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CHOW VARIETIES, HILBERT SCHEMES,
AND MODULI SPACES OF SURFACES
OF GENERAL TYPE

FABRIZIO CATANESE

Summary. The following are the main results of this paper.
Theorem A. The number 1(y) of irreducible components of the mod-

uli space of surfaces of general type with K P y satisfies for y >3
15
1) < 6V
If one restricts to regular surfaces (q = 0), then one has for x,y > 3 the
2
better estimate 1°(y) < y° - (440y)"%" .

Theorem B. Let #° (resp. #) be the open subset of the Hilbert
scheme parametrizing smooth (resp. normal) irreducible subvarieties of
dimension k and degree d in B", then the natural morphism of ng
(resp. Z’;;d) to the Chow variety is an isomorphism (resp. a homeomor-
phism).

Theorem B is based on

Theorem (1.14). Let V be an irreducible subvariety in P", let F =
Fy, be its Chow form, and let W = Wy be the subscheme of B" canon-
ically associated to F. Then V = W if V is a hypersurface, otherwise
the equality W =V holds exactly at the smooth points of V.

Several other results are given concerning the complexity (cf. Introduc-
tion) of Chow varieties and Hilbert schemes.

0. Introduction

The motivation of this research was the desire to understand the com-
plexity of the moduli space of the surfaces of general type (minimal, com-
plete and smooth over C) S such that their numerical invariants x(),
K; take some given integer values x (%) = x, K; =Y.

It is well known that these two invariants must take positive values and,
conversely, that if these two numerical invariants are positive, then the
surface (now not necessarily assumed to be minimal) is of general type

except possibly if x (@) =1, K; <9.
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Gieseker [Gie] proved that there exists a quasiprojective coarse moduli

varlety M, ., for such surfaces, and there exists substantial literature (cf.,
, [Per, Som Xi, Chenl, Chen2] solving the “geographical problem”

posed by Van de Ven [VdV] of determining for which pairs (x, y) /%

is nonempty.

The purpose of this paper is on the one hand to remark that one can give
effective upper bounds for the number i(x, y) of irreducible components
of ./, , and on the other hand to give, more generally, effective esti-
mates for Chow and Hilbert varieties; it seems, though, that some deeper
techniques are needed in order to attack the problem of determining the
precise asymptotic growth of 1(x, y).

We should remark that, thanks to Ekedahl’s extension [Ek] of Bombieri’s
work [Bo] in positive characteristic, our results are also valid over an al-
gebraically closed field of arbitrary characteristic.

But, over C, the question of finding a good bound for 1(x, y) is related
to other interesting problems.

In fact, if S' is the oriented topological 4-manifold underlying S,
ST is the oriented > manifold underlying S, we can attach to S
several integers in the following way.

Let .#'P(S) be the subvariety of ‘%;‘y corresponding to surfaces (ori-

entedly) homeomorphic to S, and .Z“7(S) be the subvariety of .#'>(S)

corresponding to surfaces (orientedly) diffeomorphic to .S ; we define then

(0.1)
6(S) = number of #°° inequivalent complex structures on S'°,

1.e., more precisely, the cardinality of the elements of the
partition given on ./Z lop(S ) by the subsets of the form
7S,
with §” homeomorphic to S;
7(S) = number of deformation types of complex structures
on '’ i.e., number of connected components of ,%IOP(S);
y(x, y) = number of connected components of M b
1(x, y) = number of irreducible components of %’ b
1(.S) = number of irreducible components of %lop(S) ;
75(S) = number of connected components of //d'ﬁ( S).

There are obvious inequalities holding among the above numbers, clearly
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for instance
0(S) <y(8) <1(S) <ilx, ),

and we know, as a consequence of important work of M. Freedman and
S. Donaldson [Fr, Dol, Do2] that, as x, y tend to infinity, all the above
four numbers can become arbitrarily large [Cat2, Cat5, F-M-M, Moi, O-
Vdv, Sall, Sal2]. A

Only for the number y4(S) of connected components of .Z dlﬂt(S ) do
we lack a single example with y; > 2 (the problem here is to show that
two surfaces are diffeomorphic without using the fact that they are defor-
mations of each other).

Let also %xo’ y be the subspace of the moduli space corresponding to sur-
faces with g = hl(ﬁs) =0 (i.e., over C, the first Betti number b,(S) = 0),
and accordingly let zo(x , ) be the number of its irreducible components.

Moreover, we set /%”y to be equal to the union of the .Z, y ’s with y
fixed

(0.2) L, =\, ).

and we define y(y), 1(y) accordingly.
We can now state again our main result on moduli spaces.

15
Theorem A. (1) ,(y)§6(y+5/9) .

(2) O(x, y) <207 (4400)"".

As the reader can see, the bounds are rather unsatisfactory, but we
would like to remark that even for the function J(S) we have a lower
bound which tends to infinity with y, since it is proven in [Sal2], that
d > c- F(loglog(y), logloglog(y)) .

It is of course an interesting conjecture whether there do exist polyno-
mial bounds for zo(x, y), i(x,y).

The first difficulty is that (cf. Remark 1.29) degrees tend to become
of exponential type, and if the method of obtaining an upper bound for
degrees is rather naive, one gets immediately a double exponential.

The situation for regular surfaces becomes better because we understand
projections to a 3-dimensional projective space [Cat3], and we obtain fam-
ilies of low degree which dominate the moduli spaces (actually, for special
values of the invariants one can even show in this way that the moduli
space is unirational; cf. [Cat3, p. 104]).

For irregular surfaces one has to project to a 5-dimensional projective
space.



564 FABRIZIO CATANESE

In this framework of questions it is not so easy to obtain polynomial
lower bounds, and, to my knowledge, this has not yet been done.

It could be useful in this respect to consider invariants of irreducible
components of moduli spaces, such as dimension, generic tangent dimen-
sion, dimension of spaces of tensors for the general surface, rank of multi-
linear maps between these spaces, rank of contraction maps for the general
surface, as well as inflectionary behaviour of canonical and pluricanonical
maps as in [Cat2], or generic structure of Weierstrass loci (cf. [ Cor]). More
generally Ciliberto suggests to study the geometry of the surface over the
generic point, whereas Moisezon looks at the braid monodromy of general
pluricanonical projections [Moil, Moi2].

As we already hinted at, since moduli spaces are dominated by Chow
varieties and Hilbert schemes, we try to understand their complexity by
studying the complexity of these other geometric objects.

Since the term “complexity” might sound unclear to some readers, we
give a definition.

Definition. Given a locally closed algebraic set Z in projective space
pY , we shall say that its unirational complexity is < ¢, if

(1) there is a finite decomposition Z = | Z,, with Z, locally closed,;

(2) for each i, there is another locally closed algebraic set W, in a
projective space P” and either a surjective morphism w,:W,— Z ,ora
bijective morphism 9 2, — W, '

(3) 3, deg(W) < c.

Finally, c(Z) is defined to be the minimum of the ¢’s as above.

Remark. If dim(Z) =0, clearly ¢(Z) = deg(Z) = 1(Z), where 1(Z)
is the number of irreducible components of Z .

If Z has higher dimension, then 1(Z) < ¢(Z) < deg(Z), where deg(Z)
is the sum of the degrees of its components.

If Z is irreducible and unirational, then ¢(Z) = 1, whence the name
of unirational complexity.

Therefore, our simple-minded strategy will simply be to try to bound
¢(Z) in order to bound 1(Z), and for this reason we shall try to give upper
bounds for the degrees of Chow varieties, Hilbert schemes and other allied
parameter varieties.

The first section starts with an elementary exposition of the theory of
Chow (to be more precise, one should call them Cayley-Bertini-van der
Waerden-Chow) forms, and of the natural subscheme of P” associated to
a hypersurface in a Grassmann manifold. We show then that, except for
hypersurfaces, the subscheme associated to the Chow form of a variety V,
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although having the same support as V', equals V' exactly at the smooth
points of V.

Using this canonical subscheme, we prove the following result.

Theorem B. Let #° (resp. #*) be the open subset of the Hilbert
scheme parametrizing smooth (resp. normal) irreducible subvarieties of
dimension k and degree d in P", then the natural morphism of /‘Zfd
(resp. ;?;;d) to the Chow variety is an isomorphism (resp. a homeomor-
phism).

We then end this section by giving some upper bound for the degrees
of Chow varieties.

In the second section, in this spirit, we analyse firstly Hilbert resolutions
of the coordinate rings of projectively normal varieties, whence we give
upper bounds for some schemes which dominate the Hilbert schemes. In
particular, we give some bounds for the number of irreducible components
of Hilbert schemes.

