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O. Introduction 

One of the main sources of inspiration for the present research is the notion 
of surfaces with irrational pencils, which was amply present in the work of 
several classical italian algebraic geometers, such as De Franchis, Castelnuovo, 
Enriques and Severi. 

An irrational pencil is a morphism of the given surface X to a curve C 
of genus > 1, and it was clear to the classical geometers how the existence 
of such pencils would imply the existence of exorbitant linear systems on X 
(cf. [Sev], and [Ca i], I-Ca2], [Be2] for a modern account). Castelnuovo l-Cas2] 
also claimed that for surfaces without irrational pencils the number of moduli 
would be rather low (cf. [Ca 1], [Ca2], [Rei] for related discussion and results), 
and I have been curious for some time (cf. [Ca3], p. 72) about the possible 
bounds which can be given for the number of moduli of surfaces possessing 
an irrational pencil: indeed this question was the motivation for the present 
research. 

What really turns out, is that the classical geometers never realized about 
the fact that, if the genus of the target curve C is at least 2, the existence 
of such an irrational pencil is indeed a topological property of X. As far as 
I know, Siu was the first I-Siu] to give a topological characterization in terms 
of fundamental groups, and his result was independently rediscovered with an 
entirely different proof by Beauville (cf. appendix to the present paper). After 
I had some partial results in this direction, Beauville's communication about 
his result stimulated my search for a cohomological characterization of irrational 
pencils of genus > 2 (note that the existence of an irrational pencil of genus 
1 is not a topological property: possibly this fact has been hiding the above 
result for quite a long time), and when I obtained it I pretty soon realized 
that it could have a higher dimensional analogue. 

The present paper rallies thus around a very clean cut leit-motiv: essentially 
via Hodge theory, the existence of certain fibrations between irregular 
Kaehler manifolds and varieties is merely a multilinear algebra property of 
the real cohomology algebra of the source manifold. 

To be more precise, given a compact Kaehler manifold X of C-dimension 
equal to n, which is irregular, i.e., such that there are some non zero holomorphic 
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1-forms in H~ we consider the Albanese morphism co: X--*Alb(X), given 
by integration of the above 1-forms. 

We define X to be of Albanese general type if �9 is not surjective but it 
has a n-dimensional image. Although the above property seems to be depending 
upon the complex structure of X, we immediately notice (Prop. 1.4) that in 
fact it is only a property of the exterior graded subalgebra A(X)cH*(X,I~) 
generated by Ha(x, IF.). The class of Albanese general type manifolds is, in the 
realm of irregular manifolds, a good generalization of the class of curves of 
genus at least 2. 

The fibrations whose existence is "dictated by topology" are the morphisms 
f :  X-*  Y, where Y is normal, of dimension k<n, and has a smooth model 
which is of Albanese general type. 

The most general result we have concerning the previous rather vague state- 
ments is Theorem 2.25, stating that, for fixed X, there is a bijection between 
the set of morphisms as above and the set of saturated real 2k-wedge subspaces 
F of H 1 (X, II?). 

Since this result is technically complicated, we first prove a very special but 
archetypical result, Theorem 1.10, stating that for given X there exists a non 
constant holomorphic map f :  X ~ C ,  where C is a curve of genus g>2 ,  if 
and only if there is a g-dimensional maximal 1-wedge subspace V of H 1 (X, 112). 

Here, a k-wedge subspace is a subspace V of dimension at least (k + 1) such 
that all exterior products of (k + 1) elements of V are zero, but there is a k-fold 
non zero exterior product of elements of V. 

The link of the above notion with geometry stems from the well known 
theorem proven by Castelnuovo and De Franchis at the turn of the century 
([Cas 1],[D-F]), and relating the existence of a (non constant) holomorphic map 
f :  X--* C to the existence of two linearly independent 1-forms such that 
( /)1A (D2 = 0" 

The main line of ideas is rather straight and runs as follows: first of all, 
by the Kaehler condition, the type decomposition of forms passes to cohomol- 
ogy, and therefore the Hodge decomposition, together with complex conjugation, 
relates properties of the exterior algebra H*(X, C) to properties of the ("holo- 
morphic ' )  subalgebra Ah~ generated by H ~ (Q~). 

Thus the existence of wedge subspaces in H t ( X , ~ )  implies the existence 
of wedge subspaces in H~ Once again the Kaehler condition comes into 
play: since holomorphir forms are closed, any subspace of H ~  determines 
an integrable foliation, and essentially the existence of meromorphic non con- 
slant ratios between the 1-forms of a wedge sabspace can be used to imply 
the closedness of the leaves of the foliation. 

Speaking less informally, a key result we establish in w 1 is Theorem 1.14, 
a generalization of the theorem of Castelnuovo and de Franchis, and stating 
that there is an Albanese general type fibration f :  X --, Y, with dim Y= k, if 
and only if there is a ( k + l )  dimensional k-wedge subspace U,--H~ such 
that Ak(U) embeds into H~ This theorem has been independently obtained 
by other authors (see w 1) with different proofs, as far as we understand, and 
firstly by Ran in [Ran 1] : here our proof is based on Dini's theorem on implicit 
functions and allows a "twisted" generalization (Theorem 1.17). 

We end w 1 by defining a Kaehler manifold X to be Aibanese primitive if 
it does not admit any non trivial Albanese general type fibration, and we illus- 
trate the relevance of this notion to the classification problem of irregular mani- 
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folds: in particular we pose some problem related with Green and Lazarsfeld's 
important and inspiring work on generic vanishing theorems I-G-L 1], [G-L2], 
by which we hope that, via fibrations and unramified covers, the classification 
of irregular manifolds may be reduced to the classification of a particular class 
of primitive manifolds, the simple ones, for which all topologically but not analyt- 
ically trivial line bundles &a have cohomology groups H i ( ~ ) = 0  for i<n. It 
should be noted that Green and Lazarsfeld [G-L2] have arrived also to a 
notion of primitive manifold, but following essentially the dual way, of consider- 
ing the Picard instead of the Albanese variety of X. 

w 2 is entitled "Kaehler-Hodge exterior algebra" and is the most technical 
part of the paper: it is devoted to the definitions and theorems which prove 
the topological nature of the existence of Albanese general type fibrations. We 
only remark here that the origin of the technical difficulties encountered stems 
from the fact that (as one can already see in the case where X is a curve) 
the natural homomorphism of A h~ (X) |  A h~ (X)* (* denoting complex conjuga- 
tion), into H*(X, t1~) has a very huge kernel, hence recovering relations in Ah~ 
from relations in H* (X, IE) is not immediate. 

w 3 is instead devoted to the applications to moduli of algebraic surfaces 
which were my first motivation for dealing with this type of questions: the 
basic idea is very simple also in this case. 

In fact, we notice that if a surface S is fibred over a curve C of genus 
> 2, then, by the previous results, all its deformations possess such a fibration, 
and, if the fibre curves are not generically isomorphic, then we can apply Arake- 
lov's theorem, implying that the moduli space of S has a quasi finite map to 
the moduli space for the pairs given by the curve C and the finite subset Z 
of critical values of the fibration. In this way, via the classical Zeuthen-Segre 
computation of the number of critical values in terms of the second Chern 
class of X, we obtain some rather general upper bounds for the number of 
moduli of algebraic surfaces with an irrational pencil of genus at least 2. 

Finally, after dealing with topological and transcendental methods, we turn 
to the problem whether one can give purely algebraic proofs of many of the 
previous statements. 

Thus, in w 4, we consider the problem of stability under deformations of 
X of the existence of irrational pencils or higher dimensional analogues. We 
frame the problem in a rather general context, using the theory of Deformation 
of maps, as developped by Horikawa [Hol -3] ,  Flenner [F1] and Ran [Ran2], 
obtaining sufficient conditions valid also in positive characteristic. Unfortunately 
these sufficient conditions, always verified in characteristic zero, by virtue of 
results on Variation of Hodge structure by Fujita and Kollar [Fu], [Ko], are 
not verified in positive characteristic, and we plan to return in the future on 
the problem of deciding about possible counterexamples. We also treat, but 
not in complete generality, the problem of bounds for moduli in higher dimen- 
sion or char = p > 0. 
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Notation 

H~(X, ,~) = Hi(,~) 

A = h l b ( X )  
~ : X ~ A  
F = F. 
K = K  x 
[O] 
IDI = P(H~ 

A* = Pic ~ (X) 

L 

teA* 

j,:x-+xx{t} 

For a coherent sheaf ~ on an algebraic variety, or a com- 
pact Kaehler manifold 
The sheaf of holomorphic/-forms on X 
The Albanese variety of X 
The Albanese morphism of X 
The fibre of the Albanese map at aeA 
A canonical divisor of X 
The invertible sheaf associated to a Cartier divisor D 
The complete linear system of effective divisors linearly 
equivalent to a divisor D 
A Poincar6 sheaf on X x A*, where 
is the dual Abelian variety of A=Alb(X), and since 
Pic ~ (X) = H 1 ((9.)0 ~_ H 1 (X, U (1)), we shall usually denote by 
a locally constant sheaf determined by a cocycle in 
Hi(X,  U(1)), by 
the holomorphic invertible sheaf L | Cx, whose isomor- 
phism class is an element of Pic ~ (X), and by 
(the linear equivalence class of) a Cartier divisor D such 
that [D] ~ ~a. 
The natural isomorphism, for any teA* 
The sheaf j* (~) 

( ~  ( ( ~  H~ 
t~A* ra~lq 

ImK+tl  

rcx: X x A*--. X 
= n*([K]) | 

F(w) 
V* 

| ~)) = The paracanonical algebra of X 

The complete linear system F ( H ~  called a 
twisted m-th canonical system 
The projection onto the first factor 
The paracanonical sheaf on X • A* 
Proj(WV), for a locally free sheaf W 
The complex conjugate subspace of V 

1. Primitive irregular Kaehler manifolds of Albanese general type, 
and the classification of irregular Kaehler manifolds 

Let X be a compact Kaehler manifold of complex dimension n, which we assume 
throughout to be irregular, i.e., such that 

(1.1) q = h~ (s = ha ((gx) > 0. 

A fundamental geometric object for the study of X is given by the Albanese 
morphism of X 
(1.2) ~: X --* A, where A = Alb(X) is the Albanese variety of X, the q-dimension- 
al complex torus (H ~ (f2~)) "/j(H 1 (X, Z), j :  H1 (X, Z) ~ (H ~ (f2xa))" being given 
by integration. 

