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0 Introduction

The purpose of this article is to extend the main theorem of [C-P], i.e., the
classi�cation of generic lemniscates of polynomials, to the case of algebraic
functions.
An algebraic function is a pair f : C → P1, where C is a compact con-

nected curve (Riemann surface) of genus g and f is a holomorphic map of
degree d ¿ 0. Riemann’s existence theorem says that the datum of the iso-
morphism class of f is equivalent to the datum of the branch locus B of f
and of the isomorphism class of the induced unrami�ed covering of P1 − B.

In turn, once a base point x0 is �xed in P1 − B, the unrami�ed covering
is determined by the conjugacy class of the monodromy homomorphism
�: �1(P1 − B; x0)→Sd.

In this way, since the number of choices for � is �nite, one sees that the
f’s as above form a space, called hereafter Hurwitz space, Hg; d =Hg; d(P1),
which is a �nite cover of an open set of the projective space of divisors B′ on
P1 of degree 2g+ 2d− 2.1
Hg; d(P1) contains an open dense set H

gen
g; d(P

1) = H
gen
g; d, which corre-

sponds to the “generic” f’s, those for which the branch divisor B′ consists of
2g+2d− 2 distinct points. Hgen

g; d, whence also Hg; d, is connected by the clas-
sical theorem of L�uroth-Clebsch (cf. [C1], [Hu], [K1]), for which we give here
a “geometric” proof.
The importance of Hgen

g; d lies in the fact that Hg; d is noncompact, and
for calculations on moduli spaces of curves one can �nd a compacti�cation

1We should warn the reader that we do not take the quotient by the action of PGL(2) on
the target, as done in [Fu]. Moreover, in the existing literature (cf. [B-Fr], [Fu]) the name of
Hurwitz spaces has been often used for the individual strata of the natural strati�cation of the
Hurwitz space into locally closed subsets in the Zariski topology; �nally, the generic algebraic
functions are sometimes called “simple”, but we will stick to the notation of [C-W], [C-P])
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of Hgen
g; d where the target can be replaced by a tree of P

1’s, and the map f
remains “generic” except possibly over the singular points (cf. [H-M]).
On the other hand the space Hgen

g; d has a natural cellularization in which
the open cells are homeomorphic to (S1)n × (R+)n, where n = 2g + 2d − 2.
The union of the open cells equals the open (dense) set Lg; d formed by the
so called “lemniscate generic algebraic functions”; i.e., those f’s for which the
n distinct branch points have di�erent absolute values, and are not equal to 0
or ∞.
Using this cellularization we are able to calculate the topological Euler-

Poincar�e characteristic of Hgen
g; d (Theorem 2.21).

The main result we achieve in this paper is a precise combinatorial descrip-
tion of the connected components of the space L0; d, of lemniscate generic
rational functions (in the higher genus case our description becomes more
complicated).
The idea employed, which works more generally for algebraic functions,

runs essentially as in [C-P]: to f we associate the (weak) Morse function
|f|, and the topological “lemniscate con�guration” of f. The above con�gu-
ration is given by the pair of C and of the union of the singular level sets
of |f| (the so called lemniscates), where, though, we distinguish the two sets
f−1(0); f−1(∞).

This con�guration is completely described by a certain “biended” graph g,
belonging to the class of graphs that we call “admissible”.
There is a main di�erence of the case of algebraic functions with respect

to the case of polynomials: here the topological con�guration is not su�cient
to determine the topological behaviour of the map (whence, a fortiori the con-
nected component of Lg; d).
We need further to assign to each of the edges of g certain integers

called “weights” satisfying Kircho�’s rule of electrical circuits: thus we get an
“admissible” biended weighted graph g.
Again here, as in [C-P], we �nd the occurrence of the group

∧
n of “cir-

cular” braids (where the n branch points move in circles around the origin),
which acts on the set En; d of “generic monodromy” edge labelled graphs.

We are ready to state the

Main Theorem (2.17). Consider the following sets:
(a) the set �0(Lg; d) of connected components of Lg; d;
(b) the set of

∧
2g+2d−2 – orbits in E2g+2d−2; d;

(c) the set of “admissible”, bi-ended; edge weighted graphs of type (g; d).
There is a natural bijection between the sets (a) and (b), and a natural

surjection v of (a) onto (c).
In the case g = 0 of rational functions v is bijective.
Instead; if g= 1 and d= 4; v is not bijective.

For the bene�t of the reader, we mingle together two arguments for the proof
of the main theorem, a rigorous algebraic one using braids, and a heuristic one
using a paste and glue approach to the problem.
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As we mentioned above, the bare topological con�guration of the lemnis-
cates does not in general determine the topological type of the map, but this
only occurs in positive genus.
To be more precise, we prove (Theorem 3.9) that for the case of rational

functions the admissible, bi-ended graphs occurring admit at most one weight-
labelling.
It is also a striking contrast to the case of polynomials that not all the

abstract con�gurations can occur (this is shown by exhibiting bi-ended graphs
not admitting a weight-labelling by positive integers).
Our results do in particular provide a complete description of the dynamical

systems on the Riemann sphere associated to O.D.E.’s integrable by rational
functions (cf. [Pa]), and more generally of dynamical systems on Riemann
surfaces integrable by algebraic functions.
Here are the contents of the di�erent sections of the paper:
In Sect. 1, which is mainly instructional, and can be skipped by the expert

reader, we de�ne more generally the Hurwitz space of maps to a �xed Riemann
surface M , we recall basic facts about monodromies, give the description of
the covering space Hgen

g; d(M) → Fn(M), where Fn(M) denotes the space of
n-tuples of distinct points of M , and prove the theorem of L�uroth-Clebsch.
Section 2 is devoted to the basic de�nitions about lemniscates, circular

braids, and to a description of the properties de�ning the admissible graphs.
We end this section by calculating the Euler-Poincar�e characteristic of Hgen

g; d.
The main theorem is then proved in Sect. 3, where also the quoted result

about unicity of weights in the rational function case is proved.
Finally, the application to O.D.E.’s can be found in Sect. 4, which is

devoted to a brief description of the so called small lemniscate con�gurations
(cf. [C-P]).

1 Algebraic functions and Hurwitz spaces

We begin by �xing the notation and giving some basic de�nitions.

(1.1) De�nition. 1) Let f : C → M be a (non constant) holomorphic map
between compact Riemann surfaces.
The branch points of f are exactly the points w ∈ M such that; writing

the inverse image divisor f−1(w) =
k∑
i=1
(miPi); at least one of the multiplicities

mi is =2.

The multiplicity of w as a branch point is de�ned as mw =
k∑
i=1
(mi − 1);

then the branch divisor Bf of f is de�ned by the sum
∑
w
(mw)w.

(2) An algebraic function is a (non constant) holomorphic mapping f : C →
P1 of a (connected) compact Riemann surface C to the complex projective
line.
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(1.2) Remark. Topologically, the decomposition of the inverse image divisor

f−1(w) =
k∑
i=1
(miPi) means that the local monodromy of f around w consists

of a product of k disjoint cycles of respective lengths mi.
A branch point w is said to be simple i� (assuming m1= : : := mk) m2 =

: : : = mk = 1.
If moreover m1 = 2, then w is called generic.

(1.3) De�nition. A holomorphic map f : C → M between Riemann surfaces
is called generic i� f has only generic branch points (i.e.; if the local mon-
odromies are transpositions):

Let C;M be compact Riemann surfaces of respective genera g; g′ and let
f : C → M be a holomorphic map of degree d.
Then Hurwitz’s formula states that the degree

∑
w
mw of the branch divisor

is equal to 2g− 2 + d(2− 2g′).
In particular, a generic algebraic function of degree d and genus g has n

distinct branch points, where n = 2g+ 2d− 2.
(1.4) De�nition. Let M be a compact Riemann surface of genus g′ and let
g; d be �xed natural numbers.
De�ne f : C → M and f′ : C′ → M to be equivalent (f ∼ f′) i� there

is an isomorphism ’ : C → C′ such that f = f′ ◦ ’.
Then the Hurwitz space of maps of degree d and genus g to M; is de�ned

as the quotient

Hg; d(M) := {f : C → M |C is a compact Riemann surface of genus g; f is a
holomorphic map of degree d}= ∼; where ∼ is the above equivalence relation.

