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Introduction

In the recent paper [CaCi] we began a general classification of surfaces
with P, = q =1. We proved, among other things, that there is a close
relation between the geometry of these surfaces and the geometry of those
projective bundles over elliptic curves which are given as the join of a sym-
metric product of an elliptic curve with the projective bundles associated
with the direct sum of line bundles of degree zero. In particular the “non-
degenerate” case is to be considered the one in which birational models of
these surfaces lie inside a symmetric product of an elliptic curve. In any
case the knowledge of the geometry of linear systems on such a symmet-
ric product seems to be essential in order to answer questions about the
existence and properties of these surfaces.

Surfaces with P, =q =1 have 2 < K? < 9. The case K = 2 was
completely analysed in [Ca] (see also [CaCi, §5]), whereas in [CaCi] we
completely classified the surfaces with K2 = 3, leaving the proof of the
existence of one of the two classes in which these surfaces fall, to the
present paper. In fact the main theorem we prove here is the following:

Theorem. Surfaces with p e =d=1, K 2=3 and genus of the Albanese
fibres equal to 3 are exactly the minimal resolutions of hypersurfaces with
at most rational double points as singularities in certain linear systems on
three-fold symmetrics products of elliptic curves (these linear systems, whose
general elements are smooth, are described in the statement of Theorem
(3.1)). The moduli space is generically smooth, irreducible, uniruled of
dimension § .

This theorem follows from results in §3, cf. Theorems (3.1) and (3.5).
A rough outline of the contents of the paper is as follows. Section 1 is de-
voted to a dcetailed study of linear systems of divisors on r-fold symmetric
products of clliptic curves, with spccial regards 1o properties of ampleness,
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Introduction

In the recent paper [CaCi] we began a general classification of surfaces
with p, = q = 1. We proved, among other things, that there is a close
relation between the geometry of these surfaces and the geometry of those
projective bundles over elliptic curves which are given as the join of a sym-
metric product of an elliptic curve with the projective bundles associated
with the direct sum of line bundles of degree zero. In particular the “non-
degenerate” case is to be considered the one in which birational models of
these surfaces lie inside a symmetric product of an elliptic curve. In any
case the knowledge of the geometry of linear systems on such a symmet-
ric product seems to be essential in order to answer questions about the
existence and properties of these surfaces.

Surfaces with P, =q =1 have 2 < K? < 9. The case K = 2 was
completely analysed in [Ca] (see also [CaCi, §5]), whereas in [CaCi] we
completely classified the surfaces with K° = 3, leaving the proof of the
existence of one of the two classes in which these surfaces fall, to the
present paper. In fact the main theorem we prove here is the following:

Theorem. Surfaces with p e =d=1,K 2= 3 and genus of the Albanese
fibres equal to 3 are exactly the minimal resolutions of hypersurfaces with
at most rational double points as singularities in certain linear systems on
three-fold symmetrics products of elliptic curves (these linear systems, whose
general elements are smooth, are described in the statement of Theorem
(3.1)). The moduli space is generically smooth, irreducible, uniruled of
dimension 5.

This theorem follows from results in §3, cf. Theorems (3.1) and (3.5).
A rough outline of the contents of the paper is as follows. Section 1 is de-
voted to a detailed study of linear systems of divisors on r-fold symmetric
products of ¢lliptic curves, with spccial regards to properties of ampleness,
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190 I CATANESE AND ¢ CIHIBERTO

cohomology, cffectiveness, cte. 1t turns out that for all numerical equiva-
lence classes the behavior does not depend on the linear equivalence class
except for the divisors whose class is a multiple of the anticanonical divi-
sor. For those the only effective classes are those obtained by adding to a
plurianticanonical class a divisor class of r-torsion. Section 2 is devoted
to determining the cohomology of these classes and the results we obtain
are intimately related to the representation theory of the finite Heisenberg
group of order r*. Finally in §3 we apply this detailed analysis to the
above-mentioned problems about existence and moduli of surfaces with
P, 4= 1, K? = 3. Our description of the moduli space is rather ex-
plicit and it is likely that this moduli space, which is clearly uniruled, is
in fact rational. Concerning the status of classification of surfaces with
P, =4d= 1, 2< K’ < 9, and related open questions, we refer the reader

1o [CaCi].

1. Symmetric products of elliptic curves and their line bundles

(1) Symmetric products of elliptic curves. Let A4 be a curve of genus
| and let 47 be its r-fold symmeiric product, namely the quotient of
A" by the obvious action of the symmetric group S,. We will denote
by nr:A' — A" the natural map (we will drop the index r in x, if no
confusion arises). A" is the variety parametrizing all effective divisors
of degree r on A, and one has the natural Abel-Jacobi map B, AV - 4,
realizing 4" as a P! bundle over 4 (again we will drop the index r

in S8 if no confusion arises).
We briefly recall how to recover a vector bundle E_ of rank r over A4

such that P(E)) = A") . First one considers A4 x A and its projections
g:AxA—A,i=1,2, onto the two factors. A Poincaré sheaf % for
linc bundles of degree r on A4 x A is effectively constructed as follows
One fixes a point u € A and defines 2, = [A +(r—1)(Ax{u})—({u}xA)],

where A | is the diagonal in A4 x 4, and it is clear that, setting E (u) =
(4,),(:#), onc has P(E,) = 4" .

In fact, we have an inductive exact sequence
(1.1) 0—- .7 l—».‘/"—»fr|4x{u}—»0
.md we notice that /’,| tetu) = =~ @, via the natural identification A x {u} =
1. Taking the direct lmagc Iong cxact sequence associated to (1.1) and to
llu map ¢, . since R q,-(#)=0,for r>1,we obtain
(1.2) 0 K, () —~E ) ~0,-0
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for r -1, while for » | we obtain
0 - E () -0, —»qu (A) — 0.

Notice that R’ q,-(#,) is a skyscraper sheaf of length one supported at

. Whence E,(u) = [-u]. Furthermore the extension (1.2) does not split,
sincc the divisors of & have zero intersection number with any divisor
of the form A x {v} but are not algebraically equivalent to a sum of those;
hence hO(E,(u)) = ho(g",) =0

We have thus given a proof of an assertion stated in [At, p. 451] (we
observe here that our sheaves E (1) are the dual of the Atiyah’s sheaves
E (u), also mentioned in [CaCi]).

We shall need in the sequel the following:

Lemma (1.3). The bundles E (u) are stable.