A leit-motiv in this paper shall be the one of pointing out how much of 
the holomorphic geometry of X is dictated by topology or by the differentiable 
structure. 
(1.3) Definition. Let Y=a(X):  then dim(Y) is called the Albanese dimension 
of X, and shall be denoted by a=alb(X). 
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(1.4) Proposition. The Albanese dimension a of  X is a topological invariant of 
X. More precisely, let A (X )c  H* (X, ~) be the exterior graded subalgebra generat- 
ed by HI(X,@), respectively Ah~ be the subalgebra generated by H~ 
=HL~ Then A ( X ) 2 ~ O ,  while h(X)2a+l:0 (resp. Ah~ while 
j~hol ( X ) a  + 1 = 0).  

Proof By the Hodge decomposition H 1 (X, ~)  = H~ G (H~ *, where * 
denotes complex conjugation. Hence if Ah~ + ~ = 0, certainly A (X)2,+ 1 = 0. 

Since H~ ~*(H~ clearly a = dim(a(X)) is the maximal integer m 
with A h~ (X)m # 0. 

To show that A (X)z, # 0, we apply the following 

(1.5) Lemma. Let co1, co2, ...,cot be holomorphic forms in H~ such that 
0)~---(.01A0)EA . . .  A(.0 r is :~=0 in H~ Then c~Ato*~0 in HEr(X,(~), and 
t 1 = rll A ... /x ~lr ~: 0 in H'(X,  ~), for every choice of  11i = co i or co*. 

Proof Let ( be the Kaehler closed (1, 1) form on X. 
If co A co* = 0  in H2r(X, I~), then we would have 

~ A 0)* A ~ n - 2 r = 0 .  

X 

But a constant  times the integrand is positive, and strictly positive at each 
point where 09 ~ 0, a contradiction. 

The second assertion follows immediately from the first, since r /^  ~/*= -t-o9 A 
~o*~= 0 in H 2r(X, ~). Q.E.D. for 1.4 and 1.5. 

Consider now the Albanese map ~: X --+ A = Alb (X) = (H ~ (O~)) v/j(H1 (X, ~E)), 
j :  H1 (X, 7/.) ~ (H~ v being the homomorphism given by integration. 

Clearly c~ depends upon the complex structure, but only to a certain extent. 
Once fixed a base point  Xo, ~(x) is given, up to translation, by integration 
on any path from Xo to x, so this choice does not  depend upon the complex 
structure. 

The complex space H~ via taking real and imaginary parts of forms 
belonging to it, determines a subspace V of the space of d-closed 1-forms which 
maps isomorphically to the De Rham cohomology group H1DR(X, R);  viewing 
A as a differentiable torus, a change of choice for V alters ct by adding [g], 
the projection onto A of a differentiable vector valued function g: X ~ R  2q. 

The map fl = (~ + [t  g], idto ' 1 j): X x [0, 1] --+ A x [0, 1] is proper and  of maximal 
rank, equal to 2a + 1, over a locally closed submanifold M of dimension 2a  + 1, 
and with M c~ (A x {t})~ ~ for each t in view of 1.4: hence fl-1 (M) is a differenti- 
able fibre bundle over M, and if M were connected it would be true that the 
differentiable structure of the general fibre of the Albanese map of X is complete- 
ly determined by the differentiable structure of X. One has, though, the following 
counterexample, due to Bogomolor and Kollhr. 

(1.6) Proposition. There do exist diffeomorphic Kaehler 3-folds, such that the 
respective Albanese fibres are not diffeomorphic. 

Proof By a theorem of Donaldson ([Do]) there do exist simply connected 
homeomorphic but no t  diffeomorphic algebraic surfaces $1, S 2. Let C be a 
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curve of genus g>2 .  Then S~ x C and $2 x C are diffeomorphic by Smale's 
h-cobordism theorem, but their Albanese fibres S~, S 2 are not diffeomor- 
phic. Q.E.D. 

Remark. It  remains an interesting question to see what happens in the case 
of surfaces. 

(1.7) Definition. An irregular Kaehler manifold X of  dimension n is said to be 
of  Albanese general type if q > n  and its Albanese dimension a equals n (that 
is, its Albanese image Y has dimension n and is a proper subvariety). 

An entirely similar notion can be given for a normal  algebraic variety or 
normal complex space bimeromorphic to a Kaehler manifold. 

(1.8) Remark. By a theorem o f U e n o  ([Ueno] Thm. 10.9), given a proper subva- 
riety Y of a complex torus A, letting At be the complex subtorus A~ = {xEA Ix 
+ Y= Y}, and  u: A--*Az=A/A1 be the quotient map, then A 2 is an Abelian 
variety, Z = u ( Y )  is an algebraic variety of general type, and u makes Y an 
analytic bundle over Z with fibre A~. 

Kawamata  [Kaw] extended Ueno's  result as to imply an analogous structure 
theorem for X of Albanese general type. 

(1.9) Remark. In the case of curves (dim X = 1), we are just considering curves 
of genus at least 2. 

The reason why curves of genus 1, although being irregular, are not  interest- 
ing from our present point of view, is that the condition of admitt ing a (non 
constant) holomorphic map to a curve of genus 1 is not  stable by deformation, 
as it is shown by the example of Abelian surfaces with a fixed polarization 
type. In fact these manifolds form an irreducible family, but  the Abelian surfaces 
admitting a (non constant) holomorphic map to a curve of genus 1 are exactly 
the ones isogenous to a product of elliptic curves, hence they form a countable 
union of proper algebraic subsets of the parameter space of the family. 

Concerning curves of genus __> 2, we shall show that the existence of a (non 
constant) holomorphic map to a curve of genus > 2  is a topological property 
of X, which admits several characterizations. Later we shall extend this result 
to higher dimensional image manifolds. 

In this respect the prototype of the results we are going to use is the well 
known (cf. [D-F] ,  l e a s  1], [Bo], [B-P-V]) 

CdF theorem (Theorem of Castelnuovo-de Franehis). Let X be a compact Kaehler 
manifold, and let o)1, co2~H~ be two linearly independent forms such that 
(o I A 02-=0: then there exists a holomorphic map f :  X - *  C to a curve such that 
mr, co 2 E f *  (H~ 1) (hence C has genus g >= 2). More generally, an entirely analo- 
gous assertion holds for col, ..., mr, linearly independent and such that m i/x m j = 0  
for  each i, j .  

We give now, as a direct application of the above CdF theorem, a first 
proof of a result we shall show later in a greater generality 

(1.10) Theorem. Let X be a compact Kaehler manifold: then there exists a non 
constant holomorphic map f :  X--* C, where C is a curve of  genus g > 2, if and 
only if there is a g-dimensional maximal isotropic subspace V of H 1 (X, t12). Here, 
saying that V is isotropic, means that A2V,, the natural image of  A2(V) into 
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H2(X, C), is zero (we shall later call an isotropic subspace a 1-wedge subspace). 
Moreover, any maximal isotropic subspace V as above occurs as a pull back 
f*( l / ' )  of  a maximal isotropic subspace V' of  HI(C,~.) for some f :  X - ~ C  as 
above. 

Proof Assume that tp 1 , q)2 . . . .  , tpg are a basis of V~ 
Since H * ( X , ~ ) = H ~ 1 7 6  *, we can write q~l--~%+q*, ~2=m2  

+ q*, ..., ~ - -  0~ +~/~,* and we let U be the span of m l, m2, --., ~%, and W be 
the span of q~, q2, -.-, qg- 

We know that, for i, j = 1 . . . . .  g, the following form gives a zero cohomology 
class: 

(1.11) go i+  q*) A ( o j +  t/*)= 0 in H2(X,~) .  

But, on a Kaehler manifold, the type decomposit ion passes to cohomology, 
hence (1.11) is equivalent to 

(1.12) r e~j= 0, th/Xtlj=O , (~oi/x q*) + (r/* A o~) = 0. 

Clearly (1.12) imply A 2 U = A  2 W = 0 ,  and we can apply C d F  to U and W, pro- 
vided their dimension is at least 2. 

Assume dim U =  1: then we may assume o~ 2 . . . .  = c % = 0 ,  and again (1.12) 
plus Lemma 1.5 imply ~o I ^ q~=0 for each j (for j - 1 ,  o l  ^ ql = 0  follows from 
t/a ^ t / j=0  for each j). Thus CdF can be applied to the subspace U +  W, whose 
dimension is > 2, hence V pulls back from a curve of genus > g, but indeed 
= g by the maximality of V. The same argument applies if dim W =  1. If dim U, 
dim Ware  both >2,  we get f :  X ~ C , f ' :  X ~ C ' ,  by applying CdF to U, respec- 
tively to W. 

Consider the product map ~0 = ( f  • f ' ) :  X ~ C x C'. 
If the image of q~ is a curve C", we are done as before, since V pulls back 

from H a (C", ~). 
If ~o is surjective, we derive a contradiction against (1.12), since 

H* (C x C', ~ )  = H* (C, r | H* (C', ~)  by the Kuenneth formula, and q~* is injec- 
tive. Q.E.D. 

As mentioned in the introduction, the previous result was inspired to us 
by the following result proven by Siu [Siu] and Beauville (appendix to the 
present paper) by entirely different methods. 

(1.13) Theorem (Siu-BeauviIIe). Let X be a compact Kaehler manifold and C 
be a curve of  genus g > 2: then there is a non constant holomorphic map f :  X ~ C', 
where C' is a curve of genus g' > g, if  and only if  there is a surjective homomorphism 
~a (X) ~ ~a (C). 

To extend these results, we need a generalization of the classical Castelnuovo 
de Franchis theorem, which has indeed been obtained independently by several 
authors, first of  all by Ran  [Ran 1], then later, around the same time, by Green- 
Lazarsfeld [G-L2] ,  by Peters, and by ourselves, but with at least 3 different 
proofs, as far as we understand. We present here our proof, which allows, as 
we shall soon see, a further generalization. 

(1.14) Theorem (GCdF).  Let X be a compact Kaehler manifold, and let 
U c H~ be a (k + 1)-dimensional strict k-wedge subspace, i.e., a subspace with 
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a basis given by forms (o~, (o2 . . . . .  (ok+ 1, and such that cot A (a2 A ... ^ C0k+ 1 = 0, 
while Ak(U) embeds into H~ under the natural homomorphism. 

Then there is a holomorphic map f :  X ~ Y to a k-dimensional normal variety 
such that U c f *  (H~ (hence Y is o f  Albanese general type). 

Proo f  U determines a r ank  k sa tura ted  subsheaf  9ff of O 1, inducing a subbundle  
of the co tangen t  bundle  in an open set whose complement  2; has codimension 
at least 2. 

Let J~ be the fol iat ion defined by W in the ho lomorph ic  tangent  bundle  
of X - 2 : :  since X is Kaehler ,  the  ho lomorph ic  forms are closed, hence the folia- 
t ion  is integrable. We are going to show in par t icular  tha t  the leaves of  the 
foliation are closed. 

To this purpose,  let C ( ~ ' )  be the field of meromorph ic  functions on  X which 
are cons tan t  on  the leaves of the foliation. 

