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1. Introduction

The main theme of the present note is the study of the deformations in the large
of compact complex manifolds. Even when these manifolds are Kähler, we shall
study their deformations without imposing the Kähler assumption.

Recall in fact that (cf. e.g. [K-M71]) a small deformation of a Kähler manifold
is again Kähler. This is however (cf. [Hir62]) false for non-small deformations.

In general, Kodaira defined two complex manifolds X ′, X to be directly de-
formation equivalent if there is a proper holomorphic submersion π : Ξ → ∆ of
a complex manifold Ξ to the unit disk in the complex plane, such that X, X ′ occur
as fibres of π. If we take the equivalence relation generated by direct deformation
equivalence, we obtain the relation of deformation equivalence, and we say that
X is a deformation of X ′ in the large if X, X ′ are deformation equivalent.

These two notions extend the classical notions of irreducible, resp. connected
components of moduli spaces. However, outside of the realm of projective mani-
folds, not so much is known about deformations in the large of compact complex
manifolds, since the usual deformation theory considers only the problem of study-
ing the small deformations.

Just to give an idea of how limited our knowledge is, consider that only in
a quite recent paper ([Cat02]), of which this one is a continuation, we gave a positive
answer to a basic question raised by Kodaira and Spencer (cf. [K-S58], Problem 8,
Section 22, p. 907 of volume II of Kodaira’s collected works), showing that any
deformation in the large of a complex torus is again a complex torus (in [K-S58]
only the case n = 2 was solved, cf. Theorem 20.2).
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The usual strategy to determine the deformation equivalence class of a compact
complex manifold X is to construct as big a family Ξ → B as possible, where B
is a connected analytic space, and then try to prove:

• The family is versal, i.e., for each fibre X0, we get a local surjection (B, 0) →
Def(X0) onto the Kuranishi family of X0.

• Given any 1-parameter family π : Ξ ′ → ∆ with the property that there exists
a sequence tν → 0 such that Xtν , ∀ν, occurs as a fibre in the family Ξ , then the
same property is also enjoyed by X0.

In this paper we shall begin to go further, considering manifolds which are
torus fibrations, and since we will make extensive use of results and techniques
from [Cat02], in the second section we will reproduce and extend some of those
for the reader’s and our benefit. In particular one can find a complete proof of:

Theorem 2.1. Every deformation of a complex torus of dimension n is a complex
torus of dimension n.1

In Section 3 we shall consider the general situation of a holomorphic fibration
f : X → Y with all the fibres complex tori (equivalently, by Theorem 2.1, with all
the fibres smooth and with one fibre isomorphic to a complex torus).

We shall set up a standard notation, and we shall give criteria for f to be
a holomorphic torus bundle, respectively a principal holomorphic torus bundle.
The main result is Proposition 3.4, describing explicitly all principal holomorphic
torus bundles over curves.

Proposition 3.4. Any principal holomorphic torus bundle X over a curve Y is
a quotient X = L/N of a suitable holomorphic (C∗)d-bundle L over Y by a suitable
discrete cocompact subgroup N of (C∗)d.

Section 4 treats first the general problem of determining the small deformations
of torus bundles, and then the main Theorem 4.4 asserts that when the base is
a curve of genus ≥ 2, then all the small deformations of a principal holomorphic
torus bundle are again holomorphic torus bundles.

The short Section 5 is devoted to showing that the families of principal holo-
morphic torus bundles on curves constructed in Section 4 yield all the deformations
in the large of such manifolds.

Theorem 5.1. A deformation in the large of a holomorphic principal torus bundle
over a curve C of genus g ≥ 2 with fibre a complex torus T of dimension d is again
a holomorphic principal torus bundle over a curve C′ of genus g.

Section 6 is instead quite long and develops a classification theory for principal
holomorphic torus bundles over tori. This theory bears close similarities with the
theory of line bundles over tori, as follows. Namely, assume that we have such
a torus bundle over Y = V/Γ and with fibre T = U/Λ.

1 Marco Brunella pointed out that a weaker result in this direction had been obtained by
A. Andreotti and W. Stoll in the paper “Extension of holomorphic maps”, Ann. Math. 72,
312–349 (1960).
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Then the homomorphism of fundamental groups π1(X) → π1(Y ) = Γ is a cen-
tral extension with kernel Λ and is completely classified by a bilinear alternating
form A : Γ × Γ → Λ.

We have a vector analogue of the Riemann bilinear relation, since viewing A
as a real element of

Λ2(Γ ⊗ C)∨ ⊗ (Λ ⊗ C) = Λ2(V ⊕ V̄ )∨ ⊗ (U ⊕ Ū),

its component in Λ2(V̄ )∨ ⊗ (U) is zero.
The Riemann bilinear relation enables us to construct a universal family of such

bundles, for each given choice of the extension class A. Namely, we take first the
possible subspaces U ⊂ (Γ ⊗ C) , V ⊂ (Λ ⊗ C) such that the Riemann bilinear
relation holds, and in this way we obtain a family which we call the standard
Appell–Humbert family.

From this family we obtain the so-called complete Appell–Humbert family,
which contains all such principal holomorphic bundles with given form A, as
stated by:

Theorem 6.8. Any holomorphic principal torus bundle with extension class iso-
morphic to ε ∈ H2(Γ,Λ) occurs in the complete Appell–Humbert family T ′BA.

The similarity with the theory of line bundles on tori, namely with the theorem
of Appell–Humbert, is that we are able to explicitly write the classifying group
cocycle as a linear function easily determined by the extension class and by the
complex structures V on the base, respectively U on the fibre.

Later we show the advantages of having such a realization of these bundles
via explicit cocycles, namely how one can explicitly calculate several holomorphic
invariants of such bundles using the bilinear algebra data of the extension class, we
have for instance:

Theorem 6.10. The cokernel of 0 → H0(Ω1
Y ) → H0(Ω1

X) is the subspace of U∨
which annihilates the image of the Hermitian part of A, i.e., of the component B′′
in [(V ⊗ V̄ )∨ ⊗ (U)].

It follows in particular that X is parallelizable if and only if the Hermitian part
of A is zero.

Corollary 6.11. The space H0(dOX) of closed holomorphic 1-forms on X contains
the pull-back of H0(Ω1

Y ) with cokernel the subspace U∗ of U∨ which annihilates
the image of A, i.e., U∗ = {β|β ◦ A(z, γ) = 0 ∀γ, ∀z}.
Theorem 6.12. The cokernel of 0 → H1(OY ) → H1(OX) is the subspace of Ū∨
which annihilates the image of the anti-complex component B′ of A, i.e., of the
conjugate of the component in [(Λ2V)∨ ⊗ (U)].

As the reader might have noticed, we give necessary and sufficient conditions
for the parallelizability of X, thus showing (a fact already pointed out by Nakamura
many years ago, cf. [Nak75]) easily that this notion is not deformation invariant.
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Via similar calculations, we determine (Proposition 6.16) the cohomology
algebra ⊕i Hi(OX ) of the structure sheaf, and (Corollary 6.15) the cohomology
groups of the tangent sheaf of X.

With these calculations we are able to show (Theorem 6.17) that the complete
Appell–Humbert family is versal for the manifolds X corresponding to smooth
points of the base of the family, if suitable assumptions hold for A, and in the case
where the fibre dimension is 1.

Due to lack of time we defer to the future the investigation of the small defor-
mations in the general case, which is a necessary step for the investigation of the
deformations in the large.

We finish the section by considering in detail the classical example of the
Iwasawa 3-fold, and of its small deformations.

Finally, in Section 7, we recall the definition (cf. [Cat02]) of Blanchard–Calabi
torus fibrations, and using the result of Section 5 we obtain as a consequence that the
space of complex structures on the differentiable manifold underlying the product
of a curve with a complex torus of dimension 2 has several distinct deformation
types, namely we have the following:

Corollary 7.8. The space of complex structures on the product of a curve C of
genus g ≥ 2 with a four-dimensional real torus contains manifolds which are not
deformation equivalent to each other, namely, Blanchard–Calabi 3-folds which are
not Kähler and holomorphic principal bundles in the family Fg,0.

