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Rational  Surfaces in p4 Containing a Plane Curve (*). 

F. CATANESE - K. HULEK 

A b s t r a c t .  - The families of smooth rational surfaces in F4 have been classified in degree ~ 10. 
All known rational surfaces in F 4 can be represented as blow-ups of the plane F 2. The fine 
classification of these surfaces consists of giving explicit open and closed conditions which 
determine the configurations of points corresponding to all surfaces in a given family. Using 
a restriction argument originally due independently to Alexander and Bauer we achieve the 
fine classification in two cases, namely non-special rational surfaces of degree 9 and special 
rational surfaces of degree 8. The first case completes the fine classification of all non-spe- 
cial rational surfaces. In the second case we obtain a description of the moduli space as the 
quotient of a rational variety by the symmetric group $5. We also discuss in how far this 
method can be used to study other rational surfaces in P~. 

I.  - I n t r o d u c t i o n .  

The families of smooth rational surfaces in F 4 have been classified in degree ~< 10 
([All, [I1], [I2], [01], [02], [R1], [R2], [PR]). In his thesis POPESCU [P] constructed 
further examples of rational surfaces in degree 11. The existence of these surfaces has 
been proved in various ways, using linear systems, vector bundles and sheaves or liai- 
son arguments. All known rational surfaces can be represented as a blowing-up of F 2 . 
Although it would seem the most natural approach to prove directly that a given lin- 
ear system is very ample, this turns out to be a very subtle problem in some cases, in 
particular when the surface S in F 4 is special (i.e. h 1 (r ~ 0). On the other hand, 
being able to handle the linear system often means that one knows the geometry of 
the surface very well. 

The starting point of our paper is the observation that every known rational sur- 
face in F 4 contains a plane curve C. Using the hyperplanes through C one can con- 
struct a residual linear system I D I- I.e., we can write H = C + D with dim I D I >~ 1. 
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This situation was studied in particular by ALEXANDER [A1], [A2] and BAUER [B]: if 
IHI restricts to complete linear systems on C and D' where D' varies in a 1-dimen- 
sional linear subsystem of I D I, then H is very ample on S if and only if it is very am- 
ple on C and the curves D' (cf. Theorem II.1). In this way one can reduce the question 
of very ampleness of H to the study of linear systems on curves. In [CFHR] the fol- 
lowing curve embedding theorem was proved which we shall state here only for the 
(special) case of curves contained in a smooth surface. 

THEOREM 1.1. - A divisor H is very ample on C i f  for every subcurve Y of C of 
arithmetic genus p(Y) 

(i) H . Y > I 2 p ( Y ) + l  or 

(ii) H.  Y>~ 2p(Y) and there is no 2-cycle ~ of Y such that I$r -~ W y ( -  H). 
More generally 

(ifi) I f  ~ is an r-cycle of  C, then H ~ (C, (%(H)) surjects onto H ~ (�9 | (9~) un- 
less there is a subcurve Y of C and a morphism q~: I~Oy----> ~ y ( -  H) which is ,~good, 
(i.e. q~ is injective with a coke~nel of finite length) and which is not induced by a sec- 
tion of H~ Wy( -H) ) .  

The method described above was used in [CF] to characterize exactly all configu- 
rations of points in p2 which define non-special rational surfaces of degree < 8. In 
these cases H.  D >t 2p(D) + 1. This left the case open of one non-special surface, 
namely the unique non-special surface of degree 9. In this case one has a decomposi- 
tion H --- C + D where C is a plane cubic, and I D! is a pencil of curves of genus p(D) -- 
= 3 and H.  D = 6. Section II is devoted to this surface. In Theorem II.2 we classify all 
configurations of points in the plane which lead to non-special surfaces of degree 9 in 
p4. This completes the fine classification of non-special surfaces. 

In Section III we show that this method can also be applied to study special sur- 
faces. We treat the (unique) special surface of degree 8. In this case there exists a de- 
composition H = C + D where C is a conic and I D I is a pencil of curves of genus 4 
with H.  D = 6. It turns out that for the general element D' of I D I (but not necessarily 
for all elements) H is the canonical divisor on D'. In Theorem III.14 we give a charac- 
terization of these configurations of points which define smooth special surfaces of de- 
gree 8 in F 4 . We then use this result to give an existence proof (in fact we construct 
the general element in the family) of these surfaces using only the linear system I HI 
(Theorem III.17), and in particular to describe the moduli space of the above surfaces 
modulo projective equivalence (Theorem III.20). 

Finally in Section IV we discuss some possibilities how this method can be used to 
study other rational surfaces in F 4, suggesting some explicit decompositions H = 
--- C + D of the hyperplane class as the sum of divisors. 
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II. - The non-specia l  rat ional  surface o f  degree 9. 

In this section we want to give an application of Theorem 1.1 to non-special ratio- 
nal surfaces. These surfaces have been classified by ALEXANDER [A1]. CATANESE and 
FRANCIOSI treated all non-special rational surfaces of degree ~< 8 by studying suitable 
decompositions H -- C + D of the embedding linear systems. The crucial observation 
here is the following result, originally due to J. ALEXANDER and I. BAUER [ B ] .  

THEOREM II.1 (Alexander-Bauer). - Let X be a smooth projective variety and let C, 
D be effective divisors with dim IDI I> 1. Let H be the divisor H -- C + D. I f  IHI Ic is 
very ample and for all D' in a 1-dimensional subsystem of IDI, IHt ID' is very ample, 
then I HI is very ample on X. 

By Alexander's list there is only one non-special rational surface of degree bigger 
than 8. This surface is a F 2 blown up in 10 points x~, ..., x~0 embedded by the linear 

q 10 
system {H{ = 1 3 L - 4  

i=1 
points xi the linear system 
gree of S is 9. Here we show 

I 
xi[.  Alexander showed that for general position of the 

! 
IHI embeds S = F2(Xl, ..., xl0) into F 4. Clearly the de- 
that using Theorem 1.1 one can also apply the decomposi- 

tion method to this surface. In fact we obtain necessary and sufficient conditions for 
the position of the points xi for {H I to be very ample. Our result is the follow- 
ing 

THEOREM II.2. - The linear system I HI = 113L - 4 ~, xi ] embeds the surface S = 
= ~)2(xl, ..., Xl0) into F 4 i f  and only i f  

(o) no xi is infinitely near, 

(1) IL- E xi] =0 for fAI >>-4, 
i~A 

(2) ]2L-  E xi] =0 for [A'] >t 7, 
i e A '  

(3) 13L-Exil =0,  
i 

(3)~ 1 3 L -  ~ x k - 2 x i l  =0 for all pairs ( i , j ) ,  
k ~ i , j  

(4)ijk 14L - 2xi - 2xj - 2xk - ~ xl l =0 for all triples ( i, j ,  k ) , 
l ~ i , j , k  
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(6) i  1 6 L  - x i  - 2 ~ . x j  [ = 0 ,  
j # z  

( 1 0 ) 1  I f  D = 10L - 4Xl - 3 ~ x~, 
i>~2 

then  dim I DI = 1. 

REMARKS. - (i) Clearly conditions (0) to (6) are open conditions. The expected di- 
mension of I DI is 1, hence condition (10)1 is also open. 

(ii) The last condition is asymmetrical. I f  IHI is very ample condition (10)i is 
necessarily fulfilled for all i. On the other hand, our theorem shows that  in order to 
prove very ampleness for I HI it suffices to check only one of the conditions 
(10)~. 

PROOF. - We shall first show that  the conditions stated are necessary. Clearly (0) 
follows since H.(x~  - xj) = O. Similarly the ampleness of H immediately implies con- 

ditions (1) to (4) Assume the linear system 6 L -  x i -  2 ~ xj contains some ele- 
�9 j ~ i  

ment A. Then H .  A = 2, and p ( A )  = i which contradicts very ampleness of H. For  (10) 
we consider C = H - D = 3L - ~ xi. Clearly ICI is non empty. For  C'  e ICI we con- 

i~>2 
sider the exact sequence 

(11) 0 --) COs(D) ---) Os (H)  -~ r (H)  ~ O . 

If  h ~ (Os (D)) >/3, then either h ~ (Os (H)) I> 6 and ]HI does not embed S into p4 or [H] 
maps C' to a line. But since p ( C ) =  1 this means that  [H[ cannot be very 
ample. 

Now assume that  conditions (0) to (10)1 hold�9 We shall first show 

(I) h 1 (Os(D)) = 0,  

(II) h l ( O s ( C ) )  = O, 

(III) h ~ (Os(H)) = 5.  

Ad(I): By condition (10)1 we have h ~  Clearly h2(Os(D) )  = 
= h ~ (Os (K - D)) = 0. Hence the claim follows from Riemann-Roch, since Z(Os (D)) = 

----2. 

