cua =4,

2 2 4
Cia=dcyzdyy, cia=4d",
dzzc33=d3,
. q,=c33d>q;(dyy Xy, ds; X3)
1.€.
q> (X1, X2)=q, (£ x4, £ X3),

and analogously for ¢, B, B'.
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On the other hand, if h is the projectivity which exchanges x; and x,, and i is the
involution which exchanges z; and z,, then, according to 2.8. ii), (Foheoi,Goholi)
gives an isomorphic surface, given by

{Z§+WZ4X1 +w4+w2q(x2, x;)+ B(x,, x;)=0,

zi+wzyxy +wH+w?q' (x5, xq)+ B/ (x5, x;)=0.

Therefore the image of % in .#; (which is a Zariski open set in .#;) is birational to the
quotient of C'® by a linear action of (Z/2.Z)3, and therefore .4 is rational. Q.E.D.

§ 3. Surfaces with torsion 0 for which the bicanonical map is not birational

In this paragraph, we will give geometric descriptions of the surfaces S with no
torsion and for which the bicanonical map @ is not birational. According to the results
of § 1, we are in one of the three following cases:

1) @ is of degree 4 onto a smooth quadric,
2) @ is of degree 2 onto a rational quartic,

3) @ is of degree 2 onto a K 3 quartic.

Using these descriptions, we will also prove that the corresponding subvarieties
My, M, and M4 of the moduli space .# are irreducible and unirational of respective
dimension 11, 13, and 12, that .# is smooth at a general point of .#,, and that
M= My M.

The end of the paragraph will be devoted to the construction of a common flat
degeneration of surfaces of type 2) and of certain surfaces of type 0) (studied in §2) to
non-normal rational surfaces.

We begin with the analysis of case 1).

Proposition 3. 1. Suppose that the image X of the bicanonical map of S is a smooth
quadric. Then S is a Galois covering of X with group (Z/2Z)* branched along
A=A4,+ 4,4+ A5, where 4 is reduced with at most double points as singularities, A, is of

type (3, 1)> AZ Of type (19 3)7 A3 Of type (la 1)’

Conversely, if A is a curve with the above decomposition and properties, then, taking
the double cover S, of the quadric ramified along A;+ A;, S is the minimal resolution of
the double cover of S, branched along the pullback of A, on S,, and the nodes of S, lying
over A;n A; (where {1, 2, 3} ={i, j, k}).

Proof. Let F, and F, be the inverse images on S of the two pencils of lines of X.
We have

2KEF1+F2, FI'F2=4, F12=F22=0.
Therefore KF, =KF,=2 and |F,| and |F,| are two pencils of genus 2 curves without

base points. The hyperelliptic involutions on the fibers induce two involutions ¢, and o,
on S, with /g, and S/o, ruled.
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We first show that ¢, and o, are distinct. If ¢, =0, =0, the surface T=S/o is
ruled with two distinct rulings G, = F, /o, G, = F, /o, which satisfy:

{hO(T, O07(G;))=2 because h°(S, Os5(F,)=2,
K; - G;=—2, by the genus formula.

The R.R. theorem on T gives H'(T, 07(G,)) =0 and there is an exact sequence:
0— HO(Ta 0r(Gy) — HO(TZ Or(Gy + Gy)) — HO(Gza Ug, (G, + Gzlcz)) — 0.
But this is impossible, since:

hA(T, 04(G, + Gy)) ShO(S, Os(F + F,)) =4,
h° (Gz’ 062(G1 + GZlG;)) =h° (Gz, (9(;2(2)) = 3,

. . 1 -
because G, is rational smooth and G, - G, =3 F,-F,=2. Hence o, and o, are distinct.

Now, a general fiber & ' (®(x)) has four points, including x, o,(x), ,(x). There-
fore, the last one is 0,0,(x)=0,0,(x) and @ is a Galois covering with group

{1,0(,0,,0,0,} 2727 ® Z/2Z.

Notice that, if w is a generator for H°(S, Kg), w is anti-invariant by ¢¥ and o%,
because p,(S/o,) = p,(S/0,) =0, hence it is invariant by o¥.

Let Fix o; be the pointwise fixed (smooth reducible) curve of g;, 4, its image by ¢.
Let R be a component of Fixo;. We can assume that, in local coordinates (x, y), we
have:

GS(Xa )’)=(x’ __y)i R= {y=0}, w=f(x, y)dXAdy

Since w=o0Ffw= —f(x, —y)dx ady, w|g=0, 1.e., R<C. But the same argument shows
that no component of C can be in Fixo; or Fixo,. But, by Lemma 1.7, C is hyper-
elliptic, which proves that C’ is in the branch locus of &. Therefore, we have proved that
45 =C', and, by the way, that Fixg; and Fix g; have no common components for i,
and neither have 4; and 4;. Let us denote by 4 the curve 4, + 4, + 4;. It is clear that

the branch locus of S/o; --“» X is (4 —4;).

Now, by construction, the inverse images on S/o, of the fibres of type (0, 1) are a
ruling of S/a,. Therefore:

1
—2=n}(0, 1) n} (Kz+§(Az+A3)>

and 4, is of type (1, a,). In the same way, 4, is of type (a,, 1).
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The inverse images on S of each of the rulings of X form a pencil of genus 2
curves. Therefore

1 1
2=9*(1, 0) - P* (KE+2A>=@*(0, 1)- o* (Kz+§ A)
and A4 is of type (5, 5).

Putting all these results together gives the types of the A4s. For the singularities
of A, we need to use the following two theorems. Notice first that because of their type,
the A.s are of arithmetic genus 0, thercfore either they are irreducible smooth or they
are reducible, in which case it is easy to verify that they have only nodes. Now, there
are 10 curves of square (—2) on M, the resolution of the double cover of X branched
along 4, +4,, which don’t meet the pullback of A5 on M (as it will be shown in
Theorem 3. 14) and which project to the points of intersection of A, and 4,, as it is
easy to see. Therefore A5 does not pass through the points of intersection of 4; and 4,.
The analogue holds for 4, and 4,, using Theorem 3. 3. Q.E.D.

Remark 3.2. We have shown that, if X is a smooth quadric, there is a commu-
tative diagram:

where p,(S/0,)=p,(S/6,)=0 and p,(S/o3)=1.

Therefore, the following theorem applies in cases 1) (X smooth quadric) and 2)
(2 rational quartic).

Theorem 3. 3. All surfaces S without torsion and such that their bicanonical map
factors through a rational map of degree 2, S ---» V with p,(V)=0 are obtained in the
following way:

Let P={py, ..., Ps; Q1, ---» da} be a set of nine points in [P, with q; infinitely near
top; fori=1,..., 4, such that:

i) No line passes through five points of ? and at most one line passes through four
points, which are then of the form {p,, q;, p;, q;} for two distinct elements i and j of

(..., 4}

ii) No conic passes through eight points of # and at most one conic passes through
seven points, which are then of the form P\{p,, q;}, where i€ {1, ..., 4}.

iii) There exists a curve A’ of degree 10 whose singularities are, besides negligible
ones (explained below), (3, 3) points at each (p;, q;) i=1, ..., 4 and a point of multiplicity 4
at p5 -

Then S is obtained by taking the minimal resolution of the double cover of P?
branched along A’.
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Remarks 3.4. 1) A point p;, I <i=<4, can also be infinitely near to another p;,
1<j<5.

2) Negligible singularities are:
— double points,
— triple points which resolve to at most a double point after one blow-up.

A (3, 3) point at (p;, ¢;) is a point of multiplicity 3 at p; which resolves to a point
of multiplicity 3 at g; after blowing-up p;, and which resolves to at most a negligible
singularity after blowing-up g;.

3) The surface X is the image of /22 under the complete linear system of quartics
passing through the points of 2 and doubly through ps. It follows (cf. proof of Theorem
3. 3) that:

a) If the points of 2 lie on a unique cubic, X is a rational quartic in /P* with a
double line corresponding to this cubic and, in general, four distinct nodes. The
canonical curve of S is hyperelliptic and its image is a conic passing through the four
nodes of Z, corresponding to the conic passing through {pi,..., ps} (unique by i)).

b) If the points of # lie on a pencil of cubics, X is a smooth quadric in /3. Its
two rulings are given by this pencil of cubics, respectively by the pencil of lines through
ps. Notice that these pencils are distinct by ii).

4) For a generic set £, iii) is always satisfied. More precisely, if there is a unique
smooth cubic through the points of &, there are curves A’ satisfying property Hi),
irreducible and smooth outside 2.

Proof. We use the notations of the proof of the theorem. Let C, be the strict
transform of this cubic on P. Then C,e|—K] and 4,=3C,+ (I — E). By considering,
for n> 1, the exact sequences of cohomology of the exact sequences:

where degD,=2, we get H'(P,l|—E +nC,)=0. Hence H'(4,)=0 and, by Riemann-
Roch, h°(4,)=8. Moreover, the possible base-points of |4, are on C,. But there is a
surjection:

Ho(Pa AO) . HO(CO:v D3)a
and |D;] is base-point-free on C,.

Hence |4, is also base-point-free. The result now follows from Bertini’s theorem.
Q.E.D.

Proof of Theorem 3. 3. Let ¢ be the involution of S associated to S ---» 1V and let
¢:S— S be the blow-up of the isolated fixed points of o. Let Ef, ..., E, be the ex-
ceptional curves of the blow-up and let ¢ be the involution of § induced by o. The
surface P=_S/6 is smooth and the branch locus 4 of the double cover n:S — P is
smooth and reduced. One has 4 €|2d|, where n, OUs=Up @ Cp(—0). The following
equalities hold:

. . 1
2=y(Cs) =2[p,(P)—q(P)+1] +3 0(6+ Kp),

2—e=Ki=2(Kp+93)>
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They yield:

(3. 5) S0+ Kp) =0, Kﬁ(é—l—K,s):l—g.

Moreover, @, factors through =, therefore either H°(2Kp+26) or H°(2Kp+9) is
zero. Since p,(P)=0, we have 1=p,(S)=h°(Kp+ ) hence H°(2K s+ ) is zero and we
can apply Riemann-Roch to [2Kp+ 5| on P, which gives (H*(2Kp+ 8)~ Ho(— Kg—9)*
is zero since Kp + 0 =0 would imply K¢=0):

W' Q2Kp+8)=—y2Kp+0)= —2+§
hence

(3. 6) e=4.

Let us denote by A4; the image of E under n. The curves A, are smooth, rational,

of self-intersection —2 and contained in 4. Since [2K¢—2 Y Ej| is base-point-free, the

e i=1
linear system |H| = IZK p+4— > A, is also base-point-free and:

i=1

(3.7) Qoe=@y om.
We deduce from (3. 7) that:

(3. 8) hO(H)=4, H?=4.

We apply Riemann-Roch to |H| on P, which gives, since h?(H) = h°(Kp— H) < h°(K 3) = 0:
W (H)= — 7 (H)+ 4

] N
=4—|:1+5(4-—Kﬁ(2Kﬁ+25))j|=2—§.