2. Tori

It is well known that complex tori are parametrized by a connected family (with
smooth base space), inducing all the small deformations (cf. [K-M71]).

In fact, we have a family parametrized by an open set Tn of the complex
Grassmann manifold Gr(n, 2n), image of the open set of matrices

{Ω ∈ Mat(2n, n;C)|det(ΩΩ) > 0}.
We recall this well-known fact: if we consider Z2n as a fixed lattice, to each

matrix Ω as above we associate the subspace U = (Ω)(Cn), so that U ∈ Gr(n, 2n)

and Z2n ⊗ C ∼= U ⊕ Ū.

Finally, to Ω we associate the torus U/pU(Z2n), pU : U ⊕ Ū → U being the
projection onto the first addendum.

The above family will be the main object we shall have in mind.
We also want to recall from [Cat02] the following first result:

Theorem 2.1. Every deformation of a complex torus of dimension n is a complex
torus of dimension n.

In fact this proof uses several useful lemmata (some of them well known) which
will be here slightly generalized, for further use in the following. The first two are
due to Kodaira (for the first, cf. [Ko64], Theorem 2, p. 1392 of collected works,
vol. III)
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Lemma 2.2. On a compact complex manifold X one has an injection

H0(dOX) ⊕ H0(dOX) → H1
DR(X,C).

Proof. It suffices to show that the map, H0(dOX) → H1
DR(X,R), sending

ω → ω + ω̄

is an injection. Or else, there is a function f with d f = ω + ω̄, whence ∂ f = ω

and therefore ∂̄∂ f = d(ω) = 0. Thus f is pluriharmonic, hence constant by the
maximum principle. It follows that ω = 0. 
�

Recall (cf. [Bla56] and [Ue75]) that for a compact complex manifold X, the
Albanese variety Alb(X) is the quotient of the complex dual vector space of
H0(dOX) by the minimal closed complex Lie subgroup containing the image of
H1(X,Z).

The Albanese map αX : X → Alb(X) is given as usual by fixing a base
point x0, and defining αX(x) as the class in the quotient of the functional given by
integration on any path connecting x0 with x.

One says the the Albanese Variety is good if the image H1(X) of H1(X,Z) is
discrete in H0(dOX), and very good if it is a lattice (a discrete subgroup of maximal
rank). Moreover, the Albanese dimension of X is defined as the dimension of the
image of the Albanese map.

With this terminology, we can state an important consequence of an inequality
due to Kodaira:

Lemma 2.3. On a compact complex manifold X one has an injection

H0(dOX) → H1(X,OX ).

In particular, if b1(X) is the first Betti number of X, we have the inequalities

2h1(X,OX ) ≥ h1(X,OX ) + h0(dOX) ≥ b1(X).

If both equalities hold, then X has a very good Albanese variety, of dimension
h1(X,OX ) = h0(dOX) = 1

2 b1(X).

Proof. We claim that the map H0(dOX) → H1(X,OX ) = H1
∂̄
(X,OX ), is injec-

tive. Or else, we have ω̄ with ∂ω̄ = 0 and ∂̄ω̄ = 0 such that there is a function f
with ∂̄ f = ω̄, whence ∂̄∂ f = −d(ω) = 0. Thus we conclude as in the preceding
lemma: f is pluriharmonic, whence constant, thus ω = 0.

The second assertion follows easily from the exact cohomology sequence

H0(dOX) → H1(X,C) → H1(X,OX)

and from the first.
Finally, if equality holds it follows that the injection

H0(dOX) ⊕ H0(dOX) → H1
DR(X,C)

is an isomorphism, whence H1(X,Z)/(Torsion) maps isomorphically to a lattice
H1(X) in the dual vector space of H0(dOX), thus Alb(X) = H0(dOX)∨/(H1(X)).


�
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Lemma 2.4. Assume that {Xt}t∈∆ is a 1-parameter family of compact complex
manifolds over the 1-dimensional disk, such that there is a sequence tν → 0 with
Xtν satisfying the weak 1-Hodge decomposition

H1
DR(X0,C) = H0(dOX0) ⊕ H0(dOX0).

Then the weak 1-Hodge decomposition also holds on the central fibre X0.

Proof. We have f : Ξ → ∆ which is proper and smooth, and f∗(Ω1
Ξ|∆) is torsion

free, whence (∆ is smooth of dimension 1) it is locally free of rank h ≥ q :=
(1/2) b1(X0).

In fact, the base-change theorem asserts that there is (cf. [Mum70], II 5,
and [GR84]) a complex of vector bundles on ∆,

E0 → E1 → E2 → ...En s.t.(∗)

1) Ri f∗(Ω1
Ξ|∆) is the i-th cohomology group of (∗); whereas,

2) Hi(Xt,Ω
1
Xt

) is the i-th cohomology group of (∗) ⊗ Ct .

We may shrink the disk ∆ so that the rank of Ei → Ei+1 is constant for t �= 0,
and thus, as a consequence, there is an isomorphism between H0(Xt,Ω

1
Xt

) and the
stalk f∗(Ω1

Ξ|∆) ⊗ Ct .
We first see what happens on the central fibre instead, where the space

H0(X0,Ω
1
X0

) can have a higher dimension

Claim 1. There are holomorphic 1-forms ω1(t), ...ωh(t) defined in the inverse
image f −1(U0) of a neighbourhood (U0) of 0, and such that their restriction
to Xt are linearly independent ∀t ∈ U0.

Proof of Claim 1. Assume that ω1(t), ...ωh(t) generate the direct image sheaf
f∗(Ω1

Ξ|∆), but ω1(0), ...ωh(0) are linearly dependent. Then, w.l.o.g. we may as-
sume ω1(0) ≡ 0, i.e. there is a maximal m such that ω̂1(t) := ω1(t)/tm is
holomorphic. Then, since ω̂1(t) is a section of f∗(Ω1

Ξ|∆), there are holomor-
phic functions αi such that ω̂1(t) = Σi=1,..hαi(t)ω1(t), whence it follows that
ω̂1(t)(1 − tmα1(t)) = Σi=2,..hαi(t)ω1(t).

This, however, contradicts the fact that f∗(Ω1
Ξ|∆) is locally free of rank h.

Claim 2. H0(dOX0) has dimension ≥ q.

Proof of Claim 2. Let dv be the vertical part of exterior differentiation, i.e., the
composition of d : Ω1

Ξ → Ω2
Ξ with the projection (Ω2

Ξ → Ω2
Ξ|∆).

It clearly factors through an f ∗O∆-linear map d′
v : Ω1

Ξ|∆ → Ω2
Ξ|∆.

Taking direct images, we get a homomorphism of coherent sheaves f∗(d′
v) :

f∗(Ω1
Ξ|∆) → f∗(Ω2

Ξ|∆) whose kernel will be denoted by H .
By our assumption, for each tν we have a q-dimensional subspace Htν :=

H0(dOXtν
) of H0(Xtν ,Ω

1
Xtν

).
Therefore, as tν → 0, we have a limit in the Grassmann manifold Grass(q, h)

of the family {Htν}, whence a subspace H0 of dimension q. Taking suitable bases,
ωi(0) of H0, resp. ωi(tν) of Htν , we see that, since ωi(tν) is dv-closed, by continuity
it follows that also ωi(0) ∈ H0(dOX0).
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End of the proof. It follows from Lemma 2.2 that, being b1 = 2q, H1
DR(X0,C) =

H0(dOX0) ⊕ H0(dŌX0).
Actually, by the base change theorem it follows that H is free of rank q and it

enjoys the base change property that its stalk H ⊗ Ct corresponds to the subspace
H0(dOXt ). 
�
Corollary 2.5. Assume that {Xt}t∈∆ is a 1-parameter family of compact complex
manifolds over the 1-dimensional disk, such that there is a sequence tν → 0
with Xtν satisfying the weak 1-Hodge property, and moreover, such that Xtν has
Albanese dimension = a.

Then the central fibre X0 has a very good Albanese variety, and has also
Albanese dimension = a.