By Hurwitz’s formula and Riemann’s existence theorem (cf. (1.5)), Hg; d(M)
is non-empty if and only if 05 g= d(g′ − 1) + 1.
We recall:

(1.5) Riemann’s existence theorem. Fix a compact Riemann surface M of
genus g′; a �nite set B ⊂ M and a point x0 ∈ M − B.
Then there is a one to one correspondence between

i) the equivalence classes of holomorphic maps f : C → M of degree d with
branch set Bf contained in B (where C is a connected compact Riemann
surface); and
ii) the conjugacy classes [�] of homomorphisms

� : �1(M − B; x0)→Sd;

such that the image of � is a transitive subgroup (here; two homomorphisms
� and �′ as above are said to be in the same conjugacy class i� there exists
an inner automorphism ’ of Sd; such that � = ’ ◦ �′ ◦ ’−1):
Hence we get the following:
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(1.6) Proposition. Let M be a compact Riemann surface of genus g′ and
let d; g be two natural numbers. Then there is a one to one correspondence
between the following two sets:
1) Hg; d(M);
and
2) the set of pairs (B; ’) of a divisor B =

∑
mbb on M of degree n =

2g− 2+d(2− 2g′); and an unrami�ed covering ’ of M −B whose associated
conjugacy class [�] of homomorphisms � : �1(M − B; x0)→Sd satis�es

2a) � has transitive image,
2b) if b ∈ B; 
b is a conjugate of a small circle around b; and �(
b) is the

product of ki disjoint cycles; then
∑
(ki − 1) = mb.

(1.7) Remark. Let Hgen
g; d(M) be the subset of Hg; d(M) given by the classes

of generic holomorphic maps f : C → M .
Then Hgen

g; d(M) corresponds to the divisors B of M consisting of n dis-
tinct points together with conjugacy classes [�] as above, such that �(
b) is a
transposition for each b ∈ B.
In this case B ∈ (Mn − �)=Sn =: Fn(M), where � is the big diagonal, i.e.

Mn − � := {(x1; : : : ; xn) ∈ Mn : xi = xj i� i = j}.
We have a natural map

� : Hgen
g; d(M)→ Fn(M) ;(1.8)

by assigning to a generic map f : C → M its branch locus.
Up to now we only de�ned the Hurwitz space as a set. By the following

result we will see that there is a natural topology on Hgen
g; d(M).

(1.9) Proposition. There exists a topology on Hgen
g; d(M) such that

� : Hgen
g; d(M)→ Fn(M)

is an unrami�ed covering.

Proof. We consider the universal family U :=(Fn(M)×M)− {(B; x) : x∈B}
over Fn(M). Let p : U→ Fn(M) be the natural projection. Since p is a di�er-
ential �bre bundle, �xing an element B0 of Fn(M), there exists a neighbourhood
U of B0 in Fn(M) such that p−1(U ) is di�eomorphic to U × (M − B0). We
denote by Ed;g; g′ the set of isomorphism classes of unrami�ed coverings of
M − B0 of degree d and genus g as in (1.7). Since we may choose U con-
tractible, we see that there are natural bijections between coverings of p−1(U )
and coverings of (M − B) for B ∈ U , whence �−1(U ) ∼= U × Ed;g; g′ and we
are done.

An immediate consequence of the proposition is the following:

(1.10) Corollary. Hgen
g; d(M) has a natural structure of a smooth complex

manifold.
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More generally, it holds that Hg; d(M) has a natural structure of an algebraic
variety. This result is well known, but since we did not �nd an appropriate
reference (or at least an elementary proof), we shall prove it here.

(1.11) Theorem. Hg; d(M) has a natural structure of a quasi-projective
variety.

Proof. First of all we recall one of the generalizations of Riemann’s existence
theorem due to Grauert and Remmert (cf. [G-R]):
Let Y be an irreducible; normal projective variety and let B be an analytic
subset of Y . Then there is an equivalence of categories between unrami�ed
topological coverings of Y −B and isomorphism classes of pairs (X;  ); where
X is a normal projective variety and  : X → Y is a �nite morphism with
branch locus contained in B.
From this it follows easily that, if we have a normal complex space Z

and a �nite morphism g from Z to a (Zariski-) open set U in Y , then Z
has a natural structure of a quasi-projective variety. (In fact, Z determines an
unrami�ed covering of Y−B for a suitable B; and if  : X → Y is the extension
to Y , one sees easily by normality that Z ∼=  −1(U )).
Since Hg; d(M) admits a �nite map � to the space D = M (n) of e�ective

divisors of degree n (n = 2g − 2 + d(2 − 2g′)) on M , it su�ces to give to
Hg;d(M) the structure of a normal complex space “locally on the base”.

I.e., for each branch divisor B we take a neighbourhood U in the Hausdor�
topology and we endow the inverse image of U with the structure of a normal
complex space in such a way that the map to U is a �nite holomorphic map.
By the same argument as above, using normality, we do not have to bother
about compatibility of the di�erent local structures.
Therefore, let B =

∑
miwi be an element of D.

We will choose a (connected) neighbourhood U of B in such a way that
the connected components of �−1(U ) correspond bijectively to the maps in the
inverse image of the divisor B.
We thus �x f in �−1({B}) and moreover, we �x:

1) disjoint neighbourhoods Di of wi taken together with a biholomorphism �i
of Di onto the unit disc D := {|z|5 1},
2) a base point x0 ∈ M − ∪Di,
3) simple paths connecting x0 to the point Pi, where Pi = �−1i (1), and we
denote then by 
1; : : : ; 
k the corresponding geometric loops turning around
P1; : : : ; Pk
4) a representative �f for the monodromy of f,
5) the rami�cation points yi; j of f : C → M ,
6) for each yi; j a biholomorphism �i; j of the component of f−1(Di) containing
yi; j with the unit disc D such that in these coordinates f is given by z 7→ zhi; j .

Set for convenience of notation Qi; j := �−1i; j (1).
We can now construct explicitly the universal deformation of f. For each

yi; j we consider the family of polynomial maps fa(z) = zh+ah−2zh−2+ : : :+a0,
where for simplicity we set h := hi; j. We will consider in the sequel only the
restriction fa|f−1a ({|z|5 1}), which will still be denoted by fa.
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Let Ah−1 be a small disc in Ch−1 around zero, so that for each element a
of Ah−1 the branch locus Bfa of fa is contained in {|z|¡ 1=2}.

We remark the following:

a) {(a; b)|b ∈ f−1a (1)} is a covering of Ah−1, which is contractible: hence
for each a ∈ Ah−1 is determined a unique point Pa ∈ f−1a (1) (namely by the
condition to be in the same connected component of (0; 1)).

b) fa ∼ fa′ if and only if there is a � ∈ �h := {� ∈ C : �h = 1}, such that
a′i = �

iai (in fact fa ∼ fa′ on D = {|z|5 1} i� fa ∼ fa′ over C, which is the
case if and only if fa and fa′ are equivalent by an a�ne transformation in the
source (cf. [C-W], [Lo])).

c) We see, more precisely, that
c1) the branch divisors of the fa’s for a ∈ Ah−1 �ll a neighbourhood Uh−1

of the divisor (h− 1) · 0 in D(h−1) and
c2) giving fa is equivalent to giving the pair consisting of a covering of

D with branch divisor in Uh−1 and of a point in the inverse image of 1.
Hence we set the deformation space Def(f) to be equal to

Def (f) =
∏
yi; j
(Ahi; j−1) :(∗)

For each a∗ = (a(i; j))i; j ∈
∏
yi; j
Ahi; j−1 we obtain a corresponding deforma-

tion fa∗ which is constructed by glueing f−1(M − ∪(intDi)) to f−1a(i; j)(Di) in
such a way that the mapping to M is preserved and Qi; j is identi�ed with
Pa(i; j).

Two maps fa∗ and fb∗ are now equivalent i� there exist isomorphisms of
the local pieces which are compatible with the glueing. As it is easy to see
any such isomorphism is uniquely determined by an arbitrary automorphism
of f|(M − ∪(intDi)), which is naturally identi�ed with the centralizer C(�f)
of �f inside Sd.

Hence, setting U :=
∏
Uhi; j−1; �

−1(U ) is isomorphic to the quotient of
Def(f) by the �nite group C(�f).