Therefore, from (3. 6), we get e=4, H (P, H)=0 and:
(3.9 Kp-H=-2.
Now, there exists a commutative diagram:

P > X 3

DyH |

N,

P

where 5 is a birational morphism onto a smooth surface P, and ¥ does not contract

any exceptional curve of the first kind of P (i.e. a smooth rational curve of square — 1).
4
We want to show that no curve contracted by # meets 4 = > A,

i=1
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Since n is a composition of blow-ups, it is enough to show that no exceptional
curve of the first kind E contracted by n meets A. Suppose that this is not true and that
E meets A,. Since the intersection form on curves contracted by @y, is negative definite,
we have (E+ A,)*<0, hence E- 4, <1. Since E is irreducible and meets 4,, we have
E-A;=1 and A, is contracted by #. But this is impossible because P is smooth and the

quotient of S by the involution ¢ is not smooth at the point corresponding to the
isolated fixed point ¢(E}) € S of o.

We still denote by the same letters the image of H, J, 4, A; under n,.. We get:

where 44, A,,..., A, are disjoint, A; is rational smooth of square (—2) and 4, has
negligible singularities, due to the fact that, for every exceptional divisor E of P con-
tracted by », we have:

A 'E:(H+A1+ e +A4_2Kﬁ)'E=2.

Moreover, the equalities (3. 5), (3. 7), (3. 8), (3. 9) remain true on P. We will now show
that |Kp + H| 1s a pencil of rational curves without base-point.

First, the cohomology sequence associated to
00— Cp(K)— Op(K+H)— wy—0
gives an isomorphism
(3. 10) HO(P, Kp+ H)=~ H(H, wp).
But, by (3. 8) and (3. 9), a generic element H of |H| is smooth of genus 2, therefore, if G,
is irreducible and contained in the fixed part of |K,+ H|, we get, by (3. 10) and since

|wy| has no base-point, Gy H =0. Therefore G, is contracted by &, and Gj<0. By
construction, G, cannot be exceptional. Therefore, Kp G, = 0.

If G 1s the fixed part of |Kp + H|, we have shown:
KpG=20, HG=0, and therefore G*<0.
On the other hand, we have:
(3.11) 0L(Kp+H—-G)P*=K;—2KpG+ G?,
and by the Index Theorem:

HH+2K,)=0 = (H+2K,)>=—4+4K2<0,
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equality holding if and only if H= —2K,. It is casy to check that there are only two
possibilities:

(3.12) K2=0, G=0, (Kp+H)}*=0
and |Kp + H| has no fixed part and no base-point.

(3.13) K2=1, G=0, H=—2K, and by (3.10), i°(P, —Kp)=2.
In this case, clearly, 2 = @5 (P) is a quadric cone.

Since we have supposed S without torsion, we are in case (3. 12). We denote by F
a fibre of the ruling of P given by |K, + H|. We have:

8(F)=1+ (Kp + H) 2Kp+ H) =0,

by (3.8) and (3. 12). Hence P is a rational ruled surface. Recall that for any fibre F,
F,.q is a divisor with normal crossings.

Now, since H- A,=Kp- A;=0, each A; is contained in a reducible fibre. If E is an
irreducible exceptional curve contained in a fibre, we have:

FE=0, KpE=-—1
1+ EA=(F—Kp+AE=H+AE=Q2Kp+4)E is even.

But E meets at most two other components of a fibre, therefore E meets exactly
one A;, say A,. We can contract E and then A4, and perform the same operation on the
new surface. Thus, we can perform eight contractions ¢: P — P’, with corresponding
exceptional divisors {E%, E5},<;<, such that A;,= E} — E}, until the fibration P’ — P! is
relatively minimal (in fact, by (3.12), K3 =8). Therefore, P’ is a Segre-Hirzebruch
surface [/, (cf. Notation).

We denote by p, the image of 4; on [F,. Notice that the p’s can be infinitely near
but of odd order only. The picture is:

on P .
pd /A/ :
>\

on [Ed
Fiber

A/

~N
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Since the Picard group of [, is spanned by the class [F] a fibre and the class [B,]
of a section with self-intersection 0 (cf. Notation), we can set:

0'=8,0=3By+aF, A =g A.

Then, recalling that, on P, F=Kp,+ H=3Kp+ 4 — A, we get:

4
S=e*' — Y (B} +2EL).

i=1

We also have:

4
Kp=e*Kg, + ), (Ei + EY)
i=1
and

Ky,=—2By+(d—2)F.

The equality (3. 5) gives 200 =7 — 3d. Therefore d is odd and if d+1, « is negative and,
since A"- B, =2u, B, is a component of A’. Since 4’ is reduced, we then get:

(3. 13) 0<(4'—B,)B,=2a+d=7—2d ie, d=3,

If d=3, we want to show that B, cannot pass through a p; which is actually on [,
(i.e., which is not an infinitely near point). Otherwise, if we perform two blow-ups as
shown on the above picture, then (F — E3) is an exceptional divisor, which we can con-
tract, a contraction which leads us on F; (in fact, we have done two elementary trans-
formations), contradicting (3. 13). Therefore, we can suppose that p; is not on B,. We
perform again two blow-ups as above, but now the centers are not on B_, therefore, the
contraction of (F — E}) leads us on [F;. We can therefore assume that we are on /.
Then, contracting B,, leads us on /P? and we denote by ps the image of B, on /P2, by I
(resp. E) the inverse image on P of a line (resp. of ps). We get:

Ai:Eil‘—Ei,

4 4
A=101—4E—-3Y (Ei+EY)+ Y A4,
i=1 i=1
4

4
Kp+6=2I—E—Y E\+ ) A4,
i=1 i=1
4 . N
H=41-Y (Ei +E,)—2E.

i=1
It remains to decide whether 2 = @, (P) is a quadric or a quartic.

Notice that the linear system |F| is the system of lines through ps and that the
anticanonical system |— K| is the linear system of cubics passing through

P ={D1seees P5s Q1>+ da}-

Since the fibres F are not contracted by @, we have h®(—K)=h°(H—F)<2.

2y Journal fiir Mathematik. Band 395



22 Catanese and Debarre, Surfaces with K*=2, p,=1, 4=0

If |—Kp| is a pencil, the equivalence H= —Kp+ F shows that X is a quadric.
Conversely, if X is a smooth quadric, we know from the proof of 3.1 that the inverse
image of one of its pencils of lines is the ruling |F| on P and therefore, the inverse image
of the other one is |— Kp|. This proves Remark 3. 4. 3).

Let us prove condition i). If L is a line through four points of #, we have
A, - L <0 and therefore L is a component of 4,. Since 4, N A4; =@, we deduce that if L
passes through p;, then it passes also through g;. Finally, L cannot contain 5 points
since H is numerically non-negative. In the same way, we prove ii) except that the conic
Q could contain 2\{ps}. But then we would have H=2F +Q and X would be a cone
(cf. Remark 3.4.3) b)).

Conversely, if # and A’ are given, we define P as the blow-up of # on P?,
A, as the strict transform of 4’ and A;, A, 4, 6, H by the above formulae. Suppose that
the reduced curve 4, has negligible singularities and does not meet A; then the double
cover of P branched along A has at most ordinary double points as singularities.
A minimal desingularization § is a surface carrying 4 exceptional curves corresponding
to the inverse images of the A;s. By contracting them, we get a smooth surface §
satisfying:

K§=2, X(@S)Zza pg(S):ho(Pa KP+5)'
Furthermore, if condition i) of Theorem 3.3 is satisfied, there is a unique conic

through {p,, ..., ps} hence p,(S)=1, q(5)=0.

Let us show that the surface S is minimal. If this were not true, there would be a
smooth irreducible curve G on P satisfying one of the following properties:

) Ged, G*=4-G=—2, Kp-G=0,

2) Gnd=0, G*=Kp-G=-—1,

3) G-A,=1, G2=Kp G=—1, (Kp+3)-G=0,
4) G-A,=2 (Kp+0)-G=0, Kp G<O0.

All these cases are ruled out if G is not a component of A4 by the inequality

A-G=[-3Kp+(—E)+A+D]-G
>—-3Kp-G+D-G,

where D is a sum of divisors contracted by n: P — P, by noticing that no component
of D meets A, that any common component of D and 4 is of square (—4) and that any
component of D not meeting A is of square (—2), hence D- G =0 in each case 1) to 4).

It remains to show that S has no torsion. If this were not true, by (1. 8), 2 would
be a cone. By Remark 3.4. 4), this would mean that the pencil of cubics passing
through 2 would be the pencil of lines passing through ps. This could only happen if
the eight points of 2\{ps} were on a conic, which is excluded by hypothesis 1i).

Q.E.D.

The following theorem applies to both cases 1) (X quadric) and 3) (2 K3),
according to Remark 3. 2. Tts proof is completely analogous to the one of the preceding
theorem and we shall only indicate the main steps.
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Theorem 3. 15. Suppose that the bicanonical map ® of S factors through a rational
map of degree 2, S ---> V, with p,(V)=1. Then S is obtained in the following way.

Let M be a smooth minimal K3 surface with a set of 10 disjoint smooth rational

curves {A4, ..., Ao} and a smooth curve H of genus 3 such that:
H' Ai=0,
(3. 16)

Let Ay be an element of |H| with at most negligible singularities (defined in 3. 4. 2)),

which does not meet the A;s. Then S is obtained by contracting the exceptional curves of
10

the minimal resolution of the double cover of M branched along Ay + ) A;.
i=1

Remark 3. 17.  The image X of @ is @y (M). Therefore we have two cases:

1) The generic member of |H| is hyperelliptic. Then X is either a quadratic cone
(cf. §2) or a smooth quadric (cf. 3. 1).

2) The generic member of |H| is non-hyperelliptic. Then X is a quartic surface in
[P? with only rational double points as singularities. We will prove in 4. 9 that X is the
locus of zeros of a symmetric 4 x 4 determinant of linear forms, the curves A; lying over
the locus N of common zeros of the 3 x 3 minors; and that, conversely, given a quartic
2 as above, a minimal desingularization M of X satisfies (3. 16) for some disjoint smooth
rational curves A; lying over N. In general, the set N is a set of 10 distinct nodes, the
inverse image of which gives on M the 10 curves A4;. The fact that (3. 16) holds follows
from [Ca4].

We can construct a surface S as explained in 3. 15 and according to 1.8, S has
torsion 0. The canonical curve of S is non-hyperelliptic.

Proof of Theorem 3.15. We keep the same notations as in the preceding proof
except that we denote by M the surface S/6. The beginning is the same. We get:

(3. 18) S+ Kyg)=—4,
(3. 19) (Kﬁ-’r—é)z:l—%,

(3. 20) hl(ZKﬁ+5)=~—X(2Kﬁ+5)=——5+§ ie. e=10,
(3.21) D2xz = Py o m, |H| base-point-free,

W(H)=4, H?*=4.