Fur the rmore ,  let Y' be a smoo th  b i ra t ional  model  for ~ ( ~ )  and  let ~: X ~ Y' 
be the ra t ional  map  associated to the inclusion of fields ~E(ff )~  C(X). 

Let  ~ be the " g o o d "  open set where n is a ho lomorph ic  submersion,  and  
where not  all the k-forms of the subspace A k u  of H~163 k) vanish. 

We let now c01, 0) 2 . . . . .  COg+ 1, be any basis of U, and  let x be a point  
of ~]r where 0)1 ^ . . . /x  (o,4:0: then, since the co~'s are d-closed, there are local 
ho lomorph ic  coordinates  z~, z2, ... ,  z, a r o u n d  x, and  a funct ion ~ such tha t  

(1.15) (ol = d z l ,  (O2 = d z 2  . . . . .  0)k=dZk, (Ok+ 1 =d~b. 

Moreover ,  (ol/x 0)2/x ... A 0)k + t = 0 implies tha t  ~b = ~p (z 1, z2 . . . . .  Zk), i.e., ~b 
depends only upon  the first k coordinates .  

A n o t h e r  i m p o r t a n t  remark  is that ,  even if ~p is a local ho lomorph ic  function,  
its part ial  derivatives ~ b / ~ z j  are global meromorph ic  functions, and  thus in 
~ ( ~ ) .  

In fact, 0) 1 ̂  co 2 ^ ... ^ coj_ 1 ̂  (o2+ 1 A . . . .  (Ok+ I : ( - -  1)k-J(~//t~Zj) ('01 A 0 ) 2  

A . . .  A ( O  k .  

Similarly, for every meromorph ic  funct ion weC(~- ) ,  ( O w / O z j ) e ~ ( ~ )  
( remember  t ha t  w = w(z 1 , z2 . . . .  Zk)). 

Let now r = d i m ( Y ' ) ,  and wl ,  w2 . . . .  , w~ he meromorph ic  functions e ~ ( ~ )  
which give local ho lomo r ph i c  coordinates  at  n ( x ) e Y ' .  In part icular ,  wl ,  
w 2 . . . .  , w, are ho lomorph ic  at  x and  we may assume (up to replacing (ol, 
0)2 . . . . .  0)k by suitable l inear  combina t ions )  tha t  w~, ...,  w,, z~+~ . . . . .  z~ are local 
ho lomorph ic  coordina tes  at  x. Since, though,  we are deal ing with local holo- 
morph ic  funct ions cons tan t  on  the leaves, it suffices to  work in k variables, 
where we shall  apply the following 

(1.16) Lemma.  Let  ~9 = ~ ( z l ,  z2 . . . . .  Zk )  , W i : W i ( Z l ,  Z 2 . . . . .  Zk) , for  i=  1 . . . . .  r, be 
germs o f  holomorphic funct ions around the origin in IE k, such that 

( i )  wl . . . .  , w,, z,+ 1 , . . . ,  Zk are local holomorphic coordinates at the origin in 
r 

( i i )  for  each i, j ,  (0 ~/t3 z j) and also 0 wi/8 zj are funct ions o f  (w l ,  w2 . . . . .  Wr). 

Then, ~9 can be written uniquely as q~(wl, we . . . .  , w,)+ 7, where ~ is a linear 
funct ion o f  zr t . . . . .  Zk. 

Proo f  Denote  by Y = ( Y l ,  ... ,  Y,, Y,+I . . . . .  Yk) the new coord ina te  vector  given 
by the funct ions  wl,  w2, ..., w,, z,+ 1 . . . .  , Zk. 
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Then (aOfl?yO= ~ (a~p/Ozj)(c~zj/c~yi), but the matrix (azj/Oyi) is the 
j=l ..... k 

inverse of the matrix 
. . . .  / (?w~/az~)~  
c yi /c zfl = ~0 Ik - r) 

where Ik_ r is the identity matrix of order k - r :  therefore, (c~z~/t?y~) and also, 
by (ii), (Otp/Oyi) are functions of w = (wl, w2 . . . . .  wr). 

Set now u=(zr+ 1, .-., Zk), and write now ~ as a power series in the y = ( w ,  u) 
coordinate 

O(w,,,) = Z O~,e w~u~; 

since (c~O/Owl)=(c~O/c~yi) is just a function of w, we see that if the multiindex 
fl is + 0, and if 0,. p + 0, then necessarily ~ = 0. 

Hence we can write 0 uniquely was 0=~0(w)+7(u);  finally, since also 
(c~ Off? ui)= (0 ~P/OYi) is again a function of w alone, we see that ( ~ / ~  u~)= (~y/O ui) 
is a constant, whence 7 is a linear function. Q.E.D. 

We can immediately apply the previous lemma, since it implies that, given 
any basis col, o) 2, - . . ,Ok+l  of U, there are constants c t , c z  . . . .  , c  k such that 
Ok+l -- ~ Cj COi=CO~'+~ is (at least locally) the pull back of a holomorphic  

j = l  . . . . .  k 

differential on Y'. Repeating the same argument inductively for a new basis 
col, co2, .-.,COn, c~ CO~,+l of U (letting co n play the role of COk+l), we find a 
basis of U, co' 1 , co~ . . . .  , co~,+ 1 such that all the cn'~'s, hence all of U, pull back 
from Y'. 

Hence dim Y' = k, and the leaves of ~ are closed (and smooth) in the good 
open set ~C, and thus also in X - X .  

A standard argument (on the universal cover X '  of X, the leaves are the 
inverse images of a holomorphic  function ~b: X'-~tI2 k+ 1, and we just showed 
that ~z~(X) operates properly discontinuously on the image ~9(X')), shows that 
there is a holomorphic  quotient re: X ~ Y, with connected fibres equal to the 
closures of the leaves of ~,, with Y a normal variety of dimension =k,  and 
rc a submersion on X - 2 L  Moreover ,  since ~ ( ~ )  is algebraically closed inside 
I~I(X), C(~-)=(~(Y),  and finally the holomorphic  forms in U are pull-backs 
from Y Q.E.D. 

(1.17) Problem. When can one improve the statement in 1.14, and have a holo- 
morphic map to a smooth manifold Y? 

At  the Bergen Conference, in July '89, we gave the previous detailed proof  
of the Generalized Castelnuovo de Franchis theorem, and Ziv Ran kindly 
pointed out that he had obtained a similar result some years ago in his paper 
[Ran 1], dealing with subvarieties of Abelian varieties. The idea in that paper, 
of defining a notion of non degeneracy for subvarieties of Abelian varieties, 
is rather close to our idea of defining a notion (see later) of primitive nondegener- 
ate Kaehler manifolds. Ran's  proof  of what we call G C d F  is based also on 
the fact that Abelian subvarieties of Abelian varieties are rigid, whereas our 
proof  is more differential geometric, and in fact allows us to obtain a further 
" twis ted"  generalization, which we hope may turn out to be useful for some 
conjectures and problems we are going to raise in the sequel. 

(1.18) Theorem (Twisted GCdF).  Let  X be a compact  Kaehler  manifold, and 
let co 1 , co2 . . . . .  COk+I be respective sections o f  H~174 where ~i ,  f o r  i 
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= 1 . . . . .  k +  1, is an invertible sheaf in Pic~ Assume that co 1 A (D 2/~ . . .  /k (,Ok+ 1 
=0,  while Ak( ( ~  Cco~) embeds into H~ where X*  is the universal 
c o v e r o f X ,  i=1 . . . . .  k+l 

Then there is a holomorphic map f :  X ~ Y to a k-dimensional normal variety. 
is trivial on the generic fibre o f f ,  and ~o i is a section of ~f*f2~)| ~i  outside 

an analytic set o f  codimension >2. 

Proof  As in 1.14, we obtain a rank k saturated subsheaf ~ of f2~, and a foliation 
~- defined by off. We argue as in 1.14, replacing the field C(W) by the field 
of local meromorphic  functions at x obtained by meromorphic  sections of the 
L~'~s, constant on the leaves of the foliation. 

We proceed with the same local argument  mutatis mutandis, that  is, we 
fix local flat trivializations of the s so that the ~oi's are represented locally 
by d-closed holomorphic  1-forms, and we can take linear combinations of  them 
(with C-coefficients). We choose wt, w2 . . . .  , w, to be meromorphic  functions 
E C ( ~ )  such that they give a holomorphic map of highest possible rank at 
some point p in a neighbourhood U of x. 

The only difference now is that the partial derivatives O~O/Ozj, (Qw/Oz) (in 
the chosen system of coordinates) are represented by sections a of some flat 
bundle ~,  and are constant on the leaves of ~ .  

But then d log(a) is a meromorphic  1-form belonging to the differentials 
of the field C ( ~ ) ,  and thus a can locally be written as a holomorphic  function 
of wl . . . . .  w,. Then the argument is the same as in 1.14, yielding r = k. 

Therefore the leaves are closed and the same argument applies: on the univer- 
sal cover X '  of X, the leaves are the inverse images of a holomorphic  function 
r  C k + 1, and since n~(X) operates properly discontinuously on the image 
~O(X'), there is a holomorphic  quotient n: X ~  Y, with Y a normal variety of 
dimension --k, and with n having connected fibres equal to the closures of 
the leaves of ~ and being a submersion on X -  S. Q.E.D. 

(1.19) Corollary. Let X be a compact Kaehler manifold, X '  an Abelian unramified 
covering of X ,  n: X '  ~ X  with group G, U' c H ~  (f2Ju) a strict G-invariant k-wedge 
subspace, with associated holomorphic map f '  : X '  -~ Y'. Then there are holomorphic 
maps f :  X ~ Y (with Y a k-dimensional normal variety), g: Y'--* Y,, such that 
f o n = g o f ' .  

Proof  Since G is Abelian, we have a natural splitting ~ .  ((gx,) = (9 x @ ( @ ~) ,  

where s for i =  1, . . . ,  r, is a torsion element of Pic~ i= 1 ...... 
Then H~176 @ n~174  and Theorem 1.18 ensures 

i = l , . . . , r  

then the existence o f f .  It is moreover  clear that 7r carries leaves of the foliation 
~ '  on X '  to leaves of ~ on X. Then rc induces a holomorphic  map g between 
the respective quotients of the holomorphic  relations induced by the leaves 
of the respective foliations. Q.E.D. 

Another  direction in which Theorem 1.18 can be used is to imply the 
existence of holomorphic  maps to varieties possessing an unramified covering 
of Albanese general type, 

(1.20) Definition. A holomorphic map with connected fibres f :  X ~ Y to a k- 
dimensional normal variety of  Albanese general type, as in Theorem 1.14 (GCdF), 
shall be called an Albanese general k-fibration, or a higher irrational pencil. 
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A compact Kaehler manifold X admitting no higher irrational pencil shall 
be said to be Albanese primitive. 