Let 
 : I := [0; 1]→ Fn(M) be a path with 
(0) = 
(1) = B0 and let 
∗(U)
be the pull-back of the universal family U to I .
Since I is contractible, 
∗(U) is a trivial �bre bundle, hence there exists a

bundle di�eomorphism  : 
∗(U)→ I × (M −B0), such that  0 is the identity.
The image of 
 under the monodromy of the �bration p : U → Fn(M) is

the monodromy transformation given by  1 : M − B0 → M − B0.
The covering of M −B0 obtained by lifting 
 to Hgen

g; d(M) with initial point
� : C′ → M − B0 is  1 ◦ �.

We �x x0 ∈ M − B0 and de�ne Ed;g; g′ to be the set of conjugacy classes
of homomorphisms � : �1(M − B0; x0) → Sd with transitive image and such
that �(
b) is a transposition for each b ∈ B0.
If � : �1(M − B0; x0) → Sd is the monodromy associated to the covering

� : C′ → M − B0, then �′ := � ◦ ( 1)−1∗ : �1(M − B0;  1(x0)) → Sd is the
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monodromy associated to the covering  1 ◦ �, (note that the base point of
M − B0 is not left invariant).

Each path from x0 to  1(x0) (M − B0 is connected) gives an isomorphism
�1(M−B0;  1(x0))→ �1(M−B0; x0). Let � be an element in �1(M−B0;  1(x0)),
then �′ ◦ int(�) = int(�′(�)) ◦ �′, hence the conjugacy class of �′ does not
depend on the choice of the path � from x0 to  1(x0).
Therefore we have the following result:

(1.12) Proposition. The monodromy of the cover (1.9) is described as follows:
�1(Fn(M)) acts via � 7→ � ◦ ( 1)−1∗ on the conjugacy classes of monodromy
homomorphisms {[�] |� : �1(M − B0; x0) → Sd has transitive image and is
such that �(
b) is a transposition for each geometric loop around a point
b ∈ B0}.
(1.13) Remark. Let V ⊂ Fn(M) be a subset such that there exists a section
s : V → U; B 7→ xB ∈ M − B of p : U→ Fn(M). In this case we can assume
that  (xB) = xB for all B, in particular we can take xB as the variable base
point and have  1(x0) = x0.

Thus �1(V ) acts via � 7→ � ◦ ( 1)−1∗ on the monodromy homomor-
phisms {� |� : �1(M − B0; x0) → Sd has a transitive image and is such
that �(
b) is a transposition for each b ∈ B0} (and not only on the cover-
ings, resp. on the conjugacy classes of monodromy homomorphisms as we had
before).
We want to point out that the action on the �’s heavily depends on the

choice of the section s.

(1.14) De�nition-notation. The group Bn := �1(Fn(C); {1; : : : ; n}) is called
Artin’s braid group.

(1.15) Example. Let V ⊂Hgen
0; d be the subset given by the rational functions

not rami�ed over ∞. Then there is a section

s : V → U; B 7→ ∞ of p : U→ F2d−2(C) :

Hence; if 
i is the standard geometric loop around i (cf. [C-P]; p. 632);
B2d−2 acts on the monodromy homomorphisms {� |�(
i) = �i is a transposi-
tion; im (�) is transitive and

∏
�i = id}.

Let Z := ((P1)d − �) × Wd − �; where Wd is the space of polynomials
of degree d and � is the complex hypersurface s.th. Z := {(P1; : : : ; Pd; Q)
∈ ((P1)d − �) × Wd : Q(Pi)-0 and f :=

Q(z)∏
(z − Pi) is a generic rational

function}.
We remark that � has real codimension 2 in ((P1)d − �) × Wd; whence

Z is connected. Moreover; V is the image of Z under the holomorphic map

g such that g((P1; : : : ; Pd; Q)) = f :=
Q(z)∏
(z − Pi) . Therefore V is connected;
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hence B2d−2 operates transitively on {� |�(
i) = �i is a transposition; im � is
transitive and

∏
�i = id}.

We will now recall the classical theorem of Lűroth-Clebsch, which we will
prove using essentially two connectedness arguments.

(1.16) Theorem (Lűroth-Clebsch). Let g; d be two natural numbers and set
n = 2d+ 2g− 2. Then:
1) Hgen

g; d :=H
gen
g; d(P

1) is connected.
2) More precisely; let B be an element of Fn(P1−∞) = Fn(C); then Bn acts
transitively on {� : �1(P1 − B;∞)→ Sd |�(
i) = �i is a transposition; � has
transitive image and

∏
�i = id} (here; as above; 
1; : : : ; 
n is a geometric basis

of �1(P1 − B;∞)).

(1.17) Remark. Let H′gen
g; d be the subspace of H

gen
g; d of algebraic functions

not branched over ∞; then, analogously to the situation in (1.15), we see
that the monodromy of � : H′gen

g; d → Fn(P1) is given by the action of
�1(Fn(P1); {1; : : : ; n}) on {� : �1(P1 − B;∞) → Sd |�(
i) = �i is a transposi-
tion, � has transitive image and

∏
�i = id}. Since the natural homomorphism

Bn = �1(Fn(C); {1; : : : ; n}) → �1(Fn(P1); {1; : : : ; n}) is surjective, 2) implies
that the monodromy subgroup of � is transitive, hence H′gen

g; d is connected and
therefore alsoHgen

g; d is connected, thus part (2) of (1.16) implies (1) of (1.16).

(1.18) Corollary. The Hurwitz space Hg;d(P1) is connected.

Proof (of (1.16)). 2) We prove the assertion by induction on g. The case
g = 0 has already been treated in (1.15).
We will show that by acting with Bn we can bring �1; : : : ; �n in the normal

form: (1; 2); : : : ; (1; 2); (1; 2); (2; 3); : : : ; (d−1; d); (d; d−1); : : : ; (2; 1). For this it
su�ces to show that after acting with Bn we can assume �1 = �2 = (1; 2). In
fact: Bn ⊃ B′

n−2 = 〈�3; : : : ; �n−1〉 and B′
n−2 leaves �1; �2 invariant and brings

(by induction hypothesis) �3; : : : ; �n in the normal form (note that �3 · : : : · �n
= id).

Step 1: We can assume (after acting with Bn) that
⋃

15i5d−1
supp (�i) =

{1; : : : ; d}, where supp (�) := {x : �(x)-x}.
In fact we prove by induction on j that (after acting with Bn) the cardinality

of Tj :=
⋃

15i5j
supp (�i) equals j+1. For j = 0 the assertion is trivial. Assume

that the cardinality of Tj is equal to j+1. Then there exists a minimal h such
that supp (�h) intersects Tj and its complement. After acting with the standard
braids �−1j+h−1; : : : ; �

−1
j+1 we obtain that the new �j+1 is the old �j+h and so we

are done.
Therefore 〈�1; : : : ; �d−1〉 is a transitive subgroup of Sd, so �1; : : : ; �d−1 give

the monodromy of a generic polynomial and in particular �1 · : : : · �d−1 is a
cyclical permutation.
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Step 2:

Lemma. Let �1; : : : ; �d−1 be transpositions such that
∏
�i equals a cyclical

permutation (1; r2; : : : ; rd). Then there exist transpositions �′1; �
′
2; : : : ; �

′
d−1 such

that �′1 = (1; 2) and
∏
�i =

∏
�′i .

Proof. Let j be such that 2 = rj: then (1; 2) · (rj; rj+1) · : : : · (rd−1; rd) · (r2; r3)
· : : : · (rj−1; rj) = (1; r2; : : : ; rd).
Moreover, the assumption of the lemma implies that the classes [�] and [�′]
(given by �1; : : : ; �d−1 resp. �′1; : : : ; �

′
d−1) are in the same Bd−1-orbit.

Step 3: Bd−1 acts transitively on the homomorphisms � : Fd−1 → Sd such
that �(
i) = �i is a transposition, im � is transitive and

∏
�i = (1; : : : ; d) (or∏

�i is any �xed d-cycle).

Proof I. It will su�ce to show that � is Bd−1-equivalent to �′′, where the
transpositions corresponding to �′′ are �′′i = (i; i+1). By the remark after Step
2 we know that Bd−1 is transitive on the classes [�] as above, hence � is
Bd−1-equivalent to a �′ such that [�′] = [�′′].
This means that there is a permutation s ∈Sd such that �′i = (s(i); s(i+1))

and since
∏
�i =

∏
�′i = (1; : : : ; d) we get (s(1); : : : ; s(d)) = (1; : : : ; d).

This implies that there exists a j such that s(1) = j + 1; s(2) = j + 2;
: : : ; s(i) = j + i (mod (d)).