(3. 22) Kp-H=0

Yy =5-%
(3.23) h(H)=5->.
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It follows from (3. 20) and (3. 23) that e=10. From (3. 22), it follows on one hand
that h°(nK ;) =1 for n =0, which proves that M is a K 3 surface, and on the other hand
thatAcD| | contracts every exceptional divisor on M. We denote as in the proof of 3. 3 by
n:M — M the contraction of all exceptional divisors of M contracted by @y . We have
proved that M is a minimal K 3 surface, with a set of ten rational curves of square (—2),
{Ay,..., Ay}, such that (3. 16) holds (because H=4, on M, by definition of H, since
Ky =0).

Conversely, if M, H, A,,..., A, are given as in the theorem, it is easy to compute
the numerical invariants of the surface S obtained as explained in the statement. The
fact that S is minimal follows again from the fact that @y has no base-point (cf. [Be],
page 129). Q.E.D.

Our next aim is to prove that all the surfaces considered in this paragraph, i.e. the
ones with torsion 0 for which @ is not birational, form a connected proper subvariety of
an irreducible component of the moduli space .# of surfaces with K2 =2, p,=1,q=0.
Moreover, we shall show that they are all simply connected.

Recall that the surfaces with torsion 0 for which @ is not birational fall in one of
the following families:

1) The family of surfaces for which the image of @ is a smooth quadric. It defines
a locally closed subvariety .#; of /.

2) The family of surfaces for which the image of @ is a rational quartic. It defines
a locally closed subvariety .#, of 4.

3) The family of surfaces for which the image of @ is a K3 quartic. It defines a
locally closed subvariety .#; of ..

Theorem 3. 24.  The varieties .#,, #, and .#, are irreducible unirational of dimen-
sion respectively 11, 13 and 12. Moreover, M, is in the closure of both 4, and M5 and
the moduli space ./ is smooth of dimension 16 at the general point of M.

Proof. We first consider the space .#,.

Referring to Proposition 3.1, if S and S’ are Galois covers of X = P! x P! with
branch locus 4, 4°, resp., and they are isomorphic, there exists g € Aut(2) such that
g(4;)=4;, and conversely, if such a g exists, one can lift g to an isomorphism of S
to ' in four possible ways (corresponding to the choice of a base-point on S’ in
@'~ '(p,), where p, is a not critical point for D).

Hence we have a 4-to-1 cover of .#; by the quotient of a Zariski open set of
P(H®(0:(3, 1)) x P (H (O (1, 3))) x PP(HO(0s(1, 1)) by Aut(Z). This proves, by easy argu-
ments, that .#, is irreducible, unirational, of dimension 11=7+7+3 —6.

When the 4;’s are smooth and intersect transversally, K is ample and H2(S, O5)=0
(Example 3.5 of [Ca7]), hence .# is smooth of dimension 16=10y —2K?2 at the
corresponding point.
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Let S now be a surface such that there exists an involution ¢ for which the bi-
canonical morphism @ :S — X factors through § — S/o. If o acts as —id (resp. +1id) on
H°(S, Kg), we will construct an effective deformation of S together with the involu-
tion g, with base space of dimension at least 13 (resp. 12). This will prove:

— J#, 1s contained in the closure of .#, and .#, (by Remark 3. 2).

— The dimension of .#, (resp. .#5) is =13 (resp. = 12) at every point.

Take any smooth surface S. We recall a way of defining its Kuranishi family. Fix
an Hermitian metric on S, denote by A%9(@,) the space of Os-valued €= differential
forms of type (0, q) and identify the space of harmonic elements of A4°%(6) with
H(S, O); then there exists an holomorphic map ¢ defined in a neighborhood U of 0 in

H'(S, O) with values in A% ! (@), such that ¢(0)=0, (l)(t)-—— Go*[P(t), p(t)] =t, where
G is the Green operator, 0* the adjoint of 0.

Then B is defined as {t € U | py[¢(¢), ¢(¢)] =0}, where py is the orthogonal pro-
jection A%%(O5) — H?(S, ).

Any element t of B defines a complex structure of the ¥* manifold S; under-
lying S: the anti-holomorphic tangent space T.>'! at s e S is defined as

{L—¢@),L|LeT>'S}

where ¢ (1), is considered as an homomorphism T2!S — T21S.

The ¥ manifold & =S, x B can be endowed with a complex structure such that
the mapping p: ¥ — B is holomorphic and that the fibre p~!(¢)=S, has the complex
structure defined by ¢ (z). The family p: % — B is a universal deformation for S =S§,.

Let now ¢ be an automorphism of S. Then ¢ induces a ¥* automorphism of S,
which in turn induces an analytic automorphism of S, if and only if 6, (T.>'S,)=TJ; S,
for all s € Sg, i.e. if and only if ¢, ¢ (t) = ¢ (t). Therefore, if we set:

B’={te B|o,¢()=9¢(1)},
S’ =S np Y(B%), p° =plge,

the family p”: &¥° — B’ is such that ¢ induces an automorphism on each fibre. If we
denote by HY(S, @)° the subspace of elements of HY(S, Og) invariant by the action of
0., We have

B°={teU|¢(t)e H'(S, 6,), pg-[$(t), $(t)] =0},

where pye is the orthogonal projection 4%2(®,)” — H?2(S, ©,)°, because the bracket of
two invariant forms is invariant.
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Therefore, B” is a subset of H'(S, ©,) defined by
[dim H'(S, ©,) —dim H'(S, ©,)°] + dim H%(S, ©,)°
equations, hence:
(3. 25) dim B° > dim H' (S, ©,)" —dim H?(S, @,)°.

Now, it remains to compute the above right-hand side when ¢ is an involution.
This is provided by the following lemma:

Lemma 3.26. Let ¢ be an involution of a surface S, without isolated fixed points.
Let A be the branch locus of m:8 — S/6 = T. Then:

i

2 . - A A 1
(3. 27) (= 1) dim H'(S, ©5)° = — 105 (0r) + 2K} — (4>~ K7 4).
=0

Proof. A local computation (cf. [Ca 3], Proposition 3. 1) shows that:
7, (23 (Kg)) = [Qf-(log 4) ® (7(K)] @ Q4K+ 6),

where A € 126] and the first (resp. second) term corresponds to the invariant (resp. anti-
invariant) part.

Therefore, the left-hand side of (3. 27) is equal to:

1" = 2 [Q5(log 4) ® €, (K,)].
The following exact sequences:

0— QF ® 0(Ky) — Q1 (log A) ® O(Ky) —> Op(Ky) — 0,
0—> Or(Ky— 4) —’(OT(KT) — O(K7)— 0

yield:
X$= 2T QF ® O(Kp))+ T Or(Kp) — (T, Op (K7 — 4))
1
=—10;(((9T)+2K%——2—(A2~KTA). Q.E.D.
Now, we go back to a surface S of our family, such that the Galois group of

S — X contains an involution ¢ with 6*w= —w (resp. 0*w = w), where w is a non-zero
element of H(S, Kj).

We want to prove that the subvariety .#, U .#, (resp. .#, u .#,) of the moduli

space corresponding to the family of these surfaces is everywhere of dimension at least
13 (resp. 12).
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Let §— S be the blow-up of the 4 (resp. 10) isolated fixed points of a [cf. (3. 3)
(resp. (3. 15))], & the fixed point-free involution induced on §.

It follows from the above arguments that there exists a family p:#% — B? of
deformations of S=p 1(0) such that there exists on each fibre an involution &, with
o¥w,= —w, (resp. 6Fw, =w,).

In the notations of (3. 3) (resp. (3. 15)), S/6 is the surface P (resp. M). We can use
the formula (3.27), after noticing that its right-hand side can be computed on P
(resp. M) as well. We get dim B? > 13 (resp. dim B? > 12). Now, by a well-known theorem
of Kodaira ([Ko]), the 4 (resp. 10) exceptional curves of § are deformed into exceptional
curves that we can blow down. This yields a deformation p:y‘?——»Ba of S, which
proves what we wanted.

The fact that .#, is irreducible unirational 12-dimensional will be proven in §4,
using the description of the canonical ring of the corresponding surfaces.

We now prove that .#, is irreducible unirational and 13-dimensional.
Following [Ran], § 1, one can define a scheme structure on the set:

U={P={pys..., Pss 41> ---» 4a}, ¢; infinitely near to p, for 1<i<4 and:

(p; infinitely near to p;) = i<jj.

To define an element of %, one has to choose successively ps, pa, 4as-.-5 P1> 91>
each time in an irreducible subset of some blow-up of /2. Therefore % is irreducible,
14-dimensional.

There is a variety # together with a morphism p: % — % such that for # e %,
the fibre (p)~! (2) is the projective space |4,| (defined in the proof of Theorem 3. 3).
Consider the following open subset of # (which, by Remark 3. 4. 4), dominates %):

B={A,| A, does not meet 4 =2 A4, and has negligible singularities
(on the blow-up of Z on [P?)}.

Then, to each point of %, we can associate a surface S. We get 4 map:
q: % — M,

the image of which contains .#, by Theorem 3.3. Since the projectivities of [P? act
on %, the dimension of the fibres of g is at least dim PGL (3) =8.

But we have just proven above that the dimension of .#, is everywhere =13. It
follows that:

(3. 28) The dimension of g~ ! (.#,) is everywhere >21.

We estimate now the dimension of the fibres of p:q !(4#,) — %, in a lemma
which will be proven later on.
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Lemma 3.29. Let S be a surface corresponding to a point of M,. We adopt the
notations of the proof of Theorem 3. 3. Then h°(P, 4,) =8 except when:

— there is a line through {p;, q;, p;, q;}
or,

— there is a conic through 2\{p,, q;},
in which cases h°(P, 4,)=9.

Let ¥ be the image of p:q~'(#,) — % and ¥; the subset of ¥ corresponding to
the special cases of the lemma. We have:

dim ¥, <12,
V#ev,, dimp 1(#)=38
hence dim p~1(¥;) < 20.

It follows from (3. 28) that p~'(¥;) is a proper subset of a component of ¢~ (4,)
and that p~!(¥"— ¥}) is dense in q~'(.#,). But we know that the fibres of pover ¥ — ¥,
are open subsets of 7-dimensional projective spaces. It follows that p~!(¥ — v]) is
irreducible, unirational and 21-dimensional.

Therefore .#, is irreducible, unirational and 13-dimensional. Q.E.D.
Proof of the Lemma. Recall from the proof of 3.3 that the notations are
A=A0+A1+ b +A4

on P, where 4;=E{ — E} are smooth rational curves with self intersection —2 and Ao 18

4
disjoint from A=} A4, with negligible singularities (cf. Remark 3.4 2)). Since P is
i=1
regular, there is an exact sequence:

0— H°(P, () — H°(P, 45) — HO(A09 Oy, (A)) — 0.
We also have the following numerical relations:

A(2)=12, AOKP=—2'

Using Riemann-Roch, we find:
h°(P, Ag)=8 4 h°(4,, Kpy, )-

The line bundle ¢, (K;) has total degree —2. We first look for irreducible curves D
contained in 4, such that deg(¢,(Kp))=D - K, >0. :

We observe that since A, is the strict transform of 4’ < /P2 on P, every component
of 4o, and in particular D, projects birationnally to a plane curve in /2.
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Let C, € |Kp| be the unique cubic through the points of Z. Since C3=0, D- C,<0

implies that C, is reducible, D is a component of C, and D?<0. In particular, D is a

curve of degree <2 and is rational. Therefore D>= —~2—DK, < —3 and either D is a

line through 4 points of # or a conic through 7 points (at least). We conclude with

properties i) and ii) of Theorem 3. 3, that we are in one of the exceptional cases of the
lemma. Notice that in these cases, D is unique and satisfies:

D2=—3, KP'D=1, Ao'D=_2.