Ad(II):  We consider - K -  = 3L - ~x~ - C -  Xl. By condition (3) h~  - 
i 

- K)) = 0. Clearly also h 2 ( O s ( - K ) )  = h ~  = O. Hence by Riemann-Roch 
h i (Os ( - K)) = - Z(Os ( - K)) = 0. Now consider the exact sequence 

(12) O -+ Oz( - K )  ~ Os( C) --) Os( C) Ixl = 0~ --+ 0 . 

This shows h l ( O s ( C ) ) = 0 .  Note that  this also implies (by Riemann-Roch) that  
h~ = 1, i.e. the curve C' is uniquely determined. 

Ad (III): In view of (I) and sequence (11) it suffices to show that  h ~ (Oc, (H)) = 3. 
By Riemann-Roch on C' this is equivalent to h 1 (Oc, (H)) = 0. Since (by (3)) Kc, is triv- 
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ial this in turn is equivalent to h ~ (Oc, ( - H ) )  = 0. By conditions (3), (3)', the curve C' 
contains no exceptional divisor. As a plane curve C' can be irreducible or it can de- 
compose into a conic and a line or three lines. In view of conditions (1) and (2), how- 
ever, C' cannot have multiple components and moreover H has positive degree on 
every component. This proves h ~  0 and hence the claim. 

This shows that ]H] maps S to P 4 and that, moreover, [HI restricts to complete 
linear systems on C' and all curves D ' e  [D[. We shall now show 

(Iv) 

(v(i)) 

(v(~)) 

For every subcurve A ~< C' we have H . A  >1 2p(A) + 1. 

For every proper subcurve B ' c D '  of an element D ' e  [D[ we have 
H.  B '  I> 2p(B') + 1. 

H does not restrict to a ,42 + K),-divisor on D', i.e. (gD, ( H  - KD,) does not 
have a good section defining a degree 2-cycle. 

(13) 

Since 

resp. 

10 

2 C - x l ~ - 6 L - X l - 2  ~ x i  
i = 2  

it follows from condition (6)1 that h ~  0. Clearly h ~  - X x -  

- D)) = 0. Now 

10 
2 C - x l - D - - 4 L + 3 x l +  ~ xi 

i = 2  

K - (2C - xl - D) - L - 2 x  1 . 

Hence h2(Os(2C-  xi  - D) )  = h ~  ( 2 C -  Xl - D))) = 0. Since moreover 
X(Os (2C - xl - D)) = 0 it follows that h I ( ( g s  ( 2 C  - X l  - D ) )  - -  0. The assertion follows 
now from sequence (13). 

Ad(IV) and (V(i)): We have to show that for all curves A with A ~< C ' ,  resp. 
A < D ' ,  D ' e  [D[ the following holds 

(14) H . A  >t 2p(A) + 1. 

It then follows from (IV) and [CF, Theorem 3.1] that [HI is very ample on C'. Be- 
cause of (V(i)) and (V(ii)) it follows from Theorem 1.1 that [H] is very ample on every 
element D' of [D[. It then follows from Theorem II.1 that ]H] is very ample. 

Ad (V(ii)): Let HD, be the restriction of H to D', and denote the canonical bundle 
of D' by KD,.  It suffices to show that h~ , - K D , ) ) =  O. Now 

HD, - K D ,  = ( H  - g - D)ID'  = (C - K ) [ D ,  = (2C - X l ) [ D , .  

There is an exact sequence 

O--~ O s ( 2 C  - Xl - D)  ~ (gs(2C - x i  )--~ (gD,(HD, -- KD, ) - ~  O . 
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We first notice that  it is enough to prove (14) for divisors A with p(A) >I O. Assume in 
fact we know this and that  p(A) < 0. Then A is necessarily reducible. For  every irre- 
ducible component A' of A we have p(A')  >1 0 and hence H . A '  > 0. This shows 
H .  A > 0 and hence (14). Clearly (14) also holds for the lines x~. Hence we can assume 
that  A is of the form 

(15) A =- aL - ~ b~xi with 1 ~< a ~< 10. 
i 

Note that  

(16) 2p(A)  = a ( a  - 3) - ~ b~(b~ - 1) + 2 
i 

(17) H . A  = 13a - 4 ~ bi. 
i 

We proceed in several steps 

CLAIM 1. - Let  A be as in (15) with 1 ~< a ~< 3. Assume that  p(A) >I O. Then (14) is 
fulfilled. 

PROOF OF CLAIM 1. - After possibly relabelling the x~ we can assume that  bl 1> b2 >i 
~> ... ~> bl0. I f  a = 1 or 2 then bl < 1 and blo I> 0 by (16) since we assume p(A) ~ O. More- 
over p(A) = O. If  H .  A ~< 2p(A) we get immediately a contradiction to conditions (1) or 
(2). If  a = 3 then we have two cases. Either bl ~< 1, blo t> 0 as above and p(A)  -- 1. Then 
H .  A ~< 2p(A) violates condition (3). Or bl = 2 or blo = - 1 and the other bi are 0 or 1. 
Then H . A  <<. 2p(A) is only possible for b~ = 2, but this would violate condition 
(3)'. 

CLAIM 2. - H is ample on C and D, i.e. for every irreducible component A of C', 
resp. D', D '  e I DI we have H .  A > 0. 

PROOF OF CLAIM 2. - Assume the claim is false. Let  A be an irreducible component 
with H .  A ~< 0. Since A is irreducible, p(A) >10. By (16), (17) this leads to the two 
inequalities 

(18) 13a < 4~b~,  

(19) b~(b~ - 1) ~< a(a - 3) + 2.  

Multiplying (19) by 132 and using (18) we obtain 

(20) 169(E b~ - E hi) ~< 16(• b~)2 _ 156 E b~ + 338. 

Now 

(21) (Ebi )  e = 10Eb~ - E (b~- bj) 2 
i<j 
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and using this (20) becomes 

(22) ~(9b~ - 13b~) • 16 ~ (b~ - by) 2 <~ 338. 
i i< j  

The function f (b)  = 9b 2 - 13b for integers b is non positive only for b = 0 or 1. I t  is 
minimal for b = 1. Since f ( 1 ) =  - 4  we derive from (22) 

16 ~ (bi - by) 2 <~ 378 
i< j  

(23) 

resp. 

(24) Z Ibm- b 12-  23. 
i< j  

At this point it is useful to introduce the following integer valued function 

d = d(A) = m a x l b ~ -  bj l .  
i< j  

We have to distinguish several eases: 

d ) 3 :  Assume there  is a pair ( i , j )  with Ib~-bjl t>3. Then for all k ~ i , j :  

I b i -  bkl 2 + I b j -  bkl 2 >1 5.  

Hence 

I b i -  bj]2 >~ 9 + 5 . 8 = 4 9  
i< j  

contradicting (24). 

d = 2: After possibly relabelling the xi we can assume that  b2 = bl + 2 and b l  

~<bk~<b2 for k i > 3 .  Then 

I bk - b l  12 + I bk - b212 = { 2 if bk = bl + 1 
4 i f b k = b l  or bk=b2.  

Le t  t be the number  of bk which are either equal to bl or to b2. Then 

E I b ~ - b y 1 2 1 > 4 + 4 t + 2 ( 8 - t ) + t ( 8 - t ) = 2 0 + t ( 1 0 - t ) .  
i< j  

I t  follows from (24) that  t = 0. But  then (22) gives 

E(9b~ - lab/)  ~< 18. 

Looking at the values o f f (b )  = 9b 2 - 13b one sees immediately that  this is only possi- 
ble for b l  = - 1 or b~ = 0. In the first case it follows from (18) that  a < 0 which is ab- 
surd. In the second case we obtain a ~< 3 and hence we are done by Claim 1. 

5 ~< 1: Here  we can assume 

b l  = . . .  = bk = m ,  bk + 1 = ... = bl0 = m + 1. 
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Since f ( b )  >1 42 for b 1> 3 it follows immediately from (22) that  m ~< 2. I f  m ~< 0 then 
(18) gives a ~< 3 and we are done by Claim 1. I t  remains to consider the subcases m = 1 

or 2. 

m = 2: Since f (2 )  = 10 and f (3 )  = 42 formula (22) implies 

10k + 42(10 - k) + 16k(10 - k) <~ 338. 

One checks easily that  this is only possible for k = 9 or 10. In this case (18) gives a <~ 6. 
I f  k = 9 then (18) gives 22 ~< a(a - 3), i.e. a I> 7, a contradiction. I f  k = 10, then (18) 
implies 18 ~< a ( a -  3). This is only possible for a = 6. But  now the existence of A 
would contradict condition (6). 

m = 1: Since f (1 )  = - 4 and f (2 )  = 10 formula (22) reads 

- 4 k  + 10(10 - k) + 16k(10 - k) ~< 338 

or equivalently 

k(73 - 8k) < 119. 