Proof. 1t is equivalent to prove that E (u) = Er(u)v is stable. Let W
be a destablizing indecomposable subbundle of rank k of E (u). Then
deg(W) > 0 and the Riemann-Roch theorem implies 0 < deg(W) <
hO(W) < hO(E,(u)) = 1; hence deg(W) = |. Atiyah’s classification (see
[At, Corollary to Theorem 7]) yields then that W = E, (v) for some v €
A. By (1.2) and since hO(Ek(u)) =0, we have a nonzero homomorphism
of E, (v) into E, (u) arising as the composition of the inclusion of E, (v)
in E (u) with the projection on E, ( ). By [At, Lemma 22], we have

(1.4) E (u)®E, (u) = PIE-0]
EeA,

where A, is the subgroup of k-torsion points. Moreover there exists a line
bundle . of degree 0 such that POk [v—u] and E (v) = E, ()L .
Hence the existence of a nontrivial homomorphism between E, (v) and
E, (u) implies that %’ is a k-torsion bundle; hence E (v) = E, (4) and
the above homomorphism is an isomorphism. But then E, (v) would be
a direct summand of E (u), a contradiction. q.e.d.

The geometrical meaning of (1.2) is the following. Dualizing (1.2) we
see that there is a natural section of O(1) whose locus of zeros consists
of the set DL') of all divisors of degree r on A containing u, which is

isomorphic to A"™" (we shall write D, instead of Dfl’) if no confusion
arises).

For further use we will write D for the algebraic equivalence class of
D, . Morcover we will denote by F, the fibre of f over v € 4, and simply
by I its algebraic equivalence class. As for every projective bundle, the
Picard group of A" s generated over the Picard group of the basis by the
class of O(1). Hence any divisor of A" s algebraically equivalent to a
divisor of the form mD + nF with n, m integers.
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Definitions and Notations

For a coherent sheaf # on a variety X over C, the field of
complex numbers

The C-dimension of H'(F)

The Euler-Poincaré characteristic of .%

The invertible sheaf associated to a Cartier divisor D on a
variety X

The complete linear system of effective divisors linearly
equivalent to a divisor D

A curve of genus 1

A Poincaré sheaf for line bundles of degree r on A x A. Explicitly
Po=[Ay+ (r— 1)(A4 x {u}) - ({u} x 4], where A, is the
diagonal in 4 x 4

Gives an isomorphism 4 — PicO(A), which makes A an elliptic
curve

The sum on the elliptic curve 4

The difference on the elliptic curve A

The subgroup of k-torson points on A

The r-fold product of A

The r-fold symmetric product of A4

The set of all divisors of degree r on A containing u, which is
isomorphic to A"

The Abel-Jacobi map

The dual of a vector space or vector bundle

Proj(W_), for a vector bundle W

The sheaf of holomorphic i-forms on the variety X

A primitive r-th root of the unity

For every complex number z

The cyclic group of rth roots of unity

The group (Z/rZ)2

The Heisenberg group, the central extension of G, with x4,
generated by two elements p and g both of order 7.

. (| !
satisfying the relatioona p "ap ¢
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Aut((r) The group of automorphisms of a group ¢

Int(¢s) The group of internal automorphisms of a group G
A A minimal surface with Pe=4= 1

A A(S) The Albancse variety of S, a curve of genus 1
TR, | The Albanese morphism of §

A"~ (a x id)*(#) A Poincaré sheaf on S x A4

£ =g(9) The arithmetic genus of a fibre of «

K =K A canonical divisor of §

K? The self-intersection of K (2 < K< 9)

{K} = {Chiea The paracanonical system of .S (see §1)

YinSxA4 The paracanonical incidence correspondence, i.e., for every
te€A, YN(Sx{t})=C, x{t}

ng:SxA—S The projection onto the first factor

nSxA— A4 The projection onto the second factor

1=1(S) The degree of Mgy Y — S, called the index of the paracanonical

system. Roughly speaking this is the number of distinct curves of
{K'} passing through the general point of §
F =ng([K])® P  The paracanonical sheaf on S x A

V =a,[K) The (locally free) direct image of the relative canonical sheaf for o
on A

w:S — P(VY) The (rational) relative canonical map

A Ri(n,).%

A= AS) The length of A'

We notice that every automorphism g of A naturally induces an au-
tomorphism g of 4. In particular the symmetric product A" has a
l-parameter group of automorphisms induced by the group of translations
of A. If ue A — u®dte A is a translation, the induced action on 4"
sends the divisor D, to D, ,resp. F, to Foon -

Proposition (1.5). The group of translations of A acts transitively on
all the algebraic equivalence classes in A" except Jor the classes which are
multiple of rD) I . Morcover the homomorphism ¢ which to g € Aut(A)

(r . : .
associates ¢ is an isomorphism onto Aul(xt(')) .
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Proof. ‘The first assertion is a straightforward consequence of the pre-
vious remark.

The injectivity of ¢ is obvious. Let us prove the surjectivity. First of
all, any automorphism of A" induces an isomorphism of PicO(A(”) =
I’ic“(;l) which is also induced by some automorphism of A. Hence it
suffices to prove surjectivity onto the subgroup of automorphisms acting
trivially on Pic’(4"’). Let y be such an automorphism of A7 As
we shall see later on (cf. (1.6)), the canonical bundle K of A" s alge-
braically equivalent to —rD + F. Since F is the fibre of the Albanese
map its algebraic equivalence class is preserved under any automorphism.
The same happens for D since K is preserved and there is no torsion
in Num(A""). Thus, multiplying y by the automorphism induced by a
suitable translation, we may assume that y leaves every divisor D, invari-

ant. If a,, --- , a, are distinct points on A, then the divisor a, +---+a,

is the only point of intersection of D, ,---, D, . Hence y is the iden-
1 r

tity. q.e.d.

(2) Cohomology on projective bundles. Any line bundle ¥ on a pro-
jective bundle X = P(V) of dimension r over a curve C is of the form
O(m)®p* ('), where .’ is a line bundle on C and p: X — C is the
natural projection. The Leray spectral sequence for the map p degenerates
at the first step; hence

H' ()= H R'p, () e H (R 'p(£)
= H'(R'p(O(m) & %"y & H' (R 'p,(O(m)) ® Z").

Now we have R'jg(()(m)) =0 ifeither i # 0, r—1,o0rif i =0,
m < O,or i =r—1, —r < m. Consequently all the cohomology is
concentrated in degrees i =0, 1, r — 1, r, more precisely in degrees / =
0,1 if m>0 and in degrees r—1, r if m < —r, whereas if —r <m <0
all the cohomology groups vanish.

