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FIBRED SURFACES, VARIETIES ISOGENOUS TO A PRODUCT
AND RELATED MODULI SPACES

By FABRIZIO CATANESE

This article is dedicated to the memory of Fernando Serrano

Abstract. A fibration of an algebraic surface S over a curve B, with fibres of genus at least 2,
has constant moduli iff it is birational to the quotient of a product of curves by the action of a
finite group G. A variety isogenous to a (higher) product is the quotient of a product of curves
of genus at least 2 by the free action of a finite group. Theorem B gives a characterization of
surfaces isogenous to a higher product in terms of the fundamental group and of the Euler number.
Theorem C classifies the groups thus occurring and shows that, after fixing the group and the Euler
number, one obtains an irreducible moduli space. The result of Theorem B is extended to higher
dimension in Theorem G, thus generalizing (cf. also Theorem H) results of Jost-Yau and Mok
concerning varieties whose universal cover is a polydisk. Theorem A shows that fibrations where
the fibre genus and the genus of the base B are at least 2 are invariants of the oriented differentiable
structure. The main Theorems D and E characterize surfaces carrying constant moduli fibrations as
surfaces having a Zariski open set satisfying certain topological conditions (e.g., having the right
Euler number, the right fundamental group and the right fundamental group at infinity).

0. Introduction. The study of fibrations of a smooth algebraic surface S
over a smooth algebraic curve B lies at the heart of the classification theory
and of the geometry of algebraic surfaces. Our main results in this paper (Theo-
rems D, E) concern a topological characterization of surfaces admitting a constant
moduli fibration. These results are intimately related to a series of variations on
the same theme (also in higher dimension), and to a circle of allied techniques
which we present in the course of the paper. The first new result we have in
this direction, and which is presented in Section 2 after we recall several known
results (some classical, some quite recent), is the following theorem on the dif-
ferentiable invariance of the genus of fibres (cf. Theorem 2.9 for a more precise
statement).

THEOREM A. Let f : S ! B be a fibration of the surface S over a curve B of
genus b � 2, and with fibre F of genus g > 1. Assume that S0 is another smooth
compact Kähler surface which is orientedly diffeomorphic to S. Then the subspace
of H1(S0, C ) corresponding to f �(H1(B, C )) determines a fibration f 0: S0 ! B0 with
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2 FABRIZIO CATANESE

the same invariants as f (namely, the base curve B0 has genus b, and the fibre genus
is equal to g).

The result above, whose proof uses the results of Seiberg Witten theory, was
conjectured in [Cat5], of which the present paper is in some sense a continuation.
In fact, as in that paper one of the main themes was the topological characteriza-
tion of the existence of fibrations (in dimension 2 and greater), here, as already
remarked, the leitmotiv is the topological characterization of constant moduli fi-
brations. Recall that f : S ! B is said to be a constant moduli fibration if all
the smooth fibres are isomorphic, and that in this case S is bimeromorphic to a
quotient C1 � C2=G of a product of curves by the action of a finite group G.
The first case which deserves attention is the one where the group G acts freely,
and we say then that S is strongly isogenous to a product. More generally, we
shall say that a complex manifold X is isogenous to a higher product if it ad-
mits a finite unramified covering which is isomorphic to a product of curves of
respective genera at least 2. Indeed, as we see in Proposition 3.11, this weaker
property is equivalent to the stronger property of having a Galois such cover
(thus the notions of a variety isogenous, resp. strongly isogenous to a product are
equivalent). Our second result in the case of surfaces is (see Theorems 3.4, 4.13,
4.14.)

THEOREM B. A surface S is isogenous to a higher product if and only if �1(S)
admits a finite index subgroup Γ isomorphic to a direct product Πg1 � Πg2 of
fundamental groups of curves of genera g1, g2 > 1, and moreover, d denoting the
index of Γ, either

(e) e(S) = 4(g1�1)(g2�1)
d or

(k) S is minimal and K2
S = 8(g1�1)(g2�1)

d or

(c) S is minimal and �(OS) = (g1�1)(g2�1)
d .

Setting Π = Πg1 � Πg2 , one can indeed relax the hypothesis Γ �= Π to the
weaker assumption that Γ=Γ3

�= Π=Π3, where, for a group Γ, Γ3 is the third
group in the nilpotent series (i.e., Γ2 is the commutator subgroup [Γ, Γ] and Γ3 =
[Γ, Γ2]).

Moreover, let Π be the fundamental group of a surface S isogenous to a product
as above. Then the moduli spaceM(Π, e(S)) of the surfaces with fundamental group
isomorphic to Π, and e.g. Euler number = e(S) = 4(g1�1)(g2�1)=d is irreducible.

In fact the result can be made stronger, as to classify the fundamental groups
Π which occur. For instance we have (see Theorem 4.13):
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THEOREM C. Let Π be a group such that:

(i) there is an exact sequence

1 ! Πg1 �Πg2 ! Π ! G ! 1,

where G is a finite group of order d;

(b) the individual factors Πg1 , Πg2 are normal in Π;

(c) the induced quotients

1 ! Πgi ! Π(i) ! G ! 1

are such that

(c1) there is no element of Π mapping in each Π(i) to an element of finite order,

(c0) by the above exact sequences G embeds in Out(Πgi).

Then the moduli space of the surfaces S with �1(S) �= Π, and with Euler number
e(S) = 4(g1�1)(g2�1)

d is nonempty and irreducible.

Theorems B and C are a sharpening in two directions of two earlier theorems
of Jost and Yau [J-Y 1,2] asserting that if S0 is homotopically equivalent to
a surface S whose universal cover is the product H2 of two discs, then S0 is
also a quotient H2=Π (Π = �1(S)). Secondly, Jost and Yau show that if Π acts
irreducibly (i.e., S is not isogenous to a product, in our terminology), then S0 is
either biholomorphic or antibiholomorphic to S (strong rigidity).

The assumption of Jost and Yau on S0 is clearly that �1(S0) = �1(S), and
moreover that �j(S0) = 0 for j � 2. The advantage of Theorem B is thus to
involve the Euler number, which is easy to compute, unlike the higher homotopy
groups. Also, we complement the strong rigidity result by showing weak rigidity
(irreducibility of the moduli space) and an existence result in the reducible case:
here we rely on the properties of Teichmüller spaces, and more precisely on a
variant of the solution of the Nielsen realization problem (cf. Section 4) given in
[Tro]. Moreover, we show indeed (cf. Theorem 7.7 and Remark 7.8) that we can
get the first result of Jost and Yau also in the irreducible case with the weaker
assumptions �1(S0) = �1(S), and e(S) = e(S0) (or, S0 is minimal and K2

S0 = K2
S). Of

course, one could ask whether the result of Theorem B could be further improved,
and we show in Section 1 that this is not the case. Namely, we show that only
an assumption on the fundamental group cannot be sufficient. Because for any
surface X (Corollary 1.3 considers for simplicity the case where X is minimal and
nonruled) there exists a finite (ramified) covering S ! X, such that S is of general
type with KS very ample, �1(S) �= �1(X), but S is not birationally equivalent to
X. We can obtain such a surface S with negative index, but it is not clear whether
it is possible to achieve positive index.
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The above remark (based on a simple construction used by Bogomolov) has
some implications on the moduli spaces of surfaces of general type. For those,
the main numerical invariants are the holomorphic Euler Poincaré characteristic
�(OS) and the self intersection K2 = K2

S of the canonical divisor KS of the minimal
model S (Noether’s formula gives, for the Euler number, e(S) = 12�(OS)� K2

S).
Given a pair of invariants x, y � 1 the surfaces of general type S with those
invariants (i.e. �(OS) = x, K2

S = y) are parametrized by a moduli space M(x, y)
which is a quasiprojective variety.

The following (cf. [Miy], [Yau1,2])

Noether’s inequality: K2
S � 2pg � 4, whence K2

S � 2�� 6 and
Bogomolov-Miyaoka-Yau inequality: K2

S � 9�

impose essentially the only restrictions on x, y. It is known (cf. [Cat6], [Ch]) that
the number i(x, y) of irreducible components ofM(x, y) has a limsup which grows
exponentially (y

1
4 y � lim sup i(x, y) � C ycy2

), but most of the examples are based
on the case of surfaces which are simply connected.

There are of course two parts into which the world of surfaces of general
type can be divided: based (instead of upon political faith) on the property of
the fundamental group being either finite or infinite. Proposition 6.11 shows that
if we take two families X ,Y of surfaces, parametrized by smooth respective
bases B,B0, and with surjective Kodaira Spencer map, then by the Bogomolov
construction we get also a family S parametrized by a smooth base T , and with
surjective Kodaira Spencer map.

Whence, from each irreducible component of the moduli space of 1-connected
surfaces Y , we produce an irreducible component of the moduli space of surfaces
S with �1(S) �= �1(X) (here, we can take e.g. X isogenous to a product). Therefore,
the “geographical” meaning of Theorem B is that �1(S) determines the geometry
only if we restrict ourselves to move on certain lines, x = constant, y = constant,or
y� 12x = constant. It would be interesting to show that being on the watershed
line (y = 8x) and having fundamental group of a surface isogenous to a product
does not imply that S is isogenous to a product (in a similar vein Moishezon and
Teicher in [M-T] have shown the existence of simply connected surfaces on the
watershed line, contrary to a previous expectation).

We find that the Bogomolov construction deserves to be better analyzed. For
instance, assume that we “marry” two 1- connected (orientedly) homeomorphic
surfaces Y , Y 0 with such an X (having infinite fundamental group): can we have
an example where Y , Y 0 are not diffeomorphic but the resulting surfaces S, S0

are diffeomorphic? Moreover (cf. [Cat1,2], [Man1,2]) assume that we consider
(1-connected) surfaces Y , Y 0 for which the moduli space has several connected
components, and let us take X isogenous to a product. Then, as observed, we
produce new irreducible components of the moduli space for S, S0: are these also
connected components?
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Leaving aside speculations and going to the technique, our method is founded
on the classical Hodge Theory rather than on Jost and Yau’s method of harmonic
maps. In this way the algebraic geometric methods come into play (offering easier
proofs and more precise results), and the advantage of doing so is particularly
evident in the noncompact case, where we can make full use of the assumption
of quasiprojectivity.

One of the basic tools in the characterization of the more general case of
surfaces carrying a constant moduli fibration are two theorems of I. Bauer [Ba]
and one of D. Arapura [Ara]. The first gives a bijection between the maps of a
quasiprojective manifold U = X�D to a quasiprojective curve C (with first Betti
number b1 � 3) and the real maximal isotropic subspaces V of H1(U, R ), the
second one (obtained independently by Arapura but under the weaker assumption
b1 � 2) generalizes results of several authors in the compact case and asserts the
existence of such maps under the assumption on �1(U) of admitting a surjection
onto a nonabelian free group.

With this in hand, we get our two main results on the “topological” charac-
terization of constant moduli fibrations (cf. Theorems 5.4, 5.7 for more complete
statements). We write “topological” with quotation marks because, as we show
in Remark 2.5, the existence of these fibrations is not a topological property of a
surface S (actually the property is not even invariant by deformation). But indeed
this property is a combined topological property, based on the interplay of the
Hausdorff topology and the analytic Zariski topology.

THEOREM D. Let U0 = S0 � D be a quasiprojective surface, and assume that
U0 is proper homotopically equivalent to the good locus Y0 of a constant moduli
fibration f : S ! B having fibre genus g � 2 and base genus b � 2. Then S0 carries
a constant moduli fibration with the same invariants as S. Moreover, the birational
classes of all such surfaces S0 form an irreducible subvariety of the moduli space.

The previous result is clearly in the spirit of the one by Jost-Yau, whereas the next
Theorem (E) is a generalization of Theorem B. Except that (in the proof only,
as pointed out by L. Kaup) we have to replace the Euler number by the Euler
number in Borel Moore homology (this is the Euler number of the Alexandroff
compactification, diminished by 1), and moreover we have also to consider the
fundamental group at infinity (this is a disjoint union of groups, one for each end
of U).

THEOREM E. Let U0 = S0�D be a quasiprojective surface. Assume that �1(U0) �=
�1(Y0), where Y0 is the good locus of a constant moduli fibration f : S ! B having
fibre genus g � 2 and base genus b � 2, and that �11 (U0) �= �11 (Y0), compatibly
with the natural homomorphism �11 ! �1. Assume further that eBM(U0) = eBM(Y0)
(or, equivalently,e(U0) = e(Y0)). Then S0 also carries a constant moduli fibration
which, in case S0 is minimal, is a deformation of the one of S.
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In Section 3 we proceed to a detailed classification of the surfaces isogenous
to a product, which allows a precise description of their fundamental group and
of their moduli spaces. Surfaces isogenous to a product are divided into 3 major
types:

(M) Surfaces of mixed type, quotient of a product C � C by a group of
automorphisms exchanging the two factors.

(D) Surfaces of double type for which the image of the Albanese map is
either a product of curves, or a curve, or a point (in this last class, which we
label by D0, are contained some surfaces constructed by Beauville, and which
turn out, by Theorem C, to be strongly rigid: cf. 3.22).

(GH) Generalized Hyperelliptic surfaces, quotients C1 � C2=G such that
C2=G �= P

1 , while G acts freely on C1.

This last case, generalizing the case of the classical hyperelliptic surfaces (where
C1, C2 have genus 1) which play such a central role in the Enriques classifica-
tion of algebraic surfaces, admits another very easy characterization (cf. Theo-
rem 3.18).