I t  is s traightforward to check that  this implies k < 2 or k I> 7. I f  k ~< 2 then 

~ b i ( b l -  1)>I 16 and (19) shows that  a /> 6. On the other hand ~ b i  ~< 19 and this 
contradicts (18). Now assume k I> 7. Then ~ bi ~< 13. I t  follows from (18) that  ei ther 
a ~< 3wand  this case is dealt with by Claim 1- -or  a = 4 and ~ bi = 13. Then k = 7 and 
the existence of A contradicts condition (4). 

END OF PROOF. - I t  follows immediately from Claim 1 that  (14) holds for subcurves 

A ~< C ' .  I t  remains to consider subcurves A < D ' ,  D '  e I DI .  Since H is ample on D 
we have H .  A > 0, hence it suffices to consider curves with p ( A )  I> 1. Also by ample- 
ness of H on D it follows that  

(25) 1 <~ H . A  <<. 5 

since H .  D = 6. Also note that,  as an immediate consequence of (17): 

~26) a - H . A  (mod 4). 

Finally we remark  the following 

OBSERVATION. - I f  A < D is not one of the exceptional lines xi, then H .  A ~< 4 im- 
plies b~/> 0 for all i. Otherwise at most one bi = - 1 and all other  b~/> 0. 

This follows from the ampleness of H on x~, since H .  x~ = 4. 
F rom now on we set 

(27) B := D - A .  

By adjunction 

(28) p(A)  + p (B)  = p (D)  + 1 - A . B  = 4 - A . B .  
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We write 

B =- bL - ~ ci xi.  

We shall now proceed by discussing the possible values of the coefficient a of A in de- 
creasing order.  

a = 10: Then B = ~d~x~,  dr >1 0 and since H .  B ~< 5 we must  have B = xi. Then 
A . B  = 4 or 5 and p ( A ) ~  0 by (28). 

a = 9: By (25), (26) we have to consider two cases 

(a) H . A  = 5, H . B  = I ,  

(fl) H .  A = I, H .  B = 5 . 

Using our above observation for B in case (a) we find that  

B =- L - x i -  x j -  xk. 

But now A .  B I> 2 and hence p ( A )  ~< 1. Hence H .  A = 5 >/2p(A) + 1. 
Using condition (1) we have to consider the following cases for (fl): 

B = L - xi - xj ,  

B =- L - x i -  xj - x k + xt. 

In the first case A.  B ~> 4 and p ( B )  = 0, hence p ( A )  <~ O. In the second case A.  B >t 5 
and p ( B )  = - 1, hence again p ( A )  <<. O. 

a = 8: Here  by (26) the only possibility is 

H . A = 4 ,  H . B = 2 .  

Using our observation for B we fred that  

B =- 2 L - x i l  - . . .  - x~6.  

Ei ther  the xij are all different or we have 1 double point (and B is a pairs of lines) or 3 
double points (and B is a double line). Then A.  B >i 3 (resp. 4, resp. 8) and p ( B )  = 0 

(resp. - 1, resp. - 3). In either case p ( A )  ~< 1 and hence H .  A >i 2p(A) + 1. 

a = 7: In this case 

H . A = H . B = 3 .  

All coefficients satisfy bi >I O. I t  is enough to consider divisors A with p ( A )  I> 2. To- 
gether  with H .  A = 3 this leads to the following conditions on the b~: 

~ b i =  22,  ~b i (b i  - 1) ~< 26. 
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Let  fli = max(0,  bi - 1). Then these conditions become 

~ f l i  I> 12, ~ ( f i i  + fl~) ~< 26 

and it is easy to check that  no solutions exist. 

a = 6: We now have to consider 

H . A = 2 ,  H . B = 4 .  

We have to consider divisors A with p(A)  >/1. Arguing as in the case a = 7 this leads 

to 

~,bi = 19, ~ b i ( b i -  1) ~< 18 

resp. 

only solution is bj = 1 for one bj and bi = 2 for j ~ i. But  then A �9 I 6L - xj - 

I 

The 
! I 

- 2 .~.xi  I contradicting condition (6). 
z ~ 3  I 

a = 5: Then we have two possible cases 

(a) H . A  = 5, H . B  = 1, 

(fl) H . A  = 1, H . B  = 5. 

We shall t rea t  (a) first. Then by the ampleness of H the curve B must  be irreducible. 
Set 

B = 5L - ~ c~xi, ci t> O. 

Then H .  B = 1 and irreducibility of B gives: 

~ c i  = 16, ~ c i ( c i -  1) ~< 12. 

One easily checks that  this is only possible if 6 of the c~ are 2, and the others are 1. 
Hence 

Bel5L-2Ex~- Ex~l, IAI --6. 
i ~A  i~tA 

T h e n  p(B) = 0. Moreover A.  B i> 3, hence p(A)  ~< 1 and hence H .  A/> 2p(A) + 1. 
In case (fi) we apply the above argument  to A and find p ( A ) =  0, i.e. again 

H .  A >I 2p(A) + 1. 

a = 4: Then H .  A = 4 and H .  B = 2. We are done if p(A)  ~< 1, and otherwise 
H .  A I> 52 - 44 = 8, a contradiction. 

1 ~< a ~< 3: This follows immediately from Claim 1. 

By (15) this finishes the proof of the theorem. [] 
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III. - The special rational surface of degree 8 in p4. 

In this section we want to show how the decomposition method can be employed to 
obtain very precise geometric information also about special surfaces. We consider 
the rational surface in P 4 of degree 8, sectional genus z = 6 and speciality h = 
= hl(Os(1)) = 1. This surface was first constructed by OKONEK[02] using reflexive 
sheaves. In geometric terms it is p2 blown-up in 16 points embedded by a linear sys- 
tem of the form 

j 4 10 F I HI = 6 L - 2 E  x i -  2 Yk �9 
i = 1  k = 5  

Our aim is to study the precise open and closed conditions which the points xi, Yk must 
fulfill for I HI to very ample. If I H] is very ample, the exceptional lines x~ are mapped 
to conics. Their residual intersection with the hyperplanes gives a pencil IDol. Hence 
we immediately obtain the (closed) necessary condition 

(D~) ID~[ = 6 L -  3 x i - 2  • x j -  2 Yk is a pencil. 
j ~ i  k = 5  

By Riemann-Roch this is equivalent to h 1 ((_gs(Di)) = 1. We first want to study the lin- 
ear system I H] on the elements of the pencil I Dil.  Note that 

p(Di) = 4, H.D~ = 6. 

If D = A + B is a decomposition of some element D e I Dil,  then 

(29) p(A) + p(B) + A .  B = 5, 

(30) A . H  + B . H  = 6. 

The first equality can be proved by adjunction, the second is obvious. 

LEMMA III.1. - Assume I HI is very ample. Then for every proper subcurve Y of an 
element D e IDil, hl((gy(H)) <<. 1 and p(Y) <<. 3. 

PROOF. - Riemann-Roch on Y gives 

(31) h~169 = hl(Oy(H)) + H.  Y +  1 - p ( Y ) .  

Consider the sequence 

(32) 0 --* Os (H - Y) ---) �9 (H) ~ Oy (H) ~ 0. 

Since h2(c)s(H-  Y)) = h~ ( H -  Y))) = 0 and hl((?s(H)) = 1 we have 
h 1 (Oy(H)) < ~  1. We now consider the rank of the restriction map H~ Since Y is a 
curve contained in a hyperplane section 2 ~< rank(a) ~< 4. If r anka  -- 2, then Y is a 
line, hence p(Y) = O. Next assume rank(a) = 3. In this case Y is a plane curve of de- 
gree d = Y.H.  Since Y is a proper subcurve of D which is not a line 2 < d < 5. Then 
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hl((9~(H)) = h~ - 4)). Since hl(Oy(H)) < 1 this shows in fact d -< 4. But  then 

p(Y) -< 3. Finally assume that  r ank (a )  = 4, i.e. Y is a space curve. By (31) 

p(Y) = hl(Oy(H)) - h~ + H. Y +  1 <<. 3 

Since H .  Y ~< 5. [] 

REMARK I I I . 2 .  - Note that  the above proof also shows the following: I f  Y is a prop- 
er subcurve of D with p(Y) = 3, then Y is a plane quartic with H y  = Ky or Y has de- 

gree 5. 

Before proceeding we note the following result  from [CF] which we shall use fre- 
quently in the sequel. 

PROPOSITION III.3. - Let Y be a curve contained in a smooth surface with p(Y) ~ 2. 
I f  H is very ample on S, then H.  Y >I 2p(Y) + 1. 