Secondly, we look at the determinantal description of Hilbert schemes
which was given by the work of Macaulay and Gotzmann ([Ma, Go], cf.
also [Gr3]), and analyse its degree in terms of its equations.

In §3, finally, we firstly apply the results of the preceding sections to
the moduli spaces of surfaces of general type; secondly, we analyse in
more detail the case of regular surfaces, using the method of quasigeneric
canonical projections introduced in [Cat3].

1. The method of Chow forms
Let V = de C P" be an irreducible subvariety of dimension k and
degree d .

Let us denote by H a point of the dual projective space (P")",ie. H
corresponds to a hyperplane in P" .

Inside the product (P") x ((P")")**' we have the incidence correspon-
dence I, attached to V':

n\V.k+1

I,cVx(P)) ,

1.1
( ) IV:{(X,Hla"’aHkH'erj fOrallj:1,~~~,k+1}.

I, isa (IP’"_l)k”Ll bundle over V', whence irreducible, and its projection

to ((IP’")V)]”1 yields an irreducible hypersurface I, which is then the
locus of zeros of an (irreducible) polynomial

(12) FV(H1>"' :Hk+1):
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the so called Cayley-Bertini-van der Waerden-(Chow) form, which is easily
seen to be multi-homogeneous of degree d in each variable H..

One can define an analogous incidence relation in ¥ x Gn—k—-1,n),
where G(i, n) is the Grassmann manifold of j-dimensional projective
subspaces 7 of P”,

(1.3) I, CVxGn—k—1,n), I, == {(x, m)|x € n}.

Again the projection of I;/ to G(n—k — 1, n) is a hypersurface I’ 'V
cuton G =G(n—k—1,n), embedded by the dual Pluecker embedding,
by a hypersurface of degree d .

In fact, if x € V', there exists 7 meeting V" only in x, hence I ;/ — F/V
is generically 1-1 (actually one can verify that the above morphism is étale
at the point (x, ) if x is a smooth point of ¥ and 7 is transversal to
V at x).

A polynomial equation FI'/ for such a hypersurface is called a Chow
form for V', and one has

(1.4) Fy(Hy, -, He )= Fy(H A---ANH,_ ).

While F), is unique up to multiplication by a e C", F;, is not unique,
an Chow forms should be thought of as elements in P(H 0(é’G(a’ ).

It is well known (cf. [VdW1]), and we shall also see it later, that con-
versely F), determines V' set theoretically:

(1.5)

V={yeP'|forall (H, -, H_)stye H., F,(H,---, H,_,)=0}.
In other terms, if one takes the bigger incidence correspondence

(1.6) I'cP'xG, [I'={y.myenl,

and lets p, : I' - P" s Dy I' — G be the canonical projections, then we
have that

(1.7) V= {ylp;' () cpy (T}

Another way of putting (1.7) is the following: let, for y € P", Gy)
be = {n|y € n}. G(y) is a Grassmann manifold G(n — k — 2,n-1),
and (1.7) characterizes V' as V = {y|G(y) C (I"’V)}. This geometrically
means that if F’V is a Chow hypersurface, then Py 1(I“'V) is ruled by the
algebraic foliation whose leaves are the subsets {y} xGy).

The characterization (1.7) is of remarkable interest, because it allows
in general to associate, to each hypersurface I” given by the vanishing of
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F' e HO(ﬁG(a’ )), not only a subvariety according to (1.7), but indeed a
canonical subscheme W, defined as follows. Let H; = (o> > h,;),
and take y to be a point in the principal open set U; = {y|y, # 0}: then
y=(1,y, ,yn),andifyEHj,wemusthave

!
(1.81) hy, =hg;+ Y vh;=0.
i=1,-,n
We operate a change of coordinates in (P")" by setting

hi=h, fori>1,

hy; = hy; + Z vihis

=1, ,n

(1.811)

(so that hoj = hf)j -1 )nyihij) . Consider now

F'(H A---NH, )=F(H,, -, H,))

:F(hm"“ ’hnl"" ’hO(k+l)"" ’hn(k+1))

and plug in the expression of the h,.j >s in terms of the h:.j >s. Then we get

\}l(y9H;’ 9H]:+1)

’ ! I S /
=F | hy — Z N Y ’hn(k+1)
=1, ,n
which can be written as an element of C[y,, -, y,,][h;j], multihomo-
geneous of degree d in each single variable Hj'., and of degree < d in
y=(1,p,,,¥,),1Le
(1.9)

/ ! / ! ! /
Y, H, - H ) =F | hy - Z Vil s s by

=1, .,n

i i ! !
hO(kH) - Z yihi(k+l)’ hl(k+l)’ hrl(k+1)
[:1‘“. Jh
N4 ! (Y,+
= > Y () (H)" - (Hp )™
a=(ay ). |(ll|=d

where «, -+, @, are multi-indices a; = (aoj, e

i ¥ = d’, and as usual (H;)"J =1l .. ‘n(h;j)"'f )

, with o | =
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Recall now that we are seeking the y’s such that F vanishes when-
ever y € H, for each i, i.e. ¥ vanishes whenever hé j = 0 for all
Je{l, -, k+1}.

We define therefore a subscheme of U, as follows:

W, N U, is defined by the ideal generated by the

.1
(1.10) (¥,(»))’s such that ag; =0forj=1,--- , k+1.

In other words, W.NU, is defined by the ideal generated by the coefficients
of F(=2 2, . ,nyih;1 ) h/n o) €Cyy, - >yn][hln > h;z(k+1)]'
Remarks (1.11). (i) It is not difficult to check that the definition of Wy
does not depend on the choice of the principal open set U, = {yly; =0},
and that it is independent of a particular choice of projective coordinates.
In fact, one can equivalently (cf. [VAW, p. 158], [A-NI, p. 43])
consider indeterminate antisymmetric matrices S,8,, - s Siin s
and define W by the vanishing of the coefficients of the polynomial
F(Sx,Sx, - » Si,1X) in the above indeterminates S.’s. Moreover,
if we perform a change of coordinates with generic coefficients, by setting,

for i>1,
/ "
hij = > a,hy;
t=1.,---,n
let us then consider, among the polynomials in Clyys -5 p,lla,], given

by the new (¥ (v, a))’s, only those obtained by choosing precisely the
a’s for which

;=0 forj=1,- ,k+1, i=0,k+2,-- ,n.

We shall call these polynomials special.

One can verify that the coefficients in the indeterminates a; of the
above new special (¥,(y, a))’s span the same old ideal generated by the
(¥,(»))’s (here « is such that ag; =0 for j=1,-- k+1).

In particular, an important consequence is that the above ideal is gen-
erated by the polynomials obtained from the (¥, (v, a))’s via taking a
sufficient number of general specializations of the a;,’s. We shall see later
that the geometrical meaning of this is that this ideal is spanned by a suf-
ficient number of polynomial equations of conical hypersurfaces obtained
by taking generic projections of V' to a prt!

The following proposition characterizes Chow forms as being the irre-
ducible polynomials for which dim(W.) attains the maximal dimension.

Proposition (1.12). Let

F=F(H A AH,_,),
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with F' e HO(G, Og(d)); then dim W < k. Assume that F is irreducible
and that diim W, = k. Then F' is a Chow form.

Proof. We have that dim W,. < k: otherwise, for all Il € G, we would
have IIN W, # @ whence pz(pl_l(WF)) = (G, contradicting the fact that
pl_l(WF) C pz_l({F' = 0}). If dim W, = k, then there is an irreducible
subvariety ¥ of dimension k such that V' is a subscheme of W, . But,
since F,, is an equation for p,(p, 1(V)) , we see that F, divides F, hence
F, = F by the irreducibility of F'. q.e.d.

As we remarked in (1.5), (1.7), if we start from an irreducible subvariety
V' of dimension k , the subscheme W = W, associated to the Chow form
of V is such that supp(W) = V. It is therefore natural to ask when
W =V, and one can give a complete answer to the above question.

We prefer, though, to give first an example which illustrates the situa-
tion.