By relative duality for the map p, we have

R 'p.(0(m) = p (O(-m) & wy)" .
Using the Euler sequence
0 Qe ="V ®O0(=1)) = 0y = 0,
once deduces that
(1.6) @y 2 O(=r) @ p"(det(V)

\%

).
We observe for further use that
(1.7 p.(mz‘(.) det(d) e Sym'( l'v).
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We obtain finally
p.(O(m)) = Sym™ (V")
R™ 'p,(O(m)) = det(V) ® Sym ™"~ " (V).

One can therefore restrict oneself to determine the cohomology of the
line bundles .»#” for which m > 0. For those the only nonzero cohomology
groups arc H" and H'. Of course, by using the Riemann-Roch theorem
on the curve (', it suffices to compute the dimension of vector spaces of
the type H(Sym” (V) ®.#") and H(Sym™ (V") .#").

(3) Effective divisors on A" . Let us go back to the particular
case we were considering before, i.e. where X = A" . We deal with
HO(Sym™(E, (1)) ® &) .

Proposition (1.9). HO(Symm(Er(u)) ®.Z") = (0) unless m > 0 and
m+nr >0, where n = deg.&’ .

Proof. Let & in A" be the small diagonal, i.e. the set of all divisors of
the type rv, v € 4. We notice that § moves in an algebraic family of
curves sweeping out the whole 4" . Assume that mD+nF is (algebraically
equivalent to) an effective divisor. Then n"(mD + nF)-J5 > 0. But now
n'(Du) is the sum of the r components D, ,={(u,-,u)u =u},
each intersecting & transversally at one point. Thus n*(D)-6 = r. Instead
the intersection number n°(F)-J equals the degree of the map J — A4
sending (v, --- , v) to rv; hence it equals P q.e.d.

The relative dualizing sheaf on 4 is isomorphic to the canonical sheaf
[K,] (simply denoted by [K] if no confusion arises). By (1.6) we have
that [-K] = O(r) ® p"([~u]) ; in particular the algebraic equivalence class
of [-K] is rD — F . By (1.7) we have, for any positive integer A,

(1.8)

(1.10) p.(I-hK]) = [-1]*" © Sym™ (E (u)).

Proposition (1.11). p_([-hK])) is a direct sum of r-torsion line bundles

p.([-hK) = @ - o""?

EeA,

with O < n(h, &) < A1)

_ Proof. By (1.3) it is clear that p ([-4K]) is semistable; hence, hav-
ing degree 0, it is a direct sum of indecomposable bundles of degree
0. More precisely p,([-hK]) = (AE,(u))®" @ Sym™(E (1)) is a di-
)™ which, by (1.4), is isomorphic to
2rh 1)
r .

rect summand of (I:',(u)v o B (u

M., & 0" where pih,ry— q.c.d.
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Remark (1.12).  The integer n(h, &) depends only upon the order of
torsion on the element ¢, because the monodromy of the universal family
of elliptic curves with a level r-structure acts transitively on the set of
clements of fixed order rjr.

We can now prove the following:

Theorem (1.13).  Every divisor in the algebraic equivalence class of mD
¢ nl s linearly equivalent to an effective one if and only if m > 0 and
m + nr > 0. There exist, for every positive integer h ., a finite number of
classes of effective divisors algebraically equivalent to —hK . For those, H 0
and H' have the same positive dimension.

Proof. The second assertion follows by Proposition (1.11). To prove
the first assertion it suffices to consider reducible divisors which are sums
of the D, ’s, the F,’s and effective divisors algebraically equivalent to
~-K. q.e.d.

(4) Linear systems on A" First we state the following:

Proposition (1.14). An effective divisor is ample if and only if it is not
algebraically equivalent to either a multiple of F or to a multiple of -K.

Proof. 1t suffices to notice that D is ample (by Nakai-Moishezon) and
F and —K are numerically effective (nef) but not ample. This is clear for
F . Moreover n'(—K) = A, the big diagonal of 4" . Setting

(1.15) Ai,j,zz{(“w'" ,ur)|u,.:ujeBt}

we have A = Uicicj<rBij0 Hence it is clear that A moves in an alge-
braic family without base points and thus —K is nef. The nonampleness
of —K follows from Proposition (1.11). q.e.d.

Remark (1.16). One of the two implications in the statement of Propo-
sition (1.14) is valid more generally (cf. [Mi, Theorem 3.1]): in a projective
bundle over a curve any effective divisor is nef if and only if the bundle is

semistable.
We are able now to compute the cohomology of all divisors on A"

which are not muitiples of K .
Theorem (1.17). If & is a line bundle associated to a divisor alge-

braically equivalent to mD + nF then:
(i) if m+nr #£0, there is exactly one nonzero cohomology group of &,

in the following cases: II()(M) ifm>0, m+nr>0, H](PJ) if m>0,
minr<0, H" (@) ifm<—r, mtnr>0, H(Z) if m < —r,
mtonr < 0;

(i) if  r< m <0 all cohomology groups vanish;

(iit) of m + nr - O then the Euler-Poincaré characteristic of & is zero
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and there are at most two nonzero cohomology groups, namely

1Py and 'y if m >0, H"Z)and H" (@) if m< —r

and only for finitely many divisors & algebraically equivalent to mD +nF
are these cohomology groups nonzero.
Morcover the Euler-Poincaré characteristic of &' is

@)= m+rmy- I (m+0.

=1, r—1

Proof. By the Kodaira vanishing theorem, if & is ample then hi(_@v)
= 0 for all positive i < n. Moreover [-K]® Z is ample if & is
such. Hence if & is ample all the cohomology vanishes except HO(_@).
A similar assertion is easily verified if & is a multiple of [F]. The
assertions concerning the cohomology groups follow easily by Serre duality,
bothon 4" andon 4, Propositions (1.9) and (1.11) and the remarks we
made in subsection 2. Finally we know that the Hilbert polynomial x(Z)
is a polynomial of degree r in m and n, which vanishes on the lines
m=1i,for i=-1,---,—r+1, and on the line m + rn = 0, whence
the last assertion. Of course one could also have applied Riemann-Roch
to compute ¥(Z). q.ed.

Theorem (1.18). If & is a line bundle associated to an effective divisor
algebraically equivalent to mD + nF then the complete linear system <]
associated to Z is base point free if either n >0 and m+n>2 or n <0
and m+nr>?2.

Proof. The algebraic systems {D,},c, and {F } ., are base point
free. Hence the first assertion follows easily. The second assertion is
proved by induction on r. The case r = 1 is clear. Restricting £ to a
divisor of the type D, , which is isomorphic to AT , we obtain a divisor
7, whose associated complete system is base point free by induction.
On the other hand since h'([(m - 1)D + nF]) = 0 by Theorem (1.17),
the system |Z]| cuts out the complete linear system on D, , whence the
assertion.  q.e.d.