THEOREM F. Let S be a surface with index 0, e(S) > 0, irregularity q � 2 and
Albanese map a pencil. S is a Generalized Hyperelliptic surface if and only if the
genus g of the Albanese fibres satisfies g = 1 + �(S)

(q�1) .

Now, an entirely similar classification for varieties isogenous to a product can
be given also in higher dimension, but we prefer to stick to the 2-dimensional
case just to limit ourselves to giving the flavor of the arguments used and to
avoid a more complicated algebraic apparatus in the mixed case.

On the other hand, one can extend many of the above results from the surface
case to higher dimension (here, to avoid touching upon the theory of minimal
models, we restrict ourselves to imposing the natural condition that K should
be ample). This was first done by Mok [Mok1,2] who extended the results of
Jost and Yau to quotients of polydiscs, again under an assumption of homotopy
equivalence. In Section 7 we show that one can relax these assumptions also in
higher dimension.

THEOREM G. Let X be a compact complex manifold of dimension n with ample
canonical bundle and assume that:

(i) Γ = �1(X) admits a finite index subgroup Γ0 isomorphic to Πg1 � Πg2 �
� � � �Πgn , with g1, : : : , gn > 1;

(ii) the image of H2n(Γ0,Z) in H2n(X0,Z) is nonzero;

(k) Kn
X = n!2n(g1�1)(g2�1):::(gn�1)

d .

Then X is isogenous to a higher product, and the moduli space of such varieties is
irreducible (weak rigidity).
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THEOREM H. Let X be a compact manifold of dimension n with ample canonical
bundle, and assume that:

(i0) �1(X) �= Γ, where Γ is a cocompact torsion free subgroup of Aut (Hn)
(i.e., Γ �= �1(W 0), where Hn=Γ = W 0 is a compact manifold);

(ii0) H2n(Γ,Z) ! H2n(X,Z) is an isomorphism; or

(ii00) H2n(Γ,Z) ! H2n(X,Z) is nonzero and Kn
X = Kn

W0 .

Then X is also biholomorphic to a quotient W = Hn=Γ.

It would be interesting to consider the higher dimensional topological char-
acterization of varieties bimeromorphic to a quotient of a product of curves (cf.,
however, Remark 5.5). For the time being we felt that treating here all the pos-
sible generalizations would have been too demanding for the reader (and for the
writer).

Acknowledgments. The present research was begun when the author was
visiting the M.S.R.I. in Berkeley during the special year 1995-96 on Several
Complex Variables. The results of the paper were obtained while the author
was Professore distaccato at the Accademia dei Lincei, and in the framework of
the AGE project HCM, contract ERBCHRXCT 940557. The final version was
written at the University of Göttingen. But, in retrospect, we started to think
carefully about constant moduli fibrations years ago, after some conversations
with F. Serrano, which marked a fruitful interaction between our points of view.
We would also like to thank F. Zucconi for providing an initial stimulus which
brought us to Theorem 3.18, then S. Luo for pointing out the previous work of Jost
and Yau, and especially Sidney Frankel for mentioning the convexity properties of
Teichmüller space. Finally, thanks to T. Lehmkuhl for pointing out an embarassing
error in the Göttingen preprint of October 1997, and to E. Viehweg for asking
whether one could relax an assumption in the statement of Theorem B.

Some notation:

Πg = the fundamental group of a compact complex curve C of genus g.

e(S) = the topological Euler number.

eBM(Y) = the Euler number in Borel Moore homology.

H = the unit disc in C , H = fz j jzj < 1g.

In a complex vector space V with a real structure, Ū denotes the complex con-
jugate of the subspace U.

1. Fundamental groups cannot determine. We start this section by re-
minding the reader of a consequence of the Lefschetz theorem on hyperplane
sections.
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LEMMA 1.1 Let X, Y be smooth complete algebraic surfaces: then there exists a
smooth complete surface S � X � Y, mapping finitely to both X and Y with degree
> 0, and such that �1(S) �= �1(X)� �1(Y).

Proof. Let A be (the pullback of) a very ample divisor on X, and B a
very ample divisor on Y: then A + B is very ample on X � Y , and any sur-
face S which is a general complete intersection of two divisors H, H0 in jA + Bj
is smooth and has �1(S) �= �1(X) � �1(Y), by the theorems of Bertini and
Lefschetz. The degree of S ! X equals the intersection product B2, thus we
simply have to exclude the case where Y is P

2, B is the hyperplane divi-
sor, and similarly for X. To show e.g. the finiteness of S ! X we argue as
follows:

Claim 1. For H general, H ! X has all fibres of dimension 1.

Proof. H = f(x, y) j
Pn

j=0 �j(x)�j(y) = 0g, where �0,�1, : : : ,�n are sec-
tions of H0(OX(A)), and �0,�1, : : : ,�n form a basis of H0(OY(B)). It suffices
to show that for each p in X, fH j H � fpg � Yg has codimension � 3. But
H � fpg�Y iff �j(p) = 0 for each j, thus we get a linear subspace of codimension
n + 1 � 3.

Claim 2. For H0 general, H0 does not contain any component D of a fibre
H \ (fpg � Y) of H ! X.

Proof. If H0 = f(x, y) j
Pn

j=0 �
0
j(x)�j(y) = 0g, then H0 � D iff

Pn
j=o �

0
j(p)�j(y)

� 0 on D. Thus fH0 � Dg is a linear subspace of codimension 3 unless D
is embedded as a line. Therefore we can find a H0 as desired, unless (H being
irreducible) all the fibres of H ! X are lines, which was excluded by setting
B2 > 1.

Remark 1.2. Let X, Y , S be as in the construction of Lemma 1.1. Assume X, Y
are minimal: then S is also minimal, and indeed S has a nef canonical divisor
KS, which is indeed very ample if X and Y are not ruled. Moreover, if we set
� = �(OX), �0 = �(OY), �(S) = �(OS), we have

�(S) = �B2 + �0A2 + c(A, B),

K2
S = K2

XB2 + K2
YA2 + 8c(A, B)� 4A2B2,

where

c(A, B) =
7
2

A2B2 +
3
2
f(AKX)B2 + A2(BKY)g +

1
2

(AKX)(BKY).
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Proof. Let Z = X � Y , use the Koszul sequence

0 ! OZ(� 2A� 2B) ! OZ(� A� B)2 ! OZ ! OS ! 0(*)

to calculate �(OS), and then keep in mind that

KS = (KX + 2A + KY + 2B)jS.

For instance, by a more general result of Fujita ([Fu], Thm. 11.2, p. 93) KX + 2A
is nef on X, since the pair (X, A) is not the pair (P2 ,OP2 (1)), and similarly for
(Y , B). Clearly if X, Y are not ruled then KX and KY are nef, thus KS is then very
ample.

COROLLARY 1.3. Let X be a nonruled minimal surface. Then there exists a finite
(ramified) covering S ! X of degree> 1, such that S is of general type with KS very
ample, �1(S) �= �1(X), but S is not birationally equivalent to X. We can moreover
obtain that S has negative index, i.e., K2

S � 8�(S) < 0.

Proof. Take X, Y as in Remark 1.2 but with Y simply connected, and A
sufficiently very ample. Then, in particular, K2

S � 8�(S) = B2fK2
X � 8�(X)g +

A2fK2
Y � 8�(Y)g � 4A2B2. Clearly, if the index of Y is nonpositive (there is no

problem finding such a surface), for A � 0, K2
S � 8�(S) is negative.

Remarks 1.4.
(i) Indeed (cf. [Miy2], Prop. 3) the above construction can yield a surface of

general type S with negative index and Ω1
S ample.

(ii) If X has positive (resp. zero index) we can ask whether we can also obtain
the case that S has positive index (resp. zero index): it would suffice to find a
1-connected Y with a very ample divisor B such that fK2

Y � 8�(Y)g � 4B2. (Can
one find this? Cf. [Chen1,2].)

(iii) If X is a Yau surface, i.e. K2
X = 9�(X) (by [Ya1,2] and [Miy2] then X

is a quotient X = B=Γ of the unit ball in C
2), then certainly S does not satisfy

K2
S = 9�(S). In fact, then S would also be homeomorphic to X (indeed isomorphic,

by Mostow’s rigidity [Mos]) whereas K2
S > K2

X .

2. Basic results on fibred surfaces, and differentiable invariance of the
fibre. For the benefit of the reader, we collect together a series of results which
will be used in the sequel: throughout, by a fibration, we shall mean a surjective
morphism with connected fibres between complete smooth varieties. Later on,
when our varieties will no longer be complete, but only quasiprojective, a fibration
will denote a surjective morphism with irreducible general fibre. In the case where
we have f : S ! B, with S a surface and B a curve of genus b, we shall say that f
is minimal if there is no (� 1) curve contained in a fibre, and we will denote by
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g the arithmetic genus of a(ny) fibre F. Notice that, for g � 1, f is minimal iff
KS is f -nef, i.e., KS has intersection number � 0 with each component of a fibre.
In the case g � 1 it follows then easily that the minimal model of f is unique.
F will also be called a genus b pencil of curves of genus g, and a higher genus
pencil if b > 1 (cf. [Ca4]). The oldest result is:

THEOREM (of Zeuthen-Segre) 2.1. Let f : S ! B be a genus b pencil of curves of
genus g: then we have the following inequality for the topological Euler-Poincaré
characteristic of S: e(S) � 4(g � 1)(b � 1). If g � 2, then equality holds if and
only if f is a topological fibre bundle.

THEOREM (of Arakelov) 2.2. Let f : S ! B be a minimal genus b pencil of
curves of genus g: then we have the following inequality for the self intersection of
the canonical divisor of S: K2

S � 8(g�1)(b�1). If g � 2, then equality holds only
if f has constant moduli, meaning that all the smooth fibres are isomorphic.

The above two theorems were combined nicely by Beauville [Bea2] in order to
yield a simple description, first conjectured by Castelnuovo, of the surfaces for
which holds the inequality pg � 2(q� 4) (see [Ros], [Com], [Jon]).

THEOREM (of Beauville) 2.3. Let f : S ! B be a minimal genus b pencil of
curves of genus g � 2: then �(S) � (b� 1)(g� 1), equality holding if and only if
f is a holomorphic fibre bundle.

Remarks 2.4.
(i) Let f : S ! B be a constant moduli fibration: then f is isotrivial, in the

sense that there is a Galois base change C2 ! B = C2=G such that the pullback
of f can be relatively blown down to a product projection C1 � C2 ! C2. We
recall that the pullback is here the minimal resolution of singularities of the
normalization of the fibre product S�B C2. In this situation the smooth fibres are
isomorphic to C1 and if g � 1 we have a biregular action of G on C1 � C2. We
denote by Y the quotient C1 � C2=G.

(ii) The case of a holomorphic bundle (also called etale bundle) is the one
where G acts freely on the curve C2.

(iii) The case of a quasibundle (according to the definition of Serrano this
means that every singular fibre is a multiple of a smooth curve) gives rise to the
notion of a surface isogenous to a product (cf. Section 3): this case is the one
where G acts freely on the product.

(iv) Let f : S ! B be more generally a constant moduli minimal fibration
with g � 1: then the birational map ": S ! Y = (C1 � C2)=G does not need to
be a morphism (cf. e.g. the Comessatti’s example analyzed in [C-C], pages 96–
99). We can, however, say something to characterize the case where " is not a
morphism. Let �: Z ! Y be a minimal resolution of singularities: then there
is a birational map �: S ! Z commuting with the projection onto B. Since f
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is minimal, it follows that Z ! B is not minimal. Assume E is a ( � 1) curve
contained in a fibre: then by assumption E is not �-exceptional, whence E is the
central curve, the unique curve mapping onto the curve E0 in Y , quotient of a
fibre C1 � fpg by the stabilizer Gp of p.

Let a E +
Pn

j=1 mjDj be the fibre corresponding to p, where a is the order of
Gp. Then E2 = �1 if and only if E

P
j mjDj = a. Let us analyze the singularities

of Y in the points of E0: these correspond to a fixed point (p0, p) for the action
of Gp, thus we get a cyclic subgroup H of Gp of order n. H has a canonical

generator given by the ( a
n )th power of the fixed generator of Gp which acts on

the tangent space at p by the standard primitive ath root of 1. In terms of the
standard primitive nth root � of 1, the local action on the product surface of
our generator of H is a diagonal action with eigenvalues �b, �, and according to
[B-P-V], pages 80–85, the resolution of the cyclic quotient singularity yields a
Hirzebruch-Jung string with exactly one curve D meeting E. Moreover, D meets
E transversally at only one point, and its multiplicity in the fibre equals ( a

n )q,
where 0 < q < n, and q satisfies the congruence qb � 1( mod n). Therefore, we
have that E is a (� 1) curve if and only if:

(i) the quotient of the action of Gp on C1 yields P
1 ,

(ii) the sum over the fixed points of the action of Gp on C1 givesPr
i=1 qi( a

ni
) = a.

Recall that the Hurwitz formula has to be satisfied:

2 g� 2 = �2a +
rX

i=1

(ni � 1)
�

a
ni

�
.

We can conversely see that for each choice of such numbers qi, ni satisfying
the above two equations we get a corresponding covering of P

1 . In fact, setting
qi( a

ni
) = mi, it suffices to take the covering

f(w, z) j wa =
rX

i=1

(z� zi)
mig .

For instance, when a is prime, then a = ni, thus
Pr

i=1 qi = a, and for qi = 1 we
get the genus g of a plane curve of degree a (Fermat curve).