Example (1.13). Consider the curve V C P’ given as the complete
intersection Q, N Q, of the two quadric cones {x;x, — x]2 =0} =0,
{xox5 — xf =0} = Q,. V is a rational curve with parametric equation
(¢*, %, 7%, 1) and has a singular point at the vertex (0, 0,0, 1) of Q,,
where the tangent dimension of V' equals 2. We can easily find the Chow
form of V', in fact if Y a,x;, = 0, > b,x; = 0 are two hyperplanes,
F,(a, b) is given by the resultant of the two polynomials

4 3 2
agl’ +a,t” +a,t” +ay,

4 3 2
byt" + byt” + byt” + by,

0 0 0 a a a, 0 a,
0 0 a, a a 0 a5 0
0 a a a 0 a 0 O
a, a, a, 0 a, 0 0 O
Fyla,b)y=det] 0 40 > 0 b, 0 0 0
0 b, b, b 0 by 0 O
0 0 b, by b, 0 by O
0 0 0 b, by b, 0 b,

To obtain the equations of the subscheme W in the open set {x; # 0}, it
suffices in the determinant to replace a; by —3,_, . ,a,x; and b; by
—Yi—0 ... 2 b;x;. One immediately sees that this determinant has order at
least two in (x,, X, , x,), whence I}, # I, (in the open set where x; =1,
0,=x,~— x22 = 0 has order 1).
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Theorem (1.14)(a). Let V be an irreducible subvariety of dimension k
in P", let F = F,, be its Cayley-Bertini-van der Waerden-(Chow) form,
and let W = W, be the associated subscheme of P", defined according to
(1.10). Then (recall that supp(W) = V) we have an equality of schemes
W =V at the smooth points of V .

(b) If moreover V is not a hypersurface, then the equality W =V holds
exactly at the smooth points of V .

Remark (1.15). In fact, if V" is a hypersurface of degree d in prt!
with equation f,(x,, -, X,1) = 0 then its Chow form F(H,, --- , H,)
equals f((HyA---A Hk)v) , where we have used, for a (k + 2)-dimensional
vector space X , the standard duality A\*"'(X) x X — A**?(X) (in other
words, if H,--- , H, are independent, (HyN--- A Hk)v is the unique
point x € P**! such that Hyx)=---=H(x)=0).

In this case it is also easy to see that always one has W, = {f =0}, so
that if V' is a hypersurface, then W =V.

Proof of Theorem (1.14)(a). The main idea is to use the functoriality of
Chow forms with respect to linear projections (cf. [Sa, pp. 47-48]). That
is, let =’ be a linear subspace of dimension (n — k —2) which does not
intersect V,andlet p:P"— 7' — P**! be the projection with centre 7 .

Since V'Nn' =@, p is finite on V , and p(V) is a hypersurface in prt!
We furthermore assume

(1.16) p:V =V =pV)cP"" isbirational.
Whence V™" is a hypersurface of degree d in P**!' . We can choose co-
ordinates in P" such that 7’ = {vo=""=y, =¥, = 0}. Then the

hyperplanes in P**' correspond to the hyperplanes in P" containing 7',

i.e., to the subspace (P*™")" of (P")" given by {H|h, =0 for j > k+2}.

The restriction F*of the Bertini form F(H, --- , H,,,) to ((P**'))*!
is just the Bertini form of V" ; in fact, more generally, the restriction of the
Bertini form F to the hyperplanes belonging to a general linear subspace
of (P™)" gives the Bertini form F' of the projected variety V', as soon
as the degree of V' equals the one of V' (since F' and the restriction of
F have the same multidegree and have the same zero locus, they coincide
up to a constant).

By Remark (1.15), F* is essentially the equation of V" . It is then
easy to see (by Remark (1.15)) that the equation f* of V" is obtained

as ¥ (y) = 0 with « (cf. (1.10)) such that forall j =1, --- [k +1,
Qg =Qpuy ;= =a, = 0 (two different choices of such « ’slead to the
same equation, since we have that F(H , --- , H. )= F'(Hl/\- “AH ),
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therefore

> W ) (H)" e (Hy )™

a=(a;, 50y )@ T T ;=0

is proportional to the d™ power of the determinant of \h:. itk )
Now let x € V be a smooth point: then we consider the opén set in
the Grassmannian consisting of the subspaces 7’ as above such that
i) n'nV =0,
(ii) the projection p with centre 7' gives a birational morphism ply:
vV -V",
(iii) p gives a local isomorphism at x (i.e., X = (p|V)ﬂ1(p(x)) , and
pl, isof maximal rank at x).

Each such projection gives thus a hypersurface f~ of degree d (a cone
over n') which is smooth at x, and has a tangent space at x equal
to the join of 7' and T.V. It suffices therefore to take (n — k) general
hyperplanes H;' whose intersectionis 7.V, and for each of them a generic
n, ¢ H satisfying the above three properties: then the corresponding
hypersurfaces f f define V locally at x, and the claimed result follows
since the f T ’s belong to the ideal of the subscheme w. q.e.d.

Remark (1.17). As we already mentioned, what the previous proof
shows is that, when the scheme W is obtained from the Chow form of a
subvariety yk , then W is the scheme theoretic intersection of the cones
obtained by projecting ' under a sufficient number of general projections
to pr!

Proof of Theorem (1.14)(b). First of all, we claim that we can reduce
to the case where ¥ has codimension 2.

In fact, as we saw in the course of proving part (a), for a general pro-
jection of V' to a variety V' of codimension 2, the Bertini form of V
restricts to the Bertini form of V' . From the definition of W, w' it fol-
lows directly, as one can verify, that W' is the scheme theoretical image
of W . Therefore, if ¥V would equal W, the same would hold between
V' and W'.

Now, to a singularity x € V' in P” we can associate an integer 4, which
is the minimal order at x of a polynomial vanishing on V' (alternatively,
u is 1 if the tangent dimension is smaller than 7, otherwise it is the
first degree in which the graded symmetric algebra over a minimal system
of generators of the local ring R of x does not embed in the graded
local ring associated to R). By virtue of Remark (1.17), it suffices to
show that if ¥ has codimension 2 and we project generically V' to a
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hypersurface, then u increases strictly. This is obvious if u =1, whence
we can assume u > 2. To this purpose, take affine coordinates (w, y)
with w = (w,, --- , Wy,,), such that x = (0, 0), and such that our
projection maps (w, y) to w.

Let f|,---, f, be generators of the ideal of ¥ at x. By Noether’s
normalization lemma, we can assume that the Jf;’s are monic in the in-
determinate y, therefore, the polynomials 8> " » & obtained from
Sfis , [, eliminating y through the method of the resultant system (cf.
[VdWZ]), have (by an easy lemma, cf. [Wal]) order at least /1 at the
origin.

It remains to observe that since the projection ¥* of ¥ is a hypersur-
face, V' is the zero locus of any nonzero such a g, > provided that such a
g; vanishes simply at a smooth point w’ of V*.

But, if x’ is the corresponding smooth point of V', we can assume that
locally at x'V is the complete intersection of /; and f,, whence follows
immediately that some g; vanishes simply at w'. q.e.d.

Remark (1.18).  Similar results to Theorem 1.14 (including it, I believe)
have been independently obtained by F. Amoroso in [Amo]. That paper
deals also with the problem of giving estimates for a minimal power of the
ideal of V' which is contained in the ideal of W .

It is also worthwhile to mention how Bertini forms behave with respect
to sections. That is, assume that we consider the section Y = V' N H of
V' with a hyperplane H . Then we can consider

(1.19) O(H,, -+, H )= (H H,, H.,)

and we remark that @ (F,, being alternating) only depends upon H, N
Hl’\ s s H o n H ; which are hyperplanes in H

: Proposntlon (1. 20) (1) Assume V s degenerate l.e., contained in a

hyperplane HIA. Then, if F,, is the Bertini form of V in P", and Sy s

the Bertini form of V in HIA, we have
Fy(H,,Hy, -, H )= f,(HNH -, H_ 0nH.

(i1) Assume instead, V' to be not necessarily degenerate and that Y =

Vn H is a proper algebraic subset of V , with Bertini form D, of the
cycle assoczated to Y.
We have then

Fy(H , Hy, -, He, ) =@, (H,nH, -, H_ nH.

Moreover, in case (i), the subscheme W associated to F, equals the sub-
scheme associated to f,,, whereas in case (ii) the intersection of W with
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the hyperplane HIA is a subscheme of the scheme associated to @, .

Proof. We can choose coordinates (Yo> -+ »¥,) such that HlA =
{y,=0}. If H; is the hypersurface Zz:o,m nei hijyi = 0, then H, N
Hl/\ = {(yoa s Va1 O)IZ,‘ZO,... n—1 hijy[ = O} .

Our first claim is simply that the Chow form F,, does not depend upon
the variables &, |, - ,h, ., if VC{y,=0}. But F,(H,--- ,H, )=0
if and only if H,n---NH,, NV # &, which is equivalent to (H, N H")
N---NV # @, which again is equivalent to f,(H, OHIA, e, Hy OHIA)
= 0. We have two irreducible polynomials in (H,, - , Hi, ) with

the same multidegrees and the same zero locus, whence they differ by a
nonzero constant. An entirely similar argument shows the second equality.
In case (i), the scheme W associated to F,, equals the one associated
to f, simply because the variables 4,; do not appear in F), .
Finally, if ®(h,, - hy 1 s ) =F O, 0,1 kg, o Ry, ),
then the subscheme W, C {y, = 0}, restricted to the open set y, # 0 is
obtained by expanding

A_—’F(O,"',O,l,_ Z yih;2’hll,2’“.’h;l,2’.”