The importance of the above concept of Albanese primitive manifold is 
due firstly to the fact that, as we shall show in the following paragraph, the 
property of X of being Albanese primitive is just a topological property, actually 
a property of the cohomology algebra H*(C,~). Our point of view is that, 
once given a more restricted notion of primitive irregular manifold, the classifica- 
tion of irregular manifolds should be attacked via the study of primitive mani- 
folds and via the study of the fibrations over them. 

Secondly, we believe to be of paramount importance, in the study of primitive 
irregular manifolds, the study (cf. notation) of the paracanonical algebra of X: 

(1.21) 0 ( (~  H~ (X, [mK] | ~)). 
t e A *  mEN 

The last is not a graded algebra in the usual sense, but should be viewed as 
an algebra of finitely supported functions defined on A* and with values in 
a system of coefficients, endowed with a convolution product induced by the 
natural bilinear pairings 

H ~ (X, [mY] | .~) • H ~ (X, [m' K] | ~,)) --+ H ~ (X, [(m + m') K] | ~ + t,)- 

Of course 
(i) knowledge of the structure of the above paracanonical algebra encodes, 

and is essentially equivalent, to knowledge of the family of twisted pluricanonical 
maps associated to the systems ]mK + t[ 

(ii) the above system of coefficients is related, via the base change theorem, 
to the direct image sheaves 

(1 .22 )  ( ~ x ) . ( X | 1 7 4  on A* (with~x:XxA*--+A*).  

Now, the best situation is the one when all the above sheaves are locally free, 
enjoying the base change property, and of rank equal to • ([mK]), with the 
exception of the case t = m = 0. 

Fundamental work of Green-Lazarsfeld and Beauville [G-L1], [Be2], 
[-G-L2] has almost settled this problem by considering (for i< n) subvarieties 

(1 .23)  S~(X)cPic~ S i ( X ) = { ~ P i c ~  

and proving that the components of these subvarieties are translates of complex 
subtori, and indeed these subtori are pull backsf*(Pic~ for a suitable holo- 
morphic map with connected fibres f : X  ~ Z, where Z has maximal Albanese 
dimension < i (i.e., a(Z) = dimZ < i). 

(1.24) Definition. An irregular Kaehler manifold X is said to be simple if 
H i (X, s = O, for i < n = dim X, and ~ ~ Pic ~ ( X ) -  {0}, and primitive if the S i (X)'s 
are finite sets for i < n. 

Thus if X is simple, then it is primitive, and we pose the following daring 
questions, which we would like to have a positive answer: 

(1.25) Problem. Assume X is primitive, i.e., the subvarieties S~(X) are 0-dimen- 
sional: then, is S i(X) consisting of a finite set of torsion points? 
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(1.26) Problem. Assume X is primitive: then, does there exist an unramified 
Abelian covering X' of X which is simple? 

As far as we understand, Problem 1.25 has also been formulated by Beauville: 
the evidence for conjecturing 1.25, 1.26 is just that (see Beauville's example 
in [Ca2]) the only known cases where the Si(X) are non trivial and finite satisfy 
the conjectures, and some attempt of disproving 1.25 failed. 

It should also be pointed out that both conditions, of being Albanese primi- 
tive, respectively primitive or simple, are of topological nature (the latter case 
follows by Hodge theory with fiat twisled coefficients): hence, if 1.26 would 
hold, a basic object of research would be the study of simple irregular manifolds 
of general type, for which the sheaves t.22 are vector bundles over Abelain 
varieties and enjoying special properties. As far as I understand, the only case 
where almost everything is known about vector bundles on an Abelian variety 
is the case of elliptic curves (see [At]): and in fact, this knowledge is one of 
the many tools which can be used for the classification of irregular manifolds 
with q =  1 (see [C-C1], [C-C2]). 

2. Kaehler-Hodge exterior algebra 

In this section we shall establish a multilinear algebra glossary for translating 
the notions of Albanese general type fibrations, respectively fibrations to an 
Albanese primitive variety Y of Albanese general type, firstly to some notions 
concerning the structure of Ah~ (the exterior subalgebra generated by 
H ~ (g2~)), namely of maximal honest k-wedge and of maximal primitive k-wedge; 
secondly we shall translate these notions concerning the structure of Ah~ 
into notions concerning the structure of H* (X, P,). 

(2.1) Definition. Let U be a vector subspace of H~176 Then U is 
said to be a k-wedge subspaee if A* U, the natural image of  Ak(U) into H~ 
=Hk'~ is non zero, whereas the dimension of U is at least k+ 1 and A k+ 1 U=0.  

(2.2) Definition. Let U be a k-wedge subspace of H~176 Then U 
is said to be a strict k-wedge subspace if moreover the natural map of Ak(u) 
into H~ k) = H k' ~ is an isomorphism onto its image A k U. 

(2.3) Definition. Let U be a k-wedge subspace of H~176 Then U 
is said to be a honest k-wedge subspace if it contains a strict k-wedge subxpace. 

(2.4) Remark. One can define, in a similar fashion, analogous notions for vector 
subspaces of H I (X, ~). 

More generally, these notions can be defined for subspaces of the degree 
1 summand of an exterior graded algebra. In our case, we can consider the 
subalgebras A (X)~ H* (X, ~)  generated by H 1 (X, ~), respectively A h~ (X) gener- 
ated by H~ 1' ~ 

It is also clear how to define, via inclusions, the respective notions of minimal 
and maximal k-wedge subspaces. 

(2.5) Lemma. Let U be a k-wedge subspace: then there is an integer k'<_k, 
and U' c U such that U' is a strict k'-wedge subspace. 
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Proof We may first of all assume that U is not  strict. Secondly, if dim U > k + 2, 
we may find a proper subspace U" ~ U which is still a k-wedge subspace. Pro- 
ceeding in this way, either we find a k-wedge subspace, which is strict, or we 
find a ( k + l )  dimensional one, U ~ such that the map of Ak(U ~ into AkU ~ 
has a non zero kernel. Since Ak(u  ~ is naturally isomorphic to the dual  space 
(U~ ",  there is a k-dimensional subspace W of U ~ with A R w = o ,  and then 
W must  be a h-wedge subspace with h < (k -1) .  We finish the proof, inductively, 
by observing that every 1-wedge subspace is strict. We notice, parenthetically, 
that we shall see later (Lemma 2.20) that a (k + 1)-dimensional k-wedge subspace 
U ~ contains a unique strict wedge subspace. Q.E.D. 

(2.6) Lemma. Assume U is a strict k-wedge subspace. Then there do not exist 
an integer h < k and a subspace U" of U which is a h-wedge. 

Proof Otherwise, there is a subspace U' of U", of dimension h+  1 and with 
A h+l U' =0 .  It suffices to complete a basis of U' to an independent set of k 
vectors in U, and to take its wedge product, thus contradicting the hypothesis 
that U is strict. Q.E.D. 

(2.7) Lemma. Assume Ui is a strict ki-wedge subspace, for i = 1, 2. 
Set U = U1 c~ U2, and assume k 1 <= k2. I f  dim U = k < k x, then A k U ~e O. Other- 

wise, ka =k2,  and U is also a strict k2-wedge. 

Proof Since U ~  U~, the wedge product of h independent vectors in U is non  
zero if h ~ k l ,  thus the first assertion is proved. For  the other, assume that 
ka<k,  k l < k 2 :  then one can choose k ~ + l  independent vectors in U whose 
wedge product is zero, against the assumption that U2 is strict. Q.E.D. 

(2.8) Definition. Let U be a honest k-wedge subspace: assume U i is a strict 
k~-wedge subspace of U, with i = 1 , 2  and k l = k .  Then, k2 <__k, and i f  equality 
always holds, then U is said to be a primitive k-wedge. 

(2.9) Remark. G.C.d.F. can thus be rephrased as: there is a bijection between 
{maximal honest k-wedge subspaces U of H~'~ and {Albanese general type 
k-fibrations f :  X --+ Y}. 

Moreover, in the above bijection Y is Albanese primitive (cf. 1.19), if and 
only if U is primitive according to 2.8. 

(2.10) Lemma. Either there is a strict k-wedge vector subspace o f  H~ 
= H 1, o (X), for some k < n = dim X, or, letting h = min {q, n}, every h-dimensional 
subspace U of H~176 has A h u  ~:o. In particular, if  q>n,  and X is 
primitive, the subspace (An H o ((21x)) of  H ~ ((2"x) has dimension at least >_ n (q - n) + 1. 

Proof If U has dimension h=min{q ,n} ,  and A h u = o ,  then there is a k<n,  
such that U is a k-wedge. The other assertion follows since n ( q - n )  is the projec- 
tive dimension of the Grassmann variety, whose affine cone is the set of wedges 
of n vectors inside A"(H~ Q.E.D. 

Our next purpose is to locate strict and maximal honest k-wedge subspaces 
of H~163 by inspecting wedge subspaces of H a (X, C), and using complex con- 
jugat ion in H 1 (X, C) = H 1 (X, R) ~)R C. 

(2.11) Definition. A k-wedge subspace of  H 1 (X, ~)  is said to be a good k-wedge 
/f Vc~V*=0 (V* denoting the complex conjugate of V), and if  moreover 
A 2k W ~  W* 4~0 for each k-dimensional subspace W of V. 
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(2.12) Remark. Notice firstly that a good (k+ 1)-dimensional k-wedge is strict. 
Secondly, Iet V be a strict k-wedge subspace of H~ then V is also a good 
k-wedge subspace of Hi (X,  (E), as it is easy to verify (cf. Lemma 1.5). 

Assume instead that U is a strict k-wedge subspace of H~ Then it 
is not  true, even when dim U = k +  1, that every (k + 1)-dimensional subspace 
V of H 1 (X, (E), such that V@ V* = U @ U*, is a good k-wedge. 

In fact, then, for every such V and for every k-dimensional subspace W 
of V, one should have A 2 k w G w * @ o .  Therefore, for every 2k-dimensional 
self conjugate subspace F of U @ U* one should have AZRF :~ O. 

As a matter of fact, any such F occurs in two ways: 
(i) either d i m ( F n  U)=k, and then, if U'=Fc~ U, then F =  U'@ U'*, or 

(ii) d i m ( F n U ) = k - 1 ,  and then, if U'=Fc~U, and U"=U/U', then F is 
the pull-back of a subspace F" of U"@ U"*, given as the graph of the conjugate 
of a linear map g: U" ~ U" with g2 = idu- (i.e., F" is the set of pairs {x, g(x)*}). 