Remark 2.5. Let f : S ! B be a constant moduli minimal fibration: then a
converse to Arakelov’s theorem does not hold, namely the equality K2

S = 8(g �
1)(b�1) does not need to hold. In fact what happens is that a small deformation of
a constant moduli fibration does not need to be again a constant moduli fibration.
The simplest example of this phenomenon is given by an isotrivial surface S
which is a resolution of Y = C1 � C2=G, with G = Z=2. We can view Y as a
singular double cover of C01 � C02 (where C0i = Ci=G), with a branch curve B
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which is a union of vertical and horizontal curves. Deforming B to a smooth
divisor in the linear system jBj (this is possible by Bertini’s theorem), we get
a deformation of S still having a map to C02 = C2=G, but which is no longer
a constant moduli fibration. As a matter of fact, in this example, if the genus
b of C02 = C2=G is at least 2, then every deformation of S carries a fibration
onto a curve of genus b, as implied by the following (cf. [Cat5], Thm. 1.10,
p. 268).

ISOTROPIC SUBSPACE THEOREM 2.6. Let X be a compact Kähler manifold.
Then the correspondence which associates, to a fibration f : X ! B, where B
is a curve of genus b � 2, the subspace f �(H1(B, C )) induces a bijection
between:

(i) isomorphism classes of fibrations f : X ! B where B is a curve of genus
b � 2 (f �= f 0 iff there is an isomorphism  such that  f = f 0), and

(ii) 2b-dimensional subspaces V which can be written as U � Ū, where U is a
maximal isotropic subspace for the bilinear map H1(X, C )�H1(X, C ) ! H2(X, C )
given by cup product.

Remarks 2.7.
(a) Of course one also obtains another bijection by associating to f the sub-

space f �(H1(B, R )) of H1(X, R ) (respectively f �(H1(B,Z)) of H1(X,Z)).
(b) Moreover, any maximal isotropic subspace U of dimension b � 2 deter-

mines a fibration f , whence it is such that U \ Ū = 0.
It was shown in [Cat7] that the isotropic subspace theorem easily implies the
following theorem ([Gro]).

GROMOV’S FEW RELATIONS THEOREM 2.8. Let X be a compact Kähler manifold
and assume there is a surjection �1(X) ! Γ, where Γ has a presentation with n
generators and m relations, where n � m + 2. Then there is a curve B of genus b,
where b � 2 and 2b � n� m, and a fibration f : X ! B such that f �(H1(B, C )) �
H1(Γ, C ) � H1(X, C ).

Theorem 2.6 implies in particular that if two surfaces S, S0 are homeomorphic
under ': S0 ! S, and f : S ! B is a genus b pencil with b � 2, then V 0 =
'�( f �(H1(B, C ))) determines a genus b pencil f 0: S0 ! B0. In this situation, let
g be the genus of the fibres of f , resp. g0 the genus of the fibres of f 0. Is it then
true that g = g0? Using the Seiberg-Witten theory we can answer this question
under a stronger assumption:

THEOREM ON THE DIFFERENTIABLE INVARIANCE OF THE FIBRE GENUS IN HIGHER

GENUS PENCILS 2.9. Let S, S0 be compact Kähler minimal surfaces, ': S0 ! S
an orientation preserving diffeomorphism, and f : S ! B a genus b pencil with
b � 2. Then the genus b pencil f 0: S0 ! B0 determined by V 0 = '�( f �(H1(B,
C ))) is such that the genus g0of the fibres equals the genus g of the fibres of f .
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Proof. We can without loss of generality identify S, S0 as differentiable man-
ifolds. Looking at the Jacobian variety J(B) as a differentiable manifold J, we
have two maps a, resp. a0 of S into J. a is defined as the composition of f with
the Albanese embedding of B into J(B) and one moment’s reflection shows that a
is obtained (up to translation) by integration: a(x) =

R x
xo
!, where ! is the vector

t(!1, : : : !b), !1, : : : !b being a basis of f �H0(B, Ω1
B). Similarly, a0(x) =

R x
xo
!0,

with !0 the vector t(!01, : : : !0b), !01, : : : !0b being a basis of f 0�H0(B0, Ω1
B0), and

also a0 factors, through f 0.
Since the two isotropic subspaces correspond to each other, i.e., they generate

the same real subspace of dimension 2b (spanned by integral classes), we can
replace the forms !0i by suitable C -combinations of the !0i’s and of their complex
conjugates, and after that we can clearly assume that the cohomology class of !i

in H1(S, C ) equals the one of !0i (the price is to lose the holomorphicity of the
map a0).

Whence, we can write !0 = !+d , with  : S ! C
b a differentiable function.

Step 1. a is homotopic to a0 under a(x, t) =
R x

xo
! + [t (x)], [v] denoting the

class in J = H0(B, Ω1
B)=H1(B,Z) = C

b=Λ of a vector v of C b .

Claim 2. The respective fibres F of f , F0 of f 0, yield cohomology classes
which are either equal or opposite.

Proof of Claim 2. The cohomology class of F (i.e., Poincaré dual to F) is the
pullback under a of the standard polarization � in H2(B,Z) � H2(J,Z). Since
a, a0 are homotopic, to show that F, F0 are cohomologous it suffices to show that
if �0 is defined analogously, then �0 = �. Now,

a�H2(B,Z) = f �H1(B,Z) ^ f �H1(B,Z) = f 0�H1(B,Z) ^ f 0�H1(B,Z)

= a0�H2(B0,Z),

thus �0 and � are Z proportional, whence, since both of them are unimodular in
H2(J,Z), �0 = ��.

From our assumption it follows that either S is ruled and g = 0, or S is elliptic
and g = 1, or S is of general type and g � 2. The three cases are distinguished
by the sign of K2,< 0, = 0,> 0. Since K2, by the Index formula and Noether’s
formula, is a topological invariant for orientation preserving homeomorphisms,
we can directly reduce to consider the case where both S, S0 are of general type.
But then one of the main results of Seiberg-Witten theory (cf. [Mor], Cor. 7.4.3,
p. 123), still identifying S and S0 as differentiable manifolds, says that KS0 = �KS.
Since 2g � 2 = KSF, we get therefore (2g0 � 2) = �(2g � 2). But since as we
noticed g0, g � 2, we conclude that g0 = g.



14 FABRIZIO CATANESE

Remarks 2.10.
(1) Under the hypotheses of Theorem 2.9 it follows that the fibres F, F0 are

diffeomorphic (being g0 = g). This result is no longer true in higher dimensions,
as remarked by Bogomolov and Kollar as a consequence of the s-cobordism
theorem (cf. [Cat5], Prop. 1.6, p. 267; where, as pointed out by D. Kotschick, the
h-cobordism theorem is incorrectly quoted instead of the s-cobordism theorem of
[Maz]).

(2) If we only assume ' to be an orientation preserving homeomorphism, the
answer to the question g0 = g? is still unknown.

(3) Notice that the statement of Theorem 2.9 cannot be strengthened to require
that there is a diffeomorphism  : B0 ! B such that f' =  f 0. In fact, the
topological structure of the singular fibres is not invariant by deformation.

We end this section by quoting the analogues of Theorems 2.6 and 2.8 for
the logarithmic case, obtained by I. Bauer in [Ba], (Theorems 2.1 and 3.1) and
by D. Arapura in [Ara] (Corollary 1.9) i.e., for the case of a fibration f : Y ! C
where C is a curve and Y , C are only required to be quasiprojective (in this case
the role of the genus of the base curve is taken by the logarithmic genus c of C,
which can be defined as the difference between the first Betti number of C and
the genus b of the compactification B of C). The following is a more detailed
statement of Theorem 2.1 of [Ba].

THEOREM OF THE LOGARITHMIC ISOTROPIC SUBSPACE 2.11. Let Y be a quasipro-
jective manifold Y = X � D, where X is smooth, projective, and D is a normal
crossings divisor. Then every real maximal isotropic subspace V of H1(Y , R ) either
of dimension � 3 or of dimension 2 but not coming from a nonisotropic subspace
V 0 of H1(X, R ) (in this case the theorem does not hold) determines a unique loga-
rithmic irrational pencil f : Y ! C onto a curve C with logarithmic genus at least
2. One has that C is projective iff V � H1(X, R ), and is isotropic there, otherwise
V = f �(H1(C, R )) and one says that the pencil is strictly logarithmic.

Proof. We indicate here how to modify the argument of Theorem 2.1 of
[Ba]. One notices that we can assume that the elements �1, : : : �l are R - linearly
independent in H1(Y , R ) / H1(X, R ), whence they are also C -linearly independent
in H0(X, Ω1

X(logD)) / H0(X, Ω1
X). The case k = 0 works as in [loc. cit] (except that

it is better to consider m0 = rankC (�1, : : : �l), , instead of m = rankR (�1, : : : �l),
and, in the case m0 = 1, to replace �2 by �2+i�1). The case k � 1 is the one where
it is difficult to apply the Castelnuovo de Franchis type Theorem, which requires
two C -linearly independent forms. This occurs precisely when l = 0 and the !0i’s
are dependent, i.e., in the case where the complex span of V is generated by a
holomorphic 1-form ! and by its conjugate !̄. This is exactly the case which is
excluded by our assumption, since ! ^ !̄ is certainly nonzero in the cohomology
of X. The last assertion being easy to show, it remains to show an example where
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i! ^ !̄ is zero in H2(Y , R ) but Y has no holomorphic map to a curve of genus at
least 1. Our example will be a principally polarized abelian surface X with Picard
number � = 3, but not containing any elliptic curve. We take as period matrix
in Siegel’s upper half space the matrix Z = iY with Y11 = 1, Y12 = 21=2, Y22 = 5.
For this choice, using the notation of [L-B], exercise 4, page 43 and exercise
10, page 319, the Neron Severi Group corresponds to the integral antisymmetric
matrices for which f = b, a = 3c, e = 5d, and there are no elliptic curves since
the following Diophantine equation has no solutions: 3c2 + 5d2 = b2 (one verifies
that this is the case by looking at the congruence mod5).

Finally, one looks at the antisymmetric matrices which correspond to elements
in the cohomology group H2(X, R ), of the form i!^!̄: these are alternating forms
which can be written as

�L(x) ^ L(ix)

where L is an arbitrary R -linear form on the vector space underlying X. As in
[Ba], 2.6, i! ^ !̄ is zero in a suitable Zariski open set Y of X if and only if
�L(x)^L(ix) lies in the real span of the Neron-Severi group. A direct calculation
shows that a = 3c, e = 5d are automatically verified, whereas f = b boils down to
the equation

3l21 + 5l23 = 5l22 + l24,

for the four coefficients of L: but this equation clearly has real solutions.

The following result is due to I. Bauer [Ba] under the restriction n � m + 3
and to D. Arapura [Ara] in the general case n � m + 2.

THEOREM OF THE LOGARITHMIC FEW RELATIONS 2.12. Let Y be a quasiprojective
manifold Y = X � D, and assume there is a surjection �1(Y) ! Γ, where Γ has a
presentation with n generators and m relations, where n � m + 2. Then there is an
integer � � n � m, a quasiprojective curve C with first Betti number equal to �,
and a fibration f : Y ! C.

We finally mention a quite straightforward generalization of the Zeuthen-
Segre inequality to the logarithmic case. It requires, firstly, the use of Borel-Moore
homology (cf. [B-M], [B-H]), thus it is phrased in terms of the Borel-Moore
homology Euler number eBM(Y); secondly, it also requires the appropriate

Definition 2.13. Let Y be a quasiprojective surface Y = S � D, where S is
smooth, projective, and D is a normal crossings divisor. Consider a logarithmic
pencil f : Y ! C, where f is surjective with connected fibres, and we can assume
that f extends to a holomorphic map f : S ! B � C. f is said to be very good if
moreover every component ∆ of D which does not map to (the finite set) B� C
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maps onto B (in other words, we remove from S either entire fibres, or horizontal
curves).

THEOREM 2.14. Let Y be a quasiprojective surface Y, and f : Y ! C a very
good logarithmic pencil. Then eBM(Y) � eBM(F) �eBM(C), F being the general fibre
of f .

Proof. Let the notation be as in Definition 2.13. Let Z � S be f�1(C). Then
by the usual argument eBM(Z) � eBM(Φ) � eBM(C), where Φ is the complete
fibre. Write Y = Z � D0: then D0 is a finite (proper) degree d covering of C,
whence eBM(D0) � d eBM(C). We conclude since eBM(Y) = eBM(Z) � eBM(D0) �
(eBM(Φ)� d) � eBM(C) = eBM(F) � eBM(C).

3. Surfaces isogenous to a product.

Definition 3.1. A surface S is said to be isogenous to a product if S admits a
finite unramified covering which is isomorphic to a product of curves (u: C1 �
C2 ! S) of genera gi = genus (Ci) � 1. In the case where each gi � 2 we shall
also say that S is isogenous to a higher product.

Remark 3.2. If in the above definition we would allow gi = 0, then we would
have the case where S ! B is a particular type of P

1-bundle (this case is well
understood, and if one views the condition upside down, one wants the existence
of an unramified cover C ! B such that the pullback of the bundle is trivial; the
condition is not satisfied, for a small deformation of S ! B, in the case where b =
genus(B) � 1). Whereas in the case g1 = g2 = 1 we have a classical hyperelliptic
surface or an algebraic torus. Observe that both gi’s are � 2 iff S is of general
type. Moreover, a surface isogenous to a product is always minimal. We shall
denote for later use by Πg the fundamental group of a compact Riemann surface
of genus g.