=1, ,n—1

and looking at its coefficients viewing it as an element of C[y,, --- ,y, ]

‘[h:‘ ;1 (here j > 2). Whereas, the intersection of the scheme W with the
hyperplane {y, = 0} is obtained by applying the same procedure to

! ! !/
B=F|- Yibiys by oo s h

n,l’...

It suffices to observe that the specialization h;l =0fori<n-1, h:“ =1
yields 4 from B, whence the desired result. q.e.d.

The main direction in which we are going to apply Theorem (1.14) is
the comparison between the Hilbert scheme and the Chow variety.

Observe now that equations (1.10) define a canonical subscheme 7"
inside the product P(H'(G, @,(d))) x B" (#"" is defined by equations
which are linear in the coefficients of F).

Proposition (1.12) tells us that, if % is the open set {F|F is irre-
ducible}, then F € Z is a Chow form iff the dimension of the fibre
W, =(@" np; ({F})) equals k.

Since k is the maximal dimension of a fibre of the proper map p,: 7”'n
pfl (%) — % , we find that there is an algebraic subset # (% stands for
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“Chow”) of % consisting exactly of the F ’s which are Chow forms.

It is important to remark that by Proposition (1.12) and Theorem (1.14),
if F €% ,then W, equals (Wg),eq =V at the smooth points of V.

Defintiion (1.21). One defines @ = %, ,(P") with its reduced struc-
ture to be the Chow variety parametrizing irreducible k-dimensional sub-
varieties of degree d in P". Letting p: 7" — % be the projection induced
by p,, we define the Chow family 7  to be the restriction to Z of the
family 77" defined by (1.10).

% contains the open subset #° consisting of the F’sin & for which
(We)ea =V is smooth, hence equal to W

Over #° we thus get a smooth, hence flat family p°: 7% — #°.

(1.22). This family induces a morphism ¢: #° — #°, where #° is
the open subset of the Hilbert scheme parametrizing smooth irreducible
subvarieties of dimension k and degree 4 in P".

To be more precise, we have a flat family po: 7" %0, and one
knows (cf., e.g., [Mu]) that the Hilbert polynomial of the fibres is constant
on each connected component of z0 .

Thus we have a finite number of Hilbert polynomials, and we let %"
(cf. [Gro, Mu, Go]) be the union of the Hilbert schemes corresponding to
these Hilbert polynomials.

By the universal property of the Hilbert scheme we have a universal
family " — #", x" c #” xP", such that any other flat family with one
of the given Hilbert polynomials is a pull back of it by a suitable morphism
of the base of the family to %" .

#" contains an open subset #° , consisting of the points whose fibres
are smooth, and clearly our morphism ¢: & . 7" maps to # 0

We can similarly consider (by a slight abuse of language) the Hilbert
scheme # parametrizing irreducible reduced subvarieties of dimension
k and degree d in P": actually /# is a union of open sets of Hilbert
schemes and # is known (cf. [Gro]) to have a finite numbers of compo-
nents because there exists a surjective and injective morphism Wi Ay —
% .

(1.23). The morphism w: %, — % is obtained as follows: Let y —
Z, y C#Z xP" be the universal family, and consider the fibre product
Z Xpn I'I'cP'xG being as in (1.6). Then the scheme theoretic image
F to # x G defines a hypersurface, whose fibres over the points of Z
are the Chow hypersurfaces of the fibres of y — . In [Mul], page 111,
is proven that .% — # is flat, then .% defines a relative Cartier divisor
in 7 x G — # , whence one gets a morphism y': 7 — ]P’(HO(@’G(d))) .
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Whence we get a morphism y: Z,; — ]P’(HO(@’G(d))) which clearly
factors through # .

Theorem (1.24). Let # O be the open subset of the Hilbert scheme
parametrizing smooth irreducible subvarieties of dimension k and degree d
in P". Then the restriction to Z’;fd of the natural morphism y: #Z,.y — %,

red
is an isomorphism onto the open subset & consisting of the F’sin € for
which (W) g =V is smooth.

Proof. 1t suffices to verify that ¢ and the restriction of w to Zfd are
inverse morphisms to each other. gq.e.d.

Remark (1.25). A more general result than above, concerning an iso-
morphism between nonreduced schemes, is stated in [An, p. 128, Remark
7.3.1].

With our elementary approach we can give several scheme structures
to Chow, but we do not yet understand for which one there is a natural
morphism from Hilbert to Chow.

We continue now to analyse the natural morphism w: #Z, 4, — %, at
the points which correspond to normal varieties.

Theorem (1.26). Let #" be the open subset of the reduced Hilbert
scheme parametrizing normal irreducible subvarieties of dimension k and
degree d in P". Then ", the restriction to % * of the natural morphism
y: X — %, yieldsa homeomorphism onto the open subset €" consisting
of the F’sin & for which (Wy), 4=V Iis normal.

Proof. First of all, we remark that, since we have chosen # to para-
metrize irreducible reduced subvarieties of P", w is injective: in fact F
determines (W) which in turn determines (W) 4 =V . The surjectivity
is clear by definition, and it suffices to show that y is open.

- To show that y is open, let V" be a normal irreducible subvariety of
degree d in P", and let F* be its Chow form. View F* as apoint of %,
and let [VV*] be the point of #,, corresponding to V* . Let, moreover,
I be an irreducible component of Z at F~, C be an irreducible curve
of & passing through F~.

Let T be the normalization of C, and consider the fibre product T %
W =Y%.Y=Y4—T isan algebraic family of normal varieties in the
sense of [Ha, p. 263]: Y has all fibres irreducible of dimension k, and
generically reduced fibres by Theorem 1.14. By Theorem 9.11 of [Ha]
(based on Hironaka’s Lemma 9.12), Y = Yoy — T is aflat family of
schemes, with central fibre reduced and normal by 9.12 of [Ha]. We can
shrink 7 to T’ and achieve that all fibres are reduced and normal. By
the universal property of the Hilbert scheme, the normalization map 7' —
C C # factors through the composition of a suitable morphism 7 -
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#,., with the canonical morphism y: % _, — % . In particular, firstly a

red
neighbourhood of F* in C lies in the image under ¥ of a neighbourhood
of [V*]; secondly Z~ is open. q.e.d.

I conjectured the above theorem in 1988, but for long time what I was
missing was exactly Hironaka’s lemma: I am extremely grateful to J. Kollar
for pointing it out to me.

In fact, we also have a corollary related to work of Andreotti and
Norguet (cf. [A-N1]), who prove that the weak normalization of the Chow
variety of a projective variety is independent of the projective embedding
(before Barlet, in [Ba], proved independence of the projective embedding).

Corollary (1.27). y:#Z , — & establishes an injective correspondence
between the set of irreducible components of Ze*d and the set of irreducible
components of €. y also yields an isomorphism between the respective
weak normalizations of #,, and " .

Proof. The first assertion is clear, since % is open, so its irreducible
components have as closure distinct irreducible components of % . For
the second assertion, y : /‘Ze*d — %" is a homeomorphism, in particular
the respective weak normalizations are homeomorphic, whence isomor-
phic. q.e.d.

As mentioned in the introduction, in order to give an upper bound for
the number of components of " = %, ¢ Wwe shall give an upper bound for
its degree.

We recall the idea that Andreotti [An] used in order to bound from
above the cardinality of a finite algebraic set.

Lemma (1.28) (Andreotti-Bezout inequality). Ler Z = UNV be a
quasiprojective scheme, with U an open set in P~ , and V a closed sub-
- scheme in PV, defined by a homogenous ideal I = (f,, f,, -, J,) where
f; is a homogeneous polynomial of degree d;,and d > d, > ---d,. Let
Z,, -, Z, betheirreducible components of Z_, and r the maximum,
for i=1,--- 1, of the codimension of Z; in PV . Then the degree of Z ,
L.e., the sum of the degrees of the Zs, is at most dd,---d .

Proof. In general, we can assume, by adding to each J; a suitable
element of the ideal (f_,,---, f,), that in the local ring of the generic
point of each Z,, the ideal spanned by (f,, --- , fj.) is either primary or
it has codimension j. This shows that we can reduce to the case where
the number of equations # equals the codimension r.