Hence D is the fixed part of |4,]. We will write 4= D + A,. We get:

hO(P, 4g) =h°(P, 45) =9+ h°(45, Kpi4)-

Now, the degree of Kp on any component of A, (resp. 4; in the exceptional cases)
is non-positive. Therefore, if the sheaf ¢, (Kp) (resp. ("y, (Kp)) had a section, there would
be a decomposition 4 =TI+ 4, with Kp-I'=0 and I' n 4, =@ (resp. with 4, replaced
by 4;), with I' irreducible. But now, by the Index Theorem, we have:

Ki=Kp I'=0=T?<0 or I'=K,.
In the non-exceptional case, notice that A,= —3 K, + F, hence:
I'*=r-(Ay—A4,)=T-A,=T-F >0 since F is moving.
Therefore I' = K, and I'*> = 0. But this contradicts the equalities
FZ:-F'AO:KP'AO: “"‘2.
We have thus proven that H°(4,, ¢, (Kp)) is zero hence the lemma in this case.
In the exceptional cases, one has I'* =T F —I" - D. Notice that
I'D+A{D=A,D=4,D—D?*=1.

If A{D<0, D is a component of 47 and I'-D=0, I'*>0. If A{D =0, one has I'D=0
or 1. If 'D =0, we have again I'*>0. If I'D =1, one has

I (Co—D)=—T Kp—1=—1,

hence I' is a component of C, and I' - F > 1. Therefore, we always have I'? >0, hence
I'=Kp. As above, we are led to the contradiction 0=I?=T -4y =Kp-Ay= —3.

We have thus proven that H®(4;, ¢, (Kp)) is zero hence the lemma in the excep-
tional cases. Q.E.D.

Corollary 3. 30. The surfaces S for which ® = ®,,, is not birational, and = = ®(S)
is not a quadric cone are simply connected.
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Proof. 1t follows from the preceding theorem that those surfaces form a con-
nected family. Therefore it is sufficient to construct a simply connected member of this
family; this construction can be found in [Ch]. We can also remark that it is enough to
prove that the fundamental group is abelian, since there is no torsion; but if S is a
Galois cover of ¥ = /P! x /P! and the 4;s are smooth and intersect transversally, then
m (X —d4,—4,— A3) is abelian (cf. [Ca7]). Q.E.D.

We end up this section with the following proposition, which links the surfaces
studied in this section to the ones for which the torsion is ZJ2Z, studied in § 2.

Proposition 3. 31.  There is a flat family of surfaces & — RB=2RB, B, where B,
and B, (resp. By N B,) are smooth irreducible of dimension 13 (resp. 12), such that:

* For a general point b of B, the fibre S, is a smooth minimal surface of general

type with K*=y(0)=2. The induced rational map from # to the moduli space i is
generically finite on its image.

If b is general in B,, S, is of type 0) (2 quadric cone).
If b is general in B,, S, is of type 2) (X rational quartic).

* If b is general in B, B,, S, is not normal. Its normalization is a smooth
rational ruled surface.

Proof. Consider the situation of Theorem 3. 3 but suppose that the 8 points of
P\{ps} lie on an irreducible conic C}. We want to construct a surface S according to
the procedure described in Theorem 3. 3, and we keep the same notations. Let C, be the
strict transform of C} on the blow-up P of /@2 along 2. Then 4, C;=—4 and C, is in
the fixed part of |4,]. We write A9g=C;+4, and 4,=2H, 4, -C,=0. Notice that
H=C,+2(I—- E) and that there is an exact sequence:

0— H(P, 2(I— E)) — H°(P, H) — H°(C,, 0..) —> 0.

Therefore [H| (hence |4,|) has no base-point. A general element of |4,] is smooth
(but not connected) and we can construct a surface S as described in Theorem 3. 3. It is
easy to see that S is a minimal surface with K2 =2, p,=1, ¢=0. Its bicanonical map
factors through S ---» P and its bicanonical image is @, (P), which is a quadric cone.
Hence § has torsion Z/227.

We construct now a family of such surfaces. Fix the points p,, p,, ps, ps pro-
jectively independent. Take % to be an open 6-dimensional family of sets 2 containing
P1> P2, P3, P4 and let ¥ be the 3-dimensional subvariety corresponding to the sets 2
such that #—{p,} lic on an irreducible conic. We shall suppose moreover that for
P eU—W, there is a unique smooth cubic passing through the points of . Let
P:%# — U be a morphism such that the fibre of 2 is the projective space |4,(%)|, and
let p: 8B — % be its restriction to the open set of smooth Ay’s. It follows from Remark
3.4 4) that over % — ¥, the fibres of p are 7-dimensional, irreducible. This yields an ir-
reducible 13-dimensional component %, of #, which dominates %. It follows from the
discussion above that if 2 € %, the fibre p~!(%) is an open subset of |4,|= /. This
yields another 13-dimensional component %, of 4, which dominates #°, and

g:goueﬁz.



Catanese and Debarre, Surfaces with K* =2, p, =1, ¢=0 31

There is a generically finite map from £ to the moduli space .# of our surfaces,
which sends %, onto a 13-dimensional locally closed subset of .#; (surfaces with torsion
Z/27Z) and %, onto a dense open subset of .#, (surfaces of type 2)).

What is the intersection of %, and %, (closure in %)?

First, &, =(p)"* (#°). On the other hand, since a limit of connected sets is con-
nected, any (4,, #) in %, is such that 4, is connected. In case 2 € ¥, it can be written
as:

AO:2C1+A2,
Ay=H+2(I—-E).

Therefore, (p)™' (#) " #,, for P € ¥, is contained into the 9-dimensional pro-
jective space 2C, +|4,]. It follows that the intersection %, %, is contained in the
smooth irreducible divisor %,, of %, defined by:

'@02 = U {2C1 +14,| C[A0|}-

Pew

We will now show that there is in fact equality. We will adopt the notations of
[We]. If X, is the sheaf of germs of differential operators of degree <1 of (,(4,), the
isomorphism classes of linear infinitesimal deformations of the couple (P, (p(4,)) are
parametrized by HY(P, Z, ). If se H°(P, (»(4,)), the isomorphism classes of linear in-
finitesimal deformations of the triple (P, (»(4,), s) are parametrized by the first hyper-
cohomology group H*(d's) of the complex (0 — X, 4% L — 0) (Proposition 1.2 of
[We]). There is an exact sequence (1. 6 of loc.cit.):

(3.32)  0—> H°(P, 4,)/Cs — H'(d's) £ H* (P, Z, ) 45 H' (P, A,).
Notice that in our case, the exact sequence:
0—Op— 23, — Op—0

yields an isomorphism H'(P, 2, ) => H'(P, Op).

Let 2 be an element of # and let se H°(P, ('p(4,)) correspond to a point x of
p '(#). There are natural inclusions T,%# o H*(d's) and T,% < H*(P, X, ) which, to-
gether with the exact sequence (3. 32), induce the exact sequence:

0 —— T, |dy| — T.% =2 T, 455 HY(P, A,).

Notice that for any x e %,, T.p(T.#)>T,# hence d's induces a morphism
0o T,U|T, W — HY (P, Ay). Both of these vector spaces are 3-dimensional. Now, if
x € B,\%B,, since %, is a projective bundle over the smooth base ¥, we have
T.p(T,B)=T,% and ¢, is an isomorphism. Therefore, the closed subset &, N %, of %,
contains the divisor {x | det ¢, =0}.

It follows that %, N &, = %,, is smooth, irreducible, and 12-dimensional.

Let & be the family of double coverings of the P’s, branched along

A=A+ A=26.
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We have:

Ve N, z(Osnm*D)=1(Cp(nD)+ x(Cp(nl - ),
independent of 4 and P. Therefore the family is flat.

On each fibre of & — 7, we can contract the 4 exceptional curves composing the
inverse image of A: we obtain the desired flat family & — Z.

For a general point b of B, %,, S, is not normal, since 4=2C,+ 4,+ A4 is not
reduced. Its normalization N is obtained by contracting 4 exceptional curves on the
double cover of P branched along 4, + A.

The inverse image of the pencil |/ — E| is still a pencil of rational curves (because
(I—E)(A,+ A)=2). Therefore N is rational ruled. The surface S, is obtained by
identifying the points of an elliptic bisection which are on the same fibre of the ruling.

Q.E.D.

§ 4. The canonical ring

Let S be a minimal surface with K?=2, p,=1 and ¢=0. Its canonical ring is
defined as:

#= @D HO(S, mKg).
m=0

This paragraph will be devoted to the study of this ring, in the lines of [Ca5]. In
particular, we will get determinantal equations for the bicanonical images.

It was.shown by Mumford ([Mu]) that # is a finitely generated graded ring. We
will denote by £, the homogeneous part of degree m i.e. Z,, = H°(S, mKj).

The canonical model X of S is by definition X = Proj(£). It is a normal surface
with at most rational double points as singularities ((Mu]). There is a morphism
n: 8§ — X through which every pluricanonical morphism factorizes.

We also introduce the graded (C-algebra of =CI[W, Y,, Y,, Y;] with grading de-
fined by:

degW =1, degY;=2 for i=1,2,3.

There is a morphism of graded rings, .&/ — # obtained by sending W to a
generator w of H°(S, Kg) and {W?2 Y., Y,,Y;} to a basis {y,=w? y,, y,, y3} of
H°(S, 2K ), which makes £ into a graded ./-module.

We set [P=Proj(</). In the notations of [D1] and [Do], P is the weighted pro-
jective space [P(1, 2, 2, 2). It is isomorphic to /P* and via this isomorphism, one has ([B-

R], Proposition 3 C.7):

VheZ, 0Op(2n+1)=0p(2n)=0p;(n).
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There is a morphism:
¥ : X =Proj(#) — [P=Proj(«),
which is finite over its image X < /P, such that the composition:

S, X -2 p 1, p3

is the bicanonical map @ that we have studied in the first parts of this article.

To the graded .«#-module # is associated a sheaf # on /P ([Gr], 2. 5) and we have
(LGr], Proposition 2. 8. 7):

o~

4. 1) P, 0= R

This situation has been studied in general by the first author in [Ca5]. Notice
that (1, 2, 2, 2) is not normalized in the sense of Definition 2. 4 of loc.cit. However, this
hypothesis is used there only to write 2.5 and to prove 2.7, which is just the iso-
morphism (4. 1) above, and again in Theorem 4. 24, which we won’t use. Therefore, we
will use freely the results of [Ca5]. For example, it follows from Proposition 2.8 of
loc.cit. that:

Proposition 4. 2. # is a Cohen-Macaulay </-module.