We shall now give a first topological characterization of surfaces of general
type isogenous to a higher product. Note that in the remaining cases S is an
elliptic surface, and, by surface classification, a topological characterization is
possible except in the case where S is an algebraic torus (since the tori isogenous
to a product of elliptic curves form a (complex) codimension 1 set). In fact, e.g.,
from [B-P-V], table 10, page 188, follows easily

Remark 3.3. S is a hyperelliptic surface iff e(S) = 0, b1(S) = 2, and �1(S) is
not Abelian. S is isogenous to a product with g1 = 1, g2 > 1, iff e(S) = 0, and
�1(S) admits a finite index subgroup isomorphic to Π1 �Πg2 .

THEOREM 3.4. A surface S is isogenous to a higher product if and only if �1(S)
admits a finite index subgroup Γ isomorphic to Πg1 � Πg2 , with g1, g2 > 1, and
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moreover:

(e) if d denotes the index of Γ, then e(S) = 4(g1�1)(g2�1)
d .

If S is minimal, hypothesis (e) can be replaced by

(k) K2
S = 8(g1�1)(g2�1)

d , or by

(c) �(OS) = (g1�1)(g2�1)
d .

Setting Π = Πg1 � Πg2 , one can indeed relax the hypothesis Γ �= Π to the weaker
assumption that Γ=Γ3

�= Π=Π3, where, for a group Γ, Γ3 is the third group in the
nilpotent series (i.e., Γ2 is the commutator subgroup [Γ, Γ] and Γ3 = [Γ, Γ2]).

Proof. The “only if” part is obvious. For the other implication, assuming
we are given such a subgroup Γ, we take the associated unramified covering.
Therefore it suffices to prove the theorem in the special case d = 1.

The first step of the proof consists in showing that we have two distinct
pencils on S, providing a surjective holomorphic map to a product of curves
f = ( f1 � f2): S ! C1 � C2.

For the first step we have two proofs, the first exploiting the isomorphism
�1(S) �= Πg1 � Πg2 which produces, by Gromov’s Theorem 2.8, two fibrations
fi: S ! Bi such that

f �i (H1(Bi, C )) � H1(Πgi , C ) � H1(S, C ) = H1(Πg1 , C ) � H1(Πg2 , C ).

We claim then that the two pencils are distinct. Were they equal, we would get
a fibration f : S ! B where B has genus g1 + g2. Therefore, in the latter case
we would get a corresponding surjection of fundamental groups Πg1 � Πg2 !
Πg1+g2 , and a corresponding homomorphism of cohomology algebras inducing
an isomorphism of first cohomology groups. Let us consider in particular the
induced homomorphism

Λ4(H1(Πg1+g2 , C )) ! H4(Πg1 �Πg2 , C ).

We get a contradiction, since on the one side the above homomorphism must
be nonzero, being that

Λ4(H1(Πg1 , C ) � H1(Πg2 , C )) ! H4(Πg1 �Πg2 , C ))

has nonzero image; while on the other the above homomorphism must be zero,
since it factors through

Λ4(H1(Πg1+g2 , C )) ! H4(Πg1+g2 , C ) = 0.

The second proof uses the weaker assumption Γ=Γ3
�= Π=Π3 and the fact that,

for a Kähler manifold X, the kernel of the cup product map H1(X, C )^H1(X, C ) !
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H2(X, C ) is dual to (Γ2=Γ3)
 R (cf. [ABCKT], Cor. 3.14, p. 33 and Prop. 3.25,
p. 38).

Applying this observation to X = S and X = C1 � C2, we infer that H1(X, C )
is the direct sum of two maximal isotropic subspaces, whence we obtain the two
distinct pencils by the Isotropic Subspace Theorem 2.6.

Step II. Since the pencils are distinct, we obtain a surjective holomorphic
map f = ( f1 � f2): S ! C1 � C2. Consider now the fibration f2, which factors
through f . The genus g01 of the fibres of f2 is therefore at least g1. Since by
assumption 4(g1 � 1)(g2 � 1) = e(S) which, by Theorem 2.1 (Zeuthen-Segre)
is � 4(g01 � 1)(g2 � 1) � 4(g1 � 1)(g2 � 1), equality holds throughout whence
g01 = g1, and f2 is a topological bundle. Since the general fibre of f2 is isomorphic
then to C1, and f2 is a topological bundle, then f yields the desired isomorphism
S �= C1 � C2.

In the case where we assume K2
S = 8(g1 � 1)(g2 � 1), we invoke Arakelov’s

Theorem (2.2), and we obtain therefore that f is birational. Since moreover we
assume S minimal, then f yields an isomorphism. Case (c) follows immediately
from Theorem 2.3.

Remark 3.5. As we saw in Section 1 (Cor. 1.3), the property that a surface
S is isogenous to a higher product cannot be detected solely by its fundamental
group. From the geographical viewpoint, the previous theorem is rather inter-
esting, because, in terms of the topological invariants of the minimal surface
S, x = �(OS), y = K2

S , it tells that on the lines x = constant, y = constant, 12x� y
= constant, such a fundamental group commands a geometric property. It is an
interesting question whether the condition of lying on the watershed line y = 8x
(S has zero index) can replace in Theorem 3.4 the conditions (e), (k) or (c).
One can further weaken the hypothesis on the fundamental group of S using the
following:

PROPOSITION 3.6. A fundamental group �1(S) is commensurable to a (direct)
product Πg0

1
� Πg0

2
if and only if it contains a subgroup of finite index which is

isomorphic to a group Πg1 �Πg2 .

Proof. Assume �1(S) contains a finite index subgroup Γ which is isomorphic
to a subgroup of Πg0

1
� Πg0

2
(again of finite index). Then Γ contains Γ0 normal

and of finite index in Πg0

1
�Πg0

2
. Set Γ01 = Γ0 \Πg0

1
: it is normal in Πg0

1
, of finite

index, and isomorphic to a Πg1 . Define similarly Γ02 �= Πg2 . Then Πg1 � Πg2 is
of finite index in Γ, whence also in �1(S).

In order to study the moduli space of surfaces isogenous to a product, we
need to show that a stronger property is satisfied by these surfaces.
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Definition 3.7. A surface S is said to be strongly isogenous to a product if S
is the quotient of the action of a group G acting freely on a product of curves
(S = C1 � C2=G).

In order to study this stronger property, we need some auxiliary results, of
which the following is well known.

RIGIDITY LEMMA 3.8. Let f : C1 � C2 ! B1 � B2 be a surjective holomorphic
map between products of curves. Assume that both B1, B2 have genus � 2. Then,
after possibly exchanging B1 with B2, there are holomorphic maps fi: Ci ! Bi such
that f (x, y) = ( f1(x), f2(y)).

Sketch of proof. Hol(Ci, Bj) is a discrete (indeed finite) set, since the normal
bundle to the graph of a ': Ci ! Bj is isomorphic to the pullback of the tangent
bundle to Bj. Thus, if a component of f , fi(x, y) is not constant in x, it is constant
in y and the statement follows then easily from the surjectivity of f .

COROLLARY 3.9. Assume that both C1, C2 are curves of genus � 2. Then the
inclusion Aut (C1�C2) � Aut (C1)�Aut (C2) is an equality if C1 is not isomorphic
to C2, whereas Aut (C� C) is a semidirect product of Aut (C)2 with the Z=2 given
by the involution Φ exchanging the two coordinates.

Remark 3.10. Assume that S can be represented as a quotient S = C1�C2=G
by a free action. Then we can assume that G, or the subgroup Go = G\Aut (C)2

in the case C1
�= C2, embeds in Aut (Ci) for i = 1, 2 (we shall then say that this

quotient realization is minimal). Otherwise, e.g., the kernel K1 acts trivially on
C1 and freely on C2; we can thus replace C1 � C2 by (C1=K2)� (C2=K1).

PROPOSITION 3.11. A surface S is strongly isogenous to a higher product if and
only if it is isogenous to a higher product.

Proof. We clearly only need to show that if there is a finite unramified cov-
ering u: C1 � C2 ! S, then S can be represented as a quotient S = C01 � C02=G
by a free action. Let Z be the Galois closure of u, and G0 the Galois group, so
that we have another unramified covering  : Z ! C1 � C2.

All the fibres of Z ! C2 are unramified coverings of C1, whence, taking the
Stein factorization of Z ! C2, we get a holomorphic bundle Z ! C002 . Finally, the
canonical unramified and Galois base change C02 ! C002 associated to the kernel
of the monodromy yields by pullback a product C01 � C02. To conclude, since S
is a Galois unramified quotient of Z, and Z is a Galois unramified quotient of
C01�C02, we need to show that every Galois automorphism � of Z lifts to C01�C02.
Let v: C01 � C02 ! Z be the quotient map. Then, by the rigidity lemma, either
 �v, or possibly Φ �v is a product map of respective maps C0i ! Ci. Therefore
either � preserves the fibres of the map p002 : Z ! C002 , or sends them to the fibres
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of p001 : Z ! C001 . In both cases there is an isomorphism � 00: C002 ! C00i such that
� 00p002 = p00i � .

Clearly then � 00 leaves invariant the kernel of the monodromy, whence we
get a lift � 0: C02 ! C0i, and, by taking the fibre product with � : Z ! Z, we obtain
the desired lifting of � to C01 � C02.

We can sharpen the previous result

COROLLARY 3.12. Every minimal product cover of a surface S strongly isoge-
nous to a higher product is Galois.

Proof. In the notation of Proposition 3.11, we have S = C01 � C02=G and a
factorization C01 � C02 ! C1 � C2 ! S, so that there is a subgroup G0 of G
such that C1 � C2 = C01 � C02=G0. But since G0 = �1(C1 � C2)=�1(C01 � C02) and
by the rigidity lemma we have a product map, G0 is a direct product G0

1 � G0
2.

Then G0
1 � K02, G0

2 � K01 (cf. Remark 3.10), thus C1 �C2 dominates (C01=K
0
2)�

(C02=K
0
1). Finally, by the minimality assumption, we must have equality, whence

C1 � C2 ! S is Galois.

We shall now show that a minimal realization is unique: by the above it follows
that any minimal product covering is Galois and unique.

PROPOSITION 3.13. If S is isogenous to a higher product, then a minimal real-
ization S = C1 � C2=G is unique.

Proof. Assume that we have two such minimal realizations S = C1 � C2=G,
S = B1 � B2=Γ. Then we can dominate both products C1 � C2, B1 � B2 with
a component Z of their fibre product over S. By looking at the holomorphic
bundle induced on Z by the projection onto B2, we obtain a Galois unramified
covering D2 of B2 and a product D1 � D2 dominating Z compatibly with the
projection onto B2. By the rigidity lemma we know that D1 � D2 dominates
C1�C2 by a product map, and we can assume that it does with a map for which
D1 surjects onto C1, (resp.: D2 onto C2). This shows that the two fibrations on
S induced by the projections on C2=G, resp. B2=Γ, coincide. Since both prod-
ucts C1 � C2, B1 � B2, are obtained by the same canonical procedure (pullback
under the Galois cover associated to the kernel of the monodromy), they are
isomorphic.

In most of the cases surfaces which are isogenous to a higher product are distin-
guished by the behavior of the Albanese map. Observe preliminarly:

Remark 3.14. A symmetric product C(2) of a curve C of genus g � 2 is never
birational to a product of curves of respective genera a � 2, b � 1.
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Proof. The invariants of C(2) are q = g, pg = g(g�1)
2 � 1, whereas the

invariants of a product of curves of respective genera a, b are q = a + b, pg = a b.
If g = a+b, then pg = g(g�1)

2 = ab+ 1
2 (a2�a+b2�b) and this expression equals ab

(which has to be � 1) iff a = b = 1. In this case (excluded by our assumptions)
then g = 2 and C(2) is the Jacobian of C, and it can indeed be isomorphic to a
product of elliptic curves (cf. [L-B], pp. 313–316, and ex. 11, 12 on p. 319).

PROPOSITION 3.15. Let S = C1 � C2=G be the minimal realization of a surface
S isogenous to a higher product, and let Go be the subgroup of G given by the
transformations which do not exchange the two factors C1, C2. We shall say that we
have the mixed case (denoted by M) when G 6= Go, and the double case otherwise
(denoted by D). Denote by C0i the quotient Ci=G when G = Go, and let g0i = genus
of C0i . In the mixed case, G 6= Go, so we set C0 = C=Go and we let g0 = genus of C0.
Then for the Albanese image �(S) of S, the following possibilities occur:

(M++) when G 6= Go, and g0 � 2, then �(S) is birational to the symmetric
product C0(2) of C0.

(M+) when G 6= Go, and g0 = 1, then �(S) is an elliptic curve.
(D++) when G = Go, and g0i � 1, then�(S) is isomorphic to the product C01�C02.
(GH) (Generalized Hyperelliptic) is defined to be the case when G = Go, G

operates freely on C1 and g02 = 0: then �(S) is isomorphic to C01, which has genus
at least 2.

In the case (D+), when g01 � 1, g02 = 0, but G does not act freely on C1, then
�(S) is isomorphic to C01.

In the cases (M0), when g0 = 0, or (D0) (g01 = g02 = 0), then �(S) is a point (S
has irregularity q(S) = 0).