We can now apply induction on r, the case r = 1 being obvious (notice
that the upper bound would be better if one knew that Jf, 1s not identically

zero). It suffices to show that if Z' is an irreducible variety of degree m ,
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f is a polynomial of degree d not in the ideal of Z, " then the algebraic set
Z'n{f =0} decomposes as a union of varieties whose degrees add up to
a number not exceeding md . This follows since, if we intersect Z' with
a general linear subspace L such that LN Z' is a smooth curve of degree
m , then the length of LN Z' N {f =0} does not exceed md. g.e.d.

The above bound is sharp, but it is rather crude if we want to use it
only to bound the number ¢ of irreducible components of Z.

As a matter of fact, in most applications, we shall use the following
trivial but useful remark (which we already used in the introduction, when
we mentioned that the unirational complexity is greater or equal to the
number of irreducible components).

Remark (1.29). Let Z = UNV be alocally closed algebraic set. Then
1(Z) < c(Z ). Le., assume that Z is the union of locally closed subsets
W, , W,, for each of which we have a surjective morphism f;: X; —
W, where X is a locally closed projective algebraic set. Then the number
z(Z) of the 1rreduc1ble components of Z is at most the sum of the degrees
of the X,’s (defined as in Theorem (1. 26)).

The same result holds if we have bijective morphisms f;: W, — X,.

We end this section by giving applications to Chow varieties and Hllbert
schemes, using a result of Green and Morrison [G-M, Theorem 4], which
generalizes an old result of Cayley for space curves [Cayl, Cay2].

Theorem [G-M]. An irreducible F is a Chow form if and only If its
coefficients satisfies certain equations ((2.5), resp. (2.16) in loc. cit.) of re-
spective degrees 2, 3.

We would like only to comment on the beautiful idea behind this the-
orem: we saw that (1.7) characterizes Chow hypersurfaces as the hyper-

surfaces FV such that p, ( I /) is ruled by the algebraic foliation whose

leaves are the subsets {y} x G (y). Now, the quadratic equations simply
imply that the foliation is tangent to the hypersurface, whereas the cubic
equations are just the Frobenius conditions of integrability of the distri-
bution of tangential subspaces on the hypersurface: if both are verified,
we have an analytic foliation on pz_l(l"'y) which must coincide with the
algebraic foliation whose leaves are the subsets {y} x G(y), whence FIV
is a Chow hypersurface.

From the theorem of Green and Morrison follows

Theorem (1.30). Let # = %, ,(P") be the open subset of the Chow
variety parametrzzmg Chow forms of irreducible k-dimensional subvarieties
of degree d in B". Let, for b < a, C(a,b) be the binomial coefficient.
Then the number 1(Z) of irreducible components of & satisfies (%) <
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deg(%) < 3", where A=C(C(n+d,d), k+1)—1.

Proof.  We are in the position to apply the Andreotti-Bezout inequality
(1.26) to & = %, 4(P") C P(H(@;(d))). The dimension of this last
projective space is at most A, since F is multihomogeneous of degree
d 1in each variable H - ,H,, . Now, % is defined by equations of
degree at most 3 by the theorem of Green and Morrison , so we are done.
q.e.d.

Remarks (1.31). (a) Let €~ > %, ,(P") be the closed subset formed
by the Chow forms of k-dimensional cycles of degree d (to acycle Y- n,V,

one associates the Chow form [] F,). It is not clear to me whether the

equations of Green and Morrison define &~ or something different.

(b) Another interesting question is: what is the most natural scheme
structure with which to endow the set # ? Of course, one would not want
to give up the embedding — P(H O(ﬁG(d ))) . To this purpose, it is clear that
one has to keep track of the natural morphism y': % — IP(HO(@G(d)))
extending the morphism y': Hgoq — ]P’(HO(é’G(d))) we considered above
(cf. [Mul)).

(c) Another question is whether in (1.20)ii) equality holds for a general
section.

(d) One may ask how sharp is the bound of Theorem 1.30.

In the case where d = 1, we have the Grassmann manifold %1(,1(19")
= G(k, n) whose degree equals (cf. [K1, p. 463])

((k+ 1)(n— k)NI2L- KV (n— k) - nl.

We want to compare this asymptotically with 31, where (d =1) A=
Cn+1,k+1)—1.

Keeping k fixed and letting n go to infinity, we can use Stirling’s for-
mula and see that the degree is asymptotic to a constant times (k + 1)
to the power (k + 1)n, whereas our bound yields for A a constant times
(n+ l)k+1 : 1.e., instead of having the exponential of a linear function of
n, we replace it by the exponential of a power of #.

If instead for n fixed we choose the highest degree, e.g. we set n = 2k +
1, we get for the degree ((k + 1)2)!1!2!-~-k!/(k + 1)1+ (2k + 1)!. Taking
logarithms, we get (since [ xlogx ~ (1/2))(2 log x) something asymptotic
to k* log k . Whereas the logarithm of our bound is a constant times 2%k
So this case is worse, because we replace an exponential in a power of n
by a double exponential. It seems thus that exponentials are unavoidable,
whereas double exponentials are due to the poor method we use for the
estimation from above.
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2. The method of Hilbert resolutions and Hilbert schemes

In this section we consider the following situation: given a smooth man-
ifold X and a birational morphism ¢: X — Y C P", we consider the
invertible sheaf . on X given as & = (p*(@’},n(l)) , and we consider the
graded ring

(2.1) F=FX,Z)=PH X, Z°).

meN

Z is a graded finite module over the graded ring

(2.2) o = PH®", G,,(m)),

meN

and in fact the Serre correspondence associated to % the coherent sheaf
F =9.0) = 0,(ZL)(-1).

Let k be the dimension of X andlet § < k+ 1 be the depth of % as
an & -module. By Hilbert’s syzygy theorem, there exists a minimal free
resolution of % of length n—4:

(2.4) 0—>L_5—+Ln_6_1—>'~—>L2—>L1—»L0—>c@—>0.

n

Here L. is free and if we denote its rank by r;, then we can write

1

(2.5) L= @ “(m .

j=tr,

We have, (cf., eg., [Gr2, Theorem 1.2]) that L, =D, (B, ,,)®¥ (-m),
whcre the C-vector space Bl.,m equals

(2.6) B, , =Tor (%, C),.

An important notion in this context is Castelnuovo’s notion of regularity
(cf. loc. cit. and [Mu2, Lecture 14]).

Let % be a coherent sheaf on P"; then .# is said to have regularity
equal to h if H'(P", F(h—1i)) =0 forall i>0,and 4 is minimal with
this property. An ./ -module is said to have regularity # if the associated
sheaf has regularity 4. Then [Gr2, Theorem 2.3]

h = max{m —i|B,  +# 0}.

In other words, if % is h-regular, then m; ;< i+h.
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In our particular situation, since % has no terms of negative degree
and we have a minimal resolution, one can easily show by induction that

(2.6) i<m; ;<i+h.

We can now split (2.4) into a series of short exact sequences:
O0—-1,—-L,—-%—-0

oy R

s~ Ly s 1 = L5 —0.

First of all, we want to give an upper bound for the ranks r; of the free
modules L, appearing in a minimal free resolution. We can do this in
terms of the regularity 4 of % and its mode of generatlon (le, Ly). In

fact, rather crudely, we can use (2.6) to infer that r; < n° (P", 7 F(h+1)),
where 7 is the locally free sheaf associated to the free module L Using
the m1n1mahty of the resolution we can actually say more, i.e.,

(28) r, < n° (P", J(h+1i)) where .7 is the sheaf associated to I.

Thus r, < h°(P", 07M+0)<h%P Fi_((h+0)) < C(n+h+1, h+1)r,_,,
whence r, < C(n+h+1,h+1)" Fmally, it remains to bound 7,
but here we can simply write r; < n° (]P> F(h+1)) < n° (P", Fy(h+ 1)) —
RO(P", F(h+ 1)) < h°(B", F(h + 1)) . Thus

(2.9) nSCM+h+Lh+UF%%W(7M+U)

The above inequality is most meaningful in the case when L,= 4, where
it reads out as

(2.9) r<Cn+h+1,h+1).

Remark that L, = & means that the image Y of X is projectively
normal. Whereas, if we moreover assume that Y is nondegenerate (not
contained in a hyperplane), then necessarily, (since 2 < m ) i+1<
m; ; <i+h. It follows that

1,
if Y is nondegenerate and projectively normal

(2.10) i-1
wehaver, < C(n+h,h) Cn+h+1,h+1).