PROOF.- [CF, Prop. 5.2]. m 

PROPOSITION I I I . 4 . -  I f  IHI is very ample, then every element D e IDil is 2-con- 
nected. Moreover, either 

(i) D is 3-connected or 

(ii) Every decomposition of D which contradicts 3-connectedness is either of the 
form D = A + B with H.  B = 4, HB = KB or of the fo~n D = A + B with H.  B = 5. In 
the latter case B = B'  + B" with H.  B'  = 4, HB, = Ks,.  

PROOF. - Let  D = A + B. We first consider the case p(A), p(B) > 0. Since IHI is 

ve ry  ample, it follows that  H .  A/> 3, H .  B I> 3. But  then H .  A = H .  B = 3 and hence 
p(A) = p(B) = 1. By (29) this shows A.  B = 3. 

Now assume p(A) <, O. Since p(B) ~< 3 by Lemma III.1 it follows from (29) that  

A .  B/> 2. The only case where A.  B = 2 is possible is p(A) = 0, p(B) = 3. In this case 
H .  B >I 4 since Riemann-Roch for B gives 

h ~ (OB (H)) = h 1 (OB (H)) + H .  B - 2 

and we know that  h ~ ((gB (H)) >1 3. We first t rea t  the case H .  B = 4. Then h I (�9 (H)) = 
= 1 and h~ = 3. In this case B is a plane quartie and H8 = Ks.  Now assume 
H .  B = 5. I f  h I (08(H)) = 0 then B is a plane quintic. But  in this case p(B) = 6, a con- 
tradiction. I t  remains to consider the case hi(OH(H))= 1. By duality h~ 
- H))  = 1. Le t  a be a non-zero section of O8 (KB - H). As usual we can write B = Y + Z 

where Z is the maximal subcurve where a vanishes. Note that  Z ~ ~, since K8 - H has 
negative degree. Then Y.(Ky - H) >~ O. By the very  ampleness of H this implies 
p(Y) i> 3 and hence p(Y) = 3. Then we must  have H .  Y = 4 and by  the previous analy- 
sis Y is a plane quartic with H y  = Ky. I 
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At this point it is useful to introduce the following concept. 

DEFINITION. - We way that  an element D �9 [Di] fulfills condition (C) ff for every 
decomposition D = A + B: 

(i) p(A), p(B) < 2. 

(ii) H . A  i> 2p(A) + 1, H .  B i> 2p(B) + 1. 

REMARK III.5. - I t  follows immediately from (29) that  an element D �9 [Dil which 
fulfills condition (C) is 3-connected. 

For  future use we also note 

LEMMA III.6. - Let D be a curve of genus 4, and let H be divisor on D of degree 6 
with h~ >>- 4. Assume that for every proper subcurve Y of D we have H .  Y >>- 
t> 2p(Y) - 1. Then H is the canonical divisor on D. 

PROOF.  - By Riemann-Roch and duality h~ I> 1. Le t  a be a non-zero 
section of COD (KD -- H). As usual this defines a decomposition D = Y + Z where Z 
is the maximal subcurve where a vanishes. I f  Z = 0 the claim is obvious. Otherwise 
(KD - H).  Y >! Z .  Y and by adjunction this gives H .  Y ~< 2p(Y) - 2, a contradiction. [] 

Our next  aim is to analyze the condition h o (COs (H))  = 5. For  this we introduce the 
divisor 

Ai = H -  (L - xi) .  

LEMMA III.7. - The following conditions are equivalent: 

(i) h~ = 5 (resp.hl(Os(H)) = 1). 

(ii) h~ (H)) = 4 (resp. h 1 (OD(H)) = 4) for some (every) element D �9 IDii. 

(iii) h l (OD(KD-  H ) ) =  1 for some (every) element D �9 IDi[. 

Moreover assume that D �9 [Dil fulfills condition (C). Then the following conditions 
are equivalent to (i)-(iii): 

(iv) OD (H) = KD. 

(V) Ai[D = (2L - E x j ) [ D .  

PROOF.  - Since h~ 1> 1 we have an exact sequence 

0 o cos (xi) ---* cos (H) --> COD (H) --> O. 



242 F. CATANESE - K. HULEK: Rational surfaces, etc. 

Since h 1 (Os(xi)) = 0 the equivalence of (i) and (ii) follows. The equivalence of (ii) and 
(iii) is a consequence of Serre duality. It follows from Lemma III.6 that (iii) implies 
(iv) if (C) holds. Conversely if OD(H) = KD then h~ - H)) = h~169 = 1, since 
D is 3-connected. To show the equivalence of (iv) and (v) note that by adjunc- 
tion 

KD =- (Ks + D)ID = (3L - 2x~ - j ~ i x j )  I D. 

Hence K D - H I D - ( A ~ + ( L - x ~ ) ) I D  if and only if z ]~ ID=(KD-- (L - -x~) ) ID  - 
- -  ( 2 L  - -  E x r  " 

We want to discuss necessary open conditions which must be fulfilled if I H[ is 
ample. 

DEFINITION. - We say that IHI fulfills condition (P) if for every divisor Y on S 
with Y. L < 6, p(Y) <<. 2, H.  Y < 2p(Y) the linear system I YI is empty. 

REMARK I I I . 8 .  - (i) By Proposition III.3 this condition is necessary for IHI to be 
very ample. 

(ii) Note that in order to check (P) one only need check f ini tely many  open 
conditions. 

(iii) For Y. L = 0 condition (P) implies that the only points which can have in- 
finitely near points are the xi. The only possibility is that at most one of the points Yk 
is infinitely near to some point xi. 

(iv) If Y. L = 1 then (P) implies 

I L - i ~ x i - k ~ '  ~ Y k l = ~  f ~  

In particular no three of the points xi can lie on a line. 

(v) If Y. L = 6 then (P) gives 

]D~- x j l  =~  ( j ~ i ) ,  ] D ~ - y k - Y ~ I  = 0  ( k ~ l ) .  

There are, however, two more open conditions which are not as obvious to 
see. 

PROPOSITION III.9. - I f  I HI embeds S into F 4 then the following open conditions 
hold: 

(Q) IDa-  2x~l = 0, I D i -  x ~ -  Ykl = ~, I D i -  2yk! = 0 

(R) For any effective curve C with C ==- L - xi - xj - y~, C =- L - xi - xj or C =- Yk 
one has dim IDi - C I ~< 0. Moreover dim lH - (L - xi - xj)l ~ 1. 
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PROOF. - We s ta r t  with (R). We already know that  dim IDi I = 1. Hence we have to 

see tha t  such a curve C is not contained in the plane spanned by  the conic x~. But  this 

would contradict  ve ry  ampleness  since C. x~ = 1 or 0. I f  I H I  is ve ry  ample then it era- 
beds A~j = L -  x i - x j  as a plane conic (irreducible or reducible but  reduced). The 

claim then follows f rom the exact sequence 

0 --, Os ( H  - ( L  - x~ - xj )) ~ Os (H)  ---> OA~j ( H )  --> O.  

Next  we consider the linear sys tem I D i -  2x i l .  Assume there  is a curve B 

e IDi - 2x i l .  Then p (B)  = - 3. Since H .  B = 2 we have the following possitibilities: B 
is a reduced conic (either smooth or reducible). Then p (B)  = 0, a contradiction. I f  B is 
the union of 2 skew lines, then p (B)  = - 1 which is also not possible. Hence B mus t  be 

a non-reduced line. But  this is not possible, since the class of B in S is not divisible 

by  2. 
The crucial step is to prove the 

CLAIM. - Se D = Di.  I f  IDI contains Yk + B, then B is of the form B = B '  + (L - 

- x~ - xj - Yk) with He,  = KB,.  

I t  follows f rom L e m m a  I I I .7  tha t  there  exists a non-zero section 

0 ~ a ~ H ~  H)) .  As  usual this defines a decomposition D = Y + Z. Since 
(KD - H ) .  Yk = - 1 the curve Z mus t  contain the irreducible curve y~. Moreover  since 

Yk. B = 2 and (KD - H ) .  B = 1 it follows tha t  Z contains some fur ther  curve Z '  con- 
tained in B, i.e. B = B '  + Z ' .  Now as in proof  of L e m m a  I I I .6  H .  B '  <~ 2p (B ' )  - 2 and 

very  ampleness  of IHI toge ther  with I I I .1  implies p ( B ' )  = 3. As in the proof  of Propo-  

sition I I I .4  one concludes tha t  H .  B '  = 4, HB, = K~, .  In part icular  Z '  is a line. Since 

p(Di - 2yk) = 1 it follows tha t  Z '  ~ Yk. F i r s t  a s s u m e  tha t  Z ' .  Yk = 0. Then p ( Z '  + 

+ Yk) = - i and B ' .  Yk = 2. I t  follows f rom (29) tha t  B ' .  Z '  = 1. But  now the decomposi- 

tion Z '  + (B '  + Yk) contradicts 2-connectedness. Hence Z '  and Yk are two lines meet-  

ing in a point. This gives P(Yk + Z ' )  = 0, B '  .(Yk + Z ' )  = 2. We can write 

Z '  = aL  - f l ix i  - .~.fl jx~ - Yk - ~ azYz. 