Proposition (1.19). Let & be as above with n <0 and m+rn =1
there are only a finite number of base points.

Proof.  Arguing as before by restriction to a general D, , we see that,
by Theorem (1.71), (iii), |Z]| cuts out a complete linear system. Since
m i n(r 1)>1 n>2_ wecan then apply Theorem (1.18) and conclude
that there are no base points on D, . Hence the base locus has dimension
at most 0. q.e.d.
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Example (1.20). By Theorem (1.17), a hincar system of the type (3D
I] on A s a pencil with base points, since (3D 1Y 3. This shows
that Proposition (1.19) cannot be improved.

Theorem (1.21). If & is a line bundle associated to an effective divisor
algebraically equivalent to mD+nF then |Z| isvery ample if either n > 0,
m>1and m+n>3,0r n<0 and m+nr>3.

Proof. We start with a preliminary remark whose proof is trivial. Sup-
pose we have a linear system . of divisors on a smooth variety V',
passing through a point p. Suppose moreover that there is a divisor H
of .% smooth at p and such that . restricted to the irreducible com-
ponent H' of H passing through p gives an embedding of H' at p :
then % gives an embedding of V at p. We apply this remark taking for
each point p of A" a divisor H' = D, for a suitable u, and a divisor
in |2 — H'| not passing through p (this is possible by Theorem (1.18)).
By induction, since W' (2 -H') =0, |Z| restricted to H' gives an em-
bedding. Therefore |Z| gives at any point a local embedding. Since for
any pair of distinct points of A" there is a divisor D, containing one of
the points but not the other, and since by Theorem (1.18), |2 — D, | has

. IR (r
no base points, one has that || separates pairs of points in A ", q.ed.

2. The Heisenberg group and the anticanonical divisor
of the symmetric product of an elliptic curve

In this section we will show how to compute the numbers n(4, &) in-
troduced in subsection 3 of §1. In order to do this we will use some
representation theory for the Heisenberg group. We shall work here on
the complex numbers.

(1) The Heisenberg group. Let r be a positive integer. We shall denote
by ¢,, or simply by ¢ if no confusion arises, the primitive rth root of
unity e(1/r) = exp(2xi/r), which generates the cyclic group u, = Z/rZ
of rth roots of unity. We also denote by G, the group (Z/rZ)z.

We recall that the Heisenberg group H_ is the unique central extension

0—pu —H -G, =0

associated to the standard symplectic form 4:((q,, a,), (a’l , a;)) €G, —
ala', ~ aza: € Z/rZ. In concrete terms, H_ is generated by a unique
central clement ¢ such that ¢’ = 1 and by two elements p and ¢ both
of order r, satisfying the relation o 7'/)710/) =& .

H, admits a standard faithful irreducible representation V' and a clas-
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stcal theorem by Stone-von Neuman asserts that, up to isomorphism, |
18 the umque irreducible representation of H,_ where u, acts by scalar
multiphication. An explicit description of V' is as follows. Let V' be the
vector space €' For reasons that will become clear in a while, we shall
denote by -8 (()“)), o .. r the natural basis of . Then V' becomes
a representation of H if one lets 4, act by scalar multiplication and lets
p and o acton ¥ as follows:

p: 0" o g:0" — "t
where 7 has to be understood as a representative of a class in Z/rZL.

It 4" = ('l“)),,,o,,. ,_, is the dual basis to & in V", the induced
dual representation of H_ on VY is, of course, defined by

en” = e g ey gy ),

We notice now that Aut(H,) acts on the center u, andon H /u, =G,.
Let AulO(H,) be the subgroup of Aut(H,) of the automorphisms of H,
acting as the identity on the center. We now prove the foliowing analogue
of Theorem 6, p. 30 of [Ig]:

Propesition (2.1). AutO(H,)/Im(H,) =Sp(2,Z/rZ)=SL(2,Z/rZ).

Proof.  The symplectic form A on G, is obtained by choosing represen-
tatives « and g of two lifts of a, b € G, and setting A(a, b) = [a, B] €
#, = Z/rZ. On the other hand any symplectic transformation g leaves
invariant the cocycle in HZ(G,, u,) which classifies the given extension.
Hence there is an automorphism of H, in AutO(H,) inducing the given
transformation g .

To finish the proof it suffices to show that any automorphism g which
is the identity on 4, and induces the identity on G, isin Int(H,). It is
casy to verify that all those isomorphisms g are of the form g(¢) = ¢.
L(p) = c"/). glo) = ¢ for suitable integers 4 and k, and they are
therefore the inner automorphisms associated to phak . q.ed.

Finally we observe that if g € AutO(Hr) , then composing the standard
representation V- with ¢ we obtain an isomorphic representation by the
quoted theorem of Stone-von Neumann. In particular if GI(V) — Gl(W)
1s & homomorphism, the decomposition of W into irreducible summands
18 Aul“(ll,v)-cquivariam‘

(2) Representation theory for the Heisenberg group. Let now # be a
positive integer, and let W h = Sym'"( ¥V} be the associated representation.
Sinee yeacts trivially on B . W actually lifts from a representation y
of G (I,/rl)", which we are now going to describe.
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. .o, . ) I}
We choose a basis of W), to be given by the monomials ploopt iyt

. 17(""), where I = (i, - ,1,) isa multi-index such that 0 < 7, <
iy <<, <r- 1. We shall find it convenient to consider / as an
element of a suitable subset .% of ( Z/rZ) . If we let R and S be the

two generators of G, induced by p and o respecuvely, the monomials
n'!) are eigenvectors for R, since R acts by sending nth o gttt

whereas the action of S is as follows:
sipD gty

where l denotes the multi-index (1, ---, 1) and the sum takes place in

(Z/rZ) , up to reordering of the entries of the multi-index 7 +1.

Of course W, splits into irreducible representations of degree 1 of G,
and we will dcscrlbe this splitting. More precisely we notice that W, spllts
according to the S-orbits in the set &/ = (77(’)) ey » and we are going to see
how each of the summands corresponding to an orbit splits into irreducible
representations of degree 1.

Recall that we may identify G:’ with G, in the following way: to
b= (b,, b,) € G, we associate the character

*

b 7h7
X:(c,¢) €G, — e e

With this identification we have

Let @ = Z(I) be the S-orbit of & containing n“) , and suppose Z
consists of k = k(Z) elements. This means that / + k1 = I, where k
is minimal under this condition, and & = {n"), y!/*" ... pHETIDY
Moreover we notice that, since S has period r, k divides r; hence there
isa d=d(Z) such that r =kd .