In the second case, one can take a bais q)l, q~2,-",(~k+l of U such that 
F is the span of r q~2, " ' ' ,  ~Ok-I , (~0~, ~ 0 ~ . . . ,  ~0~-1, (Pk-~-~(P~, (~k+l  -~-/~, (Pk+ 1 , *  
e, e' being the eigenvalues of g, i.e., + 1 or - 1. 

In local coordinates, assuming qh =dzl  . . . .  , ~Pk=dZk, q~k+l 
=d(f (z l  . . . . .  z0 )=  ~ fiq~i, A2kF is represented (up to constant) by the 

i=1  ... . .  k 

form r ... ^dZk)A(dzlA ... AdzO*, where ~k is either the real or the 
imaginary part of the holomorphic function fk. 

This form can unfortunately be zero in cohomology, as is shown by the 
following 

(2.13) Example. Let X be the hypereUiptic Riemann surface of equation w 2 
=P(z),  where P is a polynomial with real roots, hence such that IP(z)[= IP(z*)l. 
We let q~l = w - l d z ,  q~2 =zw-~dz ,  so that r ^ q~* +~0" ^q~2 is zero in cohomol- 
ogy, its integral on X being given by twice the integral over the Riemann sphere 
of the form - 2 i  Im(z)IP(z)1-1 dz ^ dz*, which vanishes being antisymmetrical 
for the involution exchanging z with z*. 

In spite of 2.12, 2.13, a weaker result holds, which is relevant to our purposes. 

(2.14) Remark. Let V be a k-wedge subspace of HI(X,(17) and assume that 
{~ol, r . . . . .  q~,} is a basis of K 

Let V' be the subspace generated by q~*, q~2, ..-, q~,. 
If Vc~ V*=0,  then also V'c~ V'* =0,  and dim V'=r, since V@ V*= V'@ V'*. 
We claim that also V' is a k-wedge subspace of H 1 (X, C). By the symmetrical 

role of V, V', it suffices to show that for any k +  1-dimensional subspace W' 
of V', A k + L w ' = 0  (i.e., V' is a h-wedge for some h<k). Now, W' has a basis 
of the form c~p* + ~, ~z,  --., ~'k+ i, for a suitable constant  c. Also, Vis a k-wedge, 
hence (eq~*+t~)^ ~/12 /k , . ,  ^ I / / k + l = C ( j g ~  ^ [//2 ^ "'" ^ IPk+ 1 and it is zero by the 
usual trick (1.5), since q~* ̂  ~k z ^ ... ^ ~kk+ 1 ̂  (~0" ̂  if2 ^ ... ^ ~kk+ 1)* is zero, again 
because V is a k-wedge. 

(2.15) Definition. A (2k-wedge) self conjugate subspaee F of Ha(X, ~) is said 
to be a real k-wedge if there exists a k-wedge V such that VO V* = F. F is 
said to be a good real 2k-wedge if moreover one can find a subspace V as above 
which is good. 

(2.16) Proposition. Let V be a (k + 1)-dimensional k-wedge subspaee of H 1 (X, ~), 
and assume that V is the span of independent 1-forms co I +t l*, o~2 + q*, ..., 09k+ 1 
+ q*+ 1, where * denotes complex conjugation. 
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Set U to be the span o f  0)t, 0)2,-. . ,(Dk+l, and W to be the span o f  t h ,  
t/2 . . . .  , t/k+ x . Then either U, or W, is a wedge subspace, or else U can be completed, 
via a subspace W'  o f  l/V,, to a wedge subspace o f  H ~ (f2~) o f  rank < k + 1. 

Proo f  A s s u m e  tha t  ne i t he r  U n o r  W are  wedge  s u b s p a c e s :  then,  u p  to a c h a n g e  
o f  bas i s  in V, we can  a s s u m e  0)h+1 . . . . .  0 )k+1=0 ,  a n d  o91A0)2 A "-" ^ m h # : 0 ,  
w i th  h < k. 

N o t e  t h a t  qh + 1, - " ,  qk + 1 a re  l inear ly  i n d e p e n d e n t ,  a n d  we can  a s s u m e ,  a g a i n  
by  a c h a n g e  o f  bas is ,  t h a t  t/~ = ... = qt = 0, w i th  h > t > 1. 

By a s s u m p t i o n ,  t hen ,  r h + 1 ^ rh + 2 ^ -.- ^ qk + 1 4= 0. 
By the  a s s u m p t i o n  t h a t  V is a k-wedge,  l o o k i n g  a t  t he  c o m p o n e n t  o f  type  

(h, k + 1 --  h) o f  

(0)1 q- ~ )  /k (120 2 q- ~ )  ^ . . .  ^ (('Oh q- ?]ff) A ~/~+ 1 " '"  ^ l/k*+ 1 

we infer  t h a t  

0)~ ^ 0 ) 2 ^  ...  ^ 0 ) h ^ q * + l  ^ ... ^ q * + l  = 0 ,  

h e n c e  e i ther  0) 1, ~o2, - . . ,  0)h, qh + 1, ... ,  qk+ 1 gene ra t e  a wedge  s u b s p a c e ,  o r  we 
c a n  a s s u m e  0)h = r/h + 1, 

0 ) h - l ~ F / h + 2 ,  . . . , ( O  h u + l ~ t l h + u ,  

0 )  1 ^ O) 2 /k . . .  A 0)  h ^ l~h+u + 1 /k . . .  ^ / ~ k +  1 : ~ 0 ,  a g a i n  by  a c h a n g e  o f  b a s i s  i n  V 

But  th is  in t u r n  c o n t r a d i c t s  0 ) x ^ 0 ) z ^ . . . ^ 0 ) h A q * + l ^ . . . ^ ~ / * + l = 0 .  
Q .E .D .  

A s s u m e  n o w  k to be  sma l l e s t  for  the  ex i s t ence  o f  s o m e  w e d g e  s u b s p a c e .  
W e  s u b d i v i d e  in to  two  cases  k e e p i n g  the  n o t a t i o n  of  2.16. 

Case II.  If  U, W a r e  n o t  wedge,  0)1, 0)2 . . . . .  ~~ ~/h+~ . . . .  ,~/k+l g e n e r a t e  a s t r ic t  
k -wedge  subspace ,  a n d  we c a n  a s s u m e  (cf. p r o o f  o f  P rop .  2.16) 

O~l ^ 0 ) 2 ^  . . .  ^ 0)a^I/h+~ ... ^ r/k4=0. 

W e  shal l  t r ea t  this  case  later.  

Case I. I f  i n s t e a d  U is a wedge ,  t h e n  it is a s t r ic t  k -wedge ,  a n d  we can  a s s u m e  

0)1A 0)2 A ... A 0)k4=0. 
W o r k i n g  locally,  we c an  a s s u m e  to h a v e  local  c o o r d i n a t e s  (z~, z 2 . . . .  , z,) 

s u c h  t h a t  0 ) l = d z l ,  0 )2=dzz  . . . .  ,0)k=dZk,  w h e r e a s  0 ) k + l = d f ,  w i th  
f = f ( z l , z 2  . . . . .  Z k ) , h e n c e 0 ) k + l =  ~ f~0)i. 

i=1  . . . . .  k 

By l o o k i n g  a t  t he  c o m p o n e n t  o f  type  (k, 1) o f  

(0) 1 + ~*) ^ (0)2 + ~*) ^ ... ^ (0)k + ~ + ~*+ 1) = 0, 

we infer  

0 ) 1 ^ 0 ) z ^  .-. ^ ~ * ^  .-. A 0) k+ 1-~-0 (in c o h o m o l o g y ) .  
i=1 ,  . , . ,k+ 1 
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Taking the wedge product of the latter form with its conjugate, we again 
get 0 in cohomology;  we can express the form in local coordinates, obtaining 

co~^co~^ . . .A~o~^( r t *+~-  Y', f ~ , t ) A c o t ^ ~ * ^ . . .  
i = 1  . . . . .  k 

A CO* A (rtk + 1 - -  ~ f~* rti ). 
i = 1 ,  . . . , k  

Wedging with the ( n - k )  wedge power of the Kaehler  form, we get, up to 
a constant, a semipositive integrand (this can be seen pointwise, replacing the 
functions f~ by constants), which must be zero, therefore the conclusion is that 
co~Aco2^... ^cok^(qk+~-- Z fi*~i) =0" 

i = 1  . . . . .  k 

Since the function f is holomorphic,  evaluating the conjugate of the partial 
derivatives, the f~*'s, at any point, we get constants ci such that col A 
co2^...^cok^(~k+~-- Z qq3 =0" 

i = 1  . . . . .  k 

Since U is strict, the forms co~ ACO2A ... ^ COj_~ ̂ o i +  1 ̂  ... ACOkACOk+a, for 
j =  I . . . .  , k +  l, are IE-linearly independent, hence the functions 1, f ~ , f 2 ,  " . . , fk ,  
are 112-linearly independent, and evaluating their conjugates on an open set we 
obtain forms (ilk + 1 -- ~ cl th) which generate the space W. 

i = l  . . . . .  k 

We conclude therefore that ~o 1 ̂  co2/x ... A COk/X q j = 0  for j =  1 . . . . .  k +  1, i.e., 
U + W is a k-wedge subspace. 

It is clear that the case where V is a wedge subspace is entirely analogous. 
Let's consider now Case II, where U and W are not wedge. 
This case can be treated as follows: if V is a wedge subspace generated 

by qh,  q% ... ,  q~k+ ~, if we replace some qh by its conjugate, we still get a wedge 
subspace, since, as we saw in Remark 3, if q~ = ~0~/x q~2/x ... ^ ~0j, q~ A q)* changes 
only up to sign via this operation, and is 0 in cohomology if and only if ~o = 0 
in cohomology.  Using therefore our previous notation, we can replace V by 
the span of (co~ + q*), (co 2 + q*) . . . . .  (COb+ q*), tlh+ 1 . . . . .  qk+ 1, and now U is the 
span of coa, coz . . . .  , cob, qh+ ~, "" ,  qk+ ~ and is thus (as we showed) a strict k-wedge 
subspace. 

We can summarize the above discussion with the following 

(2.17) Theorem. Let  k be the smallest integer f o r  which there exists a k-wedge 
subspace V. Then V uniquely determines a honest primitive k-wedge subspace o f  
H 0 (~21) = H 1 , o ( X ) .  

Turning now to the more general case (i.e., when k is not smallest) where 
we have a real 2 ( k + l )  dimensional 2k-wedge F of H ~ ( X ,  tI2), we can always 
assume, by Remark  2.14, the proof  of Prop. 2.16 and the previous considerations, 
to deal with the case when V is a k-wedge and the associated subspace U 
of H~  is a h-wedge subspace, with h<=k maximal among the subspaces 
V such that V @  V * = F .  Assume that h < k .  We can of course assume again 
that 091 ^ coz ^ ... A coh ~O.  