I f  a = 0  then Z ' = x i - y k  or Z ' = x j - y k ,  J ~ i .  The first  is impossible since 
p(D~ - xi) = 1 the second contradicts IDi - xjl = 0. Hence 1 ~< a ~< 6. Since Z '  is map-  
ped to a line in F 4 we find Z ' .  Yt <<- 1, Z ' .  xj ~< 2, i.e. 

(33) 0 ~ < a ~ < l ,  O <<. fi~, fij <<. 2 .  

I t  follows f rom (33) and f rom p ( Z ' )  = 0 tha t  a < 4; moreover  p ( Z ' )  = O, p ( B ' )  = 3 and 

p (B)  = 3 imply Z '  . B '  = 1. Using 0 ~< a t  ~< 1 this gives 

(34) a(6 - a) - f l i (3  - f i t)  - E . f i j (  2 - f i j)  = 2 .  

In view of (33) this shows a(6 - a)  ~< 7 and since a ~< 4 it follows tha t  a = 1. Then 

f l i ,  fij ~< 1. I f f i i  = 0 then by  (34) fig = 1 f o r j  ~ i, but  no three  of the points xi can be 
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collinear by  (34). Hence fii = 1 and exactly one fij is 1. Together  with H .  Z ' = 1 this 
gives Z '  = L - xi - xj - Yk as claimed. 

We are now in a position to prove tha t  I Di - x~ - Yk I = ~ and ]Di - 2yk I = 0. F o r  
this we have to show tha t  B '  cannot contain xi or y~. In  the first  case B '  = xi + B " .  

Then H .  x~ = 2 and KB,.  xi = 1 contradicting H I s, = Ks , .  Similarly in the second case 

B '  = Yk + B" with H .  y~ = 1 and Ks , .  Yk = 0 giving the same contradiction. �9 

Observe for future use that  in the following proposition the assumption tha t  I H I  

is ve ry  ample is not made. 

PROPOSITION III .10. - A s s u m e  that  the open condi t ions  (P) and  (Q) hold. Then  an  

effective decompos i t ion  D = A + B e i ther  fu l f i l l s  condi t ion  (C) a n d  hence is  not  3-dis- 

connec t ing  or (after poss ib ly  i n t e rchang ing  A and  B) A = Yk, L - xi - xj or L - xi - 

- - x j - y k .  

PROOF, - Let  D = A + B. Clearly we can assume A .  L ~< 3. We shall first  t rea t  the 
case A .  L = 0, i.e. A is exceptional with respect  to the blowing down map S -~ F 2 . 

Then p ( A )  <<. 0 and A .  H > 0 by  (P). By conditions (Q) and (P) (cf. R e m a r k  I I I .8  (iv)) if 

A .  H = 1, then either A = xj - Yk or A = xi - Yk or A = Yk. In the first  two cases 
A .  B >i 3 and p ( B )  ~< 2, the third is one of the exceptions stated.  I f  A .  H >I 2 then 

p(B)  ~< 2 and the claim follows f rom (P). 

Hence we can now write 

A - a L  - ~ a j x j  - E akYk,  

B - b L -  ~ f l j x j  - ~ b k Y k ,  

with a, b > 0. Using the open conditions from R e m a r k  I I I .8  (v) (which are a conse- 
quence of (P)) and (Q) it follows tha t  

ak, bk>~ - 1 ,  

a j ,  fij ~ O, 

a i ,  fi~ i> - 1 ,  

a k + b k = l ,  

a N + f i N = 2 ,  ( j  ~ i ) ,  

a i + f l i = 3 ,  

and moreover  tha t  at most  one of the integers  ak, bk, a i ,  fi~ can be negative. I f  
fi~ = - 1 then ai  = 4. In  this case A cannot be effective since we have assumed a <~ 3. 
I f  a~ = - 1 then fi~ = 4 and hence b >I 4. We have to consider the cases a = 1 or 2. In  

either case p ( A )  <~ 0 and H .  A >1 2p(A) + 1 follows f rom (P). On the other  hand 

H .  B - (2p(B) + 1) = 

= ( 9 b - b  2 + 1 ) +  ~ . f l j ( f i j  - 3)  + ~ ,bk (bk  - 2)1> (9b  - b e + 1 ) - 6 - 1 2 > 1 3  
3~ k 

since b = 4, 5. Hence we can now assume a i ,  fii >t O. 
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a = 1. We first t rea t  the case a k I> 0 for all k. Then 

A =- L - E xj - E Yk. 
j e A  k e A '  

Clearly p(A)<<. O. Let  5~  = 0 (resp. 1) ff i ~tA (resp. i e A). Then 

p(B) = JAI + 

We only have to t rea t  the cases where p(B)/> 3. The either 5i~ = 0, ]A] /> 3 or 
5~  = 1, ]A] /> 2. In the first case 

H . A = 6 - 2 1 A  I -  IA'I  ~<0 

contradicting (P) for A. In the second case the only possibility is IAI = 2, I A'I ~< 1. 
But  then L - xj - xj or A = L - xi - xj - Yk. Now assume that  one ak is negative. We 
can assume al~ = - 1 .  Then 

A - L -  ~ x j -  ~, Yk + Y16. 
j e ~  k ~ '  

In this case p(A)  = - 1  and 

p(B)  = IAI + 5 ~  - 1. 

Using the same arguments  as before we find that  p(B)  ~< 2 in all cases. 

a = 2. Again we first assume that  all ak i> 0. Then 

A = - 2 5 -  E x j -  E 2 x k -  E Y t -  E 2y,~. 
j e ,~  ke,~'  l~A" m~,~" 

Clearly p(A)  <<. O. I f  i ~ A U/1 '  then p(B)  <~ O. I f  i e zJ then p(B)  ~< 2. Now assume that  
i e zJ'. In this case p(B)  ~< 2 with one possible exception: IA[ = 3 and ]A'[  = 0. But 

then 

A =- 2 L  - 2x~ - xj - xk - xl - ~ Yl. 
l e d "  

In this case A splits into two lines meeting x~. But then one of these lines must  con- 
tain 3 of the points xj contradicting condition (P). Finally let a16 = - 1. The above ar- 
guments show that  in this case p(B)  ~ 2. 

a = 3. Since in this case p(A),  p(B)  ~< 1 condition (C) follows. " 

Propositions I I IA and III.10 have provided us with a fairly good understanding of 
the behaviour of H on the pencil I Di l .  

COROLLARY III.11. - A s s u m e  IHI embeds S into F 4. For  every element  D e IDil 

either: 

(i) D is 3-connected and HD = KD or 

(ii) D = B + (L - xi - xj) wi th  HIB = K~. 
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REMARK III.12. - The conic L - x~ - xj can be irreducible or reducible in which 
case it splits as (L - xi - xj - Yk) + Yk. 

At this point we can also conclude our discussion about the linear system [A i I = 
= [H - (L - xi)[ (cf. III.7). 

PROPOSITION I I1 .13 . -  I f  [H I embeds S into p4, then dim[Ai[ = 0. 

PROOF. - We first claim that  the general element D e [D~ ] is 3-connected. Indeed if 
D is not 3-connected, then D = B + (L - xi - xj). The conic L - xi - xj spans a plane 
E' .  I f  E is the plane spanned by xi then E ~ E '  since (L - xi - xj). xi = 1. Hence D is 
cut out by the hyperplane spanned by E and E ' .  Varying the index j there are at most 
3 such hyperplanes. 

Clearly L -x~  is effective. Consider the exact sequence 

0 ~ (gs(A ~) --> (gs(H) ---> (gs(H)IL-~  ~ O. 

Since H . ( L  - xi) = 4 and p(L  - xi) = 0 it follows that  [H I cannot map L - xi to a 
plane curve. This shows h~ 1. 

On the other hand choose an element D e ]Di[ which is 3-connected. We have an 
exact sequence 

0 ~ COs(2Xi - L)  ~ (gs(Ai) --> O D ( A i )  --> O. 

Now h~ - L))  = h2(~gs(2xi - L))  = 0 and hence hl(Os(2Xi - L)) = 1 by Rie- 
mann-Roch. Since I HI is ample no 3 of the points xi lie on a line. Hence 12L - ~ xi ] is 
a base point free pencil. Since I (2L - ~ xi) - D ] = 0 this shows that  [2L - ~ xi [ cuts 
out a base-point free pencil on D. Since D is 3-connected ( 2 L -  ~ xi)[D ~ A i]D by 
Lemma II1.7 and hence h~ I> 2. By the above sequence this implies 
h ~ ((9 s (A i)) >I 1. " 

We are now ready to characterize very ample linear systems which embed S into 
p4.  