Proof. Since S = C1 � C2=G we have H0(Ω1
S) = (H0(Ω1

C1
) � H0(Ω1

C2
))G �

H0(Ω1
C1

)Go
� H0(Ω1

C2
)Go

= H0(Ω1
C00

1
) � H0(Ω1

C00

2
). In case M the quotient Z=2 �=

G=Go exchanges the two last addenda, whence H0(Ω1
S) �= H0(Ω1

C00). Therefore
�: S ! �(S) factors as the projection to C0(2) composed with the Albanese
map a of C0(2), which is just the Abel-Jacobi map on degree 2 divisors. Whence
when g0 � 2, a is birational to its image, and indeed an embedding unless C0

is hyperelliptic. The cases g0 = 0, 1 are obvious. In the nonmixed cases, � is
the composition of the projection to C01 � C02 with the product of the respective
Albanese maps.

We have therefore divided the surfaces S isogenous to a higher product into 7
classes, (D++), (D+) and (D0) = of double type, (GH) = Generalized Hyperelliptic
surfaces, plus those of mixed type. We want to describe the latter in greater detail.

PROPOSITION 3.16. Surfaces S isogenous to a higher product and of mixed type
are obtained as follows. There is a (faithful) action of a finite group Go on a curve
C of genus at least 2 and a nonsplit extension 1 ! Go ! G ! Z=2 ! 1, yielding
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a class ['] in Out (Go) = Aut(Go)=Int(Go), which is of order � 2. Once we fix
a representative ' of the above class, there exists an element � = �(') in Go

such that
(i) ''() = ���1.
(ii) Go acts, under a suitable isomorphism of C1 with C2, by the formulae:

(x, y) = (x, (')y) for  in Go; whereas the lateral class of Go consists of the
transformations

� 0(x, y) = ((')y, �x).

Let Σ be the subset of Go consisting of the transformations having some fixed point.
Then the condition that G acts freely amounts to:

(A) Σ \ '(Σ) = fidentityg
(B) there is no  in Go such that '()� is in Σ.

Indeed if we pick another automorphism ' of Go in the given class ['], then the
choice of � has to vary according to the following cocycle-like condition:

(iii) if '̂ = ' � Int (00), then �̂ = '(00)�00.

Proof. Go is the subgroup of the transformations not exchanging the two
factors of C � C, while we let � 0 be a transformation not in Go. Then, after
fixing some isomorphism C1 � C2

�= C � C, � 0(x, y0) = (�2y0, �1x). We then
choose y = �2y0 as a new coordinate on the second factor. Then � 0(x, y) = (y, �x),
where � = �2�1x. Since � 0� 0(x, y) = (�x, �y), we see that � belongs to Go. Since
the realization is minimal, we see Go as � Aut (C) under the action on the first
factor, and we write (x, y) = (x, 2y), so that  ! 2 gives the other embedding
of G0 in Aut (C) provided by the action on the second factor. The condition that
� 0 normalizes Go means that for every  there is a 00 such that � 0 = 00� 0.

More precisely this means: (2y, �x) = (00y, 002 �x). Thus 2 = 00, 002 =
���1. The first equality tells us that the image of Go in Aut (C) is equal for the
action on both factors, whence exactly that there is an automorphism ' of Go

such that 2 = '(); the second equality says exactly that ''() = ���1.
There remains to ensure the condition that G acts freely: for Go, this means

that either  or (') acts freely on C, and this is just condition (A). For � 0, it
acts freely if there is no pair (x, y) = ('()y, �x), i.e., '()� (or, equivalently,
�'()) has no fixed points on C.

Finally, our calculations above indeed show that, should we replace � 0 by
� 00 = � 0 � 00, then we would have to take as new variable y00 = '(00)y so that
� 00(x, y00) = (y00,'(00)�00x). Thus � gets replaced by �̂ = '(00)�00, and ' by
'̂ = ' � Int (00), where Int (00)() = 0000�1; and again '̂ � '̂ = Int (�̂ ). The
extension 1 ! Go ! G ! Z=2 ! 1 is nonsplit since �'() is always different
from the identity. Moreover such an extension gives (by conjugation of a lift of
the generator of Z=2) an element ['] of order 2 in Out (Go) = Aut (Go)= Int (Go).
Observe that such a ['], in general, only provides an extension

1 ! Int (Go) ! Γ ! Z=2 ! 1.



FIBRED SURFACES, VARIETIES ISOGENOUS TO A PRODUCT 23

Remarks 3.17.
(1) A trivial solution for finding surfaces of type (M) is to take an unramified

Abelian Galois covering C of C0, of order divisible by 2, let ' be the identity,
and take � an element in the Galois group Go which is not a square.

(2) The easiest way to construct surfaces of the other types is to take a
quotient C2 ! C2=G, and then for any curve C01 of genus � 2, take a surjection
�1(C01) ! G.

We shall return more amply to these issues in the next section. We end this
section by giving different characterizations of Generalized Hyperelliptic surfaces,
again using the standard inequalities which we recalled in Section 2.

THEOREM 3.18. Let S be a surface such that:
(o) K2

S = 8�(S) > 0 (S has index 0 but e(S) > 0).
(i) S has irregularity q � 2 and the Albanese map is a pencil (i.e., Λ3(H1(S,

C )) ! H3(S, C ) has zero image).
Then, letting g be the genus of the Albanese fibres, we have: (g� 1) � �(S)

(q�1) .
A surface S is a Generalized Hyperelliptic surface if and only if (o), (i) hold

and g = 1 + �(S)
(q�1) .

In particular, every S satisfying (o), (i), and with pg = 2q� 2 is a Generalized
Hyperelliptic surface where G is a group of automorphisms of a curve C2 of genus
2 with C2=G �= P

1 .

Proof. If (o) holds and S is fibred over a curve B of genus b, note that
the inequalities of Zeuthen-Segre, Arakelov, Beauville, are all equivalent to each
other. Since by (i) we have a pencil with base curve B of genus q, the first
assertions are simply a restatement of the aforementioned theorems; for instance,
if equality holds, we have that the Albanese map � yields a holomorphic bundle,
whence S is a GH surface. Finally, pg = 2q � 2, since �(S) = 1 � q + pg, is
equivalent to �(S) = (q� 1). Thus g � 2 and since �(S) > 0, g = 2, therefore we
again have a holomorphic bundle and S is a GH surface.

Remark 3.19. The GH surfaces with g = 2 can be explicitly classified. In
fact, all the groups G acting effectively as a group of automorphisms of a curve
C2 of genus 2 with C2=G �= P

1 , are explicitly classified by Bolza ([Bo], cf. also
the Pisa 1995 Ph.D. thesis by F. Zucconi). One can easily verify that for every
such group G there is a surjection Π2 ! G. It is a trivial remark that, for each
k � 2, there is a surjection Πk ! Π2. We obtain therefore the following:

COROLLARY 3.20. Assume �(S) = q�1, K2
S = 8�(S) > 0, and that the Albanese

map is a pencil. Then S is a Generalized Hyperelliptic surface with Albanese fibre
of genus 2. These exist for each integral value of �(S).

We end this section by describing surfaces in the classes (D0) and (D+),
following some examples given by Beauville ([Bea1], exercise 4, p. 159).
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LEMMA 3.21. Let G = (Z=n)2 and Σ = f(a, b) j a = 0, or b = 0, or a = bg. Then
there is an automorphism ' of G with '(Σ) \ Σ = f0g if and only if 6 and n are
relatively prime.

Proof. If m divides n, then (Z=m)2 � G and is characteristic. Since such a '
clearly does not exist if n = 2 or n = 3 because in these cases card Σ�1 = 3n�3 �
( card G)

2 , it follows that 2, 3 cannot divide n. But if 2, 3 do not divide n, the map
' sending e1 = (1, 0) to (1,�2), and e2 = (0, 1) to (1,�1) has determinant 1,
whence it is an isomorphism. ' sends e0 = (1, 1) to (2,�3) and all determinants
formed with two vectors ei, '(ej) are invertible in Z=n, whence the assertion
follows.

Beauville’s examples 3.22. Let C be the Fermat curve of degree n in the
projective plane. C = f(z0, z1, z2) j zn

0 + zn
1 + zn

2 = 0g is a Galois cover of the
line P

1 = f(x0, x1, x2) j x0 + x1 + x2 = 0g under the map  : P
2 ! P

2 sending
(z0, z1, z2) to (zn

0, zn
1, zn

2).  is branched in 3 points, and is Galois with Galois
group G = (Z=n)2 . In this example the 3 stabilizers are the diagonal, and the two
coordinate subgroups of (Z=n)2 . Thus Lemma 3.21 applies if n is odd and not
divisible by 3.

We let Sn = Cn�Cn=(Z=n)2 , where G = (Z=n)2 acts by g(x, y) = (gx,'(g)y).
So the action is free and Sn is a surface of type (D0) (i.e., isogenous to a product
and with q = 0), with invariants K2 = 2(n � 3)2, � = (n�3)2

4 . (The most famous
of these examples occurs for n = 5, yielding � = 1.)

We also obtain surfaces of class (D+), simply by letting C1 = C, and C2 be
the fibre product of C with an elliptic curve E mapping to P

1 with degree 2 and
branched in 4 general points. Again by twisting the action on the second factor,
we get a free action of G such that S = C1 � C2=G has invariants

K2 = 4(n� 3)(3n� 3), � =
(n� 3)(3n� 3)

2
, q(S) = 1.

The final remark we want to make is that, in view of the results we shall
show in Section 4 (especially Thm. 4.13 and its proof) the above examples are
strongly rigid; in the sense that any surface S with isomorphic fundamental group
and the same Euler number as one of Beauville’s examples is exactly one of those
examples. This motivates the following:

Definition 3.23. A Beauville surface is a rigid surface which is isogenous to
a product.

Classifying all the Beauville surfaces is then a problem in group theory. That
is, we give a finite group G, representable as a quotient of a triangle group
ha, b, c j abc = 1 = ap = bq = cri, with p, q, r minimal. The question is to classify
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all those G for which there is an automorphism ' for which '(Σ) \ Σ = f1g, Σ
being the union of the 3 subgroups generated by a, b, c, respectively.

4. The fundamental group of surfaces isogeneous to a product, and the
irreducibility of their moduli space. Let S be a surface isogenous to a product,
and let as usual S = C1 �C2=G be its minimal realization. Let us assume for the
time being that S is not of mixed type. Therefore we have an exact sequence

1 ! Πg1 �Πg2 ! �1(S) ! G ! 1,(4.1)

where the two factors Πg1 , Πg2 , are both normal. We can therefore take the quo-
tient (i = 1, 2 has to be understood as an element of Z=2)

Π(i + 1) := �1(S)=Πgi ,(4.2)

which sits naturally into an exact sequence

1 ! Πgi ! Π(i) ! G ! 1.(4.3)

If G operated freely, e.g., on C1, we would then have a bundle S ! C01, with fibre
C2, and the homotopy exact sequence of the bundle would tell us immediately
that Π(1) �= �1(C01); what we are going to see next is that (4.3-i) is the “orbifold”
exact sequence associated to the possibly ramified Galois covering Ci ! C0i , so
that Π(i) is the “orbifold fundamental group of the covering.”

So, let us recall the notion of orbifold fundamental group.

Definition 4.4. Let X be a complex manifold and p: X ! Y = X=G the
quotient by a finite group of automorphisms. Then Y is a normal complex space,
and we denote by B the branching locus of p (B = p(fx j x has a nontrivial
stabilizer Gxg)). Let B1, : : :Br be the divisorial irreducible components of B.
Let 1, : : : r in �1(Y � B) be simple geometric loops around the components
B1, : : :Br. Then, since we have an exact sequence

1 ! �1(X � p�1(B)) ! �1(Y � B) ! G ! 1,

we get that each i maps to an element gi, whose order will be denoted by
mi. Let m00 be the vector t(m1, : : :mr). Then the orbifold fundamental group
�orb

1 (Y �Bjm00) is defined to be the quotient of �1(Y �B) by the minimal normal
subgroup containing the elements (i)mi .

Notice that p�1(Bi) is a divisor = miRi, where Ri (not necessarily connected)
is a covering of Bi of degree d

mi
(d being the order of G); (i)mi lifts to a simple

geometric loop in X � p�1(B) around a component of Ri, whence it belongs to
the kernel of �1(X � p�1(B)) ! �1(X). On the other hand, the above kernel is
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normally generated by a set of simple geometric loops around each component
of each Ri. But, varying the components of Ri, we get such loops simply as
conjugates of (i)mi .

We have therefore shown:

PROPOSITION 4.5. As in Definition 4.4, let X be a complex manifold and p: X !
Y = X=G a finite quotient map. Then we have an exact sequence

1 ! �1(X) ! �orb
1 (Y � Bjm00) ! G ! 1.

PROPOSITION 4.6. The exact sequence (4.3-i)

1 ! Πgi ! Π(i) ! G ! 1,

is the orbifold exact sequence for the quotient map Ci ! C0i .

Proof. Let C�2 be equal to the inverse image of C0�2 = C02 � B, B being the
branching divisor. Denoting by S� = (C1�C�2)=G, we get a covering space exact
sequence, fitting into a diagram

(4.7) Πg1

&
1 ! Πg1 � �1(C�2) ! �1(S�) ! G ! 1

?y ?y &%

1 ! Πg1 � �1(C2) ! �1(S) �1(C0�2 ) ! �orb
1 (C0�2 jm

00) ! G,

where the vertical maps are surjective, and the oblique sequence is the exact
homotopy sequence of the bundle S� ! C0�2 .