Therefore, it admits a length one minimal resolution by free .o/-modules which,
according to 2.9 and 2. 18 of loc.cit., can be written as:

h h
0— P A-8+)H>PA—1)—R—0
i=0 i=0
with 0=l <[, < --- <1,,.
The morphism o is given by a square matrix (x) of homogeneous elements o;;
of o/, such that, for 0<i, j<h:
8—I,—1 if 8—-1,—1;>0,

dego;; =
8% {0 otherwise.

The determinant of (x) is an homogeneous element of .7 of degree 16, equal to
(X)%e¥, where X € C[Y,, Y;, Y,, Y3] = is an equation of the bicanonical image @(S).

In our particular case, it is now easy to get the two possible forms of the minimal
resolution for #:

Theorem 4. 3. The «/-module # has a minimal free resolution of the form:

) 0> A-8YDA—N>ADA=3 —R—0
if the canonical curve is non-hyperelliptic,

i) 0—A(-8)DA(-5DA (- >ADA-3)DA(—4H—X%—0

otherwise.
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Proof. It follows from Proposition 4. 2 that if we select a minimal set of homo-
geneous generators for # as an ./-module, we get a minimal free resolution for #.
Notice that:

dim@ :@0 = dlm@ @1 = 1,

dimgoZ,=2+m(m—1) for m=2.
When choosing a minimal set of generators for #, we need to take 1 € %, and v,, ..., v,
which complete {wy,,..., wy;} to a basis for #; (recall that {y,=w?2 y,, y,, y3} is a

basis for #,). In degree four, we have dim %, =14, hence either the 14 elements y, Vj»
wu, form a basis for %, or there is a relation:

4. 4) Q(y)+wv=0
where Q is a quadratic form in y,, y,, y,, y3 and v a linear combination of v,, ..., v,.

Lemma 4.5. There exists such a relation if and only if the canonical curve is
hyperelliptic. In this case there is, up to constant, only one such relation. The element v of
R4 is zero if and only if the bicanonical image X is a quadric.

Proof. Suppose that the canonical curve C is not hyperelliptic. If there exists a
relation Q(y)+ wv =0 then we have ®*Q = C. By Remark 1. 6, we can conclude that Q
is divisible by y,. Hence v can be written as v=wy where y is a linear combination
of yo,..., y3. But since {v,,..., vy, wy,, ..., wy;} is a basis for %, this is possible only if
v=0. But then we have Q(y)=0 and X is a quadric. This contradicts the fact that C is
non-hyperelliptic.

If C is hyperelliptic then there is, up to constant, only one quadric Q(y,, ¥,, V3)
such that Q(yy, y,, y3)=w"s, where se H°(S, 3K;) (Remark 1.6). If we write s as a
linear combination of the v;s and the wy;’s we get a relation of type (4. 4). Q.E.D.

At this point, in the non-hyperelliptic case, we have obtained a basis for %#,. We
know that:

{lo=0, 11=12=l3=l4=3, [5;5 if hgs,

8 — 1,25 (no relation in degrees <4).

Therefore h =4 and the theorem is proved in this case.

In the hyperelliptic case, we need one new generator vy in degree 4. Hence:
{IOZO, l1=12213:l4:3, l5:4‘, 1625 if th,
8 — 1,24 (no relation in degrees < 3).

Therefore h =5 and the theorem is proved in this case. Q.E.D.
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Following the arguments of [Ca5] we now want to describe more precisely the
structure of the canonical ring.

Let us recall the following definition from [Ca5] (rank condition):

(R.C.) Let h+1 be the size of the matrix (x) (here h=4 or 5), and (') be the
matrix obtained from (&) by erasing its first row. Then the (h x h)-minors of (&) belong to
the ideal generated in o/ by the (h x h)-minors of («').

We will now state our results, postponing the proofs until the end of this section.

Theorem 4. 6. The matrix (o) of the preceding theorem can be chosen symmetric
and satisfying (R.C.).

Our results are in fact much more precise and we give in particular the special
forms the matrix («) takes, depending on the bicanonical image X.

We also show that conversely, in most cases, one can recover the ring structure
of # from the matrix (x), and therefore the surface S itself as a minimal desingular-
ization of Proj(#). In these cases, we also show that, to any matrix (x) belonging to a
Zariski open subset of the set of matrices of the right form satisfying (R.C.), one can
associate a surface S.

The existence problem will not be considered here. Existence follows from the
results of § 3 when @ is not birational. The existence of surfaces for which @ is bi-
rational also follows from Theorem 3. 24. They will be explicitly constructed in § 5 (with
a non-hyperelliptic canonical curve) and in § 6 (with a hyperelliptic canonical curve).

We give below the results case by case.

1) 2 is a smooth quadric. Then the matrix (x) can be chosen of the following
form:

0 0 0 0 0 I[1,—1ll
0 0 0 I, I, 0
0 0 0 I3 I, 0
(O() = s
0 I, I 0 O 0
0 L,b I, 0 O 0
LI,—-Ll 0 0 0 O 0
where the [’s are independent linear forms in y,, ..., y3.

The equation of X is X =11, — 1,15 and det(x)=(X)* Notice that given a matrix
() of the above form, it is not possible to recover the corresponding surface S. This is
because even if the .o/-module # is well defined, we cannot recover the ring structure
from («) alone (for example Proposition 4. 7 of [Ca 5] does not apply). Geometrically, in
fact, it is easy to see that the datum of () determines only ¥ and the branch curve
A3 =2 N {y,=0}, not 4; and 4, (cf. proof of Proposition 3. 1 for the notations).
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2) X is a rational quartic. In this case, the canonical curve is hyperelliptic. The
matrix () can be chosen of the form:

0 0 0 wg; wg, Q

O 0 0 [ L w
0 0 I I, O
(o) =
wgy I, I3 0 0O O
wqg, I, I, O 0O O
0 w 0 O 0 O

where the [’s are linear forms, qs, q,, @ quadratic forms such that Q=1,1,—1,1;,
43> 44 € (3, 14)-

. : 0 M . )
Notice that (x) can be written as (‘M ) where M is a 3 x 3 matrix.

0

An equation of 2 is det(M)=0. The double line of 2 has equations I3 =1, =0.

The matrix (x) only depends on the surface X in /P> and not on the choice of the
ramification divisor of the map § — X. Therefore, it is not possible to recover the surface
S from the matrix (x).

3) X2 is a K3 surface. The canonical curve is not hyperelliptic. The matrix («) can
be chosen of the form:

det@ 0 0 0 0
0

() = (a)

0
0
0

where (a) is a symmetric 4 x4 matrix of linear forms. An equation for X2 is X2 = det(a).
The rank condition is obviously always satisfied.

Conversely, to any symmetric 4 x 4 matrix of linear forms (a) such that the surface
defined in /P by the equation det(a)=0 is irreducible with only rational double points
as singularities, we can associate a minimal surface S with K*=2, p,=1 and ¢ =0 such
that the bicanonical image of S is £ and such that the double cover § — X is branched
over the plane section XN {y,=0} and some singular points of X (notice that the
hyperplane section 4, of X over which ¥ : X — X < [P is ramified (cf. 3. 15) is fixed by
our choice of an isomorphism P =5 [P3).

Therefore, the family of such surfaces is irreducible of dimension 12 in the moduli
space.
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4) @ is birational. This case splits into two subcases. If the canonical curve is
hyperelliptic, then the matrix («) can be chosen of the form:

YoGt+det(a) wq, wqg, wqs wg,
wq,
wdq,
wds;
W,
Q w 0 0 0

—_
R

N
fl

(a)

S O S o T R

where q,, 45, 43, 94, Q@ are quadratic forms in (yg,..., y3), G is a cubic form, (a) is a
symmetric matrix of linear forms. All the 3 x 3-minors of (a) are in the ideal (y,, @) and

det (a) € (yo, Q7).
Furthermore, («) satisfies (R.C.).

If the canonical curve is non-hyperelliptic, the matrix (a) can be chosen of the form:

Yo G+det(a) wqy wq, wq; wqu

wq,
(0= wq, (a)
w(s3
wWq,
with G, q4, ..., g, as above, (a) a symmetric matrix of linear forms.

Again, (o) satisfies (R.C.).

Conversely, for any matrix (x) belonging to an open subset (which may a priori be
empty!) of the set of matrices satisfying one of those two sets of conditions (which are
all closed conditions), it is possible to define a ring structure on the .»/-module £ which
(«) defines. The surface X = Proj (&) is the canonical model of a minimal surface S with
K{=2, p,=1, ¢=0 for which the bicanonical map is birational onto an octic in P3
with equation det (x).

Geometrically, the surface X is obtained as the blow-up of the surface X along the
ideal generated by the (hx h)-minors of (x). This ideal becomes the conductor of

YV:X—- 2

Proof of the Theorem. Case 1). The situation is as follows:

S 2 > 3

1{ dlu
¥

X ¥ P = Proj(-/),
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and @ induces a (Z/2Z)*-Galois covering of the smooth quadric 2. Let ¢ be the ring
ClY,, Y, Y,, Y;] graded by degY,=1 for i=0,..., 3 (isomorphic to the graded ring

/® in the notations of [Gr], § 2), so that /P> = Proj(0). The ¢-module Z splits as the
sum of two (-modules Z’ and #£” such that:

~

R =D Ry R =0,0.
m=0

e ¢]
” 7 L4
:% - @ '@2m+1’ e% =¢*COS.
m=0

More precisely, with the notations of the proof of 3. 1, set R;=Fixg; for 1 <i<3.
There exist z; € H(S, O(R,)), for 1<i<3, such that:

div(z;)=R,, z3=we H°(S, Ky),
22e 0*HO(Z, 6,3, 1): 22 e d*HO(Z, 01, 3)).

It follows from (2. 13) and (2. 15) of [Ca7] that:
R, =Ry, = O*HO (Ox(m)) @ 232, P*H (Og(m—2, m—1))
@232, P*H(Os(m—1, m—2)) D z,z, D* H® (Ug(m — 2)),

R = Ry +1 223 0 HO (Ox(m)) @ 2z, &* H® (U (m — 1, m))
@z, @* H (Og(m, m— 1)) @ z, 2,253 D* H® (Us(m — 2)).

Let
{u;, u,} be a basis for H°((%(0, 1)),
{v,, v,} be a basis for H?(Cs(1, 0)).

Now u;v; € H°(0s(1, 1)) = H®(Ups (1)) will be written as a linear form [;; (1=, j<2). The
(0-module O5(— 1, 0) has the following minimal resolution:

0— 0(=20 1 0(=1)" — Oy(—1,0)— 0,

. ) l —1 .
corresponding to the generators u,, u,, with (y)= <121 l“). Notice that
22 S W

Q = - lz1 112 + Izz 111

is an equation for X. Accordingly, we have a minimal resolution for (;(0, —1), corre-
sponding to the generators v,, —v,:

0— O(=2)* L 0(— 1)) — 0;(0, —1) — 0.
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It follows that {1, wz, u,, wz,u,, wz,v,, wz,v,, z; z,} generate the (’-module #’
and that {w, z;u,, z u,, z, 0y, z,0,, wz, z,} generate #”. Then

{1, ZaUy, 23Uy, 2505, —Z5 0y, 2122}

generate # as an «/-module and the corresponding matrix («) is of the desired form (set
L=k, L=k, h=—1, ly=—1,). Q.E.D.