(D~) 

(A ~) 

THEOREM III.14. - The linear system IHI embeds into p4 i f  and only i f  

el) The open conditions (P), (Q) and (R) hold. 

(fl) The following closed conditions hold: 

dim I Dil = 1, 

For a 3-connected element D e IDol (whose existence follows f rom the above 
conditions) A i. D =- (2L - ~'. xi). D. 

REMARK III.15. - As the proof will show, it is enough to check the closed conditions 
(Di), (A i) for one i. 
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PROOF. - We have already seen that these conditions are necessary. Next we shall 
show that a 3-connected element D e IDil exists if the open conditions and (Di) are 
fulfilled. Assume that no element D e IDil is 3-connected. Then by Proposition III.10 
every element D is of the form D = B + C with C = L - x~ - xj, L - xi - xj - Yk or Yk. 
But by condition (R) there are only finitely many such elements in I Dil.  

We shall now proceed in several steps. 

Step 1: h ~ (COs (H))  = 5. 
We have seen in the proof of Lemma III.7 that for a 3-connected element D the 

equality A i. D - (2L - ~ x i ) .  D implies KD = Ho and hence h~ - H ) )  = 1, re- 
sp. h i (OD (H)) = 1. Now the claim follows from the equivalence of (i) and (ii) in Lem- 
ma III.7. 

In order to prove very ampleness of IHI we want to apply the Alexander-Bauer 
Lemma to the decomposition 

H - Di + xi. 

We first have to show that I HI cuts out complete linear systems on x~ and D e I Dil.  
Recall that xi is either a F I or consists of two F 1' s meeting transversally (cf. Remark 
III.8 (iii)). Moreover H.  xi = 2 and if xi is reducible then H has degree 1 on every com- 
ponent. Hence h ~  ". The claim for xi then follows from the exact se- 
quence 

0 --. COs (Di) ---) COs (H) --. COxi (H) --. O. 

and condition (D~), i.e. h ~ (Os(Di)) = 2. The corresponding claim for D follows from the 
sequence 

0 - ,  COs(Xi) --) COs(H) --* COs(H)[D ---> O. 

Our above discussion also shows that I H[ embeds x~ as a conic (which can be irre- 
ducible or consist of two different lines). 

Step 2: If D e  ]Di[ is 3-connected then HD =KD and [HI is very ample on D. 
We have already seen the first claim. We have to see that Ko is very ample. For 

this we consider the pencils [X1 t = ]L - x~[, resp. [2:2 [ = [2L - ~,x j l .  Clearly [•1 [ 
is base point free and the same is true for IX21 as no three of the points xi lie on a line 
(by (P)). Hence 

'XI + X21 = 13L - 2 x i -  ~, .xj  l = IDi + Ks I 
J r  

is base point free. By adjunction (Di + KZ) ID =- KD and the exact sequence 

0 --~ Os (Ks) -~ COs(Ks + D~) --~ O~ (KD) -~ 0 

shows that restriction defines an isomorphism IZ1 + X21 -- IKD I. Let X be the blow- 
up of P 2 in the points xj and z: S --.X the map blowing down the exceptional curves 
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Yk. The linear system 12:1 + 2:21 defines a morphism 

f =  ~ I~l+z2i : X---) P3. 

I t  is easy to understand the map f :  clearly f contracts the three  ( - 1 ) - c u r v e s  A i j  = 

= L - x i  - x j , j  ~ i .  Let  ~ ' :  X - - ~ X '  be the map which blows down the curves A i j  (this 
makes also sense i f  A ij = ( L  - x i  - x j  - Yk) + Yk where we first contract  Yk and then 
L -  x ~ - x ~ -  Yk). Then X' is a smooth surface and we have a commutative dia- 
gram 

f 
X > f(X) 

X, 

where f '  maps X' isomorphically onto a smooth quadric. This shows that  cp tg.I : D --~ 
--~ P 8 is the composition of the blowing down maps z:  S o X a n d  ~' :  X - - ~ X '  = P 1 • P 1 

followed by an embedding of X'. Now D.  Yk = 1, hence z I D can only fail to be an iso- 
morphism if D contains Yk. But this is impossible if D is 3-connected. Similarly 
D . A i j  = 1 and D cannot contain a component of A i j .  Hence we are done in this 

case. 
I t  remains to t rea t  the case when D is not 3-connected. 

S t e p  3: I f D  is not 3-connected, then D = B + (L - xi - xj), H B  = K B  and IHI restr icts  

onto Ig,I. 
We have already seen that  h ~ (COs(H)) = 5 and hence h ~ (COD (KD - H ) )  = 1. As usu- 

al a non-zero section a defines a decomposition D = Y + Z. Our first claim is that  Z is 
different from 0. In fact if Z = 0 then KD - H would be trivial on D. On the other  hand 
D is not 3-connected, thus it splits as D = A + B with A as in Proposition III.10, in 
particular p ( A )  = 0, .4. B = 2. Then K D .  A = 0 contradicting H . A  > 0 which follows 
from (P). Thus Z is different from 0 and since the section a defines a good section a '  of 
H ~ ( O y ( K y  - H ) )  it follows that  2p(B) - 2/> H .  Y, and hence p(Y) i> 3, Y. Z ~< 2. Then 

Proposition III.10 applies and Z = Yk or L - x i  - x j  - Yk or L - x~ - x j .  I f  Z = Yk or 
L - xi  - x j  - Yk then ( K y  - H ) .  Y = - 1, a contradiction. Hence Z = L - x i  - x j  and 
HIy= Ky. We next claim that  B is 2-connected. Assume we have a decomposition 

B = B1 + B2 with B1. B2 ~< 1. Then (B1 + B 2 ) . ( L  - x i  - x j )  = 2, hence we can assume 
that  B1 . ( L  - x i  - x j )  ~< 1. But  then B1 . (B2 + L - x~ - x j )  ~< 2 contradicting Proposi- 
tion III.10. This shows that  hl(COB(K~))  = 1 and h ~  = 3. The claim then fol- 

lows from the exact sequence 

O ~ O s ( L  - x j  ) ---> � 9  ---~ O B ( H )  --~ O . 

S t e p  4: IHI embeds D. 
Our first claim is that  I HI embeds B as a plane quartic. Since B - Yk is not effec- 

tive by condition (P) and B .  Yk = 1 it follows that  the curve B is mapped isomorphical- 
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ty onto its image under the blowing down map Jr: S - . X .  On X 

B - 5L - 2xi - xj - 2xk - 2xl, KB -- (2L -- xi -- Xk -- Xt)IB. 

Thus I K~ I is induced by a standard Cremona transformation centered at xj, xk and xt. 
Again by (P) it follows that B - Aik for k ~ i and B - Akl for k, l ~ i are not effective. 
Since B. A ik = B. A kz = 1 it follows that B is mapped isomorphically onto a plane 
quartic. 

It follows from condition (R) that I H[ embeds A ij as a plane conic Q. The planes 
containing B and Q intersect in a line and span a P 3 . The line of intersection cannot be 
a component of Q since, by taking residual intersection with hyperplanes containing 
B, this would contradict h ~ (Os (xi - Yk)) = 1, resp. h ~ (Os (L - xj - Yk)) = 1. Hence the 
schematic intersection of the embedded quartic B and the conic Q has length at most 
2. Let D' be the schematic image of D. Then OD, is contained in the direct image of (90. 
But the former has colength ~< 2 in OQ | OB, the latter has colength 2, thus 
D = D'. �9 

REMARK III.16. - We have already remarked that conditions (P) and (Q) lead to 
finitely many open conditions. Going through the proof of Proposition III.10 one sees 
that it is sufficient to check that no decomposition A + B = D e IDa[ exists where A 
(or B) contradicts one of the following conditions below: here A and A' are always 
disjoint subsets of {1, ..., 4} whereas A" is a subset of {5, ..., 16}. We set 5~ = 1 
(resp. 0) ff i ~ A (resp. i ~ A). Similarly we define 5i~,. Moreover d ~ = 1 for at most 
one m e  {5, ..., 16} and 5 ~ = 0  otherwise. If d ~ =  1 then m ~ A " .  

(0) I x j - x k l = O ( j ~ k ) ,  l y k - y t l = O ( k ~ l ) ,  l y k - x j ] = O ,  I x j - y k - y ~ [ = O .  