Notice that S�S� is the union of the fibres Fb for b in B, which are multiples
of multiplicity mb; thus the kernel of �1(S�) ! �1(S) is normally generated by
simple geometric loops �b, mapping to (b)mb down in �1(C0�2 ). Therefore �1(S)
surjects onto �orb

1 (C0�2 jm
00), and indeed the surjection �1(S) ! G factors through

�orb
1 (C0�2 jm

00) ! G.
It remains to show that Πg1 , which is contained in the kernel, is indeed pre-

cisely the kernel of the above surjection. Please note that �1(C0�2 ) !
�orb

1 (C0�2 jm
00) ! G is a sequence of surjections (it is not exact!).

After this remark, we observe that the kernel of �1(S�) ! �orb
1 (C0�2 jm

00) is
normally generated by the �b’s, and by Πg1 , whence it is precisely the pullback
of the normal subgroup Πg1 of �1(S). The assertion for Π(1) follows by identical
proof.
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The proof of the following corollary is now obvious.

COROLLARY 4.7. Let the surface S be isogenous to a product and not of mixed
type. Then we have an exact sequence

1 ! Πg1 �Πg2 ! Π(1)�Π(2) ! G� G ! 1

(where Π(1) � Π(2) �= �orb
1 (C0�1 jm

00(1)) � �orb
1 (C0�2 jm

00(2))) such that �1(S) is the
inverse image of G diagonally embedded in G � G.

Remark 4.8. Although Corollary 4.7 does not yet give a presentation of �1(S),
it is possible to get one using the Reidemeister Schreier process. Let us give the
classical example of the general hyperelliptic surface, where G = Z=2. We get
1 ! Z

4 ! Z
2 � G(2, 2, 2, 2) ! Z=2 � Z=2 ! 1. G(2, 2, 2, 2) has generators

a1, : : : a4 such that a1 � : : : � a4 = 1, a2
i = 1, Z2 has generators E1, E2, Z4 has

generators e1 = 2E1, e2 = E2, e3 = a1 � a2, e4 = a2 � a3, and each ai maps to (0, 1),
while E1 maps to (1, 0), E2 to (0, 0).

Let a = (E1, a1): then �1(S) is generated by e1, : : : e4, a, where the ei’s com-
mute, a2 = e1, and aeja�1 = �jej, with �j = 1 for j = 1, 2, �j = �1 for j = 3, 4.
Therefore �1(S) is a semidirect product of the normal subgroup Z

3 generated by
e2, e3, e4, with the cyclic group Z generated by a.

Remarks 4.9.
(A) The exact sequence (4.3-i) is also important from the point of view of

uniformization. Viewing Ci = H=Πgi , where H is the upper half plane, one can
extend the embedding of Πgi ! PSL(2, R ) to an embedding of Π(i) such that
C0i = H=Π(i).

(B) The same exact sequence gives a homomorphism �: G ! Out (Πgi) (to
an element g of G we associate the action on Πgi obtained by conjugation with
a lifting of g: this action is well defined then only up to inner automorphisms).
� is injective because every complex automorphism which acts as the identity
on the first homology group has to be the identity. Conversely, we claim that the
above extension is completely classified by the injective homomorphism �. In
fact, the inclusion G � Out (Πgi) provides an exact sequence 1 ! Int (Πgi) !
Π ! G ! 1. Observe that the center of Πgi is trivial (two commuting hyperbolic
transformations in PSL(2, R ) have the same fixed points, whence they lie in a
maximal torus R

� ; thus, if they lie in a discrete subgroup, then they generate a
cyclic subgroup). Therefore Πgi

�= Int (Πgi), and we recover the extension (4.3-i).

What in fact Proposition 4.6 really tells us is that the geometry of the covering
Ci ! C0i is encoded in the exact sequence (4.1). Indeed, (take e.g. i = 2) from it
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we recover firstly the orbifold exact sequence

1 ! �1(C2) = Πg2 ! �orb
1 (C0�2 jm

00) = Π(2) ! G ! 1.

Then, by Remark 4.9, it follows that every branch point b corresponds exactly
to a Π(2)-conjugacy class of a maximal cyclic subgroup of Π(2) (every finite
order element in PSL(2, R ) is elliptic, and has precisely one fixed point in H),
whose order is the multiplicity mb. The ramification points above correspond
instead to the Πg2 conjugacy classes of such cyclic subgroups. Moreover, since
the epimorphism �orb

1 (C0�2 jm
00) ! �1(C02) has a kernel which is generated precisely

by the elements of finite order, we likewise recover �1(C02).
The irreducibility of the moduli space of surfaces isogenous to a product with

given Euler number and given fundamental group would follow at once from a
generalization of the classical results of Fricke-Teichmüller-theory, namely that
the embeddings of Π(i) in PSL(2, R ) form an irreducible variety. But we are not
aware of such results in the literature, therefore we shall resort in the general
case to the solution of the Nielsen realization problem (cf. [Ker], [Wol], [Tro]).
In fact, the classical theory suffices when the action of G is free on both factors.

PROPOSITION 4.10. The moduli space Mis(Γ) of the surfaces S isogenous to
a higher product not of mixed type, with the same Euler number e(S) and with
fundamental group �1(S) isomorphic to a fixed group Γ, is irreducible in the case
where G acts freely on both factors.

Remark 4.11. Γ being isomorphic to �1(S) it contains, by Proposition 3.13, a
unique maximal subgroup Γ00 of finite index isomorphic to Πg1 �Πg2 , such that
e(S) � (index(Γ00)) = 4(g1 � 1)(g2 � 1). The property that S is of mixed type can
be read off Γ and the Euler number e(S) of S. In fact, S is of mixed type exactly
when—although Πg1 � Πg2 is, as we know, normal—the individual factors Πg1

and Πg2 are not normal. Also the property that G acts freely on both factors can
be read off Γ, since it means that the quotients Γ(i) sitting in the exact sequences
1 ! Πgi ! Γ(i) ! G ! 1 have no element of finite order.

Proof of Proposition 4.10. The minimal realization S = C1 � C2=G is given
by an action of G on C1, and another action on C2. Notice that we obtain a
deformation of S by deforming C1, C2 together with the action of G. Consider
now an isomorphism ' of �1(S) with Γ, and notice that Γ comes equipped with
an exact sequence

1 ! Πg1 �Πg2 ! Γ ! G ! 1,

inducing

1 ! Πgi ! Γ(i) ! G ! 1.
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From now on we will fix Γ(1), Γ(2) as the fundamental groups of curves of
respective genera g01, g02. Notice that ' then induces isomorphisms �1(C0i) �= Γ(i).
Given another such surface Ŝ, and another isomorphism '̂ of �1(Ŝ) with Γ, using
the connectedness of the Teichmüller space for C02, we can find a real analytic
path deforming Ĉ02 to C02, and preserving the isomorphism with Γ(2), and we
can similarly deform Ĉ01 to C01 preserving the isomorphism with Γ(1). Since the
action of G on a curve Ci is given by the surjection of �1(C0i) onto G obtained
by composing the isomorphism �1(C0i) �= Γ(i) with the given surjection of Γ(i)
onto G, our assertion is proven.

In the general case, observe that the orbifold fundamental group extension

1 ! �1(Ci) = Πgi ! �orb
1 (C0�i jm

00(i)) ! G ! 1

gives an action on Ci which is topologically classified by the associated injective
homomorphism G ! Out (Πgi) mentioned earlier. More precisely, Out (Πg) =
�0(Diff (Mg)), Mg being a standard differentiable model for Riemann surfaces
of genus g. The modular group Modg = �0(Diff (Mg)) acts properly discontinu-
ously on the Teichmüller space Tg parametrizing the complex structures on Mg

(modulo diffeomorphisms isotopic to the identity). Once a finite subgroup G of
�0(Diff (Mg)) is given, the fixed locus of the action on Tg corresponds to the
isomorphism classes of curves of genus g with a holomorphic action by G which
is differentially equivalent to the given one on Mg.

The following is a slight generalization of one of the solutions [Tro] of the
Nielsen realization problem.

LEMMA 4.12. Given a finite subgroup G of �0(Diff (Mg)), the fixed locus Fix(G)
of G on Tg is nonempty and connected (indeed, diffeomorphic to an Euclidean
space).

Proof. Teichmüller space Tg is diffeomorphic to an Euclidean space of di-
mension 6g � 6, and it admits a Riemannian metric, the Weil-Petersson metric.
Wolpert and Tromba proved:

(i) there exists a C2-function f on Tg which is proper, G-invariant, nonnegative
(f � 0), and finally f is strictly convex for the given metric (i.e., strictly convex
along the W-P geodesics). We remark that, G being a finite group, its action can
be linearized at the fixed points, in particular:

(ii) fix(G) is a smooth (non a priori connected) submanifold.

SUBLEMMA. There is a unique critical point xo for f , which is an absolute
minimum on Tg. Every connected component M of Fix(G) contains xo.

Proof of the sublemma. Let M0 be either the submanifold M, or Tg. Since f is
proper and� 0, there is a constant c such that f�1([0, c]) 6= ;, and clearly compact.
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Thus there is an absolute minimum xo on Tg, and an absolute minimum yo for f jM.
Since f is strictly convex on Tg, every critical point for f is isolated and a local
minimum. f behaves like a Morse function, therefore, Tg being homeomorphic
to an Euclidean space R

6g�6 , it follows that xo is the only critical point of f on
Tg. It suffices therefore to show that yo is a critical point for f on Tg, because
then yo = xo and M contains xo.

Let us look at the tangent space V to Tg at yo: this is a G- representation
and the subspace of invariants VG is just the tangent space to M at yo. We look
at the differential of f evaluated at yo: this gives a linear form df in V_ which
is invariant since f is G-invariant. We can write V = VG � W, where W is a
sum of irreducible nontrivial representations. Therefore V_ = (VG)_ � W_, and
(V_)G = (VG)_. Since df belongs to (V_)G, and it vanishes on (VG), df is = 0,
therefore we have shown that y0 is a critical point on Tg. The same argument
gives that there is exactly one critical point for f jM, whence M is homeomorphic
to an Euclidean space.

We can easily conclude the proof of the lemma: x0, being the unique mini-
mum, belongs to Fix(G). Moreover, every connected component of Fix(G) con-
tains x0, thus Fix(G) is a nonempty connected submanifold.

From the above, we also derive an existence theorem for moduli spaces.

THEOREM 4.13. Let Γ be a group fitting into an exact sequence 1 ! Πg1�Πg2 !
Γ ! G ! 1 where moreover:

(a) G is a finite group,

(b) the individual factors Πg1 , Πg2 are normal in Γ,

(c) the induced quotients 1 ! Πgi ! Γ(i) ! G ! 1 are such that

(c1) there is no element of Γ mapping in each Γ(i) to an element of finite order,

(c0) by the above exact sequences G embeds in Out (Πgi).

Let d be the order of the group G. Then the moduli space of the surfaces S with
�1(S) �= Γ, and with Euler number e(S) = 4(g1�1)(g2�1)

d is nonempty and irreducible.

Remark. As in Theorem 3.4, the assumption on e(S) can be replaced by 00S

minimal and K2
S = 8(g1�1)(g2�1)

d , or �(OS) = (g1�1)(g2�1)
d

00
.

Proof of Theorem 4.13. The proof is entirely analogous to the one of Propo-
sition 4.10, except that the sequence 1 ! Πg2 ! Γ(2) ! G ! 1 determines a
fixed topological type of action for G on the curve C2. According to Lemma 4.11,
the pairs (curve C2, action of G on C2 with the fixed topological type) are
parametrized by an irreducible and nonempty moduli space. The same holds for
(curve C1, action of G on C1 with the fixed topological type). The conclusion is
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then the same as in Proposition 4.10, and we have shown that the moduli space
is nonempty and irreducible.

There finally remains the case of the surfaces of mixed type, for which we
shall make use of the description given in Corollary 3.16.

THEOREM 4.14. The moduli spaceMis(Γ) of the surfaces S isogenous to a higher
product of mixed type, with the same Euler number e(S) and with fundamental group
�1(S) isomorphic to a fixed group Γ, is irreducible. In the case where Go operates
freely on C, it is indeed a quotient of the Teichmüller space Tg0 by a subgroup of
Modg0 , whence a finite covering of the moduli spaceMg0 of curves of genus g0.

Proof. Γ comes equipped with a unique maximal subgroup isomorphic to
Πg �Πg, of index 4(g�1)2

e(S) . We get an exact sequence

1 ! Πg �Πg ! Γ ! G ! 1,

and Γ contains an index 2 subgroup Γo containing both subgroups Πg as nor-
mal subgroups. The exact sequence 1 ! Πg � Πg ! Γo ! Go ! 1 provides
two embeddings "i of Γo(i) in Aut (Πg) (where 1 ! Πgi ! Γo(i) ! Go ! 1).
Let t0 be an element in Γ � Γo, so that conjugating by t0 yields an automor-
phism of Πg � Πg which exchanges the two factors. Therefore we can write
t0(�1,�2)t0�1 = (#�2, �1). We change the isomorphism of the second factor with
Πg by setting #�1 = �02. Applying the square of the transformation, we get an el-
ement of Γo, � 00 = # . In fact, t02(�1,�02)t0�2 = (# �1,# �02). For  in Γo, which
we identify with the element of Aut (Πg�Πg) given by inner conjugation, we as-
sociate an element '00() simply by the rule Int (t0) � Int () = Int ('00()) � Int (t0).
Thus we obtain an automorphism '00 of Γo, and an easy calculation yields
'00 � '00 = � 00.