Let us consider the invariant subspace W,(Z) of W, corresponding
to & and let y,:G, — GL(W,(Z)) be the induced representation. If

Xy € G,v , we let u(Z, x,) be the integer such that

= D X,, s,
)(,,EG,
lLemma (2.2). One has u(Z . x,) < | and equality holds if and only if

i+ i, +bh =0 (modr), b, =0 (modd(Z)).
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P'roof. By character theory we have
M) (I Y (e ) e )
(¢, .('J)EG,
2 —
=) 3 wlgle ) -e AT
(€, .6))€G,

Notice that
Vo (cyo c)(n!hy = g7l ) el
and therefore tr(y,, (¢, , Cz)) 1s zero unless ¢, isa multlple of k, in which

case tr(y,,(¢,, ¢,)) = ke 1) Hence

w ., x,) = (k/r )- Z Z g~ (abirabe (i ttiy)

c,€Z/rL j=0, - ,d-1

_ (k/rz . Z Z e —(e,by+eyby) = (i 4+ +iy,)
,d—=1c,€Z/rZ
= (k/rz)- Z PR
j=0,- ,d—1

where 6 =0 unless i, +---+1i, +b, =0 (modr), in which case d =r.
In fact one has Zrlezﬁzs’“' =0, unless x =0 (modr). By the same
rcason we finally have (<, x,) = 0 unless b, = 0 (modd), in which
case (7, x,) = kdr/r2 =1. qed.

Let us remark that the condition b, = 0 (modd) in Lemma (2.2)
means that there is an integer u such that b, = ud = ur/k, namely
ur = kb,, which one the other side is the same as saying that k is a
multiple of the period B(b,) of b, in Z/rZ. Another remark is that,
given 7, the quantity o(Z) =i +---+1i, € Z/rZ computed by a given
r,‘” in &7 is independent of r](’) and depends only on & .

Now, if x, € G,v , we denote by m(h, x,) the integer such that

_ m(h, x,)
W, = @ X, .
X€G,

.I’roposition (2.3). Let b=(b,, b)) €G,, let p=p(b,) be the period
of b, in 2/rZ., and let K =r/B. Moreover, let v(b, k) be the number of
orhits L2 of W of cardinality k such that a(Z)+ b, =0. Then

mh, x,) = Z v(b, k).
k'|K
Proof. One clearly has m(h, x,) = 3., u(Z, x,) where the sum is
taken over all the orbits. The assertion follows by Lemma (2.2). q.e.d.
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For further use we shall also describe the associated representation on
Wh' = (A'l')‘w. Again we notice that g, acts trivially on H'h', which
is therefore an irreducible representation of degree 1, hence a character,
of G,. More precisely we have the following proposition, whose proof is

clear:
Proposition (2.4). Wh' Is the character x(h) such that

h hr(r—1)/2 h h(r—1)

B

Hence if either h is even or r is odd, then x(h) is trivial, if r is even,
; th) _
and h is odd then x"' = Xrj2.r2)-
Let us finally consider the representation 7'M = W, Vl;: of G,. Let

gy a5 .
XhEGrv
As a consequence of Proposition (2.4) we have

Corollary (2.5). Let b€ G,. One has L (h, x,) = m(h, x,) if either
h is even or r is odd. Otherwise Z(h, x,) = m(h, x,.), where b =
b+(r/2,r/2).

(3) An application of the above formulas. We shall apply the above
formulas to the case where r is a prime number and to the description of
the representation v

First we consider the case r =2 :

Proposition (2.6). Let r = 2. If h is even, then Z(h, x,) = h/2
unless b = 0, in which case £ (h, x,) = (h/2) + 1. If h is odd, then
ZL(h, x,) = (h+1)/2 unless b =0, in which case ./'(h, x,)=(h—1)/2.

Proof. A multi-index in .# can be written in the form /, = (0, 12177y
meaning that the first j entries are 0, the latter are 1. Let us denote by
r]m the corresponding memorial in A4 . There is therefore only one S-orbit
of cardinality 1, and precisely &, = {ryh} . whereas all other orbits &, =
{r]j, r72h_’} , J=0,--, h—1, have cardinality 2. The assertion follows
as an easy application of Proposition (2.3) and Corollary (2.5). q.e.d.

Next we turn to the case r is an odd prime number. We have:

Proposition (2.7). Let r be an odd prime number. Then

L(h, x,)=mh, x,) = [<r+;Z—l) - IJ /r2

unless b =0, in which case

hox)=mh, x,) = {[<'+'ri’l_ ! ) _ 1] /,,2} Ll

SYMME TRIEC PRODUCTIS O FEEIPTI ¢ URVES G0y

Proof By Corollary (2.5) we have 2 (h, x,) mh, x,) for cvery
b o G . For every multi-index 7 ¢ .7 | the orbit &7 of r]“) has ci-
ther cardmality r or cardinality 1. The latter case only happens if I =

W ) . . .
O" 1", - (r 1)"). where we use a notation similar to the one in-
troduced in the case r 2. Therefore, since dim W, = ("2~} there
are exactly [( ""r’,', 'Y 1)/r orbits of cardinality r and only one orbit of

cardinahty 1.

Theorbit 27 of cardinality | corresponds, by Lemma (2.2), to the trivial
character g, . In fact for b = (b, , b,) € G,, we have u(Z, x,) =1 if
andonly it b, = 0 and b —h[0+1+---+(r—1)]=—hr(r-1)/2=0 in
7/r7..

An orbit 7 of cardinality r, again by Lemma (2.2), contributes 1 to
cach character of the type (0(Z), b,) where b, can be arbitrary. Con-
sider the set Orb” of such orbits of cardinality r of & . The map
a7 c o' = 6(P) € Z/rZ is surjective. It is then clear from the
above discussion that the proposition follows from the fact that the fibres
of ¢ have all the same cardinality. This in turn can be proved as follows.
By Proposition (2.1) and the following remark, we deduce that .#’(4, x,)
1s independent of b, for b = (b, b,) # 0. Therefore the cardinality of
a I(/)l) is equal to Z(h, x,) for any b = (b,, b,) with b, # 0, and
these are cqual.  q.e.d.

In particular we see that for r = 3 we have .Z(h, x,) = h(h+1)/2 for
all b e Gy with b # 0, whereas Z(h, x,) =[h(h+1)/2]+ 1.