By the maximality of  h, we claim that e h ^ ~02/x ... ^ con ̂  rb= 0 for all j .  
This is clear i f j < h :  in fact, otherwise we can assume e.g. COh+~ to be linearly 

independent from co~, co2, ...,COb, SO that co~,co2, ...,COb, COb+a, r b generate a 
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(h+ 1)-wedge, and one can first add to (~Ok+l +r/*+ ~) a suitable multiple of (ogj 
+ ~/*), then replace the form thus obtained by its conjugate. If instead, j > h + 1, 
one can add to (e9l+q*) a sufficiently general multiple of (coj+q*), so that 
the property o9~ A~o z/x ... A~Oh@0 is preserved, and then apply the previous 
step. 

Therefore, U + W  is a h-wedge. Since VGV* is contained in ( U + W ) •  
( U +  W)*, and VO V* is a 2k-wedge, then necessarily we have h=k and also 
U + W is a k-wedge. 

Again, we summarize the above arguments in the following 

(2.18) Theorem. Let V be a k-wedge subspace. Then there are subspaces U, 
W of H~176 such that V is contained in U G  W*, and U+ W is a 
k-wedge subspace. 

In particular, every real 2k-wedge is contained in a unique maximal real 2k- 
wedge subspace F of H 1 (X, ~) (cf 2.15). 

Such an F can be uniquely written in the form Y ~  Y*, with Y a maximal 
k-wedge subspace of H ~ (~ ) .  

Proof We have proven the first assertion when dim V = ( k +  1). 
In general, let, as usual, U be the projection of V into H~ and let 

W* be the projection into H~ *. It suffices, by the previous case, to show 
that, setting Z = U + W, then A ~ § 1Z = 0. But for any (k + I) dimensional subspace 
S of Z =  U + W ,  we clearly can find a ( k + l )  dimensional subspace V' of V 
such that S c U' + W', and we are done, by the first case. 

There remains thus to prove the second assertion. We obviously may assume 
dim V = ( k +  1), and take Y to be the subspace of H~ consisting of the ele- 
ments which annihilate Ak(u+ W) under the natural  map into H~ Then 
it is clear that Y G Y *  is a maximal 2k-wedge, by the usual trick (1.5). Let 
F be as in the statement of the theorem and assume F =  V ' |  V'*. Then, by 
the first part of the theorem applied to V', V' is contained in U ' G  W'*, and 
U ' +  W' is a k-wedge subspace. Since F contains V ~  V*, the projection of F 
into H ~ (f2~), which is contained in U' + W', must contain U + W. Hence U' + W' 
is a k-wedge containing U + W, and is thus contained in Y. Hence, F is contained 
inside YG Y*, and is therefore equal to it by maximality. Q.E.D. 

(2.19) Definition. A maximal real 2k-wedge subspace F ( F =  Y O  Y* as in Theo- 
rem 2.18) shall also be called a saturated real 2k-wedge. 

In order to continue our analysis, let's try now to describe how a (k 
+ 1)-dimensional k-wedge subspace U can fail to be a strict k-wedge. 

Define then K to be the kernel of the natural  epimorphism of Ak(u) into 
A k U, and assume that K is non zero. To each ~ in K one associates a hyperplane 
H e in U, consisting of the vectors u such that u A r  in Ak+I(U), hence 
is a generator of Ak(He), hence also AkH~=O. Conversely, all hyperplanes H 
such that AkH=O arise in this way. 

Moreover, K • is clearly equal to (-] H e. 
~eK 

We make now an important  remark; assume we write U as a direct sum 
U = A ~ B ,  and a = d i m A ,  b = d i m B :  then k + l = a + b ,  and Ak(u) 
= (A a- L (a) | A b (B)) ~ (A" (A) | A b- ~ (B)). 

Therefore, if Aa(A) = 0, then A k U = A a- 1A/x AbB, and it has thus dimension 
< a ,  and equal to a if A is a strict ( a -  1)-wedge. 
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We saw that, if U is not strict, i.e., K+0 ,  then there is some strict (a - 1)-wedge 
A, which must clearly have dimension a, since AkU+O. Then a=dimAkU,  
and K = (A" (A)|  A b -1 (B)). But then also A = K • thus A is uniquely determined. 

We have thus proven the following 

(2.20) Lemma. Let U be a (k + D-dimensional k-wedge. Then there is a unique 
subspace A of U which is a strict wedge subspace; moreover, if dim A = a, then 
A is a strict ( a -  1) wedge. 

We proceed our discussion, analyzing the structure of non-honest k-wedges 
in H~'~ 

We need the following preliminary result 

(2.21) Lemma. HI'~ contains only a countable number of  maximal honest 
k-wedges. 

Proof. Let U be a maximal honest k-wedge in H 1' ~ Then, by the generalized 
Castelnuovo de Franchis theorem, U determines and is uniquely determined 
by a factor Abelian variety of the Albanese variety of X. But these factors 
are at most a countable number. Q.E.D. 

(2.22) Remark. One can prove indeed the sharper statement with "finite" 
instead of"countable". 

(2.23) Proposition. Let U be a k-wedge in HI'~ 
Then U is not a honest k-wedge i f  and only if there is a honest h-wedge 

U' c U, with h < k, and such that dim U - dim U' = k - h. 

Proof. The "if" part is obvious, since if D is any (k+ l)-dimensional subspace, 
D • U' has dimension > h + 1, hence D c~ U' is a h-wedge, with h < k, hence D 
cannot be a strict k-wedge. 

Conversely, if D is a (k + 1)-dimensional k-wedge of U, D is a strict k-wedge, 
unless (cf. Lemma 2.20) it contains a strict h-wedge subspace D', such that h < k, 
and D' has codimension=(k-h)  in D. In turn, D' is contained in a maximal 
honest h-wedge U' of U, which is the intersection of U with a maximal honest 
h-wedge subspace of H ~' ~ Summing up, there is at most a countable number 
of such subspaces U', and if for all of them the codimension would be > ( k -  h), 
it would be possible, by Baire's theorem, to find a (k + 1)-dimensional k-wedge 
D of U intersecting all such subspaces U' transversally, hence D would be a 
strict k-wedge. Q.E.D. 

We can finally get to the main result of this section 

(2.24) Theorem. Every saturated real 2k-wedge F of H 1 (X, IE) uniquely deter- 
mines a maximal k-wedge subspace Y of H 1' ~ 

Y is a honest k-wedge if and only if F does not contain any saturated real 
2h-wedge subspace F' of  codimension 2(k-h)  in F. 

Y is a primitive k-wedge if and only if F does not contain any h-wedge subspace, 
for all h < k. 

Proof. Every saturated real 2k-wedge F of HI(X,(I]), is (by Theorem 2.18 and 
Definition 2.19) of the form F = Y@ Y* with Y a maximal k-wedge subspace 
of H ~' ~ By Proposition 2.23 if Y were not honest, Y would contain a honest 
h-wedge U, with h < k, of codimension k -  h. 
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Since Y is maximal, U is maximal too. 
Then F ' =  U O U* would be as required in the theorem. Conversely, the 

existence of such a subspace F' = U �9 U* implies that U is a maximal h-wedge 
of codimension k -  h inside Y, thus, again by Proposition 2.23, Y is not honest. 
The other assertion is clear. Q.E.D. 

By Theorems 2.18 and 2.24 we infer as a corollary the following 

(2.25) Theorem. An irregular Kaehler manifold X of dimension n is Albanese 
primitive if and only if H a (X, ~)  contains no k-wedge subspace with k < n. More- 
over, there is a bijection between the following two sets: 

{Albanese general type k-fibrations f :  X --* Y} 
{Saturated real 2k-wedge subspaces F of H 1 (X, I~)}. 

(2.26) Remark. A question that we have for the time being circumvented (cf. 
the statement of Theorem 2.24) is whether the maximal k-wedge subspace Y 
of HI'~ determined by a saturated (i.e., maximal) real 2k-wedge F is honest 
if and only if F contains a good real 2 k-wedge. 

3. Moduli of algebraic surfaces with irrational pencils 

In this section we shall deal with the problem of giving a good upper bound 
for the "number of moduli" M of an algebraic surface S fibred over a curve 
C of genus b > 2, and with fibres of genus g > 2 (then S is of general type, 
cf. [B-P-V], Chap. III). 

We recall (cf. e.g. [Cal l ,  [Ca2]) that M is the dimension of the moduli 
space at the point corresponding to S, or alternatively the dimension of the 
base B of the Kuranishi family of deformations of S. 

(3.1) Theorem. Let S be a complex surface admitting a (nonconstant ) holomorph- 
ic map f :  S ~ C, with genus ( C) = b > 2, and with a general fibre F of f of  genus 
= g > 2 .  

Then we have the following upper bounds for the number M of moduli of 
S (Cz stands for c2(S), which equals the topological Euler-PoincarO characteristic 
of  S) 

( i)  if the fibres of  f have nonconstant moduli, then M < c z - ( b - I ) ( 4 g - 7 )  
N c2 -- (b -- 1)(4 (q-- b ) -  3), 

(ii)  if the fibres o f f  have constant moduli, then M N c2 --(2b - 3)((2g - 4) + 5, 
(iii) if  f is a holomorphic bundle, but not a product, then 

M < 3 ( b -  1) + 2 ( g -  1 )+4<  3/4c2 - 3 ( b -  2)(g-2) +6, 

(iv) if  f is a product projection, then 

M = 3 ( b -  1)+ 3 ( g -  1)< 3/4c2-  3 ( b - 2 ) ( g - 2 ) +  3. 

Proof Let ~ c C  be the set of critical values off,  and cr its cardinality. If xeC,  
we set Fx = f -  ~(x), and we denote by e(Fx) the topological Euler-Poincar6 charac- 
teristic of the fibre Fx, and we observe that it equals - 2 ( g - 1 )  unless x~X. 

We denote by 6 (x) the defect e(Fx)+ 2 ( g -  1), and we recall that, if we partition 
2; as Z'•17', where 22'={xl(Fx)rod is singular}, Z"={xl(Fx)roa is non singular} 
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(and thus for x ~ Z "  there is an integer rex>2 such that Fx=mx(Fx)red)  , then 
we have (cf. [B-P-V] or [Be 1]) 

(3.2) 6(x)> 1 for x~2 ' ,  

6(x)>2(a-1/mx)(g-1)>(g-1) for x~2;". 

We can apply the classical Zeuthen-Segre formula, asserting that 

(3.3) c 2 = 4 ( b -  1 ) ( g -  1)+ ~ 6(x). 
x~Jf 

We derive from (3.2) and (3.3) the following inequality for the respective cardinali- 
ties t/,  a"  of S', S":  

(3.4) ~r' + ( g -  1) a" < c2 - 4 (b - I) (g -- 1). 