De�ne �d−1 := �d−2�d−3 : : : �1, where �1; : : : ; �d−2 are the standard gener-
ators of Bd−1 and let it act on �′. We obtain:

�d−1(�′i) = �
′
i−1 for i = 2 :

Setting �′d := (d; 1), then �d−1(�
′
1) = �

′
d.

Therefore we �nally get (�d−1) j(�′i) = (i; i + 1) = �
′′
i , and we are done.

Proof II. (By geometry, details left to the reader). As we saw in the proof of
(1.11) the space of polynomials f of the type f(z) = zd+ ad−2 zd−2 + : : :+ a0
is connected.
Now we have proven that after acting with the braid group we can

obtain that �1 equals (1; 2). Applying again the Steps 1–3, we can also assume
�2 = (1; 2) and we have proven the theorem.

Let Fr be the free group with generators 
1; : : : ; 
r . Then the set

M′
r; d :={[�] | � : Fr →Sd has transitive image and, for each i,

�(
i) is a transposition �i}
is in a natural bijection with the set E′r; d of isomorphism classes of connected
graphs with d vertices and r edges numbered from one to r.
Obviously, the map from M′

r; d to E
′
r; d is given by associating to the trans-

position �i = 〈ai; bi〉 the edge joining ai and bi labelled by the index i (and
forgetting about the labelling of the vertices).
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Let Mr; d be the set of all [�]’s in M′
r; d such that

∏
�(
i) = id and let Er; d

be the set of corresponding edge labelled graphs (obviously, then r has to be
an even integer).
Now, given a �nite set B = {w1; : : : ; w2g+2d−2} ⊂ C, once we have �xed

a geometric basis 
1; : : : ; 
2g+2d−2 of the fundamental group of C − B with
base point ∞ to any edge labelled graph E ∈ E2g+2d−2; d we can associate
a connected compact Riemann surface C of genus g together with a generic
algebraic function f : C → P1 of degree d and with B as branch locus.

Hence we have the following result:

(1.19) Proposition. Let g; d be two integers and B := {w1; : : : ; w2g+2d−2} ⊂ P1;
not containing 0;∞. Moreover let 
1; : : : ; 
2g+2d−2 be a geometric basis of the
fundamental group of C− B.
A) Then there is a natural bijection between:

1) the set E2g+2d−2; d of isomorphism classes of edge labelled graphs with d
vertices and 2g + 2d − 2 edges numbered from 1 to 2d + 2g − 2 such that
the product �1 · : : : · �2g+2d−2 of the transpositions corresponding to the edges
equals the identity;
2) the set M2g+2d−2; d of conjugacy classes of �: F2g+2d−2 →Sd with transi-
tive image; such that each generator 
i is mapped to a transposition �i; and
such that

∏
�i = id;

and
3) the set of equivalence classes of connected; compact Riemann surfaces C
of genus g together with a generic map f : C → P1 of degree d and branch
locus B.

B) Moreover; the standard action of B2g+2d−2 ⊂ Aut(F2g+2d−2) induces an
action on M2g+2d−2; d by [�] 7→ [� ◦ �−1]; which is the monodromy action of
the covering � : Hgen

g; d (P
1)→ Fn(P1).

2 Lemniscates of algebraic functions

(2.1) De�nition. Fix 0;∞ ∈ P1. The big lemniscate con�guration �f of an
algebraic function f : C → P1 is the pair consisting of
2.1.a) the subset f−1(0)∪f−1(∞)∪�; where � is the singular level set of |f|;
2.1.b) a coloring of the discrete set f−1(0) ∪ f−1(∞) according to the
(ordered) partition into the two subsets f−1(0); f−1(∞).
(2.2) Remark. If w1; : : : ; wn are the critical values (or branch points) of f
di�erent from 0;∞, we can clearly assume from now on that

|w1|5 : : :5 |wn| :

Then the critical values of |f| di�erent from 0;∞, are equal to c1 ¡ : : : ¡ ck
where c1 := |w1|; ci+1 := min{|wh| : |wh|¿ci}.
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Letting then in general be �c = {z ∈ C : |f(z)| = c}; we have
�f = f−1(0) ∪ f−1(∞) ∪

⋃
i=1;:::; k

�ci :(2.3)

At a critical point P of multiplicity (m − 1) the lemniscate �|w| (w = f(P))
has a singularity consisting of m smooth curves intersecting with angles

�
m
.

In the case m = 2 this singularity is called a node.

(2.4) De�nition. An algebraic function f : C → P1 of degree d is called
lemniscate generic if and only if the following conditions hold:
a) f−1(0) as well as f−1(∞) consist exactly of d points;
b) f has n distinct generic branch points w1; : : : ; wn on C = P1 − {∞} and
|wi| = |wj| implies i = j.
(2.5) Remark. 1) If f is lemniscate generic, then (c1; : : : ; ck) (in (2.1))
= (|w1|; : : : ; |wn|), in particular n = k.
2) Let f : C → P1 be a lemniscate generic algebraic function of degree d
with branch locus B ⊂ P1. Then �1(C − B) is a free group in 2d + 2g − 2
generators 〈
1; : : : ; 
2g+2d−2〉, where g is the genus of C. Moreover, �(
i) = �i
is a transposition and

∏
i
�(
i) = id.

(2.6) De�nition. A bi-ended edge weighted graph g is the datum of
2.6. i) a graph g;
2.6. ii) a function assigning to each edge a rational number called weight;
2.6. iii) a partition of the set E of end vertices into two sets; E 0 = set of lower
ends; respectively E∞ = set of upper ends.

To a lemniscate generic algebraic function f : C → P1 we associate a
bi-ended edge weighted graph g = gf in the following way:

Let w1; : : : ; wn be the critical values of f (with as usual 0¡ |w1|5 : : :5
|wn|). Fix a geometric basis 
1; : : : ; 
n of �1(C− {w1; : : : ; wn}; 0).

Then the vertices of g correspond to the connected components of �f
(cf. (2.3)); two vertices v; v′ are connected by an edge i� there exists an i
such that v ⊂ �|wi|; v′ ⊂ �|wi+1| and moreover if starting from a smooth point
x ∈ v, and then following the gradient of |f| one gets a curve meeting v′.
(2.7) Remarks-de�nitions. 1) Since C is connected, g is a connected graph.
2) Let � ¿ 0 be a su�ciently small real number such that � ¡ c1 and, for
each i, ci + �¡ci+1. Then one can easily see that the edges of g correspond
uniquely to the connected components of f−1(Sci+�), where Sci+� ⊂ C is the
circle around 0 of radius ci + �.
3) The ends of g are the vertices corresponding to the points of f−1(0) and
f−1(∞).
4) The vertices corresponding to the elements of f−1(0) are called lower ends
(resp. those of f−1(∞) are the upper ends), thus E∞ = f−1(∞); E0 = f−1(0)
as the notation suggests.
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(2.8) De�nition. 1) If v; v′ are two vertices of g; then there exists a subtree
T ⊂ g having v and v′ as ends and with a minimal number of edges. The
number of edges of T is called the geodesic distance of C and C′.
2) The height h(v) of a vertex of a biended graph g is the minimal distance
of v to a lower end of g.
3) An edge e is of level i i� the minimal height of a vertex contained in e is
i − 1.
(2.9) Remark. 1) A vertex v of a graph g associated to an algebraic function
f has height i if and only if it corresponds to a connected component of
�ci = {z ∈ C : |f(z)| = ci}.
2) An edge is of level i i� it corresponds to a connected component of
f−1(Sci+�).

Let f : C → P1 be a lemniscate generic algebraic function and let g be
the associated (bi-ended) graph.
We can give weights to the edges of g in the following way:

(2.10) The weight w(e) of an edge e corresponding to a connected component
� of f−1(Sci+�) is de�ned to be equal to the degree of the map f |� : � →
Sci+�.