Proof. We use the fact (cf. [Cat91]) that, when the Albanese variety is good, then
the Albanese dimension of X is equal to max{i| Λi H0(dOX) ⊗ Λi H0(dŌX) →
H2i

DR(X,C) has non-zero image}.
If the weak 1-Hodge decomposition holds for X, then the Albanese dimension

of X equals (1/2) max{ j|Λ j H1(X,C) has non-zero image in H j(X,C)}. But this
number is clearly invariant by homeomorphisms.

Finally, the Albanese variety for X0 is very good since the weak 1-Hodge
decomposition holds for Xtν whence also for X0 by the previous lemma. 
�
Remark 2.6. As observed in ([Cat95], 1.9), if a complex manifold X has a gener-
ically finite map to a Kähler manifold, then X is bimeromorphic to a Kähler
manifold. This applies in particular to the Albanese map.

Theorem 1.1 follows from the following statement:

Theorem 2.7. Let X0 be a compact complex manifold such that its Kuranishi family
of deformations π : Ξ → B enjoys the property that the set B(torus) := {b|Xb is
isomorphic to a complex torus} has 0 as a limit point.

Then X0 is a complex torus.

We will use the following “folklore”:

Lemma 2.8. Let Y be a connected complex analytic space, and Z an open set
of Y such that Z is closed for holomorphic 1-parameter limits (i.e., given any
holomorphic map of the 1-disk f : ∆ → Y, if there is a sequence tν → 0 with
f(tν) ∈ Z, then also f(0) ∈ Z). Then Z = Y.

Proof of the lemma. By choosing an appropriate stratification of Y by smooth
manifolds, it suffices to show that the statement holds for Y , a connected manifold.

Since it suffices to show that Z is closed, let P be a point in the closure of Z , and
let us take coordinates such that a neighbourhood of P corresponds to a compact
polycylinder H in Cn .

Given a point in Z , let H ′ be a maximal coordinate polycylinder contained
in Z . We claim that H ′ must contain H , or else, by the holomorphic 1-parameter
limit property, the boundary of H ′ is contained in Z , and since Z is open, by
compactness we find a bigger polycylinder contained in Z , a contradiction which
proves the claim. 
� for the lemma.
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Proof of Theorem 2.7. It suffices to consider a 1-parameter family (B = ∆)
whence we may assume w.l.o.g. (cf. the proof of Lemma 2.4) that the weak 1-
Hodge decomposition holds for each t ∈ ∆.

By integration of the holomorphic 1-forms on the fibres (which are closed
for tν and for 0), we get a family of Albanese maps αt : Xt → Jt , which
fit together in a relative map a : Ξ → J over ∆ (Jt is the complex torus
(H0(dOXt ))

∨/H1(Xt,Z)).
Apply once more vertical exterior differentiation to the forms ωi(t): dv(ωi(t))

vanishes identically on X0 and on Xtν , whence it vanishes identically in a neigh-
bourhood of X0, and therefore these forms ωi(t) are closed for each t.

Therefore our map a : Ξ → J is defined everywhere and it is an isomorphism
for t = tν. Whence, for each t, αt is surjective and has degree 1.

To show that αt is an isomorphism for each t it suffices therefore to show that
a is finite.

Assume the contrary: then there is a ramification divisor R of a, which is
exceptional (i.e., if B = a(R), then dim B < dim R).

By our hypothesis αt is an isomorphism for t = tν, thus R is contained in
a union of fibres, and since it has the same dimension, it is a finite union of fibres.
But if R is not empty, we reach a contradiction, since then there are some t’s such
that αt is not surjective. 
�

We have also a more abstract result:

Proposition 2.9. Assume that X has the same integral cohomology algebra of
a complex torus and that H0(dOX) has dimension equal to n = dim(X). Then X
is a complex torus.

Proof. Since b1(X) = 2n, it follows from 1.2 that the weak 1-Hodge decompos-
ition holds for X and that the Albanese variety of X is very good.

That is, we have the Albanese map αX : X → J , where J is the complex torus
J = Alb(X). We want to show that the Albanese map is an isomorphism. It is
a morphism of degree 1, since αX induces an isomorphism between the respective
fundamental classes of H2n(X,Z) ∼= H2n(J,Z).

There remains to show that the bimeromorphic morphism αX is finite.
To this purpose, let R be the ramification divisor of αX : X → J , and B

its branch locus, which has codimension at least 2. By means of a sequence of
blowing ups of J with non-singular centres we can dominate X by a Kähler
manifold g : Z → X (cf. [Cat95] 1.8, 1.9).

Let W be a fibre of αX of positive dimension such that g−1W is isomorphic
to W . Since Z is Kähler, g−1W is not homologically trivial, whence we find
a differentiable submanifold Y of complementary dimension which has a positive
intersection number with it. But then, by the projection formula, the image g∗Y has
positive intersection with W , whence W is also not homologically trivial. However,
the image of the class of W is 0 on J , contradicting that αX induces an isomorphism
of cohomology (whence also homology) groups. 
�
Remark 2.10. The second condition holds true as soon as the complex dimension
n is at most 2. For n = 1 this is well known, for n = 2 this is also known, and
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due to Kodaira ([Ko64]): since for n = 2 the holomorphic 1-forms are closed, and
moreover h0(dOX) is at least [(1/2)b1(X)].

For n ≥ 3, the real dimension of X is greater than 5, whence, by the s-cobordism
theorem ([Maz63]), the assumption that X is homeomorphic to a complex torus is
equivalent to the assumption that X is diffeomorphic to a complex torus.

André Blanchard ([Bla53]) constructed in the early 50s an example of a non-
Kähler complex structure on the product of a rational curve with a two-dimensional
complex torus. In particular his construction (cf. [Somm75]) was rediscovered by
Sommese, with a more clear and more general presentation, who pointed out that
in this way one would produce exotic complex structures on complex tori.

However, the following remains open:

Question. Let X be a compact complex manifold of dimension n ≥ 3 and with
trivial canonical bundle such that X is diffeomorphic to a complex torus: is X then
a complex torus?

The main problem here is to show the existence of holomorphic 1-forms, so it
may well happen that this question also has a negative answer.

3. Generalities on holomorphic torus bundles

Throughout the rest of the paper, our set up will be the following: we have a holo-
morphic submersion between compact complex manifolds

f : X → Y,

such that one fibre F (whence all the fibres, by Theorem 2.1) is a complex torus.
We shall denote this situation by saying that f is differentiably a torus bundle.
We let n = dim X, m = dimY , d = dim F = n − m.
The case where d = 1 is very special because the moduli space for 1-dimen-

sional complex tori exists and is isomorphic to C. Whence it follows that in this
situation (unlike the case d ≥ 2) f is a holomorphic fibre bundle.

In any dimension, we have (e.g. by a much more general theorem of Grauert
and Fischer (cf. [FG65])) that f is a holomorphic bundle if and only if all the
smooth fibres are biholomorphic.

For any differentiable torus bundle we have a local system on Y ,

H := R1 f∗ZX(1)

and, by the exponential sequence 0 → ZX → OX → O∗
X → 0, if we define

V∨ := R1 f∗OX,(2)

then we get another exact sequence

0 → W∨ → H⊗ OY → V∨ → 0(3)

of holomorphic vector bundles, where

W∨ := f∗Ω1
X|Y .(4)
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Here, H yields an R-basis of V∨ at each point, and the same holds for H∨ :=
HomZ(H,Z) via the exact sequence

0 → V → H
∨ ⊗ OY → W → 0(5)

so that one obtains another differentiable bundle of complex tori, the so-called
Jacobian of X, which is a bundle of Lie groups

Jac(X) := W/H∨.