The above result can be used to prove explicit boundedness results for
projectively normal (nondegenerate) varieties with Castelnuovo regular-
ity smaller than /4. In fact, we have at most N choices for the ranks
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Fys ¥y, o+, 1,_s of the free modules appearing in a minimal free resolu-
tion, where
(2.11) N=Chn+h+1,h+ l)n_éC(n th, h)(n—é)(n-—é—l)/z'

For each choice of the ranks r; we have at most C(r;+ &, h) choices for

the integers m; ;. All together, the possible types of Hilbert resolutions
are at most
(2.12)

N=N ] ciCn+h, Y 'Cn+h+1,h+1)+h,h)

j=1,-,n—0
<N 0Cct+h+ 1, h+ D)0 C(n 4, gy OO0
- (h!)_("_é)C(n +h+1, h+ 1)(h+!)(n—6)c(n " h’h)(h+1)(n——6)(n—6—-l)/2.

Moreover, after the type of the Hilbert resolution is chosen, the matrices
a, (whose entries have degree at most /) yielding the homomorphisms of

the exact sequence (2.4) belong to an affine space of dimension D equal
to (2.13)

D<C(n+h,h) Y. rr
j=1,-,n=4

<Cn+h,NCn+h+1, h+1)°Cn+h, )"
SCh+h+1,h+1)’Cln+h, h)"™.

Theorem (2.14). Let # = #(n, d, h) be the open subset of the Hilbert
scheme parametrizing nondegenerate, projectively normal subschemes
whose projective coordinate ring % has depth at least 6 and Castelnuovo
regularity less than h in P". Then # is dominated by a scheme #', a
disjoint union of quasiprojective schemes such that the degree of #' (sum
of the degree of its components) is bounded from above by the expression
(N' and D being as in (2.12) and (2.13)) v = N'2° . In particular v is
an upper bound for the number of irreducible components of 7 .

Proof. The result follows mutatis mutandis from the above discussion
and the Andreotti-Bezout inequality (1.28), since #’ is the family of
matrices «,, a,, -, a,_ s yielding all the possible Hilbert resolutions.
We saw that these (n — J)-tuples of matrices belong to the disjoint union
of at most N’ affine spaces of dimension at most D . These matrices must
satisfy the quadratic equations «, ,a, =0.

Conversely, inside the closed set of matrices such that «; e =0 we
have the open set ##" such that the complex (2.4) (where the homomor-
phisms are given by the «,’s) is indeed exact. Since L, = &, & is
indeed the coordinate ring of a subscheme Y of P”.
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The condition of projective normality of Y yields a smaller open subset
X', whereas the conditions concerning depth and Castelnuovo regularity
follow now automatically. g.e.d.

Remarks (2.15). (i) For further use, we try to have a closer look at the
expression v = N'2° . Since D=C(n+h+1,h+1)°’Cn+h, h)*",

N =m)"°Cn+h+1,h+ )00y 4y, pyhtDin=dn=3-172

and for our applications 4,  will be small compared to n, we see that
the dominant term is exp(log2{C(n + A, h)z("_a)} ~ exp(const. nzh") , SO
that we have a double exponential here too.

(i1) It is well known that the number of solutions of bilinear equations is
smaller than the number of solutions of quadratic equations. For instance,
in P9 x P , if we set n = a + b, then the self intersection of a divisor of
type (1, 1) equals C(a+ b, a), which is clearly smaller than 2" = 2™
But the biggest binomial, when a = b, is by Stirling’s formula asymptotic
to (n/2n)_1/ 22" . Therefore we have not lost much in the estimate of
Theorem (2.14).

(1i1) If Y is projectively normal, it is in particular normal. If we restrict
to the open subset where Y is reduced and irreducible, we do not need
to worry about the dimension of Y, since this is the degree of the Hilbert
polynomial of Y, which is completely determined by the numerical datum
of the integers m; ;.

Whence follows

Corollary (2.16). The same bound as in Theorem (2.14) holds for the
number of irreducible components of the open set of the Hilbert scheme
parametrizing nondegenerate, projectively normal subvarieties of dimension
k, depth at least 6 and Castelnuovo regularity at most h .

A small improvement of the upper bound can instead be obtained under
the assumption that the subvariety Y is projectively Gorenstein (such
would be, for example, a canonically embedded variety with all the pluri-
irregularities equal to zero).

Definition (2.17). Let Y be a projective variety, let % be its projec-
tive coordinate ring, and consider a minimal Hilbert resolution of # as
in (2.4).

Y is said to be projectively Gorenstein (of level u) if % is Gorenstein
of level u, i.e., if we transpose (that is, we apply the functor Hom(—, .7)
to) the exact sequence

>

O—=L, =L, = —L,—~L —L

we again obtain an exact sequence yielding a minimal free resolution of a
module isomorphic to #(n+ 1+ u).
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If % is Gorenstein, then (since any two minimal free resolutions are
isomorphic)

(2.18). One has L, , = Hom(L,;, % )(—n— 1 —pu), and moreover it
is easy to show that one can assume, for i < (n —k —2)/2, that «;, is the
transpose of «a, , ..

If Y is projectively Gorenstein, then by sheafifying (2.4) and computing
the &z¢ groups, we obtain that Y is Gorenstein and its invertible dualiz-
ing sheaf w, isinduced by an invertible sheaf @,.(u) on P" . Moreover,
by the local to global spectral sequence of Ext, it follows in particular that
all the higher irregularities of Y, H'(&y) vanish (i = 1,--- ,k —1).
Therefore this ciass of varieties is rather restricted, and one must go to
weighted projective spaces (cf. [Ca4]) to enlarge it to a wider class.

In general it has been proven by Buchsbaum and Eisenbud [B-E]) that
if Y is projectively Gorenstein, then one can take (2.4) to be self-dual
(i.e., a, is plus or minus the transpose of a, , , forall 7). In any case,
this is not so crucial for asymptotic estimates. What improves is that the
number N of choices for the ranks of the terms in the Hilbert resolution
goes down (notice that now the depth equals k + 1) to

N=Cn+h+1,h+ )" OPCn 4 h, p)r-O0k2r8

>

whereas for the type of Hilbert resolutions N’ goes down to

N — (h!)_("_‘s)/zC(n+h+1 ’ h+1)(h+l)("_k)/2C(n+h, h)(h+1)(nfk)(n—k—2)/8

>

accordingly also D goes downto C(n+h+1,h+ l)zC(n +h, h)"_k .

Our last type of general results concern the complexity of the Hilbert
schemes.

In order to do this, we recall Macaulay’s results [Ma] and Gotzmann’s
determinantal description of the Hilbert scheme (cf. [Go], also [Gr3]). Let
%y be a coherent sheaf of ideals on P", Y the associated subscheme, and
let P(m) be the Hilbert polynomial of Y, namely P(m) =y (&,(m)).

If we let Q(m) be the complementary Hilbert polynomial, so that
P(m) + Q(m) = C(n + m, m), then Q(m) = x(F,(m)), and for m
large HO(]P"Z , #(m)) is a subspace of dimension Q(m) inside &, =
H(P", @,,(m)).

In fact, m large means exactly that m should be at least the Castel-
nuovo regularity /4 of the sheaf &, .

Mumford [Mu2] proved that, fixing the Hilbert polynomial P(m), then
every such sheaf @, has regularity bounded by a polynomial in the coef-
ficients of P(m).
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Let 4, be the maximum of the Castelnuovo regularities of the sheaves
&, with fixed Hilbert polynomial P(m).

Then it is known [Gr3] that there exist integers a, >a, >--->a, >0,
such that
(2.19)

P(m):C(m+a1,a1)+C(m+a2—1,a2)+~-~+C(m+ad—(d—1),ad)

and such that h, <d.
With this choice of 4, in fact one lets W be the set of the first Q(d)
monomials of degree d in the lexicographic order, I the graded ideal of

&/ generated by W, and then, for m > d, Q(m) is the dimension of
I .

m(2.20). For all subspaces V' of 7, of dimension Q(d), let I(V) be
the graded ideal generated by V. Then, the theorem of Macaulay says
that 1(V),,, has always dimension at least Qd+1).

(2.21). Gotzmann’s persistence theorem says that, if V is such that
equality holds, dimI(V),,, = Q(d + 1), then dimI(V), = Q(m) for all
m > d, whence I(V) defines a subscheme Y with Hilbert polynomial
P(m).

Whence one reaches a simple determinantal description of the Hilbert
scheme Hilb, parametrizing subschemes Y with a fixed Hilbert polyno-
mial P(m): _

Hilb, c Grass(Q(d), %) , where Grass denotes the Grassmannian of
vector subspaces of fixed dimension Q(d), is the subscheme

(2.22)
Hilb, = {V € Grass(Q(d), &,)|dim I(V),,, = Q(d + 1)}
= {V € Grass(Q(d), &,)|u: V& % — 4, hasrank < Q(d+1)}.