Case 2). The morphism &:S — X is 2-to-1 onto a non-normal rational quartic.
With the notations of the proof of 3. 3, the situation is as follows:

S—*= ,p_—" ,p
GJ J«dj”-”
S

S’

where ¢, n and @y are birational.

The canonical ring splits into a direct sum of two .&/-modules:

.% =e@/ @ '%II’
where

R =P H°(P,mKp+mb),

m=0

R"= P H°(P,mKp+(m—1)3).
m=0

Notice that since w € £, = H°(P, Kp+ 0) is o-anti-invariant (p,(P)=0), %,, is the
eigenspace corresponding to the eigenvalue (—1)" for the action of ¢ on £,,.

Finally, #’ is a subring of Z while #” is not a ring.
Lemma 4.7. %’ is a Cohen-Macaulay ./-module.
Proof. We follow the proof of Proposition 2. 8 of [Ca5]. Choose

{Yo> ¥1> ¥2} € H(S, 2K5) = H° (P, 2(K + 0)) = #;

2

such that () div(y;)=0. We show that {y,, y,, y,} is a #’-regular sequence. Suppose
i=0

Viri+yoro =0 with ry, ri € #'. We can suppose ry and r; to be homogeneous of the

same degree m. Since y, is not a zero divisor in #/y, #, there exists r, € #4,,_, such that
ri=yotr;- But then or{ =(—1)"r{ = or,=(—1)"r, =>r, € Z#'.

Again, if y,r5+y,ri +yoro =0, with r; € £,,, we get:
ﬂrg,rée.@m_z "12=J70rg+Y1"§
= or,=y,0rs+y,orl

= 2ry =yo [P +(=1)"ory] + y, [+ (= 1)"ori] € yoBm-2+ V1 B> -
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Hence y, is not a zero divisor in #'/(y,, y1)#' and {y,, y;, y,} is a #Z’-regular
sequence. Q.E.D.

J

h
Lemma4.8. If 0 — @&f(—rj)L
i=0

h

S (—=l)— R —> 0 is a free resolution
= =0
for R', then: ’

h h
0— @ A(,—8)% P A (r;—8) — B —> 0
j=0 =0

J

is a free resolution for R#".

Proof. We follow the proof of (2.15) of [Ca5]. If (y) is the maximal ideal
(Yo, ---» y3) In &7, there is an exact sequence:

0— H3((y), #') — H*((y), D L (=1) > H*(y), D #(—1)) — 0.
By duality
H*((y), A (—r) =L (r—7).
We also have:

H?((y), ') = H*(P, (P Up(—n(Kp +9)))

neZ

which is isomorphic, by Serre duality on P, to:

@ H°(P,(n+1)Kp +nd).

neZ

By transposing the above exact sequence, we get a free resolution for 2”(1). Q.E.D.

Notice that we also get a resolution for £, which is symmetric! The corresponding
matrix (o) is:
0 “a)
@=(, )
@) 0

We construct now a minimal free resolution for £’. We have:

dim 2, = h®(P, 3K +23)=h°(P, F) =2
= dim#, =8 —2=6.

Therefore we need to take as generators for #':

leR,;, vy, v,€R;.
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Since the canonical curve is hyperelliptic, we can furthermore choose v, such that
there is a relation:

o +wv, =0

’
(because ov, = —v,; = v, € #3).

We also choose v, v, € 5 to get a basis for #;. Finally, we want to show that
the last element vs € #, needed to generate # is in %;. From the exact sequence
(notations of the proof of Theorem 3. 3):

0— Op(H)— O0p(2H) — Oy(2H)— 0

and
H'(P, H)=0,

g(H)=2,
we get:

dim#,=h°(P,2H)=4+8+1-2=11.

Therefore y; y;, wv, form a basis for Z; and we can take vs € Ry.
Now it is easy to see that since we have a minimal set of homogeneous generators
for # (according to Theorem 4. 3) which are all invariant or anti-invariant under o, the

ones which are in #' generate this .«/-module. Therefore, we have constructed a minimal
resolution for #’, of the form:

0 —s A (—1g) ® A (—1)) D L (—13) > o @ oA (=3)> — B — 0.

By Lemma 4. 8, and the fact that to generate #£”, one needs at least two elements
in degree 3 and one in degree 4, we get:

T0=r1=5, r2=4.

The matrix («') can be written as:

wqs L 14
(@)= wqy, I, L
g w O

Notice that:
det(a’) is an equation for 2,

EE Q2 (mOd yO)’

hence

QEll 14*12 l3 (modyo).



42 Catanese and Debarre, Surfaces with K? =2, p,=1,q9=0

By changing g5, g, and Q, we can always suppose that:

Q=1114“!2l3.

even

From the resolution of #’, it is easy to get a resolution of #.,.,= &P %5,, by two

m=0
free /,.,-modules of rank 2, corresponding to the generators {1, wv,}. The corre-

sponding matrix is:
, (Yods—1,0) I3
(aevcn) = *
(Yoqa—1,0) 14

But it is easy to see that /,,., = Ups and that ..., is the (/p;-module associated to
the sheaf @ ,.(0p) (cf. [Ca5], Proposition 2.7). Now, this sheaf has rank 2 on the

double line of X, therefore («.,.,) must vanish there.
Hence the equation of the double line of X is I;=1,=0 and y,qs, yoq4 € (5, 1,).

Now, any linear combination of I; and I, corresponds to the sum of a line
through ps and the unique cubic through # (cf. 3. 4. 2) a)) while y, corresponds to twice
the unique conic through {p,, ..., ps} (as elements of |H|).

Therefore {y,, I3, I,} are independent and ¢;, g4 € (15, ).

Notice that any non-zero (5 x 5)-minor of the matrix:

0 a)
(a)_((oc’) 0)

is the product of a 2 x2-minor of «') by X =det(«'). Since ‘(o') itself satisfies (R.C.),
(o) also satisfies (R.C.).

However, it is not possible to recover the ring structure of the canonical ring #
from the matrix («). In fact (x) only depends on the surface ~ and not on the choice of
the branch locus 4 of § - P, since #’ only depends on P, by its very definition. The
divisor 4 comes in only in the definition of the multiplication in # of two elements
of #”:

HO (P, mKp+(m—1)3) ® HO (P, m'Kp+ (m' —1)8) — H(P, (m+m') (K + ),

S® s’ — S+8s,.

Case 3). The form of the matrix («) follows from [Ca5], Theorem 3. 22, since X is
normal. Notice that this reproves 3. 15 since X is a “symmetroid” which satisfies,
according to [Ca5], the conditions 3. 16.

The converse follows from Remark 3. 17. 2).

The matrix (@) must therefore belong to the open set % of the affine space of
symmetric matrices of linear forms such that det(a)=0 has only rational double points
as singularities. The matrix (a) is determined up to the action g-a="'gag of GL(4). The
corresponding image in the moduli space is %/GL (4) x Aut [P, irreducible unirational of
dimension (10 x4)—16 —12=12. Q.E.D.
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Case 4). It follows from [Ca5], Theorem 3. 8 that in this case, the matrix («) can
be chosen symmetric.

If the canonical curve is hyperelliptic, the degrees of the elements of («) are,
according to Theorem 4. 3:

8 5 5 5 5 4
5 1
5 1
5 2 1
5 1
4 1 1 1 1 as55=0
Since o/, = Cw and since s, ..., 0,5 cannot be all zero (det(x) =2 would then be

divisible by a5, a quadratic form in the y;’s and ¥ would be a quadric), we can suppose
that 0615=W, (xis =0 fOI‘ 2§l§5.

Recall that the intersection of X with the hyperplane {y,=0} is the conic
{¥o=0 =0} counted four times. Therefore Q* = det (x) (mod y,) and det(a) € (y,, Q7).

The matrix (x) satisfies the rank condition.
If we compute the 5 x 5-minors of («) in 4/(w) we get:

- I1=(Q det(a), w)=(Q% w)

hence

Q? - (any 3 x 3-minor of (a)) € (Q3, yo)
and

g0 - det(a) € (07, Yo)-

Therefore, ay, can be written as y,G'+ QQ’. By performing standard operations
with the first and sixth rows and columns of (x) we can obtain

oo = Vo G’ + A0? =y, G + det (a).

In the non-hyperelliptic case, the intersection {Z =y, =0} is twice the image of the
canonical curve. Hence o, - det(a) is a square modulo y,. If det(a) does not contain a
square modulo y,, we can conclude that o, € (yo, det(a)).

To conclude in general, remark that the conductor ideal I is contained in
(w, det(a)).

By the rank condition, we get:

tgo - (any 3 x 3-minor of (a)) € (y,, det(a)).



44 Catanese and Debarre, Surfaces with K*=2,p,=1,q=0

i) If det(a)=Q? (mod y,), Q irreducible quadric in y,, y,, y3, then:

02 | a0 - (any 3 x 3-minor of (a)) (mod (y,))
= Q | ag (mod(yo))-

Since o - Q2 is a square modulo y,, it follows that oy € (02, yo)-
ii) If det(a)= L 1,12 (o), dtoo =11 L,m*(yo)-
Since ®(C) has at most two components, this case cannot happen.

Conversely, if we are given a square matrix («) of homogeneous elements of <7 of
one of the two forms above, such that det(a) is an irreducible polynomial of degree 16
defining a surface \ in [P=Proj(«/), we can define an o/-module # by the exact
sequence of Theorem 4. 3. If furthermore («) satisfies (R.C.) and if (Bij)o<i j<n are the
maximal minors of («), we can write:

h
Bi=Y IKBor, 15i,j<h h=4 or 5.
k=0

We can then make # into an .Z-algebra by Proposition 4. 7 of [Ca5]; the multi-
plication is defined on the generators vy, ..., v, of # by the formulae:

h
UiV = Z l?jvk) 15i,j<h.
k=0

If moreover X = Proj(#) has at most rational double points as singularities, X 1s
the canonical model of a minimal regular surface S with K t=2,p,=1,q=0, for which
the bicanonical morphism is birational with image X (by Theorem 4. 22 of [Ca 57).

§ 5. Construction of a component of the moduli space

It follows from Theorem 3. 24 that there is a unique irreducible component .#g of
the moduli space of our surfaces (E for Enriques) which contains ./, (surfaces for which
S is a smooth quadric). Moreover, .#g is 16-dimensional and contains #, U M,
(surfaces for which X is a quartic). We conjecture that the moduli space of surfaces with
K?=2,p,=1, ¢g=0 and torsion zero is irreducible, hence equal to #g.