(1) I L -  E x j -  E ykl =0 f o r 2 1 A l + t A ' l ~ > 6  
j e A  k e A "  

(2) 2 L -  E x j -  E yk] = 0  f o r 2 1 A l + ] A ' ] ~ > 1 2 .  
j e A  k e A "  

(3) 3 L - 2 x j -  E x k -  E Yt =0 for 21AI + [A"[ I> 14, 
k ~A  l eA"  

3L - E x j -  E yk l =0 f o r 2 1 A l + [ A " l  ~>16. 
j e A  k e A "  

(4) 1 4 L - ( 3 - d ~ - 2 d i ~ , ) x i -  • x j - 2  E x k -  E yt-c~,~y,~ I = 0  
j ~ i  k ~ i  l~A" 
j ~A k ~t (A U A') 

for !A I + IA'I +di~ + 2 5 i ~ , - d m < ~ 5 ,  2]A'  I + [ A " l - 2 0 ~ - 4 5 ~ , + d ~ < 0 ,  

2iA I + 4 1 A ' I  + IA"[<~11. 
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(5) 15L- (8- 5~)x i -  ~ ~ - 2  ~ xk- ~ Yt-5~Y~ =0 
j ~ i  k ~ i  t~A" 
j e A  k ~  

for i/11 + 5 ~ - ( ~ < 2 ,  I A " l - 2 5 i ~ + S m - - < 0 ,  

(6) I D ~ - x j l = O  ( i ~ j ) ,  I D ~ - 2 x i l = O ,  I D ~ - x i - Y k l = O ,  

21 t + t "l 

I D i -  2yk] = ~, 

I D i - y k - Y z l  =0 ( k ~ l ) .  

Now we want to show how Theorem III.14 can be used to prove the existence of 
the special surfaces of degree 8 by explicitly constructing a very ample linear system 
IHI. Let x~, ..., x4 be points in general position in F 2, and blow them up. The linear 

system 5 L -  x l -  2 ~ xj is 10-dimensional, its elements have arithmetic genus 3. 
j>~2 

Let A 1 be a general (and hence smooth) element of the 10-dimensional linear system 

5 L ' -  2 ~ ~2 F2 Note that the of LI in F 2 is the ira- Xl xj o n  (Xl, X4). image o g ~ ~ 1 
j>~2 

age of the canonical model of d ~ under a standard Cremona transformation. The linear 
! ! 

system 12L - ~ x j l  cuts out a g~ on LI1, since H I ( F  2, (2~2(- 3L + ~ xj)) = 0. 
l j I j>~2 

The linear system 

j~>2 / j~>2 

on A 1 has degree 12 and dimension 9. The linear system 4L - 2xl - ~ xj on ~=~ 
j>~2 

cuts out a subsystem of codimension 1 in I L01. We consider the variety 

:---- {(z~ 1, E Yk); d 1 smooth, ~ Yk e I Lo I }- 

g~ is rational of dimension 19. 

THEOREM III.17. - There is a non-empty open set ~t of the rational variety g~ for 
which the linear system IH I embeds S into P 4. 

PROOF. - We have to show that for a general choice of A 1 and ~ Yk e I Lo I the linear 
system IHI embeds S into F 4. We shall first treat the closed conditions. Since A1 is 
smooth we can identify it with its strict transform on S. Consider the exact 
sequence 

O --> Os(L - 2xl ) ---) (?s(D1) ---> C)~I (D1) ---) O . 

Since ~ y k  e I Lol we have 

(35) 6 L - 3 X l - 2 E x j - ~ y k = g ~  on ~1 
j~>2 

and hence h ~ ( (~s (D1))  = h ~ (�9 (D1) )  = 2. This is condition (D1). Condition (A1) holds 
by construction. 
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In order to t reat  the open conditions we will first consider special points in g~ 
which give us all open conditions but two. These we will then t reat  afterwards. The 

l i n e a r s y s t e m [ 4 L - 2 X l - ~ x j l i s f r e e o n F 2 .  Henceagenerale lementFissmooth  
j>~2 

and intersects/11 transversally in 12 points Yk which neither lie on an exceptional line, 
nor on a line of the form A kz = L - xk - xt. Moreover a general element F is irre- 
ducible. This follows since F 2 = 9 and I Ft is not composed of a pencil, since the class of 
F is not divisible by 3 on ~2. Le t  F' be the smooth transform of r on S. Since r is 
smooth, F' is isomorphic to F. 

- I D11 = F'  + 2 L  - E Xj I" CLAIM. 
3 ! ] 

This follows immediately since D1-- F '  + / 2 L  - ~xl- } and d imlDl l  = 1 =  
= d im(F '  + 12L - ~ x j t ) .  

\ j / 

The only curves contained in an element of ID11 are F', conics C - 2L - ~ xj and 
lines Akl = L - xk - xz. The latter only happens for finitely many elements of I Dl l .  
This shows immediately that  conditions (Q) and (R) are fulfilled with the possible ex- 
ception that  dim I H - A lj I ~> 2. To exclude this we consider w.l.o.g, the case j = 2. 
Note that  H-./112--/12 + X 1 - -F '  § + Xl. Since F' is smooth of genus 2 and 
F '  . (de + xl) = 1 it follows that  h~ (d2 + xi)) ~< 1. The claim now follows from the 
exact sequence 

0 ---> O s ( A 3 4  + X l )  ---> Os(z ]  2 -~- X l )  ---> (0F, (A 2 ~- X l )  ---> 0 

together with the fact that  h ~ (Os (A34 + xi)) = 1. I t  remains to consider (P). The curve 
F' contradicts condition (P) since p(F')= 2, H.  F ' =  4. Similarly the decomposition 
(F' + Aij) + Akt contradicts (P) if k, 1 ~ 1. On the other hand the above construction 
shows that  for one (and hence the general) pair (/1 k, ~ Yk) all open conditions given by 
(P) are fulfilled for a decomposition D = A + B of an element in I D1 1 with the possible 
exception of I F' I ~ 0 or I D1 - A kz ] ~ 0 for k, l ~ 1. The first case is easy, we can sim- 
ply take an element ~ Yk ~ I Lol which is not in the codimension 1 linear subsystem 

i 

given by 1 4 L -  2x1-  ~. Xj on ~2. Next we assume that  there is an element 
I j~>2 

A ~ In1 -A~z I where k, I ~ 1. Then A .A  1 = 2. Since /1 1 cannot be a component of A 
this means that  A intersects A 1 in two points Qo, Q1. I f j  is the remaining element of 
the set { 1, ..., 4 } then L - xi - xj =- Qo + Q1 on/11. The linear system I L I cuts out a 
g[ on A 1 and is hence complete. Hence Qo + Q1 is the intersection of A l j  with A ~. In 
particular A lj intersects A in at least 2 points, namely Qo and Q~. Since A. A ~j = 0 this 
implies that  A ~j is a component of A (we can assume that  A 13 is irreducible). Hence 
A = A '  + A ~j with A '  ~ I D~ - A k~ - A lj I = i F'  1 and we are reduced to the previous 
case. �9 

REMARKS III.18. - (i) Originally OKONEK[02] cosntructed surfaces of degree 8 
and sectional genus 6 with the help of reflexive sheaves. 

(ii) According to [DES] the rational surfaces of degree 8 with z = 6 arise as the 
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locus where a general morphism ~: ~9~ (3)--* r @ 4(9 drops rank by 1. The space of 
such maps has dimension 80. Taking the obvious group actions into account we find 
that the moduli space has dimension 43 = 19 + dimAut F 4 . Moreover this description 
shows that the moduli space is irreducible and unirational. 

(iii) These surfaces are in (3, 4)-liaison with the Veronese surface [02]. Count- 
ing parameters one finds again that they depend on 19 parameters (modulo 
Aut(p4)). 

(iv) It was pointed out to us by K. RANESTAD that ELLINGSRUD and PESKINE 
(unpublished) also suggested a construction of these surfaces via linear systems. They 
start with a smooth quartic//4 = {f4 = 0} and a smooth quintic K5 = {f5 = 0} touch- 
ing in 4 points x~, ..., x4. Let Y5 . . . .  , Y16 be the remaining points of intersection. 
Let 

= 

Then we have an exact sequence 

0 o. 

Twisting this by (9(6) and taking global section gives 

0 --~ F(~' (2)) --* F((gz(H)) ---> F(OK~ (1)) --~ 0. 

Since h~ ' (2)) = 2 and h~ = 3 this shows h~169 = 5. One can easily see 
that I zJil ~ 0 and dim lDil >/1 in this construction: counting parameters one shows 
that Ai = {lf4 +f5 = 0} for some suitable linear form and that there is at least a 1-di- 
mensional family of curves in I Dil which are of the form D = { q f4 + lf5 } where q is of 
degree 2 and l is a linear form. This construction, too, depends on 19 parame- 
ters. 

Finally we want to discuss the moduli space of smooth special surfaces of degree 8 
in p4 (modulo Aut(F4)). Recall the set :~ consisting of pairs (zJ l ,~yk)  where 
z]l e I H -  ( L -  Xl)l is smooth and ~Yk E IL01. We have proved in Theorem III.17 
that for a general pair (zll, ~ Yk) the linear system I HI embeds S into p4. Indeed in 
this way we obtain the general smooth surface of degree 8 in p 4 .  The surface X = ~2, 
i.e. F 2 blown up in xl, ..., x4 is the del Pezzo surface of degree 5. It is well known that 
AutX -- $5 the symmetric group in 5let ters  (AutX acts transitively on the 5 maximal 
sets of disjoint rational curves on X, see [M, Chapter IV]). 