We have up to now described the graph g of a lemniscate generic alge-
braic function in geometric terms, but indeed one can give a purely algebraic
description of g in terms of the monodromy of the unrami�ed covering

f |C − f−1(B)→ P1 − B :
(2.11) Remark. Let C be a compact Riemann surface and let f : C → P1 be a
lemniscate generic algebraic function of degree d with branch points w1; : : : ; wn.
Then it is easy to see that the edges of level i of the associated weighted graph
g correspond to the orbits of �(
1 : : : 
i), where {
1; : : : ; 
n} is the usual �xed
geometric basis of �1(C−{w1; : : : ; wn}; 0) and � : �1(C−{w1; : : : ; wn}; 0)→Sd
is the monodromy homomorphism of the unrami�ed covering

f−1(P1 − {w1; : : : ; wn})→ P1 − {w1; : : : ; wn} :
(2.12) Remark. 1) If f is a lemniscate generic algebraic function of degree
d with n distinct simple branch points, then gf has exactly d lower ends, d
upper ends and at most nodes (i.e. the vertices have valence at most three).
Moreover, for each i ∈ {1; : : : ; n} there exists exactly one node of height i.

2) The graph g (also in the non generic case) satis�es Kircho� ’s rule, i.e., if
v is a vertex of g, e1; : : : ; ek are the edges of level i containing v and f1; : : : ; fl
are the edges of level i + 1 containing v, then the weights have to ful�ll the
following relation: w(f1) + : : :+ w(fl) = w(e1) + : : :+ w(ek).
In fact by remark (2.11), if � is the permutation �(
1 : : : 
i) and we assume

for simplicity that �(
i+1) is a transposition �, we have to relate the respective
orbits of � and ��. The assertion follows then from the following:

Subremark. Let � be a permutation and � a transposition.
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a) If supp(�) is not contained in an orbit of �, we can assume, O1; : : : ; Ok
being the orbits of �, that � = (a; b) with a ∈ O1 and b ∈ O2. Then the orbits
of �� are O1 ∪ O2; O3; : : : ; Ok .
b) If supp(�) is contained in an orbit of �, then, O1; : : : ; Ok being the orbits of
��, the orbits of � are O1 ∪ O2; O3; : : : ; Ok .
3) As we shall see later, for a lemniscate generic rational function the weights
of the edges are uniquely determined by the graph (which in this particular
case is a tree, i.e., it is simply connected) and by Kircho�’s rule, whereas this
is no longer true in general.
4) The graph (without the weights of the edges) associated to a lemniscate
generic algebraic function only depends upon its big lemniscate con�guration.

(2.13) De�nition. Let Yn ⊂ Fn(C) be the subset

{{w1; : : : ; wn}: 0¡ |w1|¡: : :¡ |wn|¡∞}

and let
∧
n be the image of �1(Yn; {1; : : : ; n}) → �1(Fn(C); {1; : : : ; n})

= Bn.

(2.14) Remark. Writing wi = |wi| wi|wi| , and r1 = |w1|, r2 = |w2|
|w1| ; : : : ; rn =

|wn|
|wn−1| , we see that Yn is homeomorphic to (S

1)n×(R+)n, hence �1(Yn) ∼= Zn.
The images Tj of the generators of �1(Yn) are the braids, which keep �xed the
points 1; : : : ; n di�erent from j, and move j in a circle around the origin

Tj : (t 7→ e2�itj) :

(2.15) Remarks. 1) Let d; g be two natural numbers. Then the set Lg; d of
lemniscate generic algebraic functions is an open subset in Hgen

g; d , whose com-
plement Hgen

g; d −Lg; d is a union of real hypersurfaces.

2) Let � : H′gen
g; d (P

1) → Fn(C) be the restriction of (1.9) to H
′gen
g; d (P

1)
(= {f ∈Hgen

g; d (P
1)|f is not branched over ∞}), where again n = 2g+2d−2.

Then �−1(Yn) =Lg; d.

Since the connected components of a covering space correspond to the
orbits of its monodromy, we obtain the following result.

(2.16) Proposition. There is a natural bijection between the set �0(Lg; d) of
connected components of Lg; d and the set of

∧
n-orbits (n = 2g+ 2d− 2) in

Mn; d = {[�] |� : Fn → Sd s.t. �(
i) = �i is a transposition; � has transitive
image and

∏
�i = id}.

Moreover; if L′ is a component of Lg; d corresponding to an orbit of
cardinality r; then the covering �|L′ has degree r.

We recall that by (1.19) the set M2g+2d−2; d is in a natural bijection with
E2g+2d−2; d.
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We are now going to state a weaker version of the main theorem. The
stronger version stated in the introduction will follow from Theorem (2.17),
Proposition (3.3) and Corollary (3.4).

(2.17) Main Theorem (Weaker version). Let g; d be two natural numbers and
let n = 2g+ 2d− 2. Consider the following sets:
(a) the set �0(Lg; d) of connected components of Lg; d;
(b) the set of

∧
n-orbits in Mn; d = {[�] | � : Fn → Sd s.t. �(
i) = �i is a

transposition; � has transitive image and
∏
�i = id}

(c) the set of bi-ended; edge weighted graphs associated to lemniscate generic
algebraic functions of degree d and genus g.
Then there is a natural bijection between (a) and (b), and a natural surjection
v of (a) onto (c). Moreover; v is bijective in the case g = 0 of rational
functions; but not injective as soon as g= 1 and d= 4.

The correspondence of the sets in (a) and (b) has already been shown
(cf. (2.16)). Since, obviously, varying an algebraic function inside one compo-
nent of Lg; d its associated edge weighted graph does not change, it remains
to see whether the contrary is valid, i.e., if two lemniscate generic algebraic
functions have the same edge weighted graph, then they are contained in the
same connected component of Lg; d.
Paragraph 3 will be devoted to this analysis which will complete the proof

of the main theorem in its stronger form. In the rest of this section we will
devote ourself to the calculation of the Euler Poincar�e characteristic of the
Hurwitz space.
In order to do so, we recall some basic facts (cf. [B-M], [B-H]) about

Borel-Moore homology which, roughly speaking, equals ordinary homology
for compact spaces, and reduced homology of the Alexandrov one point-
compacti�cation for locally compact spaces:

(2.18) Fundamental properties of Borel-Moore homology

Let X be a locally compact Hausdor� space, then there are de�ned homology
groups Hi(X;Z) such that
i) if Y is a closed subset, one has a long exact sequence

→ Hi(Y;Z)→ Hi(X;Z)→ Hi(X − Y;Z)→ Hi−1(Y;Z)→ ;

ii) for X compact Hi(X;Z) equals the singular homology group,
iii) Hi(X;Z) is invariant by proper homotopy,
iv) Hi(X;Z) is �nitely generated for a �nite CW complex.

(2.19) Notation. Let X be a �nite CW complex, then we shall denote by e(X )
the Euler-Poincare’ characteristic in Borel Moore homology,

e(X ) =
∑
(−1)i rank (Hi(X;Z)) :
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(2.20) More properties of Borel-Moore homology

It is immediate to see that
(2.20.i) e(X ) = e(Y ) + e(X − Y ) for Y a closed or open subspace of X ,
(2.20.ii) e(X × Y ) = e(X )× e(Y )
and since bundles are locally trivial, again for �nite CW complexes we have
that
(2.20.iii) if X is a �bre bundle on Y with �bre F , then

e(X ) = e(F)× e(Y )

and in particular for a �nite unrami�ed covering of degree d
(2.20.iv) e(X ) = d · e(Y ).
We shall now apply the previous remarks.

(2.21) Theorem. The Euler Poincar�e characteristic in Borel Moore homology
of the Hurwitz space Hg; d = Hg; d(P1) equals zero for g¿ 0; and equals 1
for g = 0.

Proof. We notice that we can stratify the Hurwitz space, Hg; d = Hg; d(P1),
as a union of locally closed manifolds Hg; d(k; n), indexed as in (2.2) by the
number n of the branch points di�erent from 0;∞ and the number k of their
absolute values c1¡: : :¡ck .
We claim that, for k ¿ 0, each connected component C of Hg; d(k; n) has

Euler Poincar�e characteristic e(C) equal to zero. In fact, C is a �nite covering
of a manifold

((R+)k × ((S1)r(1) − �(r(1))× : : :× ((S1)r(k) − �(r(k))))

where r(1)+ : : : r(k) = n, and �(j) is the big diagonal in (S1) j. Therefore, by
2.20 iv) and i) it su�ces to show that e((S1) j − �(j)) = 0. But since (S1)
is a group, the sum map exhibits this space as a trivial bundle over (S1), and
therefore we are done by (2.20 iii).
Thus the only strata which give a non zero contribution are those for which

k = 0.
Id est, when 0 and ∞ are the only branch points.
But if 0 and ∞ are the only branch points, we have a cyclic covering of

C∗, thus only the algebraic function z → zd, and we are in genus g = 0, with
contribution to e equal to 1.