By Hodge symmetry the real flat bundleH∨ ⊗OY splits as a direct sum V ⊕ V̄ , and
W ≡ V̄ as complex vector bundles. We finally have the cotangent sheaves exact
sequence

0 → f ∗Ω1
Y → Ω1

X → f ∗W∨ → 0(6)

by which it follows

K X ≡ f ∗(KY + detW∨).(7)

In general, the derived direct image cohomology sequence of (6)

0 → Ω1
Y → f∗Ω1

X → f∗Ω1
X|Y → Ω1

Y ⊗ R1 f∗OX → ..(8)

is such that the coboundary map is given by the Kodaira–Spencer class in H0(Ω1
Y ⊗

R1 f∗Hom(Ω1
X|Y ,OX)), which vanishes exactly when f is a holomorphic fibre

bundle. In this case we have then an exact sequence

0 → Ω1
Y → f∗Ω1

X → f∗Ω1
X|Y → 0.(8)

Remark 3.1. An immediate corollary of (6) is that X is complex parallelizable,
i.e., Ω1

X is trivial, only if Y is parallelisable and W is trivial on Y . If Ω1
Y and W are

trivial, then X is parallelizable if furthermore the extension class of (6), is trivial.
This extension class lies in H1( f ∗(Ω1

Y ⊗W)). If, moreover, we have a holomorphic
bundle, the class lies in H1(Ω1

Y ⊗ W ) and X is complex parallelizable if and only
if Y is parallelizable, W is trivial on Y , and (8) splits.

Assume now that we have a holomorphic torus fibre bundle, thus we have the
exact sequence

0 → Ω1
Y → f∗Ω1

X → W∨ → 0.(8′)

We have the well known

Proposition 3.2. A differentiable bundle of d-dimensional tori is a principal holo-
morphic bundle if and only if we have an exact sequence

0 → Ω1
Y → f∗Ω1

X → Od
Y → 0.(8′)
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Proof. f is a holomorphic bundle if and only if the Kodaira–Spencer class is
identically zero, i.e., (8) is exact. In general (cf. [BPV84]) if T is a complex torus,
we have an exact sequence of complex Lie groups

0 → T → Aut(T ) → M→ 1,

whereM is discrete. Taking sheaves of germs of holomorphic maps with source Y
we get

0 → H(T )Y → H(Aut(T ))Y →M→ 1

and we know that holomorphic bundles with base Y and fibre T are classified by
the cohomology group H1(Y,H(Aut(T ))Y ). The exact sequence

0 → H1(Y,H(T )Y ) → H1(Y,H(Aut(T )))Y → H1(Y,M)

determines when a holomorphic bundle is a principal holomorphic bundle. In this
case the cocycles are in H1(Y,H(T )Y ), i.e., they have values in the translation
group, whence W is a trivial bundle.

Conversely, if W is trivial, we may first choose local coordinates (y) on a small
neighbourhood U ⊂ Y and local coordinates (x) = (u′, y) on X with f(x) = y,
then we may choose a basis w1(y), ..wd(y) of W∨, lift these to local holomorphic
1-forms on f −1(U), ω1(y), ..ωd(y) and then take the linear coordinates ui :=∫ x
(0,y) ωi(u′, y).

On the universal cover of f −1(U), we get functions (y1, ..ym), (u1, ..ud ) whose
differentials give a basis of Ω1

X . Moreover, if we go to another open set V ⊂ Y , the
new linear coordinates (v1, ..vd ) are such that vi − ui is a function of y ∈ U ∩ V .


�
In the case of a principal holomorphic bundle it is useful to write T = Cd/Λ,

where Λ ∼= Z2d , thus we have the exact sequence

→ H0(H(T )Y ) → H1(Y,Λ) → H1(Y,Od
Y

)

→ H1(H(T )Y ) →c →H2(Y,Λ).
(9)

The significance of the homomorphism c is readily offered by topological consid-
erations.

In fact, the homotopy exact sequence of a bundle f

π2(Y ) → π1(F) → π1(X) → π1(Y ) → 1(10)

determines an extension

1 → π1(F) → Π → π1(Y ) → 1,(10′)

where the action of π1(Y ) on π1(F) by conjugation is precisely the monodromy
automorphism. For a principal torus bundle the monodromy is trivial, indeedH⊗OY

is a trivial differentiable bundle, thus the extension (10’) is central, and is therefore
classified by (Λ = π1(T ), and F = T ) a cohomology class ε ∈ H2(Y,Λ).

The following situation is very interesting: let us consider a Stein manifold Y ′
whose cohomology group H2(Y ′,Z) = 0, and a holomorphic map h : Y ′ → Y .
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Then we may replace our principal bundle with compact base Y , with its pull-back
via h. It follows from the previous considerations that the pull-back is a product
Y ′ × T (since Λ ∼= Zd , and in view of (9)). Actually, this holds more generally if
the pull-back to Y ′ of ε is trivial.

Noteworthy special cases may be:

• Y ′ is the universal cover of Y , e.g. if Y is a curve or a complex torus.
• Y ′ is an open set of Y , for instance, if Y is a curve, any open set �= Y satisfies

our hypotheses.
• Y ′ is (C∗)m and the pull-back of the class ε is trivial.

Nevertheless, the case where Y is a curve can be more easily described via the
following construction (cf. e.g. [BPV84, pp. 143–149]):

Example 3.3. Let Y be a complex manifold and let L be a principal holomorphic
(C∗)d-bundle over Y , thus classified by a cohomology class ξ ∈ H1(Y,O∗

Y )d . Let us
consider any complex torus T = Cd/Λ, and let us realize it as a quotient (C∗)d/N.
Then we can form the quotient L/N, which is a holomorphic fibre bundle with
fibre ∼= T .

Proposition 3.4. Any principal holomorphic torus bundle X over a curve Y is
a quotient X = L/N of a suitable holomorphic (C∗)d-bundle L over Y.

Proof. It suffices (cf. loc. cit.) to show that there is a primitive embedding i :
Z

d → Λ and a class η in H2(Y,Zd ) such that the class ε corresponding to X equals
i∗(η). Consider, however, that H2(Y,Λ) ∼= H2(Y,Z)⊗Λ: thus there is a primitive
embedding of Z in Λ with the property that the fundamental class of Y maps to ε.
It suffices to extend the primitive embedding of Z to one of Zd into Λ, and define
η as the image of the fundamental class for the homomorphism induced by the
embedding Z ⊂ Zd . 
�

4. Small deformations of torus bundles

Let us briefly consider again the case of a general differentiable torus bundle.
Consider the exact sequence

0 → f ∗(W ) → ΘX → f ∗(ΘY ) → 0(12)

and the derived direct image sequence

0 → (W ) → f∗ΘX → (ΘY ) →(13)

→ (V∨ ⊗ W ) → R1 f∗ΘX → (ΘY ) ⊗ V∨ →
→ (Λ2(V∨) ⊗ W) → R2 f∗ΘX → (ΘY ) ⊗ Λ2(V∨) →,

where we used that R2 f∗(OX ) ∼= Λ2(V∨).

Notice that the coboundaries are given by cup product with the Kodaira–Spencer
class. Thus, in the case where we have a holomorphic bundle, all rows are exact.
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Remark 4.1. In general, by a small variation of a theorem of E. Horikawa con-
cerning the deformations of holomorphic maps, namely Theorem 4.9 of [Cat91],
we obtain in particular that, under the assumption H0((ΘY ) ⊗ V∨) = 0, we have
a smooth morphism Def( f ) → Def(X).

Let’s now assume that we have a holomorphic principal torus bundle, thus W
and V are trivial holomorphic bundles on Y .

Proposition 4.2. Let f : X → Y be a holomorphic principal torus bundle and
assume that H0(ΘY ) = 0. Then every small deformation of X is a holomorphic
principal torus bundle over some small deformation of Y.

Proof. Since V is trivial, by the previous remark, every small deformation of X is
induced by a deformation of the map f : X → Y .

That is, if we consider the respective Kuranishi families, we have holomorphic
maps of Def( f ) to Def(X), Def(Y ), such that the first is onto and smooth.

On the other hand, H1( f ∗W ) is the subspace T 1(X|Y ) in Flenner’s notation
(cf. [Flen79]), kernel of the tangent map Def( f ) → Def(Y ), thus we infer by the
smoothness of Def( f ) → Def(X), and since we have an exact sequence

0 → H1( f ∗W ) → H1(ΘX) → H1(ΘY ) → . . . ,

that indeed we have an isomorphism Def( f ) ∼= Def(X).
Then we have a morphism Def( f ) ∼= Def(X) → Def(Y ) and therefore, since

any deformation of a torus is a torus, we get that any deformation of X is a torus
bundle over a deformation of Y .