In this paragraph, we are going to describe an irreducible family of these surfaces
dominating a Zariski open set of .#g. These surfaces will be such that ¢:S — X is
birational and the canonical curve is non-hyperelliptic, and for a general surface, 2 < P?
will have ordinary singularities.

To explain the essence of this construction, due to Enriques ([En]) and based on
the existence of a biadjoint surface = to X, projection of a Del Pezzo surface Y in P7,
we recall a few facts about the surfaces S.
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Let S be a surface for which the canonical curve C is non-hyperelliptic and for
which the bicanonical map @ is birational. It follows from Theorem 4. 6 case 4) that the
matrix () giving the resolution 4. 3. i) of the canonical ring # of S can be chosen of the
form:

oG +det(a) wq, wq, wqgs wq,
wq,
(5. 1) () = wq, (a)
wds;

wq,

and satisfies the rank condition (R.C.) (cf. § 4). Therefore, there exist polynomials A} (),
0<i<4, 1<j, k<4 such that the cofactors f;; (equal to (—1)'*/ times the (i, j)}-minor
of («)) satisfy:

4
(5. 2) Bix= /quk Boo+wW Y, Aik Boi-
i=1
The canonical model X of S is then isomorphic to the subscheme of

P(1,2,2,2,3,3,3,3)

defined by the following equations in the coordinates w, y;, ¥, V3, Uy, ..., vy (With
y=W? y1, ¥2, ¥3)):

4

Z aij(y)vj +q;(y)w=0,

g E]

(5. 3) CIj()’)WUj+YO G(y)+(deta) (y)=0,

i
|

i=1

4
Uil — A5 ()= 2, A (y)wo;=0.
i=1

Leaving aside geometrical considerations, for which we refer to [En], we associate
to the matrix («) the following symmetric matrix (&), with entries in C [y, ..., y3]:

G 4 494
(&): q'l a.ll T a'.14
(5.4)

da Qg -+ Qyq

Lemma 5.5. If y, does not divide det(a), the matrix (&) satisfies the rank con-
dition if and only if (x) does.

Proof. The cofactors fB;; of (&) satisfy Boo=det(a)=PBoo, Boi=wPo: for i<l,
By = by det(a) + yo B, for 1<), k <4, where b, is the (j, k)-cofactor of (a).
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If (x) satisfies (R.C.), we have by (5. 2):

4
Boo bjk + Yo Bjk = Bjk = '1;')1(500 +w Z ’I}kWBOi'
i=1

Since y, does not divide By, it does divide (4 — b;,) and we define 13, to be the

4
quotient. Then B, =135 Boo+ Y. Ay Boi, so that (&) satisfies (R.C.). The converse is im-
mediate. i=1 Q.E.D.

To the matrix (&), we associate a subscheme Y of [P7, defined by the following
equations in the coordinates (yg, ..., V3, X15--.» Xq):

4
Z aij(y)xj +4q;(y)=0,

(5. 6) g;(y)x;+ G(y)=0,

i=1

4
X — A (¥) — Y A(¥)x;=0.
i=1

We let also =< /P2 be the surface with equation det (&) = 0. It is classically called a
biadjoint surface ([En]).

We claim that the projection ¥:Y — Z is birational.

In fact, since (Boo, Bois---» Boa) = (Boo» W.g(n, e WBO4)C(Wa Boo) N (300: 301, cees 304)
(we are considering ideals in C [w, y;, y,, y3]) the zero set I' of the ideal (Byo, ..., Bos)

has codimension 1 in X. By the arguments of [Ca5], 4.7, 4.15 and 4.19, a rational

inverse for % is given outside I by (o, ..., ¥3) = (Vo Boos --+» V3 Poos Bots---» Bo3) and Y
is the blow-up of Z along I'.

If Y 1s irreducible with only rational double points as singularities, a slight
generalization of Theorem 4.22 of [Ca5] yields that Y is a Del Pezzo surface (i.e.
wy = Oy (—1)).

We describe now the converse construction, starting from a smooth Del Pezzo
surface Y of degree 7 in [P7. A general projection §:Y — [P? is birational and its image
Z has ordinary singularities. This projection makes the projective coordinate ring # into
a module over the polynomial ring .o/ =C/[y,,..., y3], thereby yielding ([Ca5],
Theorem 4. 3) a matrix (&) as in (5. 4), satisfying (R.C.), and generators of the projective
ideal of Y as in (5. 6). Setting y, =w? and A9, =b;, + yo A5 (notations of the proof of 5. 5),
we define a subscheme X of P(1, 2,2, 2, 3, 3, 3, 3) by the equations (5. 3). The problem
is now to show that for generic choice of % and y,, the surface X has at most rational
double points as singularities (in fact, it will be smooth).

To simplify notations, we set F = f,,=det(a), and we identify a surface with its
defining equation.
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Remarks 5.7. 1) The curve I' defined by the ideal (B0, Bois---» Pos) is the
singular locus of Z. Its only singularities are transversal triple points and, for a general
projection @, it is irreducible ([Fr] or [En], pages 8 to 13).

For generic choice of y,, the surface X with equation det(x)=y,-Z+ F? is
smooth outside £ F=1TI by Bertini’s theorem; the intersection I' n {y, =0} is a finite
set of 14 points and C’'=F n {y, =0} is a smooth quartic curve.

2) In the ring C[w, y;, ¥2, 3], the equalities

(Boos Bots -+ » ﬁ04)=(300a W.gop ) WB04) =(w, Boo) M (ﬁoo, cres 304)

hold. This follows easily from the finiteness of I' » {y, =0}.

Proposition 5.8. Let Y</P" be a smooth Del Pezzo surface of degree 7 and let
P:Y — [P3 be a linear projection inducing a birational morphism onto a surface = with
ordinary singularities. Then, for a general linear form y, on [P3, the surface

has ordinary singularities.
(The surface F is defined above).

Proof. Recall from 5. 7. 1) that the singular locus of X i1s I. We must now study
the nature of the singularities of X along I'. We begin with the triple points of I'.

Lemma 5.9. If P is a triple point for I', then Rank (a;;(P))=2 and P is a conical
double point for F. If y, does not vanish at P (which holds by 5.8), X has an ordinary
triple point at P.

Proof. Since P e I'cF, det(a;;(P)) vanishes. If the rank of (a;;(P)) were 3 then
([Ca5], 5.4) the equation of £ would be locally of the form Ay*>—{?>=0, where
y, {emps p. It is easy to check that the tangent cone of Z at P could not consist of 3
distinct planes.

If Rank(a;;(P))=1, F=det(a) would have multiplicity at least 3 at P and
2T = F - £ would have multiplicity at least 9 at P, which is impossible.

Thus the rank of (a;;(P)) is 2 and a local equation for F at P is of the form
xy—z2=0, for a suitable regular sequence (x, y, z) in Ops p. By (5. 10) of [Ca5], any
local equation for Z at P belongs to (x, y, z)>. Since = has an ordinary triple point at P,
it follows immediately that (x, y, z) are local holomorphic coordinates at P. Therefore,
P is a conical double point for F.

Now, since F has multiplicity 2 at P, and if y, does not vanish at P, £ and
X =y, Z+ F? have the same tangent cones at P and X has therefore an ordinary triple
point at P. Q.E.D.

Lemma 5. 10. The surface F is normal, smooth at the smooth points of T

Proof. By Kronecker’s formula ([Ca4], 1.3)), 2I' is the cycle intersection of F
and Z. Since = is singular along I' (Remark 5. 7. 1)}, it follows that F must be smooth at
the smooth points of I'.
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Now, any one-dimensional component of Sing F would meet the ample divisor =
of /3, hence the curve I', at a point which would have to be singular on I'. But this is
impossible since, by Lemma 5.9, F has isolated singularities at the singular points
of I'.

Therefore, we have proved that F has only isolated singularities, hence is normal.
Q.E.D.

Let now Q be one of the 14 points of intersection of I' with the plane y,, which
we can suppose not to be a pinch point of Z. We will prove that Q is a pinch point
for X.

In fact, since I', F (by 5. 10) and the two branches of & at Q are smooth, we can
choose local holomorphic coordinates x, y and z at Q such that:

1) F=x,

ii) I'={x=z=0},

iii) Z=z(ax+bz) with b(Q)=%0 (since F-E=2T),
V) yo=y.

Then we have X =x?+ yz(ax + bz). By Weierstrass’ preparation theorem, we can
find new holomorphic coordinates such that ¥ =x?+byz2 Since b does not vanish at Q,
Q is a pinch point for .

Let us now deal with the smooth points P of I' where y, does not vanish, and

f—

which are not pinch points for Z. Then we can find local holomorphic coordinates
(x, y, z) at P satisfying i) to iii) above, with a(P) b(P) 0.

Then, again, X = x>+ y,z(ax+bz) and P is a transversal double point of X if
Ap=ya*—4by,
is non-zero at P, and a pinch point if 4, has a simple root on I' at P.

Since H®(Ops(1))= H®(Op(1)) generates the sheaf of 1-jets with values in (1), at
least at the smooth points of I', a simple dimension argument shows that the sections y,
for which 4, has a double root at P for some point PeI' form at most a hyper-
surface in H°(Op(1)).

Therefore, we get only transversal double points or pinch points (for a generic

choice of y,).

Finally, let Q be a pinch point of =. Then there are local holomorphic coordinates
(x, y, z) at Q such that:

i) E=x*—yz? hence I'={x=z=0},
i) F=ax+bz.

Then X =y,(x?>—yz?)+(ax+bz)? and Q is a transversal double point for X if
(yo +a*)b*> —a*b?* = y,b* does not vanish at Q. It is enough to show that b(Q)>+0. If
b(Q) were zero then a(Q) would be non-zero (since F is smooth at Q@ by 5. 10) and we

bZ
would have & = (?— y) z2 (mod F), this would contradict = - F = 2T (cf. proof of 5. 10).
Q.E.D.
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Remark 5. 11. More precisely, we have shown that I' is the double curve (of
degree 14) of 2. The 14 points of intersection of I" with y, are pinch points for X (an
easy computation shows that the total number of pinch points of 2 is 44). The triple
points of X are the 10 points P where Rank (a;;(P))=2 (their number follows from the
classical computation of Theorem 2. 2 of [Ca4]); they are conical double points on F.

Proposition 5. 12. Let Y, 5, F, ¥ and («) be as defined above. Then the variety X
defined by the equations (5. 3) is the normalization of X and is a smooth minimal surface
with K*=2, p,=1, =0 and torsion zero.

Proof. By [Ca5], (4.19), X is the blow-up of X in the ideal (B, .-, Bos), Where
we are identifying /2(1, 2, 2, 2) with /23. By 5.7.2), X is thus the blow-up of X along
the double curve I' and the smooth curve C’; therefore X is the normalization of X and
is smooth since X has ordinary singularities. The rest follows as in Theorem 4. 24 of
[Ca5]. Q.E.D.

We finally proceed to the description of a versal irreducible family for the surfaces

. we have constructed above.