(2.22) Remark. With an entirely similar proof one can calculate the Euler
Poincar�e characteristic in Borel Moore homology of the “Harris-Mumford”
compacti�cation of our Hurwitz space Hgen

g; d . It would be interesting to cal-
culate those numbers also for the quotient of the Hurwitz space by PGL(2)
acting on the target P1.
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3 Proof of the main theorem

In this paragraph we �rst want to give a proof of our main theorem (2.17).
Moreover, we will show that the weights of the edges of a graph associated

to a lemniscate generic rational function are determined uniquely by Kircho�’s
rule (cf. (2.12), 2)).
For algebraic functions of Riemann surfaces of genus =1 this is in general

not true and we will give a counterexample.
For the proof of (2.17) we will essentially proceed as in [C-P], whereas

for the statement for g = 1, d = 4 we shall consider a special subgraph and
we shall make some explicit computations.
Let g be a connected biended graph, so that it is given a decomposition

E = E∞ ∪ E0 of the set E of ends of g in two disjoint subsets. Then recall
that the height h(v) of a vertex v is de�ned to be its geodesic distance from
E0, while the coheight ch(v) of v is de�ned to be the distance from E∞.

(3.1) De�nition. Let g; d be two natural numbers and let g be a bi-ended
connected graph. Then g is called admissible bi-ended, edge weighted of type
(g, d ); for abbreviation we shall also say “admissible of type (g; d)”, if and
only if the following conditions hold:
1) g has d upper ends and d lower ends.
2) For all vertices v of g it holds:

h(v) + ch(v) = 2d+ 2g− 1 :

3) For each i (1 5 i ¡ 2g + 2d − 1) there is exactly one node of height i
and the other vertices of height i are smooth points (i.e.; have valency 5 2).
4) The edges are given positive integer weights and the edges containing an
end have weight one.
5) The graph ful�lls Kircho� ’s rule; i.e. if v is a vertex of g of height
i; e1; : : : ; ek are the edges of level i − 1 containing v and f1; : : : ; fl are the
edges of level i containing v; then the weights have to ful�ll the following
relation: w(f1) + : : :+ w(fl) = w(e1) + : : :+ w(ek).

(3.2) Remark. 1) If g is a bi-ended, edge weighted graph ful�lling 1)–4)
above, e is an edge of g and v; v′ are the vertices joined by e, then h(v)-h(v′).
More precisely, |h(v)−h(v′)| = 1. Therefore Kircho�’ s rule makes sense, since
a vertex of height i is only contained in edges of level i − 1 and i.
2) For an admissible graph g of type (g; d) we have:

�(g) = 1− g :

3) If gf is a bi-ended, edge weighted graph associated to a lemniscate generic
algebraic function f : C → P1 of degree d, then g is admissible of type
(genus(C); d).
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(3.3) Proposition. Let g be an admissible (bi-ended; edge weighted) graph of
type (g; d). Then there is a Riemann surface C of genus g; and a lemniscate
generic algebraic function f : C → P1 such that g is the bi-ended edge
weighted graph associated to f.

Proof. We shall construct all the rami�ed coverings of degree d of P1 with
branch points 1; : : : ; n, where n = 2g + 2d − 2, and associated to the given
graph g by gluing together the respective coverings of Ai, 0 5 i 5 n + 1,
where A0 := {z ∈ P1 : |z| 5 1=2}, Ai := {z ∈ P1 : i − 1=2 5 |z| 5 i + 1=2},
(15 i 5 n) and An+1 := {z ∈ P1 : |z|= n+ 1}.
For 1 5 i 5 n, we let ’i : Ri → Ai be the unique covering of degree d,

simply branched over i such that
1) the vertices of g of height i correspond to the connected components of Ri,
2) if the vertex v corresponding to a component � has valency 2, then � is
the standard connected unrami�ed covering of degree equal to the weight of
the two edges meeting in v,
3) if the vertex v corresponding to � has valency 3, then � is homeomorphic to
a “pair of pants” whose 3 boundary S1’s correspond to the three edges meeting
in v, and map with degree equal to their weight to (Si−1=2) if they are at level
i, and they map to (Si+1=2) if their level is (i+1). In this case the only critical
value is i, and its local monodromy is a transposition.
To verify that such a cover as in 3) exists, assume for simplicity that

among the three edges there is exactly one at level (i + 1). Remark that the
fundamental group of Ai − {i} is free on two generators, say corresponding to
(Si−1=2) and the small circle around i. If the weights of the lower edges are
m; n respectively, consider then the monodromy assigning to the �rst generator
the product of two disjoint cycles {1; : : : ; m} {m + 1; : : : ; m + n}, and to the
second a transposition (a; b) with 1 5 a 5 m, m + 1 5 b 5 m + n. Clearly
then the monodromy of (Si+1=2) is a cyclical permutation of length m+ n.
We give therefore ’i together with respective bijections of the set of edges

of level i of g (resp. i+1) with the set of connected components of ’−1i (Si−1=2)
(resp. ’−1i (Si+1=2)) (s.t. the weight of an edge e corresponds to the degree of
the restriction of ’i to the corresponding component).
Moreover, let ’0 : R0 → A0 (resp. ’n+1 : Rn+1 → An+1) be the trivial cov-

ering of degree d together with a bijection between the connected components
of R0 (resp. Rn+1) with the set of lower (resp. upper) ends of g.

Taking the disjoint union of the Ri’s an edge of weight w corresponds to
the two coverings of S1 of the same degree w. There exist exactly w isomor-
phism of these two covers, and using for each edge an arbitrary one of these
isomorphisms, one can glue together the coverings ’i and obtain a connected
rami�ed covering f : C → P1 simply branched over 1; : : : ; n.

By Hurwitz’s formula the Riemann surface C (without boundary) got in
this way has genus g.

(3.4) Corollary. There is a bijection between the set of isomorphism classes
of bi-ended; edge weighted graphs associated to lemniscate generic algebraic
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functions of degree d of a Riemann surface of genus g and the set of iso-
morphism classes of admissible bi-ended; edge weighted graphs of type
(g; d).

Let Agg; d be the set of (isomorphism classes of) admissible (bi-ended,
edge weighted) graphs of type (g; d). Then (cf. (1.19)) we have a map v :
M2g+2d−2; d → Agg; d.

(3.5) Proposition. The map v : M2g+2d−2; d → Agg; d is surjective.
If g = 0 and �; �′ are such that v(�) = v(�′) = g; then � and �′ are in

the same
∧
2g+2d−2-orbit.

If instead g= 1; d= 4 there do exist �; �′ with v(�) = v(�′) = g; which
are not in the same

∧
2g+2d−2-orbit.

With this result we will have proven our main theorem.

Proof of (3.5). The surjectivity of v follows from (3:3) and the second as-
sertion essentially follows from a more careful analysis of the proof of (3.3).
Namely, we want to �nd out to which extent the graph determines the

monodromy homomorphism, once we have established a bijection of the set
{1; : : : ; d} with the lower ends of the graph g.
Assume inductively, that �1; : : : ; �i have been determined and �j = �′j for

15 j 5 i; in such a way that the identi�cation is compatible with v.
Let O1; : : : ; Ok be the orbits of �1 · : : : · �i: these have respective car-

dinalities m1; : : : ; mk (where m1; : : : ; mk are the weights of the edges of
level i).
We have two possibilities, namely:

a) there are k − 1 edges at level i + 1;
b) there are k + 1 edges at level i + 1.
In case a) �i+1 transposes two elements belonging to two di�erent orbits, which
we can assume without loss of generality to be O1 and O2. The same property
holds for �′i+1; since v(�) = v(�

′).
In case b) �i+1 permutes two elements belonging to the same orbit, say O1;

idem for �′i+1. The orbits of �1 · : : : · �i+1 are given by the orbits O2; : : : ; Ok
and by O1;1; O1;2 (where O1 is the disjoint union of O1;1 and O1;2). Similarly
we de�ne O′1;1; O

′
1;2 and we observe that their cardinalities, being given by

weights of g; equal the cardinalities of O1;1 and O1;2.
We set for convenience �i+1 = (x; y) and �′i+1 = (x

′; y′).
It su�ces to show that we can act with

∧
n on �

′ in such a way that
�′1; : : : ; �

′
i are left invariant and �

′
i+1 is transformed to �i+1.