However, the local systemH is trivial, and therefore it also remains trivial after
deformation. Whence, it follows that also the bundles V , W remain trivial, since
they are both generated by d global sections, by virtue of (3) and (5).

Therefore, the Jacobian bundles remain trivial, so all the fibres are isomorphic
and every small deformation is a holomorphic bundle.

Since the classifying class in H1(Y,M) is locally constant, we finally infer that
we get only principal holomorphic bundles. 
�
Remark 4.3. The cohomology group H1( f ∗W ), by the Leray spectral sequence,
has a filtration whose graded quotient maps to a subspace of

H1(W )⊕H0(Y,R1 f∗OX ⊗W
) = H1(Od

Y

)⊕H0(Y,Od
Y ⊗Od

Y

) = H1(Od
Y

)⊕Cd×d .

The meaning of the above splitting is explained by the exact sequence (9): the
left-hand side stands for the deformation of the given bundle with fixed fibre, the
right-hand side stands for the local deformation of the torus T .

A typical case where the previous result applies is the one where Y is a curve
of genus g ≥ 2.

Theorem 4.4. Let f : X → Y be a holomorphic principal torus bundle over
a curve Y of genus g ≥ 2, and with fibre a d-dimensional complex torus T . Then
the Kuranishi family of deformations of X is smooth of dimension 3g−3+dg+d2,
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it has a smooth fibration onto Def(Y ) × Def(T ), its fibres over a point (Y ′, T ′)
are given by the deformations parametrized by H1(OY ′ d ) and inducing all the
holomorphic principal torus bundles over Y ′ with fibre T ′ and given topological
class in H2(Y ′,Z2d).

Proof. We can use Proposition 3.4 to construct, once a multidegree m := (m1, ..md)

is fixed, a family Fg,m with smooth base, parametrizing quotients X = L/N, where
L is a (C∗)d-bundle with multidegree m over a smooth curve Y .

Here, the parameter N varies in a smooth connected d2-dimensional parameter
space for complex tori (C∗)d/N, while the pair (Y, L) varies in the fibre product of
the Picard bundles Picmi over a universal family parametrizing all smooth curves
of genus g.

By the proof of our previous proposition, our smooth family Fg,m has a bijective
Kodaira–Spencer map, whence it is locally isomorphic to the Kuranishi family
Def(X).

The other assertions then follow easily. 
�
Remark 4.5. Looking more carefully, we see that the choice of a multidegree m :=
(m1, ..md) is not unique. Indeed, one has a well-defined element in H2(Y,Λ) =
H2(Y,Z) ⊗ Λ ∼= Λ, where the isomorphism is unique since a complex structure
on Y fixes the orientation. Thus we have as invariant a vector in a lattice Λ ∼= Z2d ,
whose only invariant is the divisibility index µ (we define µ = 0 if the class is
zero).

Whence, we can reduce ourselves to consider only families Fg,µ.

5. Deformations in the large of torus bundles over curves

As was already pointed out, the examples of Blanchard, Calabi and Sommese (cf.
especially [Somm75]) show that a manifold diffeomorphic to a product C × T ,
where C is a curve of genus g ≥ 2, and T is a complex torus, need not be
a holomorphic torus bundle over a curve. The deformation theory of Blanchard–
Calabi varieties and, more generally, of differential torus bundles offers interesting
questions (cf. [Cat02]).

But, for the more narrow class of varieties which are holomorphic torus bundles
over a curve of genus ≥ 2 (this includes as a special case the products C × T ,
where T is a complex torus, which were shown in [Cat02] to be closed for taking
limits) we have a result quite similar to the one we have for tori.

Theorem 5.1. A deformation in the large of a holomorphic principal torus bundle
over a curve C of genus g ≥ 2 with fibre a complex torus T of dimension d is again
a holomorphic principal torus bundle over a curve C′ of genus g.

This clearly follows from the more precise statement. Fix an integer g ≥ 2, and
a multidegree m := (m1, ..md ) ∈ Zd: then every compact complex manifold X0

such that its Kuranishi family of deformations π : Ξ → B enjoys the property that
the set B′′ := {b| Xb is isomorphic to a manifold in the family Fg,m considered in
Theorem 4.4} has 0 as a limit point. Then X0 is also isomorphic to a manifold in
the family Fg,m.
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Proof. Observe first of all that B′′ is open in the Kuranishi family B, by the
property that the Kuranishi family induces a versal family in each neighbouring
point, and by Theorem 4.4.

Whence, by Lemma 2.8 we can limit ourselves to consider the situation where
B is a 1-dimensional disk, and there exists a sequence tν → 0 such that Xtν , ∀ν, is
a principal holomorphic torus bundle over a curve Ctν .

Claim 1. The first important property is that, for such a holomorphic principal
bundle X = Xtν as above, the subspace f ∗

tν (H1(Ctν ,C)) is a subspace V of
H1(X,C), of dimension 2g, such that each isotropic subspace U of H1(X,C)

(i.e., such that the image of Λ2(U) → H2(X,C) is zero) is contained in V .
Moreover, if the bundle is not topologically trivial, V itself is an isotropic

subspace, whereas, if the bundle is topologically trivial, then any maximal isotropic
subspace has dimension g.

In both cases, if an isotropic subspace U has dimension r and U + Ū has
dimension 2r, then r ≤ g.

Proof of Claim 1. Assume that U is isotropic. Notice that we have an injection
U ⊂ V ⊕ W , where W injects into H1(F,Q) by virtue of the Leray spectral
sequence yielding

H1(X,Q)/H1(Y,Q) = ker(H0(Y,R1 f∗(Q)) → H2(Y,Q)).

Observe that H0(Y,R1 f∗(Q)) = H1(F,Q) since we have a principal bundle, and,
moreover, that the above homomorphism in the spectral sequence is determined by
the cohomology class ε ∈ H2(Y,Λ).

In particular, the above map is trivial if and only if the bundle is topologically
trivial.

In this case it follows by the Künneth formula that the wedge product yields an
injection (W ⊗ V) ⊕ (Λ2W ) → H2(X,C) .

Whence, if we have two non-proportional cohomology classes with trivial
wedge product in cohomology, (v1 + w1) ∧ (v2 + w2) = 0 and we assume w.l.o.g.
w2 �= 0, then first of all ∃ c ∈ C s.t. w1 = cw2.

Then also c �= 0, v1 = cv2; which is a contradiction.
Assume now the bundle not to be topologically trivial: then H0(Y,R1 f∗(C)) →

H2(Y,C)) is non trivial and H2(Y,C) maps to zero in the cohomology of X, thus
V is an isotropic subspace.

However, then the Leray spectral sequence at least guarantees that H1(Y,

H0(Y,R1 f∗(C)) = V ⊗ H1(F,C) is a direct summand in H2(X,C).
Since moreover W is killed by the linear form ε : H1(F,Q) → H2(Y,C) ∼= C,

(Λ2W ) embeds into the quotient H2(X,C)/V ⊗ H1(F,C).
Thus again we have an injection (W ⊗ V) ⊕ (Λ2W ) → H2(X,C), and the

same argument as in the trivial case applies.

Step 2. There is a morphism F : Ξ → C, where C → B is a smooth family of
curves of genus g.
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Proof of Step 2. For this purpose we use ideas related to the classical Castelnuovo–
de Franchis theorem and to the isotropic subspace theorem (cf. [Cat91]).

From the differentiable triviality of our family Ξ → ∆ and by Claim I follows
that we have a uniquely determined subspace V of the cohomology of X0, that we
may freely identify to the previously considered subspace V , for each Xtν .

Now, for each tν, we have a decomposition V = Utν ⊕ Utν , where Utν =
f ∗(H0(Ω1

Ctν
)).

By the compactness of the Grassmann variety and by the weak 1-Hodge decom-
position in the limit, the above decomposition also holds for X0, and U0 is an
isotropic subspace in H0(dOX0). The Castelnuovo–de Franchis theorem applies,
and we get a holomorphic map f0 to a curve Y0 of genus ≥ g. But this genus
must equal g, since we noticed in the statement of Claim I that if U0 isotropic, and
U0 + Ū0 = U0 ⊕ Ū0, then dim(U0) ≤ g.