PROPOSITION III.19. - For general S the only lines contained in S are the 
yk's. 

PROOF. - Let l be a line on S. The statement is clear if I is z-exceptional as the x~ 
are mapped to conics and since we can assume that there are no infinitely near points. 
If I is not skew to the plane spanned by x~ then I is contained in a reducible member of 
I Dil.  But for general choice there is no decomposition A + B with A (or B) a line. 
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Hence we can assume that  1. x~ = 0 for i = 1, ..., 4 and l. Yk ~< 1 for all k. Thus 
1 - aL - ~, Yk with a ~< 2. Since H .  1 = 1 we have ei ther a = 1 and I zi] = 5 or a = 2 

k ~ A  

and IA I = 11. In the first case 5 of the Yk are collinear. But  then it follows with the 
monodromy argument  of [ACGH, p. 111] tha t  all the yk's are collinear which is absurd. 
In the same way the case a = 2 would imply that  all the yk's are on a conic which also 

contradicts ve ry  ampleness of I H I .  

THEOREM III.20. - The moduli  space of polarized rational surfaces (S, H) where 
t i l l  embeds S into F4 as a surface of degree 8, speciality 1 and sectional genus 6 is bi- 
rationally equivalent to g~/Ss. 

PROOF. - Le t  ~? be the open set of Y[~ where IHI embeds S into ]?4 and where all the 

~'s are smooth. Le t  (A 1, ~ Yk) and (A ~, ~] y ; )  be two elements which give rise to sur- 
faces S, S '  r ]?4 for which a projective transformation ~: S - o  S '  exists. Since obvious- 

ly ~ carries lines to lines, it follows from Proposition III.19 that  t7 is induced by an au- 
tomorphism g: X - - , X  carrying the set {Yk} to {y~}. Conversely, the group $5 = 
= Aut(X) acts on ~ as follows. Le t  S correspond to (A 2, ~] Yk) and let g e Aut(X): then, 
since 6L - 2 ~] xi = - 2Kx which is invariant under  the action of $5, we set { y~ } = 
= g{ Yk}, H '  = - 2Kx - ~, y ; .  Then H '  embeds S '  = X(y~ ,  ..., Y~2) and we set A ~ to be 

the unique Curve in I H '  - L + Y~I. [] 

I V .  - F u r t h e r  o u t l o o k .  

In this section we want to discuss how this method can possibly be applied to other  
surfaces. Fo r  smooth surfaces of degree ~< 8 it is r a the r  s traightforward to give a de- 
composition H - C + D which allows to apply the Alexander-Bauer lemma. This was 
done in [B], [CF] and Section I I I  of this article. In degree 9 there  is one non-special 
surface, which was t rea ted  in Section II  of this article, and a special surface with sec- 
tional genus z = 7 which was found by ALEXANDER [A2]. Here  S is F 2 blown up in 15 

6 9 15 

points x~, ..., x~5 and H = 9L - 3 ~ xi - 2 ~ xj - ~ xk. As pointed out by Alexan- 
i = l  3 ' = 7  k = 1 0  9 

der one can take the decomposition H -- C + D where C - 3L - ~ xi and D - H - C. 
~=1 

Then C is a plane cubic and I DI is a pencil of canonical curves of genus 4. 
Rational surfaces of degree 10 were t rea ted  by RANESTAD [R1], [R2], POPESCU and 

RANESTAD [PR] and ALEXANDER [ A 2 ] .  There  is one surface with z = 8. In this case S 
lo 

is F 2 blown up in 13 points and H ---- 14L - 6 x  1 - 4 ~ xi - 2xll - x12 - x13. Following 
10 i = 213 

A L E X A N D E R  [ A 2 ]  the curve C - -  7L - 3xl - 2 ~ xi - ~, xj is a plane quartic and the 
i = 2  j = l l  

residual pencil ID[ has p(D) = 3 and degree 6. For  sectional genus z = 9 there  are 
12 18 

two possibilities. The first is F ~ blown in 18 points with H = 8L - 2  ~ x i -  ~, xj. 
16 i = 1 j = 13 

One the can take C - 4L - ~, xi which becomes a plane quartic. For  the residual in- 
i = 1  



254 F. CATANESE - K. HULEK: Rat ional  surfaces, etc. 

tersection [D] one finds p(D)  = 3, H .  D = 6. (For  more details of this geometrically 
interesting situation see [PR, Proposition 2.2]). The second surface with z = 9 is more 

4 
difficult. Again we have P 2 blown up in 18 points, but  this time H = 9L - 3 ~ x~ - 

1I  18 i = 1 

- 2 ~, xj - ~ xk. Clearly S contains plane curves, e.g. the conics xj.  But then for the 
j = 5  k =  12 

residual pencil [D[ one has p(D) = 7, H .  D = 9 and this case seems difficult to handle. 
Numericallyuit would be possible to have a decomposition H - C + D with C -- 3L - 

- ~ x~ - ~ xj - xle which would be a plane cubic. In this case p(D) = 4, H .  D = 6. I t  
i=1 j=5 

might be interesting to check whether  one can actually construct surfaces with such a 

decomposition. 
Of course, one can t ry  and a t tempt  to approach the problem of finding suitable de- 

compositions H = C + D more systematically. Le t  us assume S is a rational surface 
and H - C + D a decomposition to which the Alexander-Bauer lemma can be applied. 
Le t  h = h 1 (Os(H)) be the speciality of S. Since C is mapped to a plane curve the exact 
sequence 

O --> Os(D) --> Os(H) --> Oc(H) --~ O 

is exact on global sections, and hence 

h = h i ( D )  + 5(C) 

where h i ( D )  = h 1 (Os (D)) and ~ (C) = h I (Oc (H)).  The analogous sequence for D and 

the assumption that  ]H] restricts to a complete system on the curves D ' e  ]D] 
gives 

h = h 1 (C) + (~(D) 

where hi (C)  and 5(D) are defined similarly. In general if C is a curve of genus 

( d - 1 ) ( d - 2 ) / 2  and r is a line bundle of degree d it is difficult to show that  
(C, coc (H)) is a plane curve. Hence it is natural  to assume H .  C ~< 4. In order  to be able 
to control the linear system [HI on the curves D '  e ]D[ one is normally forced to as- 
sume that  H .  D i> 2p(D) - 2 and g]D = K D in case of equality. Hence 5(D) = 0 if 
H . D  > 2 p ( D ) -  2 and 5 ( D ) =  1 otherwise. Since IH] is complete on D we have 
h ~ (r (H)) ~< 4. Now using our assumption that  H .  D >i 2p(D) - 2 and Riemann-Roch 

on D we find 

and from this 

2p(D) - 2 <~ H . D  <<. p(D) + 3 + 6(D) 

p(D) <<. 5 + 5(D) .  

I f  5(D) = 0 then p(D) ~< 5. I f  5(D) = 1 then HID = K D  and h~ =p(D) ,  i.e. 
p(D) ~< 4 in this case. But  now 

d = H . C +  H . D  <~p(D) + 7 + 5(D).  
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This shows that  one can find such a decomposition only if the degree d ~< 12. The case 
d = 12 can only occur for H .  C = 4. 

Finally we want to discuss the case d = 11. In his thesis POPESCU [P] gave three 
examples of rational surfaces of degree 11. In each case it is F 2 blown up in 20 points. 
The linear systems are as follows: 

4 14 20 

(35) H = 10L - 4xl - 3 ~ xi - 2 ~ xj -- Z Xk, 
i = 2  j = 5  k = 1 5  

7 13 20 

(36) H - 1 1 L - 5 x l - 3 ~ x i - 2 ~ _ , x j -  ~ xk, 
i = 2  j = 8  k = 1 4  

8 11 20 

(37) H = 1 3 L - g x l - 4 ~ x i - 2 ~ x j -  ~ xk. 
i = 2  j = 9  k = 1 2  

In each of these cases S contains a plane quintic. The residual intersection gives a 
pencil of rational (cases (35) and (36)), resp. elliptic (case (37)) sextics. Since the linear 
system IHI is not complete on the curves of this linear system, one cannot immediate- 
ly apply the Alexander-Bauer lemma to this decomposition. One can ask whether 
there are decompositions fulfilling the conditions given above. A candidate in case 

4 14 17 

(35) is given by C = 4 L - x l -  ~ x ~ -  ~ x j -  ~ xk and D - H - C .  We do not 
i = 2  j = 5  k = 1 5  

know whether surfaces with such a decomposition actually occur. In the other cases  
one can show that  no such decompositions exist. 
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