First of all, fix a smooth Del Pezzo surface Y of degree 7 in /P7: Y is isomorphic
to the blow-up of /3 in two distinct points and Aut(Y) is a 4-dimensional connected
complex Lie group acting linearly on [P,

Let G be the Grassmannian of 4-dimensional vector subspaces A of
H®(Op: (1)) = H(Oy (1))

and let U, be the complement of the zero section of the universal subbundle on G
(U, is 20-dimensional).

Let G'< G be the open set of linear subspaces A such that the linear system |A]|
has no base-point on Y; any such A defines a birational morphism ¢:Y — Z < /P3. Let
U, be the open set {(4, yo) | 4 € G'}. We can define a family of surfaces p: 2 — U, by
choosing, locally on U,, a basis {y,,..., V3, X1, ..., X4} of H%(Cp-(1)) with first element
yo and such that y,, ..., y; span A. With respect to this basis, we can find generators of
the projective ideal of Y of the form (5. 6).

Setting w? = y,, we consider the family of subvarieties X of #(1,2,2,2,3,3,3,3)
defined by the equations (5. 3). It is easy to see that two different choices of such basis

give rise to isomorphic families, so that we can patch everything together to get a family
p:Z— U,.

Let U, be the open set in U, corresponding to surfaces X with at most R.D.P.’s as
singularities. By 5. 12 and deformation arguments, X is then the canonical model X of a
surface with K*=2, p,=1, ¢=0.

There is a natural action of Aut(Y) on U,. The stabilizers are finite, so that the
orbits are smooth of dimension 4. The family %, yields a morphism f:U, — .#,
where .4 is the coarse moduli space for surfaces with K*=2, p,=1 and ¢=0. The
image f(U,) has dimension dim U, —dim Aut(Y) =16.
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Let U; be the open set in U, consisting of the pairs (A4, y,) such that 5 and ¥
have ordinary singularities.

Proposition 5. 13.  The image f (Us) is open in the moduli space 4 hence its closure
is an irreducible component My of M.

Proof. For each deformation (X¢)er of a (smooth) surface X corresponding to a
point of U, we get a family of bicanonical images X, and of biadjoint surfaces Z,. The
set of t’s for which both have ordinary singularities is open and so is the set of t’s for
which the surface Y, in /27 is smooth. For those t’s, there exists a pair (4, y,) € U, such
that Z, is isomorphic to the projection of Y Y, from |4| and X, = Vo E,+ F2

We have thus proven that f(U,) is open in /4. Q.E.D.

It remains to show that this component .#g contains the subvariety .#, of .#
(surfaces for which the bicanonical image is a smooth quadric).

Proposition 5. 14.  The component My =[(U;) contains M, M, and M.

Proof. Since .# is smooth at a general point of ./, and since .#, is contained in

the closure of .#, and of M3 (Theorem 3. 24), it is enough to show that M5 is contained
in the closure of f(U,).

We first claim that a general quartic symmetroid occurs as the adjoint surface F of
a surface S corresponding to a point of f(U,).

Start from any surface S corresponding to a point of f(U,). It follows from
Lemma 5. 10 and Remark 5. 11 that the adjoint surface F is normal and has 10 nodes
(at least) corresponding to the points P where Rank (@aP)=2. Let F— F be a de-
singularization of F, let A,,..., A 10 be the inverse images of the 10 nodes of F and let H
be the pull-back on F of a hyperplane section of F. Then the strict transform I of I' on
F is smooth and irreducible (Remark 5. 7. 1)). Moreover, since wy 1s trivial and since F
is smooth at the smooth points of I' (cf. proof of Lemma 5. 10) and has nodes at the
singular points of I', we have wp ® Up = O hence Op (")~ wp. Since [ is irreducible, it
follows that:

~ . ~ ~ ~ o 1 -
hO(F, Op(D) 14+ hO(F, Op(F)) =1+ g(F) =2 + 5 I

10
From 2F=7H -3 Y A4, we get "> =4 and dim ] < 3.

i=1

We now conclude with a simple count of constants: since the Z’s depend on
“12 moduli”, the F’s that we get depend on at least “12-dim |I'} =2 9 moduli”, since the

datum of the surface F and of the curve of constant I" determines the surface = ([Cas],
page 104).

This proves that a general quartic symmetroid occurs as the adjoint surface F of a
surface of the family we have constructed.
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Therefore, for a general symmetric 4 x 4 matrix of linear forms (a), there exists a
canonical model X corresponding to a poiﬁt of f(U;) which is isomorphic to the sub-
scheme of [P(1, 2,2, 2, 3, 3, 3, 3) defined by the equations (5. 3). In particular, there exists
a matrix (o) of type (5. 1) which satisfies the rank condition. For all t € C, we set:

?yoG+det(@) twq,---twq,
twq,

(o) = : (a(y))
Iwq,

Then (x,) satisfies (R.C.) and the subscheme X, of (1, 2, 2, 2, 3, 3, 3, 3) defined by
the equations:

4
Y a;(y)v;+tq(»)w=0,
=1

4

Y tg;(yywo;+ 12y, G(y) +(deta) (y) =0,

Jj=1

4
v; 0, — by (y)— o i})k - Z tA(Mwo; =0,
i=1

if it has only R.D.P.s as singularities, is the canonical model of a surface §,. Since
X, =X corresponds to a point of the Zariski open subset f(U;) of the moduli space,
X, also corresponds to a point of f(U,) for t e C— 4 where 4 is a finite set.

But now, it is easy to see that X, is a double cover of the general symmetroid
F = det (a) branched over a smooth hyperplane section and the 10 nodes of F. There-
fore X, corresponds to a general point of .#, and since X, corresponds to a point of
f(U,) for t ¢ A hence for ¢ small non zero, we have proven that .#; < f(U,) hence the
proposition. Q.E.D.

Our last result concerns the surfaces with K?=2, p,=1 and ¢=0 for which the
bicanonical map is birational and the canonical curve is hyperelliptic. It shows, in
particular, the existence of those surfaces (cf. also § 6 for a geometrical construction of a
family of examples).

Proposition 5. 15. There is a 15-dimensional (non-empty) subvariety of .M#y corre-
sponding to surfaces for which @ is birational and C is hyperelliptic.

Proof. Choose a general surface S, in .#,, so that C is a genus 3 hyperelliptic
smooth irreducible curve (§3). The rational map .#; — M, (moduli space of stable
curves of genus 3) associating to a surface S the isomorphism class of its canonical curve
is defined at the smooth point of .#g corresponding to S,. The conclusion follows since
hyperelliptic curves form a @-Cartier divisor in Mj. Q.E.D.
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Remark 5. 16. The paper [Ca8], referring to a previous version of the present
paper, contains two errors: in (1. 3) the term B;,(y) should be replaced by

B (¥)+ yo l?k (»)

(b (»)+ yo 4% (y) in the present notations), whereas the equations (1. 4) do not generate
the whole projective ideal of Y. These errors do not affect the validity of any statement
of [Cag].

§ 6. Double étale covers of Godeaux surfaces

In this paragraph, we describe a certain class of our surfaces, obtained as double
etale covers of numerical Godeaux surfaces (see below). They give examples of surfaces
for which the canonical curve is hyperelliptic and the bicanonical map is birational.

A (numerical) Godeaux surface is a minimal surface of general type T such that
K%=1, p,(T)=¢q(T)=0. We suppose moreover that the torsion of the Picard group of
T is isomorphic to Z/27Z.

Examples of such surfaces have been constructed in [Ba] and [O-P]. The double
étale cover associated to the non-zero torsion element 5 of Pic(T) is a minimal surface S
with K§=2, p,(S)=1, q(S) =0, which comes equipped with fixed point-free involution t.
We prove:

Theorem 6. 1. Let S be the double étale cover of a numerical Godeaux surface with
torsion Z/2Z. Then the bicanonical map of S is birational and its canonical curve is hyper-
elliptic.

Proof. The involution t acts on the canonical ring # of S, which splits into
eigenspaces Z=%" @ #~. We have:

R ~H(T, mK;), R, =~H(T,mK;+1n)
and

m

dim%;=dim.%,;‘=l+(2

) for mz=2.

We can choose a set of minimal generators for # as follows:

we#,
= w? Ry Ry
Yo=W", Y1 €5, Vas V3 €
+ —
Wy,, Wy3’039v46‘@3 Wyos Wylsvla 026@3'

Then {y3, yo 1, ¥3, ¥3, ¥2 Vs, ¥3, woy, wo,} are 8 elements of the 7-dimensional vector
space %, and there is a relation:

(6.2) Q1(¥o> y1)+Q2(yz, y3) + Awv; =0.

Therefore the canonical curve is hyperelliptic.
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Since S has no torsion, there are a priori three cases:
1) 2 is a smooth quadric,

2) 2 is a rational quartic,

3) ¢ is birational.

We want to exclude the first two cases.

In each of them, the map & is a Galois covering. The involution t acts on [P?
with signature (2, 2), hence on X and the map & is t-equivariant. Therefore t acts by
conjugation on the Galois group G of ®.

In case 1), G=(Z/2Z)*. It follows from the relation (6.2) that Z has equation
Q1(¥o, ¥1)+Q,(v,, ¥y3)=0 and therefore that v does not exchange the pencils of Z. In
the notations of 3. 1, with G={1, ¢y, 0,, 03 =0,0,}, if we had t0,=0;7 with j+i, we
would get t(4,) = 4; which is impossible since 7 conserves the types. Therefore t acts
trivially on G.

We deduce from this, that in each case 1) and 2), there exists an involution ¢ on S,

which commutes with 7, such that @ factors through S — S/o and p,(S/o)=0 (cf.
Remark 3. 2 for case 1)).

We take the notations of the proof of 3. 3.:

O L. p_%m , 53

T

s

S/

&

Recall from the proof of Theorem 4. 6, case 2), that the o-invariant part of %5 is
H°(P,3K,+238)=H"(P, F), where F is the pencil of lines through ps. Since ¢ and t
commute, T acts on H°(P, F) hence induces an t-equivariant morphism:

p:S---» P25, |F|V P!,

A generic fibre of p is a smooth curve of genus 2. If it were stable under Tz,
T would have a fixed point on it, which is impossible. Therefore t acts on /' non-
trivially:

S L P?
T 1 PYr=pP!'

If F, is a fibre of p over a point of ramification for & we can write
a, F,=2F =fibre F, of q. But this is impossible since qu =0, K;F,=2 would imply
F?24+ K F =1. Q.E.D.
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We can also prove that in this case, the 6 x 6 matrix giving a resolution for the

canonical ring # of S can be chosen of the form (same notations as in § 4):

VoG~ wqy wq, wq; wqgs QF

wqy — - + + w
wqs, — — + + 0
(@)= s ;
wqy  + + - - 0
Q" w 0 0 0 0

where + (resp. —) means that the polynomial is t-invariant (resp. t-anti-invariant).

[Ba]
[Be]
[B-R]

[Bo]
[B-C]

[Cal]
[Ca2]
[Ca3]
[Ca4]
[Ca5]
[Ca6]

[CaT]
[Ca8]

[Ch]
[Ci]
[De]
[DI]
[Do]
[En]
[Fr]

[Gi]
[Gr]

[Ko]
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