Consider the vector bundle f∗Ω1
Ξ|∆. As in the proof of Lemma 2.4 we infer the

existence of a vector (sub-)bundle H such that its stalk at t yields a subspace of
H0(dOXt ).

We have a map of the complex vector bundle H
⊕

H̄ to the trivial vector
bundle H1(Xt,C) = V ⊕ W ′.

Since the construction of the Kuranishi family can be done by fixing the
underlying real analytic structure, we may assume w.l.o.g. that this map of complex
vector bundles has real analytic coefficients.

Now, ∀t, by Step I, Ker(Ht → W ′
t ) has dimension ≤ g, and dimension equal

to g for t = 0.
Whence, this kernel provides a subspace Ut ∀t in a neighbourhood of 0. The

corresponding map to the Grassmann manifold is holomorphic in a non-empty
open set and real analytic, and is therefore holomorphic ∀t in a neighbourhood
of 0.

We can now put the maps ft together by choosing a basis of f∗(Ut), and
integrating these holomorphic 1-forms: we get the desired morphism F : Ξ → C
to the desired family of curves of genus g.

Final step. We have produced a morphism F : Ξ → Y, where Y → B is a family
of curves.

Moreover, the fibres of f0 are deformations in the large of complex tori, whence,
by Theorem 2.1, these fibres are complex tori of dimension d. Consider, ∀tν the
Kodaira–Spencer map of Ytν : it is identically zero in a neighbourhood of tν, thus it
is identically zero in a neighbourhood of 0.

Whence, f0 is also a holomorphic torus bundle, and it is also principal be-
cause the cohomology group H1(Yt,M) is a subspace of the cohomology group
H1(Yt, Aut(H)), and as such the cohomology classes whose triviality ensure that
a bundle is principal are locally constant in t. 
�

Remark 5.2. Consider the family Fg,m of principal holomorphic torus bundles: it
is an interesting question to decide which manifolds in the given family are Kähler
manifolds, and which are not.
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6. Holomorphic torus bundles over tori

In this section we shall consider the case where we have a holomorphic principal
bundle f : X → Y with base a complex torus Y = V/Γ of dimension m, and fibre
a complex torus T = U/Λ of dimension d.

In this case, our manifold X is a K(π, 1) and, as we already saw, its fundamental
group π1(X) := Π is a central extension

1 → Λ → Π → Γ → 1,(10′)

where the extension of Γ by Λ is classified by a cohomology class ε ∈ H2(Y,Λ).
Tensoring the above exact sequence with R, we obtain an exact sequence of

Lie Groups

1 → Λ ⊗ R→ Π ⊗ R→ Γ ⊗ R→ 1(10′)

such that as a differentiable manifold our X is the quotient

M := Π ⊗ R/Π.

We want to give a holomorphic family of complex structures on M such that
all holomorphic principal bundles f : X ′ → Y ′ with extension class isomorphic to
ε occur in this family.

This construction is completely analogous to the construction of the standard
family of complex tori, parametrized by an open set Tn in the complex Grassmann
manifold Gr(n, 2n).

To this purpose, we must explain the analogue of the first Riemann bilinear
relation in this context.

In abstract terms, it is just derived from the exact cohomology sequence

H1(Y,Od
Y

) ∼= H1(Y,H(U)Y ) → H1(H(T )Y )

→c→ H2(Y,Λ) → H2(Y,H(U)Y )
(9′)

telling that the class ε maps to zero in H2(Y,H(U)Y ). This condition can be, in
more classical terms, interpreted as follows:

Remark 6.1 (first Riemann relation for prin. hol. torus bundles). There exists an
alternating bilinear map A : Γ × Γ → Λ, (representing the cohomology class ε

uniquely) such that, viewing A as a real element of

Λ2(Γ ⊗ C)∨ ⊗ (Λ ⊗ C) = Λ2(V ⊕ V̄ )∨ ⊗ (U ⊕ Ū),

its component in Λ2(V̄ )∨ ⊗ (U) is zero.

Proof. By Dolbeault’s theorem, the second cohomology group H2(Y,H(U)Y ) of
the sheaf of holomorphic funtions with values in the complex vector space U , since
Y is a torus, is isomorphic to the space of alternating complex antilinear functions
on V × V with values in U . It is easy to verify that the coboundary operator
corresponds to the projection of the cohomology group

H2(Y,Λ ⊗ C) → H2(Y,H(U)Y ) ∼= Λ2(V̄ )∨ ⊗ (U). 
�
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Definition 6.2. Given A as above, we define T BA as the subset of the product
of Grassmann manifolds Gr(m, 2m) × Gr(d, 2d) defined by T BA := {(V, U)|
the component of A in (Λ2(V̄ )∨ ⊗ (U)) is = 0}.
Remark 6.3. Observe that T BA is a complex analytic variety, of codimension at
most d m(m−1)

2 .

Proof. We may in fact choose a basis for Γ , resp. for Λ so that A is then represented
by a tensor Ak

i, j . Let as usual V correspond to a 2m × m matrix V (thus the matrix

(V, V̄ ) yields the identity of Γ ⊗Cwith arrival basis the chosen one and with initial
basis v1, . . . vm , v̄1, . . . v̄m .

Our desired condition is that

∀h �= �, wh,� := [
Σk

(
Σi, j vi,h Ak

i, jv j,�
)
ek

] ∈ U.

But this condition (observe moreover that wh,� = −w�,h) means that each
vector wh,� is linearly dependent upon u1, . . . ud . Locally in the Grassmannian
Gr(d, 2d) the condition is given by d polynomial equations. 
�
Definition 6.4. The standard (Appell–Humbert) family of torus bundles paramet-
rized by T BA is the family of principal holomorphic torus bundles XV,U on
Y := V/Γ and with fibre T := U/Λ determined by the cocycle in H1(Γ,H(T )Y )

which is obtained by taking fγ(z), which is the class mod (Λ) of Fγ (z) := −A(z, γ),
∀z ∈ V.

Remark 6.5. Observe that we may write A as B + B̄, where

B ∈ [Λ2(V)∨ ⊗ (U)] ⊕ [(V ⊗ V̄ )∨ ⊗ (U)].
For later use, we write B = B′ + B′′, with B′ ∈ [Λ2(V)∨ ⊗ (U)], B′′ ∈ [(V ⊗ V̄ )∨
⊗(U)], and will say that B′′ is the Hermitian component of A, and B′ is the complex
component of A.

Clearly:

• A(z, γ) = B(z, γ) ,∀z ∈ V, thus Fγ (z) is complex linear in z with values in U .
• Fγ (z) is a cocycle with values in T := U/Λ since

Fγ1+γ2(z) − Fγ1(z + γ2) − Fγ2(z) = −Fγ1(γ2) = A(γ1, γ2) ∈ Λ.

Definition 6.6. The complete Appell–Humbert family of torus bundles paramet-
rized by T ′BA is the family of principal holomorphic torus bundles XV,U,φ on
Y := V/Γ and with fibre T := U/Λ determined by the cocycle in H1(Γ,H(T )Y )

which is obtained by taking the sum of fγ (z) with any cocycle φ ∈ H1(Γ,Od
Y ) =

H1(Γ,H(U)Y ).

Remark 6.7. Observe that any φ ∈ H1(Γ,Od
Y ) = H1(Γ,H(U)Y ) is represented

by a cocycle with constant values in U . Therefore the cocycle fγ (z) + φ is a linear
cocycle (it is a polynomial of degree at most 1 in z).

Theorem 6.8. Any holomorphic principal torus bundle with extension class iso-
morphic to ε ∈ H2(Γ,Λ) occurs in the complete Appell–Humbert family T ′BA.
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Proof. Using sheaf cohomology, the proof is a standard consequence of the exact-
ness of sequence (9)′. 
�
Remark 6.9. The previous theorem is an extension to the torus bundle case of
the classical theorem of linearization of the system of exponents for holomorphic
line bundles on complex tori (cf. [Sieg73, pp. 49–62], for an elementary proof,
and [C-C91, p. 38], for a simpler elementary proof).