We let now C * = C - 2  (so that f is a differentiable fibre bundle over C*) and 
we can now apply Arakelov's  theorem ([Ara], cf. also [-B-P-V], and [Sz] for 
the case of positive characteristic): given C*, there are only a finite number 
of fibrations f ' :  S' ~ C, with genus of a general fibre F'  of f ' = g ,  and with 
critical values of f '  contained in S, or else f has constant moduli  (i.e., after 
a base change u: C " ~  C, which we may assume to be Galois with group G, 
we obtain a product fibration f") .  

In the latter case S is birationally a quotient  F x C"/G, where we can assume 
that G is a subgroup of Aut(F). Aut(F) has, by Hurwitz 's  theorem, order at 
most 8 4 ( g - 1 ) :  whence there is only a finite number of choices for G, once 
g is fixed. Moreover,  then, the irregularity q of S equals the dimension h ~ (f21 • c,,) G 
of the space of G-invariant 1-forms on F x C":  since C"/G = C, we obtain that 
q=b+h~ ~, and thus F/G has genus = (q - b). 

The number  6 of branch points for the projection of F onto F/G, letting 
d=lGI, can be bounded by Hurwitz 's formula, since, letting d be the branch 
set, and, for y~A, vy the local multiplicity of the quotient map, we get 

(3.5) ~ = ~. 1 __< ~ 2(1 -- 1/vy)<(4/d)(g- 1 ) - 4 ( q - b -  1). 
yea y~,d 

We notice now, that any surface S' homeomorphic  to S carries, by the results 
of the previous paragraph, a fibration over a curve of genus g, and if there 
is a diffeomorphism carrying one saturated subspace to the corresponding one, 
then also the genus g of the fibres is the same. Moreover ,  observe that if f 
has nonconstant  moduli,  the same occurs for any small deformation of S. Hence 
in this former case, we can apply Arakelov's theorem, implying that there 
is a quasi-finite map of the (local) moduli  space onto the (local) moduli  
space for the pair (S~C), which has dimension a+3(b-1)__<(by (3.4)_<c 2 -  
4 ( b -  1 ) (g -  l) + 3 ( b -  1), whence our first assertion (since g + b__> q, equality 
holding if and only i f f  has constant moduli, cf. [Be 3]). 

I f f  is a differentiable bundle, then this property is also deformation invariant, 
and M<3(b-1)  if f has nonconstant  moduli,  whereas in the contrary case, 
there is now a Galois unramified covering C" of C, and the moduli  space has 
a quasi finite morphism to the moduli  space for pairs (C, F/G, d), whose dimen- 
sion is (by (3.5)) < 3 (b - 1) - (q - b) + 4 / d ( g -  1) + 4 < 3 (b - 1) + 2(g - 1) + 4. In this 
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case, though, one has to observe that c 2 = 4 ( b - l ) ( g - 1 ) ,  and thus M < 3 ( b - 1 )  
+ 3(g-1)+ 3 < 3/4c2- 3(b-  2)(g- 2)+6. 

If f is not a bundle, but has constant moduli,  we have to add the number 
of critical values of f, for which we have the estimate (3.4), yielding the final 

upper bound M < c z - 4 ( b - 1 ) ( g - 1 ) + 3 ( b - 1 ) + 2 ( g - 1 ) + 4 = c 2 - ( 4 b g - 7 b  
-6g+5)<c2- (2b -3 ) (2g -4 )+5 .  Q.E.D. 

(3.6) Question. Can the above bounds in Thm. 3.1 be significantly improved 
upon ? 

(3.7) Remark. The inequalities become worse when b, or g, are low, say =2.  
For  instance, the bound can be improved when g = 2 ,  as it was suggested by 
Rick Miranda, with whom we carried out the following computation. Let S 
be a double cover of C x F 1, branched on a smooth irreducible curve B. Then, 
if Y is the genus of B, then by Hurwitz's formula, since B is a 6--1  cover of 
p1, we have 2 ~ - - 2 = / ~ + 1 2 ,  where /~ is the number of ramification points of 
the projection of B onto p 1  On the other hand, since f :  S ~ C has nonconstant  
moduli, the Zeuthen-Segre formula yields #_-<c2-4(q-1) ,  and moreover  the 
genus b of C is q or q -  1. 

To bound the number of moduli  M of S, it suffices, by the considerations 
made previously, to add to 3 ( q -  1) the dimension h~ of the characteristic 
series of B. We know that the canonical divisor on C x F 1 is algebraically equiva- 
lent to 2 ( b - 1 ) F I - 2 F  2, where F~, F2 are the fibres of the two projections of 
C x IP 1 ; we can bound as follows: 7 + 12 > h ~ ((~B (2 F2)) _-> (by Clifford's inequali- 
ty) > h ~ (OB(B)) + (q-- 1) d, where d is the degree of the projection of B onto C. 

Hence h~ 1 9 - ( q -  1) d<= 1/2(c2)-(2+d) (q-  1)+ 19, and finally 
M =< 1 /2(cz) - - (d-  1) (q-- 1)+ 19. 

(3.8) Remark. Since c2 = 1 2 x - K  2, and the classical Enriques-Kodaira-Kura-  
nishi lower bound by the "expected number of modul i"  (cf. [Ca 1-3] for some 
results and a discussion about  the number M of moduli  of surfaces of general 
type) is given by M > 1 0 x - 2 K  2, we see that the theorem gives numerical 
obstructions to the existence of fibrations to curves of genus b > 2. 

4. Algebraic surfaces with irrational pencils in positive characteristic 
and the higher dimensional case 

In order to treat the case of an algebraic surface defined over an algebraically 
closed field of positive characteristic = p, we cannot use topological considera- 
tions any longer, and we need to understand the deformation theoretic analogues 
of the arguments we employed. 

Similarly, if we deal with a variety, or a Kaehler manifold of dimension 
> 3  fibred over a curve, we do not yet have, so far as I know, an Arakelov 
type theorem, and so we must again translate the finiteness statement into a 
vanishing result for some term in some exact sequence of deformation functors. 

Therefore, we very briefly recall the basic results about  deformation of maps 
that we are going to use (cf. [I11-2], [F1], [Ho  1-3], [Pall ,  [Ran2]).  

Let as usual f :  X ~ Y be either a holomorphic  map of compact  complex 
spaces or a morphism of canonically polarized smooth complete algebraic varie- 
ties of general type. 
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In this situation we can consider 4 deformation functors: 
Def(X) = Deformations of X, Def(Y), Def(f:  X -+ Y) = Deformations of the 

morphism (i.e., of the whole triple, X, Y, and f), and Def(X/Y), that is, the 
subfunctor of deformations of the morphism, but where the target Y is fixed. 

There are natural morphisms of functors 

(4.1) Def(f: X o Y) o Def(X) 
(4.2) Def(f: X o Y) o Def(Y), and Def(X/Y) is the kernel of the last morphism. 

Correspondingly, we have tangential functors Ti(X), Ti(y), Ti(f), Ti(X/Y), 
where TI( . . . )  is the Zariski tangent space to the (representable) Deformation 
functor, and corresponds to First Order Deformations, whereas T2(. . .)  is the 
Obstruction space (and therefore Def is locally formally isomorphic to the fibre 
of some map of T 1 ( . . . )  to T 1 (. . .)  given by power series). 

Associated to (4.2) is an exact sequence of tangential functors (cf. [FI], p. 50, 
Thm. 3.4) 

(4.3) o T 1 (X/Y) o T ~ (f)  o T ~ (Y) o T2(X/y)  o TZ(f). 

The tangential functors are effectively computable in terms of Ext functors, 
and we have 

(4.4) r i (X) ~ ExtiCx (~2~x, Cx) 
(4.5) r ~ (X/Y) "~ ExtiCx (~2~c/r, (gx), 

where, as usual, Y2J:/r is the cokernel in the standard exact sequence 

(4.6) 0 o f *  f2~ o ~ o O~/r o 0. 

Furthermore, e.g. as in [Ran2],  pp. 249-251, the T~(f)'s also fit in into another 
(essentially equivalent) exact sequence 

(4.7) ... o T l ( f ) o  T ' ( X ) ~  T1 (Y) o Ext}(f2~, (gx)O T2(/)  
o T2 (X)~  T 2 ( y ) o  Ext}(O~, (gx), 

where the Ext~(~, Cx)'S can be computed by means of two spectral sequences, 
respectively ExtPOx(Lqf*(2~, (gx), and Exff(gr(O ~, ~ q f .  Cx), where the L j * ' s  
are the left derived functors, and the ~ f .  's the right derived functors. One may 
observe that the first spectral sequence degenerates to Ext~(gx(f*t2~, (gx) in case 
the morphism f is flat, and if moreover Y is smooth, then ~2~ is locally flee, 
hence Ext~(f2~, 6x) reduces to H i ( f  * Or), where Or is the tangent sheaf of Y. 

We recover in this way Horikawa's Theorem 8.1 in [HolI I ] ,  whose assump- 
tion 

(4,8) Hi(Or)  surjectsonto H I ( f  *Or), H2(Or) injectsinto H2(f*Or),  

is equivalent, via the Leray spectral sequence for f to 

(4.8') H ~  1 f .  (9 x | Or)=0.  

More generally, using the first spectral sequence, we see that T~(Y) 
o Ext}(f2r ~ , (gx) is surjective provided Ext~ N a f .  (gx)=0 (if Y is smooth, 
this amounts to (4.8')), and f .  (9 x ~ C r. 

Let's assume f to be fiat and Y to be smooth, and (4.8') to hold: then 
T 1 (y) o Ext}(O~,, (gx) is an isomorphism, while Tz(Y) o Ext}(s2~, d)x) is injec- 
tive, hence, by diagram chasing, T ~ ( f ) o  T 1 (X) is onto, while T 2 ( f ) o  T2(X) 
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is injective. This is a standard criterion to imply that the morphism Def(f:  X ~ Y) 
Def(X) is smooth, and in particular locally surjective. 
We can apply the above results obtaining immediately the following 

(4.9) Theorem. Let X, Y be compact complex manifolds and let f :  X --* Y be 
a surjective holomorphic map with connected fibres. Then Def(f:  X ~ Y) maps 
onto the Kuranishi family of X, Def(X), provided (4.8') holds, i.e., 
H o ( ~  1 f ,  Cx | Or) = 0. 

(4.10) Remark. H ~  1 f ,  C x | Or) = 0  holds, in particular, by virtue of a theo- 
rem of Kollar [Kol]  generalizing an earlier result of Fuji ta [Fu],  if Y is a 
curve of genus >=2, and X is projective. In fact, by relative duality for f, the 
dual vector space equals H 1 ( ~ , -  2 f .  COx/r | f2~) = 0, f21 being an ample invertible 
sheaf. So our result is stronger than the combination of Horikawa's and Kollar 's 
theorems in the situation above, but it is an interesting question whether one 
can dispense with the Kaehler assumption on X. 