We �rstly treat case b).
In case b) the situation is simpler. In fact �1 · : : : · �i acts by a cyclical per-
mutation � on O1 and, setting T := T1 · : : : · Ti; we let a suitable power T−k
of T−1 act on �′. Using the formulae from [C-P], pages 632–633 we see that
�′1; : : : ; �

′
i are left invariant, whereas �

′
i+1 is conjugated by the k

th-power �k

of �.
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We use now the essential information that �i+1 and �′i+1 multiplied by
� yield two disjoint cycles of the same length. We shall use the following
elementary

(3.6) Remark. Let � be the cyclical permutation (1; : : : ; m) and let � be the
transposition (1; z); where 15 z 5 m=2.

Then �� = (2; : : : ; z)(1; z+1; : : : ; m). In particular, if � is any transposition
such that �� has two orbits of respective cardinalities (z−1); (m− z+1); then
� is conjugate to (1; z) by a suitable power of �.

It follows now immediately that �′i+1 is obtained from �i+1 by conjugating
with a suitable power of � and therefore a suitable power of T−1 sends �′i+1
to �i+1.
Let us proceed to consider case a) when g = 0. Then, as we noticed in

(3.2), the graph g is a tree.
Therefore, if we remove from the graph the unique node v of height (i+1);

we obtain exactly three connected components, of which two are stemming
down from v; i.e., are the ones containing the respective two edges corre-
sponding to O1 and O2.

Consider now only the part H of the graph formed by the edges and
vertices of height up to i: then the two edges corresponding to O1 and O2
belong to distinct connected components of H; call them C; resp. D.
We can interpret then O1 as the set of lower ends in the subgraph C; and

similarly for O2.
Since �1 · : : : · �i acts as a cyclical permutation on O1; if we de�ne the

subset C ⊂ {1; : : : ; i} as the one corresponding to the nodes of C; then C has
m1 − 1 elements and �C :=

∏
c∈C

�c gives on O1 the same cyclical permutation

as �1 · : : : · �i; whereas each �c acts trivially on O2.
Similarly we de�ne D ⊂ {1; : : : ; i} and �D :=

∏
d∈D

�d is a cyclical permu-

tation on O2; each �d acts trivially on O1.
As in [C-P], page 632, we de�ne TC :=

∏
c∈C

Tc; TD :=
∏
d∈D

Td and we notice

(ibidem, page 633) that

TC(�j) = �j; for j 5 i ;

TD(�j) = �j; for j 5 i ;

whereas the action of T−1C on �′i+1 is given by conjugation by �C , respectively
the action of T−1D on �′i+1 is given by conjugation by �D.

It is now obvious that conjugating �′i+1 = (x
′; y′) with appropriate powers

of �C and �D we obtain �i+1 = (x; y).
There remains to prove the last assertion.
In order to do this, it will be su�cient to give an example of such

�; �′ in the case g = 1; d = 4. In fact, let g be the graph corresponding
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to �; �′. For each d= 4; g= 2; we set d′=d− 2; g′=g− 2; whereas for
g = 1; d = 5; we set d′ = d − 3; g′ = 0. Thus in any case we obtain
d′ = d− 3; g′ = 0; and 2g+ 2d− 2 = 2g′ + 2d′ − 2 + 8. 8 is the number of
nodes of g.

Pick any admissible graph H in Agg′ ; d′ ; and construct an admissible graph
K in Agg; d from g and H in the following way:

1) add to g (d − 4) strings consisting of 9 edges and 10 vertices each, thus
getting g′ with d lower ends and d upper ends,
2) add to H(d − d′) strings made of (2g′ + 2d′ − 1) edges and (2g′ + 2d′)
vertices, thus getting H′ with d lower, resp. upper ends,
3) glue the upper ends of g′ with the lower ends of H′ in such a way that
we get a connected graph K′ (this is possible, simply glue the lower strings
to ends of H).

4) K′ has no node at height 9, therefore to obtain K simply delete the
vertices at height 9, and for each such vertex collapse to one edge the two
edges meeting it.

As in the surjectivity statement we see easily that we can extend the two
monodromies �; �′ mapping to the symmetric group S4 to monodromies M;M ′

mapping to the symmetric group Sd.

Moreover, the �rst 8 transpositions will act only on the given 4 elements.

Assume that M;M ′ are in the same
∧
2g+2d−2-orbit.

Then notice that the circular braids Tj; for j = 9; act trivially on the �rst
8 transpositions �1; : : : ; �8 (resp. �′1; : : : ; �

′
8). Therefore it follows that �; �

′ have
to be in the same

∧
8-orbit, a contradiction.

The case g = 1; d = 4 will follow from proposition (3.8) which will deal
with the example forthcoming in (3.7).

(3.7) Example (g = 1; d = 4). We shall now consider a set of 4 elements
{a; b; c; d} and three monodromies �; �′; �′′ yielding three classes in M8;4 (as
it is easy to verify).

We shall give the monodromies by writing three sequences of 8 transposi-
tions ((�1; : : : ; �8)(�′1; : : :) : : :). Namely:

1 2 3 4 5 6 7 8
(c; d); (a; b); (b; c); (a; d); (a; d); (c; d); (a; b); (a; d)
(c; d); (a; b); (b; c); (a; d); (a; b); (a; d); (b; c); (a; b)
(c; d); (a; b); (b; c); (a; c); (a; c); (a; c); (b; c); (c; d) :

If we associate to �; �′; �′′ the respective admissible edge weighted biended
graphs in Ag1;4; we obtain the same one for �; �′; whereas for �′′ the graph
is the same except for the weighting.
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Here is the picture of the two elements of Ag1;4:

1) graph associated to �; �′ 2) graph associated to �′′

(3.8) Proposition. The above monodromy classes �; �′ given in (3.7) are not
in the same

∧
8-orbit.

Proof. The statement can of course be shown by brute force calculation, but
we prefer to give a simple argument.
First of all, consider the sequence of the �rst 5 transpositions of any given

monodromy, and call them �1; �2; �3; �4; �5. The braids T6; T7; T8 act trivially
on them.
By the usual formula ([C-P], page 633), T1 + T2 + T3 + T4 + T5

also acts trivially on them. T5 acts trivially on �1; �2; �3; �4; while it conju-
gates �5 by the product �1 · �2 · �3 · �4; (here we mean, �1 acts �rst, then
�2; : : :).

If we assume, as we do, that the associated weighted graph g is the
same as for �; �′; then �1 · �2 · �3 · �4 is a double cycle, and therefore
we conclude that 2 T5 = 0 (we mean that the image of 2 T5 into the
group of permutations of this subset of 5-tuples of transpositions is
trivial).
Although not strictly indispensable, we may observe more. Since �1 is al-

ways left unchanged, and T1 acts by conjugation by �1; we infer that also
2 T1 = 0.

Again if the sequence of �j’s is in our special subset having g as asso-
ciated graph, then �1; �2 have disjoint support, whence also �2 is always left
unchanged (T1 infact conjugates �2 by �1; which commutes with it, T1 + T2 is
trivial on it as well as the Tj’s with j = 3).

It follows then immediately that also 2 T2 = 0.
Let us now look at the orbit of the 5-tuple (�1; �2; �3; �4; �5). Its orbit

corresponds bijectively to a quotient of the (Abelian!) group generated by
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T1; T2; T3; T4; T5 with the relations T1 + T2 + T3 + T4 + T5 = 0 = 2T1 = 2T2 =
2 T5.

Since moreover �3 and �4 = �5 have disjoint support, T3 acts trivially on
�4; �5 and by our previous relations we then also get 2 T3 = 0.

In fact we can show that the orbit of (�1; �2; �3; �4; �5) has precisely 16 ele-
ments (although only 4 conjugacy classes), but we can conclude rather quickly
as follows.
Consider the mutually exclusive properties

i) �4 = �5;
ii) �4 and �5 have disjoint support,
iii) �4 and �5 do not commute.
These properties are clearly left unchanged by the braids T1; T2; T3 (since they
act on �4; �5 by conjugation).

The conclusion is that in the orbit of (�1; �2; �3; �4; �5) only two of the above
can hold. Since i) holds for � = �; and ii) holds for T5(�4) = �4 = (a; d)
and T5(�5) = (b; c); we conclude that iii) does not hold true in the above
orbit.
Since iii) holds for (�′1; �

′
2; �

′
3; �

′
4; �

′
5); and i)–iii) are properties which depend

only upon the conjugacy class of the monodromy, it follows that the classes
of �; �′ are not in the same

∧
8-orbit.