The above elementary proofs do not work verbatim here, since [Sieg73] uses
integrals which cannot be taken with values in T , and [C-C91] uses the existence
of a maximal isotropic sublattice of Γ (this no longer exists if A has values in
a lattice Λ of arbitrary rank).

Let us now indicate the modifications required in order to obtain an elementary
proof of Theorem 6.8.

Proof n. II. We have a cocycle fγ (z) with values in T = U/Λ, and we can lift it
to a holomorphic function Fγ (z) defined on the complex vector space V and with
values in U .

The cocycle condition tells us that

Fγ1+γ2(z) − Fγ1(z + γ2) − Fγ2(z) = −Fγ1(γ2) = A(γ1, γ2) ∈ Λ,

therefore dFγ (z) is a cocycle with values in H0(V, d(Od
V )) ⊂ H0(V,Od

V ).
By the classical linearization theorem there is a holomorphic 1-form g such

that
(II − 1) dFγ (z) = g(z + γ) − g(z) + Lγ (z),

where Lγ (z) is linear (polynomial coefficients of degree at most 1).
Define ψ(z) := dg(z): by (II-1) follows that ψ(z + γ) − ψ(z) has constant

coefficients, thus the coefficients of ψ are linear (since their derivatives are Λ-
periodic).

Moreover, since dψ = d2(g) = 0, it follows that there is a holomorphic 1-
form Q with quadratic coefficients such that dQ = ψ.

Since d(g−Q) = 0, there is a holomorphic functionΦ(z) such that dΦ = g−Q.
Now, Fγ is cohomologous to Pγ := Fγ − Φ(z + γ) + Φ(z). Now, dPγ =

Lγ (z) + Q(z) − Q(z + γ), thereby proving:

Claim 1. The cocycle fγ is cohomologous to a cocycle represented by Pγ , whose
coefficients are polynomials of degree at most 3.

We end the proof via the following:

Claim 2. The cocycle fγ is cohomologous to a cocycle represented by Gγ , whose
coefficients are polynomials of degree at most 1.

Here, the proof runs as classically, since the relation (valid for every cocycle)

Pγ1(z + γ2) − Pγ1(z) = Pγ2(z + γ1) − Pγ2(z)

shows that, if we choose a basis ofCm where Γ has basis e1, . . . em, τ1, . . . τm , then
if Pei is linear ∀i = 1, . . . . m, it follows then that any Pγ is linear.

To linearize Pei ,∀i = 1, . . . m, one can use the methods of solving linear
difference equations as in [Sieg73, pp. 54–58]. 
�
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The explicit standard normal form for cocycles is very useful to calculate
several holomorphic cohomology groups of X:

Theorem 6.10. The cokernel of 0 → H0(Ω1
Y ) → H0(Ω1

X) is the subspace of U∨
which annihilates the image of the Hermitian part of A, i.e., of the component B′′
in [(V ⊗ V̄ )∨ ⊗ (U)].

It follows in particular that X is parallelizable if and only if the Hermitian part
of A is zero.

Proof. We have the exact sequence

0 → H0(Ω1
Y

) → H0(Ω1
X

) → H0( f∗Ω1
X|Y

) ∼= U∨,

thus we immediately get that our cokernel is a subspace of the complex vector
space U∨.

To see which subspace we get, let us take a holomorphic 1-form ω and lift it
back to the product V × T ∼= Cm × T , with coordinates (z, u).

Hence we write ω = α + β = Σiαi(z, u)dzi + Σ jβ j(z, u)du j . Since the
coefficients are holomorphic functions of u, and by the previous exact sequence
we infer that β has constant coefficients, and that the coefficients of α depend only
on z, we can write: ω = Σiαi(z)dzi + Σ jβ jdu j . We also know that if β = 0 then
the coefficients αi(z) are constant.

The condition that ω is a pull-back from X is equivalent to γ ∗(ω) = ω ∀γ ∈ Γ .
Since γ(z, u) = (z + γ, u + fγ (z)), our condition reads out as

α(z + γ) − α(z) = −β ◦ d fγ (z) := −Σkβk Ak(dz, γ).(∗∗)

(∗∗) implies that the coefficients of α may be assumed w.l.o.g. to be linear homoge-
nous functions of z, thus there is a complex bilinear function B∗ such that α =
B∗(dz, z). Comparing again equation (**), we infer B∗(dz, γ) = −β ◦ A(dz, γ).

Since, however, we have β ◦ A(dz, γ) = β ◦ B(dz, γ) the above equation may
hold iff B∗(dz, γ) = −β ◦ B′(dz, γ) and β ◦ B′′(z, γ) = 0 ∀γ, ∀z. Thus there exists
an ω with vertical part = β if and only if β annihilates the image of B′′, as claimed.


�
Corollary 6.11. The space H0(dOX ) of closed holomorphic 1-forms on X contains
the pull-back of H0(Ω1

Y ) with cokernel the subspace U∗ of U∨ which annihilates
the image of A, i.e., U∗ = {β|β ◦ A(z, γ) = 0 ∀γ, ∀z}.
Proof. We know that there exists a holomorphic 1-form ω with vertical part β

iff β annihilates the Hermitian part B′′ of A, and then we may assume ω =
β ◦ B′(dz, z) + Σ jβ jdu j.

Let us calculate the differential of ω: we get dω = β ◦ B′(dz, dz). Since,
however, B′ is antisymmetric, we get that dω = 0 if and only if β ◦ B′(z′, z) = 0,
∀z, z′ ∈ V . Putting the two conditions together we obtain the desired conclusion
that β should annihilate the total image of A. 
�
Theorem 6.12. The cokernel of 0 → H1(OY ) → H1(OX) is the subspace of
Ū∨ which annihilates the image of the anti-complex component of A, i.e., of the
conjugate of the component B′ in [(Λ2V)∨ ⊗ (U)].
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Proof. We calculate H1(OX) through the Leray spectral sequence for the map f ,
yielding the exact sequence

0 → H1(OY ) → H1(OX) → H0(R1 f∗OX) → H2(OY ).(∗)

We will interpret the above as Dolbeault cohomology groups, keeping in mind
that R1 f∗OX is a trivial holomorphic bundle of rank d = dim(U).

Let η be a ∂̄-closed (0, 1)-form, which we represent through its pull-back to
V × T , with coordinates (z, u).

Hence we write η = α + β = Σiαi(z, u)dz̄i + Σ jβ j(z, u)dū j .
The meaning of (*) is that is that η is ∂̄-cohomologous to a form such that the

functions β j are constant. Let us then assume this to be the case, and let us impose
the two conditions ∂̄(η) = 0, and that η be a pull-back from X.

The first implies ∂̄u(α) = 0, thus the functions αi(z, u) are holomorphic in u,
hence they depend only upon z.

Moreover, then ∂̄(η) = 0 is equivalent to ∂̄z(α)(z) = 0, and therefore is
equivalent to the existence of a function φ(z) on Cn such that ∂̄z(φ(z)) = (α)(z).

Then, the condition that η be a pull-back means that η is invariant under the
action of Γ such that

z → z + γ, u → u + fγ (z),

whence it writes out as α(z + γ) − α(z) = −Σkβkd fγ (z)k, or, equivalently,

∂̄φ(z + γ) − ∂̄φ(z) = −Σkβk Ak(γ, dz̄).(∗ ∗ ∗)

As before, we can write A as A′ + A′′ where, B′′ being the Hermitian part of
the tensor, A′′ = B′′ + B̄′′.

Assume first that β ◦ B′(γ, z̄) := Σkβk B′k(γ, z̄) is identically zero; then β ◦
B′′(γ, z̄) = β ◦ A(γ, z̄) and we simply choose φ := β ◦ B′′(z, z̄) which clearly
satisfies equation (∗ ∗ ∗).

Then η := ∂̄(φ(z)) + Σ jβ jdū j is a ∂̄-closed 1-form on X with vertical part
β = Σ jβ jdū j .