Our proof is over: since again using the Teichmüller space of the curves C0

with �1(C0) �= Γo(1) we can find an irreducibile parametrization of all the curves
C with an action of G induced by the surjective homomorphism �: Γo(1) !
G ! 1. Then the data (['], � ) are clearly recovered by the classes induced by
� 00,'00. Finally, when the action is free, we have to see when another different
point of Teichmüller space gives an isomorphic surface to the one associated
to (C0,�: �1(C0) �= Γo(1)). The condition is that we get an isomorphic curve,
and that under this isomorphism the given subgroups (pullback of ker �) corre-
spond to each other. This means that we get the orbit of the subgroup of the
Teichmüller modular group, Modg0 , consisting of the automorphisms � which
leave the subgroup ( ker �) invariant.

Remark 4.15. One can then ask the natural question: when is the above moduli
space a variety of general type? (Cf. e.g. [Har].)
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We will end this section by showing how to recover the “branching data”
(e.g., the isotropy subgroups, : : : ) for the covering C = Ci ! C0 = C0i (in terms of
the orbifold fundamental group extension 1 ! �1(Ci) = Πgi ! �orb

1 (C0�i jm
00(i)) =

Π(i) ! G ! 1) in a more computable way. Recall that, for x in C, the subgroup
Stab (x) is cyclic, and therefore we will restrict ourselves to considering cyclic
subgroups H of G.

Definition 4.16. Given a cyclic subgroup H = hgi of G, define �(H) = cardfx j
H = Stab (x)g, s(H) = cardfx j H � Stab (x)g = card ( Fix (g)).

Our goal is to determine the function �, since then, working out the action of
the finite group G, via inner automorphisms, on the set of its cyclic subgroups,
we shall recover branching indices and a picture of the covering (of course, once
we know �(H), to identify explicitly the corresponding �(H) ramification points,
it will in general be necessary to look at liftings H ! Π(i) of the inclusion
H � G). To this end, we shall first determine the function s. We already noticed,
in fact, that we have an injective homomorphism of G to Out (�1(Ci)) = Out (Πgi),
inducing an injective homomorphism G ! Aut (H1(Ci,Z)). By Lefschetz’ fixed
point formula we then get:

s(hgi)= card ( Fix (g))=2� Tr (g�)(4.17)

(g� being the action of g on H1(Ci,Z)).

We observe that

�(H) = s(H) if H is a maximal cyclic subgroup of G.(4.18)

PROPOSITION 4.19. The function �(H) is effectively computable from the function
s(H).

Proof. Define the coheight of a cyclic subgroup to be k if k = maxfm j
there exists a proper chain of length m of cyclic subgroups H = Hm � Hm�1 �
Hm�2 � � � � H0g. Thus, the maximal cyclic subgroups are exactly those with
coheight 0.

We can thus proceed by induction on the coheight k of H. In fact, fx j
H = Stab (x)g � fx j H � Stab (x)g = ( Fix (H)); moreover, for each y in
( Fix (H))� fx j H = Stab (x)g; Stab (y) is a cyclic subgroup H0 � H, and differ-
ent from H. Obviously such a subgroup H0 has coheight � (k � 1).

We finally observe that �(H) = s(H)�
P

H0 6=H
H0�H

�(H0).

A closed “inversion” formula to recover � from s involves the geometry of the
directed graph whose vertices are the cyclic subgroups H of G.
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5. A topological characterization of isotrivially fibred surfaces. Let f :
S ! B be a constant moduli (relatively) minimal fibration. Taking the canonical
Galois cover associated to the kernel of the monodromy of the associated holo-
morphic bundle f �: S� ! B�, we obtain a minimal birational realization of S
as a quotient of a product of two curves, ": S �= Y = C1 � C2=G (B = C1=G).
Recall (cf. Remarks 2.4) that " is not necessarily a morphism, whence the other
fibration S ! C2=G can only be a rational map, when C02 = C2=G has genus 0.
This motivates the asymmetry of the following:

Definition 5.1. Let f : S ! B be a constant moduli minimal fibration. Then
the good locus U of S is the complement of the inverse image under the rational
map ": S ! Y = C1 � C2=G of the singular locus of Y.

Note that the good locus U maps isomorphically to an open set Yo in Y and
that, in view of 2.4, when " is not a morphism, the full fibres corresponding to
the points where " is not defined are being removed, both in S and in Y .

The good locus Yo coincides, when " is a morphism, with the locus where
C1�C2 ! Y = C1�C2=G is unramified, so we get an unramified covering of Yo

given by (C1 � C2)� Σ, Σ being the finite set of points which have a nontrivial
stabilizer. When " is not a morphism, we are also removing from C1�C2 a finite
(G-invariant) union of fibres.

Thus Yo has an unramified covering of finite degree which has the fundamen-
tal group of a product of projective curves (case: " a morphism) or the product
of a projective curve with a quasiprojective one. In order to generalize to con-
stant moduli fibrations the topological characterization of surfaces isogenous to
a product, the most natural way is to recall that for a smooth complete surface S
the Euler number e(S) = c2(Ω1

S). Then, for a quasiprojective manifold U = X�D
(X is smooth, proj., and D is a normal crossings divisor), the natural object to
consider is Ω1

X(logD) in the place of Ω1
X; for the top Chern class cn(Ω1

X( log D)),
which we identify with the number it gives by integration on X,

cn(Ω1
X( log D)) = eBM(U) = e(X)� e(D)(5.2)

holds, where eBM(U) is the Borel-Moore homology Euler number (cf. [B-M],
[B-H]). If we have an unramified covering Z ! U of degree d, then

eBM(Z) = d eBM(U).(5.3)

Since removing points makes eBM(U) become smaller, going back to the proof of
Theorem 3.4, we see immediately that the results are bound to be a little weaker
in the quasiprojective case. We have two such generalizations of Theorem 3.4.

THEOREM 5.4. Let U = S � D be a quasiprojective surface, and assume
that U is proper homotopically equivalent to the good locus Yo of a constant
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moduli fibration. Then S carries a constant moduli fibration with the same in-
variants as the relatively minimal fibration associated to the projection Y !
C1=G. Moreover, all such surfaces S form an irreducible subvariety of the moduli
space.

Proof. We proceed as in Theorem 3.4, replacing S by U, using Arapura
and Bauer’s logarithmic versions (Theorems 2.11 and 2.12) of the fibration the-
orems. We thus get, for a suitable Galois unramified cover U0 of U, a sur-
jective holomorphic map f to a product of logarithmic curves C�1 � C�2. We
get a holomorphic extension f : S0 ! C1 � C2 by choosing S0 to be a suit-
able completion of U0. It remains to show that f has degree 1. This amounts
to f �: H4(C1 � C2,Z) ! H4(S0,Z) being an isomorphism. But, on the other
hand, H4(C1 � C2,Z) = Λ4H1(C1 � C2,Z), so we only need to show that there
are 4 elements �1, �2, �3, �4 in f �(H1(C1 � C2,Z)) such that

R
S0 (�1 ^ �2 ^ �3 ^

�4) = 1 (integration here stands for evaluation on the fundamental class). We
want to transform this calculation into a calculation on U0, and if the hypoth-
esis would be of a diffeomorphism between Yo and U, then we could rep-
resent the �i’s by differential forms and use that

R
S0 =

R
U0 . We can accom-

plish the same purpose by using the fundamental class of U0 in Borel-Moore
homology HBM

4 (U0,Z), and its natural pairing with cohomology with compact
supports.

In our situation we have natural isomorphisms HBM
4 (U0,Z) �= H4(S0,Z),

H4(S0,Z) �= H4
c (U0,Z), compatible with the 2 natural pairings into Z. We have

natural maps Hi
c(U0,Z) ! Hi(S0,Z) ! Hi(U0,Z) and we observe that the classes

�j in Hi(U0,Z) come from classes in Hi
c(U0,Z) which we shall denote by �0j .

More precisely, the exact sequence for Borel-Moore homology (which coincides
for compact spaces with singular homology) yields

Hi(S
0 � U0,Z) ! Hi(S

0,Z) ! HBM
i (U0,Z) ! Hi�1(S0 � U0,Z),

thus Hi(S0,Z) �= HBM
i (U0,Z) for i = 3, 4, and by duality we thus get Hi

c(U0,Z) �=
Hi(S0,Z) for i = 0, 1. Thus

Z
S0

(�1 ^ �2 ^ �3 ^ �4) = h[U0], (�01 ^ �
0
2 ^ �

0
3 ^ �

0
4)i.

The last integer can now be calculated on the corresponding unramified cover
Yo0

of Yo, using that the groups HBM
i (U0,Z) are invariant by proper homotopy

equivalences. Reversing the chain of arguments, since Yo0

is a Zariski open set
in a product of two curves, we get that

h[U0], (�01 ^ �
0
2 ^ �

0
3 ^ �

0
4)i = 1,
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as we wanted. The last assertion concerning the irreducibility of the family of
such surfaces follows with the same proof as in Remark 4.11 and Lemma 4.12.

Remark 5.5. From the proof of Theorem 5.4 we see immediately that an
entirely analogous result holds for quasiprojective varieties of higher dimen-
sion. Moreover, one can clearly weaken the assumption on U to: we have an
isomorphism of fundamental groups �1(U) �= �1(Y0) and an isomorphism of
cohomology algebras with compact supports H?

c (U0,Z) �= H?
c (Y00

,Z).

We use now the logarithmic version (Theorem 2.14) of the Zeuthen-Segre
inequality to obtain a sharper result in the 2-dimensional case. But to this end
we must recall some notation:

Remarks 5.6.
(i) A manifold U is said to have only one end if there exists an increasing

sequence (Kn) of compacts whose union is U, and such that U�Kn is connected.
In the particular case of a quasiprojective surface U = S�D, U has only one end
iff D is connected.

(ii) Recall that �11 (U), for a manifold with one end, is the limit of the
fundamental groups �1(U � Kn) where Kn is a sequence of compacts as in (i).

(iii) If U = S � D, then �11 (U) is the fundamental group of the boundary Σ
of a good tubular neighborhood T of D (or, equivalently, of T � D).

(iv) If Y has several ends (in our case, they correspond to the connected
components of D), we can define �11 (U) as the disjoint union of the corresponding
groups.

THEOREM 5.7. Let U = S�D be a quasiprojective surface. Assume that �1(U) �=
�1(Y0), where Y0 is the good locus of a relatively minimal constant moduli fibration
and that �11 (U) �= �11 (Y0), compatibly with the natural homomorphisms �11 !
�1. Assume further that e(U) = e(Y0) (by Poincare’s duality this is equivalent to
eBM(U) = eBM(Y0)). Then S also carries a constant moduli fibration which, in case
S is minimal, is a deformation of the given one.

Proof. Let Γ = Γ0 � Γ00 be the subgroup of �1(Y0) corresponding to the
unramified covering birational to a product, and where Γ0 is the factor which
corresponds to the fibration. Observe that the pullback of Γ within the groups of
�11 (Y) determines �11 (U0) for the corresponding covering U0 of U (by assump-
tion, the number of ends and their fundamental groups at infinity are the same
for both surfaces). We have that each group in �11 (U0) is trivial if Γ0 is not a free
group. And that, in case Γ0 is free, there are as many nontrivial ones as there are
ends of the target quasiprojective curve, each of them mapping onto an infinite
cyclic subgroup of Γ0. By Theorem 2.12, the unramified covering U0 associated
to Γ admits a mapping to a product of two curves B1�B2, where B2 is compact,
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and B1 = C1 � Z, where Z has cardinality k = number of the nontrivial groups in
�11 (U0)’s.

By our assumption, every connected component D00 of S0 � U0 maps to a
point in B1. Moreover, either D” is a full fibre and then we have a corresponding
nontrivial group in �11 (U0), or D” is not a full fibre and, by the well-known
Zariski’s lemma, the intersection matrix for the irreducible components of D”
is negative definite. We can then apply Mumford’s Main Result of [Mum], and
conclude that the trivial groups in �11 (U0) correspond to the case where D00 is
a point (here, S0 is a minimal completion, whence D” need not be a normal
crossings divisor). By adding these, we obtain a very good fibration. In fact, the
remaining components D00 are contained in a fibre over Z, and we claim that they
must be a full fibre. In fact, these fibres are missing in U0: since their number
is the same(= k) as the number of nontrivial groups in �11 (U0), the only missing
curves are full fibres. We can thus conclude as in the proof of Theorem 3.4, in
view of Theorem 2.14.

Remark 5.8. In fact, one sees from the above proof that a weaker assumption
is really sufficient on �11 (U). Namely, that Γ is such to determine on U0 the right
number a+k of ends, k whose corresponding group in �11 (U0) maps onto a cyclic
nontrivial subgroup of Γ0, and a yielding a trivial group of �11 (U0).

6. The fundamental group and moduli spaces. We have seen in Sec-
tion 4 that surfaces isogenous to a product yield an irreducible moduli space,
once one fixes, e.g., the Euler number and the fundamental group. On the other
hand, there are several examples (cf. [Cat2], [Man1]) of surfaces of general type
which are simply connected and for which the moduli space, even if we fix the
oriented topological type (and also the canonical class, see [Man2]), still has
many connected components.

The idea is to marry these two types of moduli spaces by using a small
variation of the construction of Lemma 1.1 (the construction of Lemma 1.1, when
applied to irregular surfaces, gives rise to deformations which are not complete
intersections any longer, but just zero loci of a section of a rank 2 bundle).
Unfortunately, we are not yet able to say whether we get in this way different
connected components of moduli spaces. Nor can we in this way, for each group
Γ which is a fundamental group of an algebraic surface, produce everywhere
nonreduced moduli spaces of surfaces having Γ as fundamental group (using e.g.
the examples of [Cat4]).