(4) The plurianticanonical systems of the symmetric product of an elliptic
curve. Let A4 be an elliptic curve with 4 2 C/Z+ZQ , where Q € C isin
the upper half-plane. We shall identify the group A, = (Z+2Q)/r(Z+ZQ)
of r-torsion points of 4 to G,. With this identification we have

‘Theorem (2.8).  For cach point & € A, one has that the integer n(h, &)
introduced in (1.11) equals the above & (h , Xe)-

Proof.  The theta functions ()['(/)’](rz, rQ), i=0,---,r—1,forma
basis for 11"(.1, [rO]). Thus a basis for HO(A , [rO+ w]) is given by the
family of theta functions ()(”('u;) = ()[’(/)’](rz +w,rQ), i=0,---,r—
I (abusing notation we denote by the same letter w a point in C and
the corresponding point in 4). If we vary w in C, the family & =
o', | gives a trivializing frame of a vector bundle V' of rank
r which is the pull back to C of a vector bundle £ on A such that
ey A

The group 27~ 7.1 74 actson 17 and by comparing 0"’ (1w +w) with
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()“’('m) with @ ¢ 7 1 78 onc finds cocycle relations for £ Ttas well
known (see [Mu, pp. 123-124]) that these relations are given by

(ril)

O(i)(w+l) = ei(?(i)(w) , ()(”(UH-Q) = e(—z—('w/r)f(Q/2r2))() (w)
with i=0,--- ,r—1.

Consider now the vector bundle Sym'h(VV) ® det( V)®h , which is the
pull back to C of the vector bundle p,([-4K]) considered in subsection
3 of §1. It is not difficult to verify that Sym™ (V") ® det(V)®" is defined
by a constant cocycle, and hence it is associated with a representation
of G, which can easily be identified with Vall Comparing then the
splitting of 7™ into characters of G, described above and the splitting
of p,([-hK]) into torsion line bundles proved in Proposition (1.11), we

deduce the assertion. q.e.d.
Remark (2.9). Taking into account Remark (1.12) one obtains another

indirect proof of the claim given at the end of the proof of Proposition
(2.7) that all the fibres of ¢ have the same cardinality if r is odd.

(5) The plurianticanonical systems on AY, According to Proposition
(2.6), on the twofold symmetric product A® of an elliptic curve 4 there
are three isolated curves which are algebraically, but not linearly, equiva-

lent to —K. )
It is not difficult to locate these curves on A'”. In fact, let ¢ be a

nonzero 2-torsion point of A4, and let us consider the curve Té on A%
which is the image of the morphism ¢,:1€ A — 1+ (¢ @) e A? . Notice
that ¢, realizes A as an unramified double cover of T, and indeed
T, = A/(€) . It is easy to see that 7;,-D =1 and T, - F = 2, and thus T
is algebraically equivalent to —K . Hence the curves T, & € 4, — {0},
are the three required curves. To be slightly more precise, we have that

(2.10) [T]=[-K+p" (- 0)]

This is an easy consequence of the following:

Proposition (2.11). Let ¥ and &' be line bundles on 4" such that
for a given u € A one has & ' Q.Z'Du. Then & =%

Proof. It suffices to prove the proposition in the case .& " is the trivial
bundle. The hypothesis is then that ,‘iﬁ D, o ODM . Since any fibre F of
p: A" — A is isomorphic to P’”' and [D]; = Op-:(1), we have that
2 2 O for any fibre F. Hence Z = p"(AN), with " a line bundle
on A. Moreover D, = A" and plnu:D" — A4 can be interpreted as
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the composition of the natural projection 4" + -1 with the translation
by « on . Since "/l'l’,, ~p'L l')“)“ ~ "I.l’.‘ (. +) is trivial and since pl’,,"
clearly induces an injection of Pie(.A) into Pic(D,) = PiC(A(r-I)) , we have
that ./ hence 277, s trivial.  g.e.d.

To prove formula (2.10), take now a divisor D = D, on A% . The
intersection of 1) with 1, is the point of D corresponding to the divisor
i (e g). i we choose the canonical identification of D = D, with 4
viit the projection p, we have [7;], = [u®&]. On the other hand, the
adjunction formula tells us that [-K + p* (& - O)]ID ~[D+p"(&- 0)]|D =
I”mmlw . which after identification of D with A4 is again [u®¢]. Formula
(2.10) follows then by Proposition (2.11).

Consider now the map n: A* — 4% For each u € A we have a curve
A, on A%, namely the image of the morphism y 1€ 4 — (¢, tdu) € A%,
Of course A, is the diagonal of A* and 2 = {A,},c4 1s an elliptic pencil
of curves on A parametrized by 4. Moreover n(A,) = n(A,) if and
only if v = +u. Hence we have a base point free, rational pencil & of
curves on A'? such that the projection map n induces a two-to-one cover
I1:.#” » @ which is ramified at four points corresponding to four curves of
A" These are precisely the diagonal A, where n ramifies, and the three
curves Is cach appearing with multiplicity two in the pencil €. This
shows that @ = | - 2K]|, and this agrees with Proposition (2.6) which tells
us that h"(Am, [-2K]) = 2. According to Proposition (2.6) we also have
three isolated curves algebraically, but not linearly, equivalent to —2K .
These clearly are the three curves of the type T, + T,, where ¢ and 5 are
two distinct nonzero 2-torsion points of A.

In general if £ > 1 is odd, the linear systems of curves of A% alge-
braically equivalent to —hK are, with obvious meaning of the notation,
vt v 1, tIth=3)/2)]@, T, + [(h-1)/2))@, T, + [(h-1)/2))Z,
Loy, VI 1)/2)@if h is even we have instead (h/2)@, T.+T, +
(th  2)/2))e, T+ T, + [(h-2)/2))@, T, + T, + [(h—-2)/2))@ .

(6) The anticanonical pencil of AP Let us now turn to 4” . In view
of the results of subsection 2, we have here dim| — K| = 1; hence we
have a pencil of anticanonical surfaces on A® . We shall now study some
peometrical properties of this anticanonical pencil.

Again let ¢ be a nonzero 2-torsion point of 4 and let us consider the
morphism t.:(v,0) ¢ A x A s utv+(upé)e A% whose image is a
suttiace which we shall denote by Z¢ . Notice that T, factorizes through an
obvious byective map (A/(E)) < A > L. which is in fact an isomorphism;
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hence }.".‘f is a smooth surface in 4" . We have

Proposition (2.12). X, isan anticanonical divisor on A"

Proof. Let F = F, be a general fibre of p: A — A . The surfaces ¥
and X, intersect transversally along a curve of which we want to compute

the degree inside the projective plane F . This is the same as counting the
number of divisors of degree 3 which Z, has in common with a general

g31 on A. We claim that this number is 3.