In the case g = 0 the situation is di�erent.

(3.9) Theorem. Let T be the bi-ended graph (without labelling of the edges)
associated to a lemniscate generic rational function of degree d.
1) T is a tree (i.e. simply connected).
2) If we impose that the weight of the edges containing the ends is one; then
there is a unique way to label the edges of T so that Kircho�’s rule holds.

Therefore, in the case of rational functions, our main result can be reformulated
in the following way.

(3.10) Corollary. There are natural bijections between the following sets:
(a) the set �0(L0; d) of connected components of L0; d;
(b) the set of

∧
2d−2-orbits inM2d−2; d = {[�] : �1(P1−B; 0)→Sd : �(
i) = �i

is a transposition; � has transitive image and
∏
�i = id};

(c) the isomorphism classes of biended admissible graphs (i.e.; such that 1); 2)
and 3) of (3:1) hold) which admit an admissible weighting of the edges (i.e.;
such that 4) and 5) of (3:1) hold).

Recall only that we pass from (a) to (c) by considering the big lemniscate
con�guration of a function f.
We shall prove (3.9) with a more general argument than the one we gave

in the �rst version of the paper, following a suggestion by Rick Miranda.
Namely, we shall consider a wider class of graphs than our admissible

graphs.
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(3.11) De�nition. a) A graph g is said to be oriented if for each edge is
assigned an orientation; i.e.; a boundary vertex where the edges enters and
one where the edges goes out.
b) Given an oriented edge weighted graph g; the weight of a vertex is de�ned
to be the sum of the weights of the incoming edges minus the sum of the
outgoing edges.
c) Given an oriented edge weighted graph g; g is said to satisfy Kircho�’s
law if each vertex which is not an end (i.e.; which has valency =2) has weight
zero.
d) An edge incident to an end vertex is said to be an end edge.
e) The charge of an oriented edge weighted graph is the sum of the weights
of the end vertices.

(3.12) Remark. If g is an oriented edge weighted graph satisfying Kircho�’s
law, then the charge of g is equal to zero.

Proof. The charge equals then the sum of the charge with the sum of the
weights of the non end vertices. In turn the latter is the sum over the incoming
and over the outgoing vertices, therefore we get the sum of the weight edges
minus itself.

(3.13) Proposition. Let g be an oriented tree. Then; for each choice of
weights of the end edges such that the charge of g is thus zero; there is
a unique way of extending the choice of weights to all the edges in such a
way that Kircho� ’s law holds true.

Proof. The proof goes by induction on the number of non end edges. If this
number is zero, then g is a star, i.e., there is a unique non end vertex where
all edges are incident. Clearly the weight of this vertex is minus the charge,
thus Kircho�’s law holds.
Otherwise, let e be a non end edge. Since g is a tree, there are exactly two

vertices v+; v− incident to e (as the notation suggests, e is outgoing from v−).
Let g′ be the tree obtained by deleting the edge e and collapsing v+; v−

to a single vertex v. By induction, g′ admits a unique edge weighting satisfying
Kircho�’s law and extending the given weighting of the end edges.
The weight of v equals w++w−; where w+ is the sum (counted with sign)

of the weights of the edges incident to v+ and di�erent from e (Similarly
for w−).

Since this weight is zero, the only possibility is to de�ne the weight of e
as w− = −w+ and Kircho�’s law is thus satis�ed.
Proof of Theorem 3.9. We have a tree T; which is naturally oriented going
up from the lower end vertices to the upper end vertices.
The weights of the end vertices have to be equal to 1, but the number of

upper ends equals the number of lower ends, therefore the charge is zero.
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(3.14) Remarks. 1) We were not so precise when specifying the group where
the weights should take values. In fact, as the proof of 3.13 shows, if the
weights of the end edges takes values in a group G; say Z; then also the other
weights w take value in G.
2) If on the other hand the weights of the end edges take values in N+;
not necessarily the other weights take values in N+: this is the reason why
Theorem 3.9, contrary to proposition 3.13, is only a unicity result, and not an
existence result. The possibility of non positive weights creates obstructions for
graphs in order to be associated to algebraic functions, as Example 3.15 will
show.
3) More generally, if the graph in 3.13 is not a tree, the edge weightings
satisfying Kircho�’s rule and extending a given end-edge weighting with charge
zero are seen to be an a�ne space of dimension equal to the �rst Betti number
of the graph.

(3.15) Example. However we choose a partition E = E∞ ∪ E0 (into two
sets of 4 elements) of the set E of ends, the following graph does not admit a
weighting of the edges by positive integers, such that 4); 5) of (3:1) is ful�lled.

In fact; the edge (∗) would necessarily have weight 1; but the other two edges
e; e′ are of di�erent level than (∗). Hence the graph cannot satisfy Kircho�’s
rule with strictly positive edge weights.
We end this section by drawing a corollary of the proof of Proposition (3.5).

(3.16) Remark. Let g be an admissible bi-ended, edge weighted graph of
genus g and degree d. De�ne a loop upward node v to be a node such that
the following holds:
1) if the height of v is (i+1); there are two edges e; e′ of level i incident to v,
2) consider the partH of the graph formed by the edges and vertices of height
up to i: then the two edges e; e′ belong to the same connected component
of H.
For each loop upward node, consider the G.C.D. of the weights of the incident
edges, �nally take the product D of these G.C.D.’s over all the loop upward
nodes. Then
3) the number of

∧
2g+2d−2-orbits mapping to g is bounded by D.
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4 Small lemniscate con�gurations

Let f : C → P1 be an algebraic function. Then (cf. [Pa]) the level sets of
the real valued function |f| can be characterized as the integral curves of the
following O.D.E.
In fact, |f|2 = constant i� d log(f) pulls back to an imaginary form on

the curve. Since d log(f) is a closed form, given a local coordinate z on C;

there exists a real parameter t on the integral curve such that
f′

f
dz = i (dt);

or, in other words, the following O.D.E. is sati�ed

dz
dt
= i

f
f′
:(4.1)

(4.2) De�nition. An O.D.E. on a Riemann surface is said to be integrable by
algebraic functions i� there exists a di�eomorphism with an algebraic curve
C such that the O.D.E. becomes
(4.2a) Re(!) = 0; where
(4.2b) ! is a meromorphic 1-form with simple poles and with integer residues
mi at the poles Pi; and
(4.2c) more generally the periods of ! (integrals over closed paths in C −
{poles of !}) are integer multiples of 2�i.
(4.3) Remark. 1) If ! is as in (4.2), then

∫
! is multivalued, but c)

implies that f = exp(
∫
!) is single valued in C−{poles of !}; and by b)

f is meromorphic on C; whence algebraic.
2) Thus, if ! is as in (4.2), the integral curves are the connected components
of the level sets of |f|; in particular, the singular solutions correspond to the
poles and zeros of f; and to the singular connected components of the level
sets of |f|.
We have therefore a subset of the big lemniscate con�guration �f (cf. 2.3).

(4.4) De�nition. Given an algebraic function f; its small lemniscate con�gu-
ration is the subset∑

f = f
−1(0) ∪ f−1(∞) ∪ ⋃

i=1 ;:::; k

∧
ci ;(4.4a)

where
∧
ci is the union of the connected components of �ci passing through

the critical points of f where |f| takes the value ci.
Therefore, the topological classi�cation of the O.D.E.’s integrable by al-

gebraic functions on a Riemann surface is equivalent to the problem of the
topological classi�cation of the small lemniscate con�gurations of algebraic
functions.
In view of our surjectivity statement (3.3)–(3.5), we obtain the following

corollary
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(4.5) Corollary. The topological classi�cation of small lemniscate con�gura-
tions of lemniscate generic algebraic functions of genus g and degree d is
given by the isomorphism classes of connected graphs H such that
i) H has 2d ends; 2g+ 2d− 2 nodes and no other vertices;
ii) H is obtained from an admissible bi-ended edge weighted graph g by the
following forgetful map:
iii) forget the colouring of the end vertices of g; forget the weights of the
edges; remove the vertices of valencies 2; and collapse to an edge the strings
of edges connecting an end to a node.

We omit the proof, since it is straightforward.
Observe only that ii) implies i), but in this light example 3.15 shows that

the converse is not true even for g = 0.
In any case from H one can as usual reconstruct the Riemann surface, by

glueing disks for each end vertex, and pairs of pants for each node.
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