As in Section 1, we shall take S � X�Y = Z as a smooth complete intersection
of two hypersurfaces where:

6.1. (i) X, Y are smooth complete surfaces of general type with ample canon-
ical bundle.
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6.1. (ii) S is a complete intersection of two divisors in Z of type (A+B) and
(2A0+2B0), where we let A, A0 vary among the divisors algebraically equivalent to
rKX , with r � 2, and likewise we let B, B0 vary among the divisors algebraically
equivalent to rKY .

6.2. Therefore (cf. [Bo]), all the cohomology groups Hi(X, mA) = 0 ex-
cept for i = 0, m � 0, i = 2, m � 0, and likewise for the cohomology groups
Hi(X, mA0), Hi(X, mB), Hi(Y , mB0).

We have the following exact sequence on S:

0 ! TS ! TX � TY jS! OS(A + B)�OS(2A0 + 2B0) ! 0,(6.3)

where we identify TX , resp. TY , to their pullbacks to Z. Since X has ample
canonical bundle we can take r � 12 (cf. [Cor], Lemma 4.1, p. 120) so that

Hi(X, TX(� mA)) = 0 for i � 1, m > 0,(6.4)

and similarly with Y in the place of X, B or B0 instead of A. (Note that the above
vanishing is indeed false for large r if X contains (-2)-curves.) It follows then
that

Hi(Z, TX � TY (� mA� nA0 � mB� nB0)) = 0(6.5)

for i < 4, m + n > 0,

and similarly Hi(Z,OZ(� mA� nA0 � mB� nB0)) = 0.
We finally have the Koszul sequence

0 ! OZ(� A� 2A0 � B� 2B0) !(6.6)

OZ(� A� B)�OZ(� 2A0 � 2B0) ! IS ! 0

and the standard sequence

0 ! IS ! OZ ! OS ! 0,(6.7)

both of which we will tensor by vector bundles on Z.

LEMMA 6.8. Hi(Z, TX � TY) �= Hi(S, TX � TY jS) for i = 0, 1. Moreover
H1(Z, TX � TY) �= H1(X, TX)� H1(Y , TY) (for i = 0 we get 0).
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Proof. Tensor (6.6) and (6.7) by TX � TY ; use (6.5). The rest is straight-
forward.

We obtain therefore an exact sequence

H0(OS(A + B))� H0(OS(2A0 + 2B0)) ! H1(S, TS) !

! H1(X, TX)� H1(Y , TY).

(6.9)

Moreover, from (6.2), (6.6), and (6.7) we also have that there is an exact sequence

H0(OZ(A + B))� H0(OZ(2A0 + 2B0)) !(6.10)

H0(OS(A + B))� H0(OS(2A0 + 2B0) !

H1(OZ)� H1(OZ) =

[H1(OX)� H1(OY)]� [H1(OX)� H1(OY)] ! 0.

The last two sequences tell us about the surjectivity of the Kodaira-Spencer
map.

PROPOSITION 6.11. Assume that X, Y belong to respective irreducible families
X � Y , with surjective Kodaira Spencer maps. Take r so large that (6.4) holds
for each X in X , Y in Y (e.g. r � 12). Then the family of smooth surfaces S
obtained as above as the complete intersection of two divisors in X�Y = Z of type
(A + B) and (2A0 + 2B0) (with A, A0 any divisors algebraically equivalent to rKX,
B, B0 any divisors algebraically equivalent to rKY) is irreducible with surjective
Kodaira-Spencer map.

Proof. Since r � 2, the family of effective divisors A algebraically equivalent
to rKX forms a projective bundle over the relative Picard scheme of X , Pic0 (X ),
and similarly for 2A0, B, 2B0. Since, e.g., H0(Z,OZ(A + B)) = H0(X,OX(A)) 

H0(Y ,OY (B)), we conclude likewise that the family of effective divisors on Z
algebraically equivalent to A+B forms a projective bundle over Pic0 (X )�Pic0 (Y).
Whence, by taking a fibre product we obtain an irreducible family whose Kodaira-
Spencer map is clearly surjective at each point.

7. Results in the higher dimensional case. As already remarked in the
introduction, Mok [Mok1,2] extended to the case of a compact quotient Hn=Γ
of a polydisc (H being the unit disc �= Poincaré’s upper half plane) the result of
Jost and Yau (including strong rigidity for the case where Γ is irreducible). We
can (partially) further generalize the result of Jost and Yau (cf. Theorem 3.4) to
higher dimensions:



FIBRED SURFACES, VARIETIES ISOGENOUS TO A PRODUCT 39

THEOREM 7.1. Let X be a compact Kähler manifold of dimension n, and assume
that

(i) Γ = �1(X) admits a finite index subgroup Γ0 isomorphic to Πg1 � Πg2 �
� � � �Πgn, with g1, : : : gn > 1, and that moreover

(ii) H2n(X,Z) �= Z has index d = index (Γ0) inside the image of H2n(Γ0,Z) in
H2n(X0,Z) (X0 being the covering associated to Γ0).

Then X is a blowup of a variety isogenous to a higher product.

Proof. The beginning of the proof runs exactly as in Theorem 3.4. That is, we
have a degree d unramified covering �: X0 ! X, and therefore H2n(X,Z) �= Z has
index d in H2n(X0,Z) �= Z. Now, X0 admits a holomorphic map f to a product
W = Cg1 � Cg2 � � � � � Cgn of curves of respective genera g1, : : : gn > 1. By
our assumption f �H2n(W,Z) 6= 0, and f is surjective. Moreover, H2n(Γ0,Z) �=
f �H2n(W,Z) � H2n(X0,Z) �= Z is therefore a chain of equalities, and therefore
deg ( f ) = 1, so f is a birational morphism.

If f is not an isomorphism, then there exists a f -exceptional curve C0 which
has negative intersection with KX0 , whence also ��1(�(C)) is f -exceptional, since
KX0 = ��(KX). We conclude, by induction on the number of elementary contrac-
tions, that the f -exceptional locus is �-invariant, whence also X is a blowup of a
manifold Y having Cg1 � � � � � Cgn as an unramified covering.

Example 7.2. In the previous theorem one cannot replace condition (ii) by
the analogous condition of condition (e) of Theorem 3.4:

e(X) = 2n(g1 � 1)(g2 � 1) : : : (gn � 1)=d.

In fact, let W = Cg1 � Cg2 � Cg3 and let T be a double cover branched on
a smooth ample surface B � W. Arguing, e.g., as in [Cat1], Section 1, we
see that �1(T) �= �1(W). Whereas, again a Borel-Moore homology calculation
shows

e(T) = 2e(W)� e(B) < 0(7.3)

(indeed both terms are negative, the second term by Castelnuovo’s theorem (cf.
[Bo]) since B is of general type). We obtain X by blowing up 1=2(e(W)� e(B))
points; thus, �1(X) �= �1(W) and e(X) = e(W), but the classifying map f : X ! W
has degree 2.

The above example shows that some minimality assumption is needed in
dimension 3, when one can increase the Euler number by blowing up points, and
decrease it by blowing up curves of genus � 2.
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Remark 7.4. It is rather clear that condition (ii) is also crucial in Theo-
rem 7.1 in order to have the surjectivity of f , which, in dimension n = 2,
follows automatically from the fact that the pencils are distinct. In higher di-
mensions, by Lefschetz, we can always take a surface S with given funda-
mental group Γ and cross it with any simply connected manifold: this shows
that condition (ii) can be weakened, but not completely removed, e.g., we also
have:

THEOREM 7.5. Let X be a compact complex manifold of dimension n with ample
canonical bundle and assume that:

(i) Γ = �1(X) admits a finite index subgroup Γ0 isomorphic to

Πg1 �Πg2 � � � � �Πgn ,

with g1, : : : gn > 1,

(i) the image of H2n(Γ0,Z) in H2n(X0,Z) is nonzero,

(k) Kn
X = n! 2n(g1 � 1)(g2 � 1) : : : (gn � 1)=d.

Then X is isogenous to a higher product, and the moduli space of such varieties is
irreducible (weak rigidity).

Proof. As in Theorem 7.1 we get f : X0 ! W, where W is a product of curves,
and we need to show that f is an isomorphism. Without loss of generality let us
assume X = X0 (d = 1). Then Kn

X = Kn
W by our assumption.

On the other hand, if R is the ramification divisor, then KX = f �KW + R. By
a usual trick we calculate

Kn
X = ( f �KW + R)n = Kn�1

X � ( f �KW + R) � Kn�1
X � f �KW ,

equality holding, since KX is ample, if and only if dim R < n � 1. Then Kn�1
X �

f �KW = Kn�2
X � ( f �KW + R) � f �KW � Kn�2

X � ( f �K2
W), since (Kn�2

X �R)f �KW by the
projection formula equals f�(K

n�2
X � R) � KW and KW is ample. Continuing in this

way, Kn
X � ( f �KW)n = deg( f )Kn

W . Therefore deg ( f ) = 1, and dim (R) < n � 1.
Therefore, by normality, f is an isomorphism.

Remark 7.6. It is rather clear that the classification of surfaces isogenous
to a product which we carried through in Section 3 carries over without any
major alteration for higher dimensional varieties isogenous to a product (except
of course the more complicated algebraic treatment of the varieties of mixed
type). We remark now that the same ideas lead to a minor improvement of the
results of Mok [Mok1,2].
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THEOREM 7.7. Let X be a compact manifold of dimension n with ample canonical
bundle, and assume that

(i0) �1(X) �= Γ, where Γ is a cocompact torsion free subgroup of Aut (Hn)
(Γ �= �1(W 0), where Hn=Γ = W 0 is a compact manifold),

(ii0) H2n(Γ,Z) ! H2n(X,Z) is an isomorphism, or

(ii00) H2n(Γ,Z) ! H2n(X,Z) is nonzero and Kn
X = Kn

W0 .

Then also X is biholomorphic to a quotient W = Hn=Γ.

Idea of proof. By topology, since W 0 is a K(�, 1), we get a mapping f 00: X !
Hn=Γ = W 0 which can be deformed to a harmonic map by the theorem of Eells
and Sampson [E-L]. Conditions (ii) or (ii00) ensure that f is surjective. That the
universal covering X^ of X has a holomorphic mapping f^ to Hn which is Γ-
equivariant was proven by Mok in [Mok2]. Then the final argument goes exactly
as in Theorems 7.1 or 7.5.

Remark 7.8. In the 2-dimensional case, the hypothesis K2
X = K2

W0 can be re-
placed by �(OX) = �(OW0) or by e(X) = e(W 0), without then assuming X to be
minimal. In fact, assume in Theorems 7.5 and 7.7, �(OX) = �(OW0). Since K2

W0 =
8 �(OW0) = 8�(OX), if f is not birational then K2

X � 2K2
W = 16�(OX), contradict-

ing the Miyaoka-Yau inequality [Ya1,2], [Miy1,2]. Similarly if e(X) = e(W 0), and
S is the minimal model of X, then K2

S � 2K2
W = 4e(X) � 4e(S) again contradicts

the same inequality. Then f is birational and an isomorphism since e(X) = e(W).
We conjecture that the hypothesis on �(OX) (and of minimality) should also

be sufficient in higher dimension (cf. the work of Green-Lazarsfeld [G-L1,2] and
Ein-Lazarsfeld [E-L]) and one can ask whether in Theorem 7.5 the hypothesis
e(X) = 2n(g1�1)(g2�1) � � � (gn�1)=d would be sufficient, assuming the ample-
ness of KX . Cf. also recent work of Kollar [Kol1,2] where instead more emphasis
is set on the role of the plurigenera of X.
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Rend. Circ. Mat. Palermo 35 (1913), 237–244.
[Ser1] F. Serrano, Deformations of multiple fibres, Math. Z. 211 (1992), 87–92.
[Ser2] , Fibred surfaces and moduli, Duke Math. J. 67 (1992), 407–421.
[Ser3] , Isotrivial fibred surfaces, Ann. Mat. Pura Appl. (4) 171 (1996), 63–81.
[Sim] C. T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applica-

tions to uniformization, J. Amer. Math. Soc. 1 (1988), 867–918.
[Siu1] Y.-T. Siu, The complex analyticity of harmonic maps and the strong rigidity of compact Kähler

manifolds, Ann. of Math. 112 (1980), 73–111.
[Siu2] Y. T. Siu, Strong rigidity for Kähler manifolds and the construction of bounded holomorphic

functions, Discrete Groups in Geometry and Analysis (R. Howe, ed.), Birkhauser, 1987,
Basel, pp. 124–151.

[Tro] A. Tromba, Dirichlet’s energy on Teichmüller’s moduli space and the Nielsen realization problem,
Math. Z. 222 (1996), 451–464.

[vdV] A. van de Ven, On the Chern numbers of certain complex and almost complex manifolds, Proc.
Nat. Acad. Sci. U.S.A. 55 (1966), 1624–1627.

[Wol] S. Wolpert, Geodesic length functionals and the Nielsen problem, J. Differential Geom. 25 (1987),
275–295.

[Ya1] S.-T. Yau, Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci.
U.S.A. 74 (1977), 1798–1799.

[Ya2] , On the Ricci curvature of a complex Kähler manifold and the complex Monge-
Ampere equations, Comm. Pure Appl. Math. 31 (1978), 339–411.