Consider in fact the curve G of A'” formed by all divisors of degree
2 contained in a divisor of the g; .Since D-G=2and F-G=1, G
is a general curve of a linear system on A® of the form |D + F|, which
is base point free by Theorem (1.18). Since (D + F)-(—K) =3, G cuts
out 3 distinct points on the curve Té. Each of these points is a divisor
of the form ¢ + (1t ® &) contained in a divisor of the g; , which therefore
gives rise to an intersection of the g; with Z. and conversely any such
intersection arises in this way.

The above discussion proves that Zé is algebraically equivalent to a
divisor of the form 3D + nF .

Consider now a divisor D = D, which we may identify with A%
With this identification X, N D is easily seen to consist of the union of
the two components Té and Dueac . We claim that the scheme-theoretical
intersection of Zé and D is reduced. Suppose in fact that T, appears in
the intersection with multiplicity a and D, with multiplicity g . Since
T, is algebraically equivalent to 2D — F on A we should then have
a+2p =3 whichyields a=#=1.

We may thus conclude that, after the identification of D with A%
one has [Zéllb = [T, + D,g]. Hence by (2.10) and by adjunction, we
deduce [Z,], = [-K, +P"(§ ~0) + D] = [-K), + D] = [-K],,. But
then Proposition (2.11) yields the assertion. g.e.d.

Now take the three anticanonical divisors Zi with & a nonzero 2-
torsion point of 4. Since | — K| is a pencil on A? | any two of these
divisors generate the anticanonical pencil. We shall need for future refer-

ence some information concerning the base locus of | — K|.
Consider any pair of divisors X, and Z". The intersection I' of these

divisors is the curve of 4’ which is the image of the map k:t € 4 —
t+(ted)+(taen) € A% Notice that D-T = 3. More precisely, if
D=D,= 4% wesawthat £, -D=T,+ D, and £ -D=T,+D,,,.
Since Té and Tn do not intersect, D N T consists of the three distinet
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pomnts Dol e e ) D, A b &b}
Dot Dy t0ee &) 4 (o)} This shows that X, and X, intersect
transversally along 17, Since X, and Z” generate the anticanonical pencil,
I as the base locus of | K.

Remark (2.13).  As we know from subsection 3, n(3,1,¢&) = 1 if
o Ay {0} and n(3,1,0) - 2. Thiscan be proved in a purely geometric
wity, without the computations of subsections 1-3, in the following way.

The above discussion yields that on 4 one has dim|—-K|>1. On
the other hand by Theorem (1.17) and by restricting to a general divisor
D, one sees that dim| K| = 1 hence n(3,1,0)=2. Since p (-K) is
a rank 10 vector bundle on 4, and by taking into account Remark (1.12),
one finds n(3, 1, &) = 1 forall £ € A, -~ {0}.

We have not been able to geometrically describe the eight divisors of
the form | K + p™(& - 0)]. with & € 4, — {0}.

3. On surfaces of general type with p,=4q= | and g = K'=3

(1) Generalities on surfaces with P, =4 = 1. We briefly recall some
results from [CaCi]. Let S be a minimal surface of general type with
r. a4 1. Its Albanese variety A is a curve of genus 1. Let .S — 4
be the Albanese morphism. We shall denote by g the genus of the fibres
Uli (.

On 5 there s the so-called paracanonical system (see [CaCi, §1]) which
15 o l-dimensional system of curves {K} = {C,},., parametrized by A4,
whose general element is algebraically, but not linearly, equivalent to K .
For 1« 4 general, one has 4%(S, [C,]) = 1, but for particular values
of ¢ one might have A°(S, [(]) > 1. A relevant invariant of S is the
number 4 (defined in [CaCi, §1]; see also notation and conventions at the
begimning of this paper) which, roughly speaking, is the number of points
{ « A, counted with multiplicity, such that h()(S, [C]) > 1. Another
televantinvariant of S together with g, 4 and K’ . is the so-called index
of the paracanonical system ¢, namely the number of distinct curves of the
paracanomcal system passing through the general point of $ (see again
notation and conventions). We recall the relation + g A (see [CaC,
Fheorem (2. D).

Consider the locally free sheal 17 o+ [K] of rank ¢ and degree | on
{ Then one has the projective bundle p:P(1Y) + 1 and a rational map
ar S POy the so called relative canonical map. such that o p oo,




408 I CATANESE AND ¢ CHHTBERTO

One of the results from [CaCi] (see Theorem (2.3)) is that il 4 0 then

P(VY) =AY, ‘

The possible values for K? are 2 <K 2 < 9 for these surfaces (sce
[Bo]). The case K? = 2 has been extensively studied in [Ca] (sce also
[CaCi, §5]): one has then also 1 =g =2, and hencg A=0.

In [CaCi, §5] we began the study of the case K~ = 3. Here we have
either A = 1, and therefore g =3 and 1=2,0r A=0 and g =1 =3.
The existence of surfaces of the first type was proved in [CaCi]. Abogt
surfaces of the second type we recall the following theorem stated in [CaCi]
as Theorem (5.8): . ' |

Theorem (3.1). If g = K* =3, then w:S — A is a morphism wh.zch
is birational onto its image. Moreover w is an isomorphism of the canonical
model of S onto w(S), which is a divisor in a linear system hgmologous
to |4D — F| having at most rational double points as singularities. Such
surfaces do in fact exist. .

Proof. The first assertion was proved in [CaCi] where it was also shown
that no Albanese fibre is hyperelliptic. Consider then the exact sequence

0—-% =Sym*'(V) = ax[K® -7 -0

where .# is a line bundle and .7 is a torsion sheaf, since the midd!e
map is generically surjective. Hence deg(¥’) = deg(7) + I. > 1. This
shows that w(S) is a divisor homologous to 4D — mF, with m > 1,
on 4¥. But Proposition (1.9) implies m = 1. Using the adjunction
formula on A", and the fact that the system {D,},c+ pulls back via w
to the paracanonical system {K} on S (see [CaCi, proof ‘of Theorem
(2.3) and Lemma (4.10)]) we see that w(S) has at most ratlgnal double
points as singularities. The existence will be proved separately in Theorem
(3.2). q.ed. ,

(2) Existence of surfaces with p, = ¢ = |l and g = K° = 3.
prove the following: .

Theorem (3.2). If A is an elliptic curve and < is a line bundle of
AP associated to an effective divisor algebraically equivalent to 4D — F
then the general element of |Z| is a smooth surface with p, = q =1 and
g=kK 2-13. ‘

In order to prove the theorem it suffices to show the following:

Lemma (3.3). (2| has at most simple base points. . .