(4.11) Theorem. Let X, Y be complete smooth varieties of  general type (of arbi- 
trary characteristic), and let f :  X ~  Y be a surjective morphism. Then 
Def(f :  X ~ Y) maps onto Def(X) provided (4.8') holds, i.e., H ~  1 f ,  (9 x | Or )=0 .  

(4.12) Remark. H ~  Cx | Or) does not need to vanish in positive charac- 
teristic, even when Y is a curve of genus >2.  In fact, there are examples of 
quasi elliptic fibrations, due to Lang [La], where ~ l f .  (9 x has some nonzero 
torsion. If we think in terms of the Castelnuovo-De Franchis theorem, the possi- 
ble trouble can be the existence of non-closed regular 1-forms (cf. [La], [I13], 
[Ny],  [Fos]), so that one may ask whether in positive characteristic there are 
algebraic surfaces with an irrational pencil of genus > 2, and whose deformations 
do not  have irrational pencils. 

We turn now to the problem of bounding the number  of moduli, and the 
strategy for this will simply be of giving an upper bound for the dimension 
of T 1 (X). 

In order to obtain effective estimates, we shall assume that Y is a smooth 
curve of genus b. Hence, it wilt suffice to bound  the dimension of 
T ~ (X/Y) ~- Ext~(gx(f2}/r, Cx). 

By the local to global spectral sequence for Ext, it suffices to give upper 
bounds for H 1 (Yf om Cx(f21/r, (gx)), and for H~ 1 (gx(O~/r, Cx) ). 

By applying ~ o m  (gx(- ,  Cx) to the exact sequence (4.6), we get 

(4.13) O--*3/gom(gx(~2~/r,(gx)~Ox--*f*Or~gxtl(gx(O}/r,(gx)~O. 

Now, the Arakelov type property is the vanishing of H x ( ~ o m  (gx(t2~/r, (fx)), 
whereas the Zeuthen-Segre formula is, in modern terms, a computat ion of Chern 
classes via (4.13). 

(4.14) Theorem. Let X be a complete smooth surface of  general type (of arbitrary 
characteristic), and let f :  X ~ C be a surjective morphism, with C a curve of 
genus b, and where f has only a finite number of  critical points, and a general 
fibre of genus g. 

Then we have the following inequalities for the tangent dimension M' of  the 
space of moduli of X ( M ' =  hi (Ox)) if the fibres o f f  have nonconstant moduli: 

M' < c2 --(b - 1) (4 g -  7) < c2 - (b - i) (4 (q - b ) -  3). 

Proof By the above discussion, M', the dimension of T ~ (X) = H ~ (Ox), is bounded 
by dim T ~ (X/C)+ dim T ~ (C), this last being bounded by 3 b (3 b - 3  if b > 2). 
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In turn, dim T l ( X / C ) ,  as we already remarked, is bounded by 
hi ( ~ o m  (fx ((2~:/c, (fx)) + h~ ( g x t l  (fx (g2~:/c, (fx)), thus we have to identify more 
concretely the terms appearing in the exact sequence (4.13). 

In general, the relative dualizing sheaf COx/c is obtained by taking determi- 
nants of (4.6), thus c o x / c ~ ( f x ( K x - f * K c ) ,  K denoting as usual a canonical di- 
visor. 

There is a natural homomorphism 

(4.15) ~: t2~/c ~ COx~c, induced by the homomorphism 
~': Q~ ~ COx~c, which, if t is the pull back of a local parameter on C, 

associates to a 1-form q the relative differential (q Adt) |  Clearly :g 
= coker ~ is supported on the critical set ~ off, and actually 

(4.16) coker ~ = ~f = cox/c | (gs~. 

If we denote by : - = k e r ~ ,  then clearly 5 = 0  under the assumption that the 
set c :  of critical points is finite. More generally, if S is the divisorial part of 
the scheme 5 P (i.e., S is defined by cr = 0, where tr is the greatest common divisor 
of the components of the section dt), we have an exact sequence 

(4.17) 0 ~ J"  ~ ( f s ( f  * Kc + S) --* (2~/c --. cox/c --* cg ~ 0 

(in fact J -  is the quotient of ( f x ( f *  K~ + S) by (fx (f* K~)). 
By 4.17, since both 5- and cg are torsion, we obtain the exact sequence 

0 ~ cox/~ ~ ~ o m  (fx(f2}/r, (fx) ~ g x t l  ( f x (~ ,  (fx) --* O. 

Since the middle term is locally free, by virtue of 4.13, we finally get 

~ o m  (fx(Q~/r, (f x ) ~  co;/~c(S)- 

Also, we get the following exact sequence 

0 -+ g x t  2 (fx ((~, (fx) -+ g x t i  (fx(f21/Y, (fix) -+ (fs( - f *  Kr ~ 0 

(since g x t l ( f x ( 5 - , ( f x ) ~ ( f s ( - - f * K r  which clearly reduces, when S=0,  to 
g x t  I (fx(s Y, (fx)'~cg (by 4.13, or, equivalently, by local duality given by the 
Koszul complex). 

From now on, we stop analyzing the general case, where the Arakelov type 
property H 1 (2,Ugom (9x(g2]/y, (fx)) =0  does not need to hold. 

The assumption that the set 5/' of critical points is finite reduces the problem 
to the vanishing of H ~ tCO- ~ t x/c~, and we use the assumption that the general fibres 
are not isomorphic to ensure that COx/c is numerically positive (Thin. 2' of [Sz], 
p. 56); notice then that all the fibres are reduced, hence the vanishing follows 
from [Me], p. 35. 

Since h~ (fx))=length (cg), which equals to -c2(~f), and can 
be computed by 4.17, being 5" =0, and 4.6. 

An easy calculation gives - c 2 ( C g ) = c 2 - K x  . f * K c = c 2 - - 4 ( b - i ) ( g - 1 ) .  
Q.E.D. 

(4.18) Remark.  The main difficulty in extending the previous result to a more 
general case is the following: it is known (cf. [Des] 5.18) that, by taking the 
pull back of f :  X ~ C via a covering C' of C, unramified outside of the set 
of critical values off, one reduces to the case of a semistable fibration (it suffices 
that the subgroup of/-torsion points of the relative Jacobian, where I is a fixed 
integer relatively prime to the characteristic p of the field, has points which 
are rational over the function field of C'). 
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The only trouble is that not much can be said in general on the nature 
of the covering, and in characteristic p the number of coverings with prescribed 
ramification is not finite (as shown by the unramified Artin-Schreyer extensions 
yp-y=g(x) of the affine line). 

Of course, in extending the above proof, the only point where characteristic 
zero would be used, would be in the vanishing for the first cohomology group 
n ~ (~o;,/~(s)). 

Furthermore, even in treating the "isotrivial" case where two general fibres 
are isomorphic, more care would be needed, in analyzing again the needed 
base change, and in treating separately the case where the Hurwitz bound for 
the group of automorphism does not hold. 
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Appendix - F r o m  the  le t ter  sent  by  A r n a u d  Beauville to  the  a u t h o r  on  N o v e m b e r  
22, 1988 

Arnaud Beauville 
Math6matiques, Bgt. 425, Universit6 Paris-Sud, F-91405 Orsay Cedex, France 

Theorem. Let X be a compact Kdhler manifold, of  dimension > 2. Let g be an 
integer > 2, and let Fg denote the fundamental group of  a Riemann surface of 
genus g. Then X has a pencil of genus >= g if and only if  there exists a surjective 
homomorphism from 171 (X) onto Fg. 

The  " i f "  pa r t  is c lear  (observe  that  there  are  p len ty  of  surjective h o m o m o r -  
ph i sms  Fh ~ Fg for h > g). Let  us p rove  the  " o n l y  if" par t .  

(1) Let  us say tha t  an  e l ement  L of  P ic~  is special if Hi (X ,  L) is nonze ro .  
Recal l  tha t  the  set o f  special  e lements  of  Pic~ is the  un ion  of  a finite set 
and  o f  the  Abe l i an  subvar ie t ies  p*Pic~ for all i r ra t iona l  penci ls  p: X ~ B .  
It fol lows f rom this tha t  if X has  no  i r ra t iona l  penci l  o f  genus  > g, the n u m b e r  
of  e l ement s  of  o rde r  n in P ic~  which  are  special  is b o u n d e d  by Cn 2g-2, 
where  C is a cons tan t .  

(2) Let  4): f l l ( X  ) ~ F~ be a surjective h o m o m o r p h i s m .  F o r  each  surject ive 
h o m o m o r p h i s m  q: F g ~ Z / ( n ) ,  the  kernel  of  qSo~ m a p s  on to  the  kernel  o f  q, 
which  is i s o m o r p h i c  to F,~g_ 11+~. In  par t icular ,  the  i r regular i ty  of  the  cover ing  
)7 of  X c o r r e s p o n d i n g  to ~b o q is g rea te r  t han  the  i r regular i ty  of  X.  In  t e rms  o f  the  
line b u n d l e  L on X c o r r e s p o n d i n g  to q5 o q, this m e a n s  tha t  some nont r iv ia l  p o w e r  
of  L is special  (one has  H a (X, 6x) = H a (X, Cgx)OH l (X, L) ~ H a (X, L 2) @ . . .  
GHI(X ,L" - I ) ) .  If n is pr ime,  this implies  tha t  P ic~  con ta ins  at  least  n 2g-1 
special  e lements  of  o r d e r  n. In  view of  pa r t  (1), we conc lude  tha t  X has  an  
i r ra t iona l  penci l  o f  genus  > g. 

Corol lary.  Let g be an integer > 2. The property of  having an irrational pencil 
of  genus g can be read off the fundamental group; in particular, it is homotopy 
invariant. 
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Notes added in proof 
Kollfir (letter, Feb. 6 1990) pointed out that the vanishing of H~ 6~x@Or) needed in 
Theorem (4.9.) holds indeed in greater generality. 

Since ~ l f ,  (9 x is torsion free, it suffices to prove vanishing after restriction to a general 
curve section C < Y 

In order to achieve this, one can apply Tsuji's theorem to the effect that Or is semitstable 
if Y is of general type and K r is nef, and then by a result of Miyaoka Oy is seminegative, 
as well as ~ l f ,  Ox. 

As suspected, if one drops the Kaehler assumption, the existence of a non constant holo- 
morphic map to a curve C of genus >2 is not dictated by topology. In fact, M. Kato, in 
a preprint dated August 26, answered my question showing the existence of a (non K~ihler) 
complex structure on C x ~'~ x ~?~ with algebraic dimension 0. 

Recently, Beauville was able to prove that Problem 1.25 has an affirmative answer for 
i= 1 and under the assumption that the commutator subgroup of F/a (X) is of finite type. 