+1
It follows directly from this description that Hilb, is complete and con-
nected.

Remark (2.23). Let C be a canonical curve in P",so n = g — 1.
Here, the Hilbert polynomial P(m) = 2nm — n. The polynomial can also
be written as P(m) = (m+1)+m+---+(m+2-2n)+(n—-1)2n-2)-2,
whence d is > 2n(n — 1), which grows like the square of the degree. But,
on the other hand, the Castelnuovo regularity of a canonical curve is 3.

Instead, for a surface of general type which is 3-canonically embedded,
then P(m) = 1/2(3m — 1)3my + x . Therefore d grows less than 93y4,
asymptotically. We shall comment later on this point.

We want now to use this description to bound the complexity of the
Hilbert scheme. Since the dimension of Y, i.e., the degree of P(m), is
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smaller than the dimension n of the ambient space, it is convenient to
consider also the annihilator ¥* of V inside the dual space %/, of %7, .
Moreover, we shall work on the Stiefel manifold instead of on the Grass-

mannian. That is, we pick a basis f;, f,, -, fQ( d) for V, or alterna-
tively a basis ¢, ¢, -+, ¢pyy for V.

Let ¥ = {fl > f2> s fQ(d) € %‘rank{fi : xj}izl,... ,0(d), j=0,-,n <
od+1)}.

Then clearly the degree of % is < Q(d + [)Q@Cnrd.d)

An easy argument in linear algebra shows that, if u” is the dual map
of u, &, -+, ¢, is the dual basis of the X; ’s,and #,,--- , 7, is a basis
of Im(u"), then the Hilbert scheme is dominated by an open set of

y* = {wl s (02’ ] wp(d)lrank{(oi - éja '7,}
<Cn+1+d,n)+(n+1)P(d)—P(d+1)}.

The degree of &#* is < [(n + 1)P(d)]c"H D@

We thus obtain the following

Theorem (2.2.4). Let Hilb, be the Hilbert scheme parametrizing sub-
schemes Y of P" with a fixed Hilbert polynomial P(m). Then the com-
plexity of Hilb, is <[(n+ I)P(d)]C("+d’d)P(d), d being as in (2.19).

Remark (2.25). For a surface of general type which is 3-canonically

embedded, we have P(m) =1/23m—1)3my+x, n+1<4y, d < 93y4 ,

2 3,4y
thus we obtain the estimate [98 ym]{9 v , which is a double exponential

estimate rather worse than the one provided by the method of Chow forms
(see also Theorem A in the Introduction).

One can ask whether we can improve the previous bounds if we do not
want to estimate the complexity of the whole Hilbert scheme, but only
of some components where the Castelnuovo regularity is generically much
lower.

Notice in fact that, by the existence of a universal family on Hilb,,
and by the definition of Castelnuovo regularity, we have a stratification of
Hilb, by open sets Hilb, , where the regularity is at most /.

We can use the result of Macaulay-Gotzmann in order to give a lower
degree realization of Hilb, ,:

Proposition (2.26). Hill')P.h is an open set in the locally closed sub-
scheme Hp , ={U € Grass(Q(h), %,)|U is such that dimI(U), = Q()
for each t with h <t <d+1}.

Proof. On Hilb, , is defined, by the base change theorem, a natural
morphism to Grass(Q(h) , &,) which associates to V' € Grass(Q(d), %)
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the subspace H O(IP’" , #y(h)), %, being the sheaf of ideals associated to
the graded ideal I(}V) generated by V . Clearly, the image of Hilb, P lS
contained in H, ,. Conversely, the map associating to U the subspace
VvV =1U), deﬁnes by (2.22), a morphism of H, p., into Hilb, . Firstly,
it is clear that the composition of the two above morphlsms is the identity
of Hlle _n» secondly, again by semicontinuity, the image of Hilb, pon 18
open in H q.e.d.

Remark (2 27) It is not clear to us that Hilb, _» should be dense in
H, - But, certainly, we can bound the complex1ty of Hilb Poh by the one
of H

Wlth an entirely similar proof to the one of Theorem (2.24) we obtain,
in view of the foregoing Remark (2.27), the following

Theorem (2.28). The complexity of Hilb p.y IS bounded from abc. e by
min{[C(d + n+ 1 — h, n)P(h)] " PD - o(g 4 1)QCtnh iy

Remark (2.29). For a surface of general type which is 3-canonically
embedded, we have (cf. Remark (2.25)) n+1 <4y, h =3, d < 9*)*
P(3) <23y, Pd) < 97y8 , thus we obtain an asymptotic estimate choosing

@n*
the minimum between [93y3]{4y } , which is again a double exponential

estimate, and [9°)°]'* I , which is worse.

It is striking that in this case the estimate (2.25) is better.

The next section will be entirely devoted to applying the above general
estimates to the case of surfaces of general type, and to comparing this
case with the estimates obtained by the method of Chow forms.

3. Degree of moduli spaces and the method of quasigeneric projections

Throughout this section, S will be the minimal model of a surface of
general type, and X its canonical model.

(3.1) X = Proj(#) where 7% is the canonical ring,
R =R (S, O4Ky) = PH(S, Og(mKy))),

meN
K being a canonical divisor on S.

As in the Introduction, we set (&) = x, K; =y . We observe that, since
9x >y > 2x — 6 by the inequality of Bogomolov-Miyaoka-Yau and the
inequality of Noether, if we are not too much concerned about constants,
we can asymptotically regard y as the main numerical invariant.



CHOW VARIETIES, HILBERT SCHEMES, AND MODULI SPACES 587

We have (cf. [Bo]) that P(m) = hO(S, Os(mKg)) = x + ym(m — 1)/2
and that, if ¢ S — Y, C pP"™=1" s the rational map associated to
HO(S, @s(mKy)), then (cf. also [Cat6, Theorem 1.11]).

(3.2). Except a finite number of families of surfaces, for m >3 ¢, isa
birational morphism and induces an isomorphism ¥,,- X =Y, (for the
exceptions, one has K 2 < 2, and, but for one irreducible family, 9 = 0).
Whence the image Y; is a normal surface of degree 9y in a projec-
tive space of dimension n < 4y, having at most Rational Double Points
(RDPs) as singularities.

Let & = %2’”(]?") be the open subset of the Chow variety parametriz-
ing Chow forms of irreducible surfaces of degree 9y in P". By The-
orem 1.28 the number (%) of irreducible components of % satisfies
1(%) < 3’1’ , where A’ = 1/6C(13y, 9y)3. To get a better feeling, we use
Stirling’s formula which tells us that C(13y, 9y) is asymptotic to ¢,
where the constant ¢ is of the order of magnitude of C(13, 9) which is
less than 1000. We finally get (%) < (31/6)1000y . We do not want to use
this result to obtain an estimate for :(y). Instead, we observe that any
such surface Y, can be isomorphically projected to the projective space
P°. ;

Theorem (3.3). For y >3, 1(y) < 6"/

Proof. Let as before M, = (A )

Consider the Hilbert scheme /#' parametrizing normal surfaces Y, of
degree 9y in the projective space of dimension 5.

By what has been said previously, every surface in .#Z_  is such that
a projection of its tricanonical model Y, yields a surface with RDPs oc-
curring in the universal family over /#’. Restrict %’ to the open set %
such that all the fibres Y over ## have RDPs, the minimal resolution S
of Y is minimal (this condition is open by the main result of [Kod]), and
its numerical invariant K ; =y . Then we have a surjective morphism of
Z onto //y, whence 1(y) < i1(# ). Finally 1((Z ) < 1(%2’%(11’5)) by

red red
Corollary (1.27), whence the desired result. q.e.d.
We proceed now to analyse the results that can be asymptotically ob-
tained by the method of Hilbert resolutions. We recall that (cf. [Bo, Gas])
with our previous notation (3.2).
(3.4). Except a finite number of families of surfaces, for m >4 ¢ is
a birational morphism and induces an isomorphism y, : X — Y, where
Y, is projectively normal.
We apply to Y = Y, the results of the second section, observing that
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Y is a surface with RDPs, of degree 25y in a projective space P" with
n=x+10y < 11y. It is easy to see that the Castelnuovo regularity of Gy
is at most 3, since h*(P", @, (h—2)) = h’(S, F,((5(2—h)+ 1)K{)) = 0 if
h > 3, and then A'(P", gy (2)) = n'(s, Fs(-9K)) = 0 by the Kodaira
vanishing theorem (cf., e.g., [Bo]). We have

N < 6_("_1)C(n+4, 4)4(""1)C(n+ 3, 3)4(n—l)(n—2)/2
< 6—n(n + 3)6n(n—1) ’
while D < C(n+ 4, 4)2C(n 43, 3)2(n—l) <(n+ 3)6n+2.
Then

6n+2

Y = N/2D < (n + 3)6n(n—1)2—2n+(n~)—3)

< ly)66y(11y)2—20y+(11y)66y
66

which is asymptotic to (1™ . Thus, by Theorem (2.14) and by the usual

argument that an open set of the Hilbert scheme dominates the moduli

space we obtain

66
(3.5) 1(x,y) < (11y>66}’(11}’)2—20y+(11y) Y

b

which is asymptotic to 2'"” .