Proof. If a point p does not belong to some effective divisor alge-
braically equivalent to 3D — F , we are done since the D, ’s are all smqolh.
Therefore it suffices to prove that the intersection of all the above divisors

Let us
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v emply. As we saw o subsection 6 of 42, the base locus of | A s
the smooth curve 17 (v (v d) 1 (v mi,, , where & and g oare
distinet points of order two of . Let us recall that 17 is counted with
multiplicaity 1 in the base locus, as one sees by intersection with a general
D, 1Wa divisor Il algebraically equivalent to 3D - F intersects I", then
tcontains 7, since 1™ is an orbit of A acting by translations on A"
Remark now that /1 is irreducible by (1.17); hence each divisor of |- K|
different from I/ intersects /{ in a curve which is algebratcally equivalent
to 1" and then equals I” since it contains I'. But then, since |- K| isa
linear pencil, we derive /1 € | — K|. This shows that T has empty inter-
section with cach of the cight effective divisors algebraically equivalent to
W 1. qed.

Remark (3.4).  We suspect that indeed any system of the type |Z, | =
| Kt D,| is base point free. In fact, by Proposition (1.19), we already
know that for each divisor Z, algebraically equivalent to & the linear
system |7 | has at most finitely many base points. Moreover, since A (as

contained in Aut(A('))) acts transitively on the linear equivalence classes
of the 7, s, either every or no |Z,| has base points. In the latter case
we are done; in the former case, these points sweep out a finite number of
smooth curves A which are indeed A4-orbits. By restricting to any divisor
D, passing through a point p € A we see that p is not a base point unless
/', — D, + K is a divisor of 3-torsion. This immediately implies that A
is of the form {x + (x ®a) + (x ® b)}icq4> Where a and b are points
of 3-torsion. Moreover there exists a point of 3-torsion ¢ such that A is
contained in the intersection of all divisors in | — K + d| where d is a
3-torsion point distinct from ¢, c ® a, ¢ ® b. Therefore such a point d
cannot be 0 and we may assume ¢ = 0. If the set {0, a, b} consists of
three elements, the intersection of A with a general D, consists of three
distinct points, which are the complete intersections in D, of two of the
above divisors |— K +d|. This gives rise to a contradiction by an argument
similar to one used in the proof of the above lemma. The case in which
{0.a, b} consists of less than three points should be finally analyzed.

(3) Moduli of surfaces with P,=q=1and g = K? = 3. Theorems
(3.1) and (3.2) yield the existence of a family containing all the surfaces
with P, =q =1 and g K 3. We briefly sketch the existence of
such a family. Take . — %  the universal family of elliptic curves with
some level structure, and form its symmetric fibre product f:%m — 7.
The invertible sheaves [40,  F,] fit together 1o give an invertible sheaf

7 on oyt Since by Theorem (1.17) one has dim[4D  F| = 4 on
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', the sheaf L") is locally free of rank 5. let .72 be P (7))
with its projection g:2 — # . We can then consider the fibred product
& x4 #® _, # and inside the total space we can consider the scheme
% defined by the obvious equation (g, x) €. ¢ d(x) = 0. Finally we
have a projection . — 2’ and there is a dense open subset of #” such
that for any point x € £, the fibre S, of & — 2 over x is a normal
surface with rational double pomts whose desingularization is a surface
with p,=49= 1 and g = K= =3, and any such a surface appears in this

way. Notlcc that 2 is a smooth variety of dimension 3.

We shall now prove: .
Theorem (3.5). If x € 2 is such that the corresponding surface S, is

smooth, then the Kodaira-Spencer map for ¥ — & at x is an isomor-
phism and ¥ — & is, around x, the Kuranishi family for S .
Proof. Let S € |4D,—F,| in A" be a smooth surface with p, = ¢ = 1
. . 2
and g = K2 =3 and let T be its tangent sheaf. Since x(7) = 2K" —
10;((0 — _4, if we show that h(T,) = h°(Qg ® wg) = 1, we have that

(T )=15.
To this purpose we notice that n° ([-S1® wg) = h' ([-S1® wg) = 0.
Consider in the fact the exact sequence

0—-0 43 —'[S] [S]ls—>0

2 3
By Theorem (1.17) one has A'([S]) = h*(O ) = h ([051) =K (0) =
2 o
0. Thus h'([S];s) = k' ([-S]®ws) = 0 and A*((S]5) = K ([-Slwwy) = 0.
Moreover we have hO(Q; ® wg) = ho(QLm ® wg) . In fact this follows
by the exact sequence
0—[-S]® wg — Q\p ® wg — Qg wg —0
and by what we proved above.
By the exact sequence
0- wWe — Q;u) ® we — Q,l‘i'}’lA &® wWg — 0
we are done if we prove that h° (QA(J 4 ® wg) = 0. We finally use the
Euler sequence, which, since O (—D,) ® wg = Oy, reads as
0 — Qo ® g — P’ (E4(0) @ T — g — 0.

Now we finish the proof that h' (Tg) = 5 by observing that the restriction

map H(p"(E
phism.

5(0)) ® &) = HO([DO]H) — Ho(ws) is clearly an isomor-

SYMMETRIC PRODUC TS O TELIPTIC ¢ LRVIES A

Atter provang that the tangent dimension of the base <4 of the Kuran-
isha tamily 1s equal o 5, we notice that two surfaces S, and S, in the
tanuly .77+ 22" are 1somorphic if and only if:

(1) the corresponding elliptic curves A, and A, are isomorphic to a
thid elhiptic curve A ;

(n) wdentifying A, and A4, with 4 and observing lhal the Albanese
moephism s defined up to translallon we have that S| , .S, arc isomorphic

by an automorphism g of A? induced by a translation in 4. But then
(S8, implies g(D,) = D, : hence (cf. (1.5)) g is' the identity.

Notice that if the isomorphism between A, and .1, does not preserve
the piven level structure, and S, is sufﬁcwntly close to S, (thus there
v o fixed diffeomorphism between S, and S,), then the isomorphism
between S; and S, does not act trivially on cohomology. The above
wgument shows that the natural map 2 — % is a locally injective and
surjective morphism of a smooth manifold of dimension 5 to a subspace
ot a 5-dimensional manifold; hence it is a local biholomorphism.

Alternatively, consider the normal bundle exact sequence

0 - HY(T '

o) = HO(Ng o) — H' (Tg) = H\(T'j) ~0

and observe that p:A(” — A4 induces isomorphisms H’('If_,m) x~ fl’(?])
for i =0, The Kodaira-Spcnccr map p:T, — Hl('ljs.) induces a
surjection ¢ onto H' (T,») since T, surjects onto Hl( T,). One easily

verifics that the ker ¢ is a supplementary space to H° (T4”' Hence p is
an isomorphism. q.e.d.
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