This estimate is definitely worse than the one gotten by the method of
Chow forms (Theorem (3.3)), and also the one gotten (cf. (2.25)) by the
method of the Hilbert scheme. The final slogan will be that Enriques wins
Chow who wins Hilbert, except that the first match only takes place for
regular surfaces (¢ = 0). In fact, let me recall a method, inspired by
Enriques’ treatment of pluricanonical surfaces [En] which I introduced in
[Cat3] (cf. also [Cat4] for improvements and [Cat6] for a related survey),
namely The method of quasigeneric projections:

(3.6). A quasigeneric birational canonical projection is a morphism to
a weighted projective space ¢: .S — P = P(e,, e, , €,, e;) such that

(1) the four integers ¢,, ¢, e,, e, are normalized, that is, any three
of them are relatively prime,

(ii) the morphism ¢ is given by four sections y,, y,, v,, y; where i
is a section of HO(S , Os(e;Ky)) , and the four sections have no common
Zeros,

(iii) ¢ 1is birational onto the image Y of S.

For simplicity, excluding the finite number of families with p e S 1,

K* < 2, we can assume (this follows, e.g., from [Cat3, p. 81] and (3.2))
that
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(3.7). If S is a surface of general type with ¢ =0, Py 2 2, K*>3
there exists a quasigeneric birational canonical projection ¢:S — Y C
P=P(1,1,2,3).

As in [Cat3], we follow an idea of Petri, revisited by Arbarello and
Sernesi [A-S], and we view the ring

T =R(S, OKy) = PH(S, Oy(mKy)))
meN

as a module over the polynomial ring % = C[y,, y,, ¥, V5], and since
the assumption g = O ensures that % is Cohen-Macaulay, one can take
a minimal resolution of length 1

(3.8) 0—-L —-Ly—%—0

where L, = EBjZ, ek & (—m;), and by duality, setting

(3.9) s=e¢,te tetes,

L, —@J Lo g (s+1- m;). For further use, weset 1 =v,, v,, -+ , U,

the correspondmg minimal system of generators of % as an & -module.

One can further assume (loc. cit. Theorem 3.8) that the matrix o giving
the homomorphism (3.8) is symmetric and has an irreducible determinant
yielding the equation of Y ; in particular,

2
(3.10) Key-e-eye3= Yo (s+1-2m)),

where we should recall that m; =0. Thus

(3.11) 6y(= 6K )= Y. (8-2m).

j=1,-,h
Since ¢ is birational, the determinant of « is irreducible, whence, if we
assume 0 =m; <m,--- < m,, then
(3.12) m; < 8 — My_ s in particular, 0 =m, <m, <--- <m, <6.

Before we proceed, we need to quote the main result of [Cat3], assert-
ing not only that the matrix « satisfies the following rank condition (or
Rouche’ Capelli, or Ring condition)

(R.C.) if B is the adjoint matrix = /\h (o), then B, belongs to the

ideal generated by B, ,, Biass B, b (in particular there exist poly-
nomials lf, i with
(3.13) B ;= Z A, By )

1,

k=
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but conversely, ([Cat3, Theorem 4.22], [Cat4, Theorem 23)).

(3 14).  Let there be given positive integers 0 = m; < m,
< - < m,, asymmetric £ x & matrix with entries @ ; homogeneous
of degree (s+1—-m —m J) with irreducible determlnant and
moreover satisfying R.C. (i.e., (3.13) holds); then if the subscheme
X C P(e,, €, €y, €3, m,, my, --- , m,) defined by the equations

Z &; Jy i= 0,
j=1,-,h
k
virvy= Y (A )
k=1, ,h

satisfies the open condition of having at most RDP’s as singularities, then
X is the canonical model of a surface of general type.

We can go back now to the inequality (3.12): observe first of all that
m;=1for 1 <j<x-2 (p =x—1). By (3.11) it follows immediately,
s1nce 0< m; for j > 2, that h>y—1/3, but since m.+m, ., < 8,
and therefore

Ry=16+ Y (16-2(m;+m,_ )

Jj=2,-,h
>16+2(h-1),
then
(3.15) h<6y-71.

At this stage we let the calculations, especially regarding constants, be
less coarse than the ones we dealt with previously. Recall that 0 =
-my < my <.~ < m <6 and that m; = 1 for j < x—2. Let
me_ ,=--=m_, =2, m,_i,, = 3. Let us consider the integer
a: since the bigenus P(2) = h°(S Os(2Kg) =x+y, a=PQ)—dim W,
where w 1s the subspace of H° (S, @4(2K,)) spanned by the monomials

y0 > YoV s yl s YoUps YUy oo+, YVoUy 5, ¥V, ; NOW, We can assume that
the minimum of the divisors d1v(y0) div(y,), equals the fixed part of
the canomcal system, whence it follows easily that for any pair of sections
s,o of H (S s(Ky)), the equation Sy, = oy, implies that s is a scalar
multlple of y,, o a multiple of Vo> and thus a = y — x + 3. The same
argument implies that there are no relations in degree 2, whence indeed
0=m1<m2§--~§mh§5.

Let mx—1+a = =My =3 My tath = = My oipipie =4,
My _\rarbie = -+ My, = 5. Set also, for convenience, h = x — 1 +a +
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b+c+d=y+1+b+c+d.By(3.12), d<y+1,c+d<y+1+b,
by (3.11), b=y —x—2+d . Therefore ¢, d determine the other integer,
and the second inequality can be written as ¢ < 2y — 1 — x. Therefore,
c-d< 2y , and

(3.16). The possible types for the resolution (3.8) are at most 27,

A boring calculation (keeping in mind that the number of monomials
of degree 1,2,... in & is 2,4,7,10, 16, 22,31, 40, ---) which we
omit here shows that, once we have fixed the type of resolution (i.e., the
integers ¢, d), then the matrix « is a point in an affine space of dimension

(3.17) N < 58)°.

For the points a of this affine space we shall inspect the equations given
by the Rank Conditions. We want the entries f; ; of /\h"l (a) such that

there exist polynomials /lk i with B, = =2 k-1, (/l’: ,ﬂz ) - Since q; i
has degree 8 —m,—m,, then /3 ~ has degree 6y 8- m;—m; < 6y +2,
whereas the polynomials ’11',,' have degree at most 10. Smce, given a
degree d < 10, there are at most 73 monomials of degree d, it follows
that the R.C. are, for each choice of i, j, conditions that the vector ﬂi,j
is linearly dependent upon r; h vectors, where r, - < 73.

It is worthwhile to mentlon that all the coefﬁc1ents of the above vectors
are homogeneous polynomials of degree (2 — 1) in the coefficients of the
polynomials «, N which are the entries of «.

The locus V = {a|a satisfies R.C.} is stratified as the union of at most

(3.18) I rh< @307 < 440y )18’

i<j=1,- ,h

subloci, distinguished according to the ranks Pi of the r, .h vectors,
upon which we want ﬂ . to be dependent. Each such sublocus in turn,
is defined, inside a sultable open subset, by the vanishing of minors of
order p; i of the matrix obtained by bordering the previous r, h vectors
with the’ vector B, NE and clearly these are equations of degree less than
440y in the coefficients of the polynomials «; .. By the Andreotti-Bezout
lemma (1.26) the degree of these subloci is

(3.19) < (440p)*"

2 2
Summing up, we have at most 2y2(440y)18y subloci of degree < (440y)58'v

which dominate the moduli space .7, 0 , of regular surfaces with invariants
X, ).
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Theorem (3.20). The number 10(x , ¥) of irreducible components of the
moduli space //xo y of regular surfaces of general type S with invariants

x(@) =x, K:=y satisfies for x,y > 3 the inequality
s s

2
°(x, y) < 29" - (4409)".
Whence also the asymptotic inequality
0 77y°
r(x,y)<y .
Remark (3.21). Using the degree of the determinantal varieties one
could slightly improve the above upper bound, but without changing its
exponential nature.
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