Conversely, the meaning of the exact sequence (∗) is as follows:
given any vertical part β = Σ jβ jdū j , we first find a differential (0, 1)-form

on X
η = α + β = Σiαi(z)dz̄i + Σ jβ jdū j with the given vertical part.
Then, the vertical part comes from H1(OX ) only if its image in H2(OY ),

provided by ∂̄(η), is zero.
For this purpose we have to solve the equation

αi(z + γ) − αi(z) = −Σkβk Ak(γ, ēi) = −β ◦ A(γ, ēi).

But an easy solution is provided by setting

αi(z) = −Σkβk B′k(z̄, ēi) − Σkβk B′′k(z, ēi) = −β ◦ B′(z̄, ēi) − β ◦ B′′(z, ēi).

But now, ∂̄(η) = ∂̄α = −β ◦ B′(dz̄, dz̄) which is a (0-2)-form with constant
coefficients, and is therefore equal to zero if and only if all of its coefficients are
zero, thus iff −β ◦ B′(v̄, d ¯zw) = 0 ∀v,w ∈ V , which proves our assertion. 
�
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Remark 6.13. The previous theorem allows us to write explicitly the basis of the
complete Appel–Humbert family. Locally on Gr(d, 2d) we may assume after a per-
mutation of coordinates that our subspace U is the space of vectors {(u′, u′′)|u′′ =
U∗(u′)}, for some (d × d)-matrix U∗.

Then our equations are that we consider the matrices (V, U∗) and the vectors
v ∈ Cm , β ∈ Cd such that, in the notation of Remark 6.3, ∀h �= �, wh,� :=
[(Σi, j vi,h Ai, jv j,�)] satisfies

w′′
h,� = U∗(w′

h,�

)
, β

(
w′

h,�

) = 0.

Let us consider the easiest possible case, where m = 2, d = 1, then our
parameter variety is a pull-back of the variety in C4 with equations

w′′ = u∗w′, βw′ = 0,

a product of C with {(β,w′) ∈ C2| βw′ = 0}, a reducible variety.

In order to analyse the problem of describing the small deformations of principal
holomorphic torus bundles over tori we need to calculate the cohomology groups
of the tangent sheaf ΘX . This can be accomplished by the above multilinear algebra
methods.

For ease of calculations recall that the canonical bundle Ωn
X is trivial, therefore,

by Serre duality, it is sufficient to determine the cohomology groups

Hn−i(Ω1
X

) ∼= Hi(ΘX )∨.

Theorem 6.14. Hn−i(Ω1
X|Y) fits into a short exact sequence

0 → cokerβn−i−1 → Hn−i
(
Ω1

X|Y
) → kerβn−i → 0,

where βi : U∨ ⊗ Hi(OX ) → V∨ ⊗ Hi+1(OX ) is given by cup product and
contraction with B′′ ∈ [(V̄ ) ⊗ V)∨ ⊗ (U)].
Proof. Recall the exact sequence (6)

0 → f ∗Ω1
Y → Ω1

X → f ∗W∨ → 0(6)

where W is a trivial bundle, and the extension class is a pull-back of the extension
class of the sequence

0 → Ω1
Y → f∗Ω1

X → W∨ = f∗Ω1
X|Y → 0,(8)

which coincides with the Hermitian component B′′ of A, as it is easy to verify
(observe that B′′ ∈ [(V̄ ) ⊗ V)∨ ⊗ (U)] ∼= H1

∂̄
(V∨ ⊗ U ⊗ OY ) ∼= H1(W ⊗ Ω1

Y ) ⊂
H1( f ∗W ⊗ f ∗Ω1

Y )).
Therefore, in the exact cohomology sequence of (6), the coboundary operator

is given by cup product with B′′, whence we can write this exact sequence as

. . . Hn−i
(
Ω1

X

) → Hn−i
(
Ω1

X|Y
) = Hn−i(U∨ ⊗ OX )

→ Hn−i+1( f ∗Ω1
Y

) = Hn−i+1(V∨ ⊗ OX )

whence the desired assertion follows. 
�
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Corollary 6.15. Hi(ΘX ) fits into a short exact sequence

0 → coker bi−1 → Hi(ΘX ) → ker bi → 0,

where bi : V ⊗ Hi(OX ) → U ⊗ Hi+1(OX ) is given by cup product and contraction
with B′′ ∈ [(V̄ ) ⊗ V)∨ ⊗ (U)].
Proof. Serre duality. 
�

For completeness we state without proof a more general result than the one that
we need:

Proposition 6.16. The Leray spectral sequence for the sheaf OX and for the map
f yields a spectral sequence which degenerates at the E3 level and with E2 term
= (Hi(R j f∗OX), d2), where d2 : (Hi(R j f∗OX) = Hi(Λ j(V )) = Λi(V̄∨) ⊗
Λ j(Ū∨) → Λi+2(V̄∨) ⊗ Λ j−1(Ū∨) is provided by cup product and contraction
with B̄′ ∈ Λ2(V̄∨) ⊗ (Ū).

We observe now some deformation theoretic consequences:

Theorem 6.17. Let f : X → Y be a holomorphic principal bundle with base
a complex torus Y = V/Γ of dimension m, and fibre an elliptic curve T (T = U/Λ

has dimension 1).
Assume, moreover, π1(X) := Π to be a non-trivial central extension

1 → Λ → Π → Γ → 1(10′)

classified by a cohomology class ε �= 0 ∈ H2(Y,Λ) whose associated bilinear
form A has an image of dimension = 2.

1) Then every limit of manifolds in the complete Appell–Humbert family is again
a holomorphic principal bundle f ′ : X ′ → Y ′ with fibre an elliptic curve T ′,
and thus occurs in the complete Appell–Humbert family (6.6 and 6.8).

2) Every small deformation of such a manifold X is induced by the complete
Appell–Humbert in the case where h1(OX ) = m.

Proof. By Corollary 6.11 we get that H0(dOX ), the space of closed holomorphic
1-forms on X equals the pull-back of H0(Ω1

Y ) = H0(dOY ) since the antisymmetric
form A representing ε is non zero.

Likewise, again the Leray spectral sequence for cohomology shows that
H1(X,C) contains the pull-back of H1(Y,C) with cokernel equal to the sub-
space of Λ∨ annihilated by the image of A. This image is the whole Λ, whence
b1(X) = b1(Y ) and it follows immediately that f : X → Y is the Albanese map
of X.

Proof of Assertion 1. By Lemma 2.4 and Corollary 2.5 any limit X ′ in a 1-parameter
family Xt of such holomorphic bundles has a surjective Albanese map f ′ : X ′ → Y ′
onto a complex torus Y ′ = V ′/Γ of dimension m.

Since any deformation in the large of an elliptic curve is an elliptic curve, the
general fibre of f ′ is an elliptic curve.
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We have finished if we show that f ′ is a submersion, since an elliptic fibration
without singular fibres is a holomorphic bundle. Moreover, since we have that the
small deformations of f ′ : X ′ → Y ′ contain principal holomorphic bundles, then
the same thing holds for f ′ : X ′ → Y ′.

That f ′ is a submersion follows by purity of branch locus (cf. [Mum78]): we
would then have a ramification divisor R0 for the central fibre, but Rtν = ∅ for the
special fibres, yielding the same contradiction as in the proof of Theorem 2.7.

Proof of Assertion 2. It suffices to show that every small deformation X ′ of X has
an Albanese map f ′ : X ′ → Y ′ onto a complex torus Y ′ = V ′/Γ of dimension m.

However, by semicontinuity, h1(OX′) ≤ m, on the other hand we may apply
Lemma 2.3 to conclude that X ′ has a very good Albanese map, and again by purity
of branch locus we conclude that we have a submersion. 
�
Remark 6.18. We are interested more generally to see whether the complete
Appell–Humbert family, which does not have a smooth base but is pure of di-
mension m2 +m, has a surjective Kodaira–Spencer map (this is a first step towards
the proof of its versality). It is necessary for this purpose to calculate the cohomo-
logy group H1(ΘX ) in an explicit way.

We write, according to Theorem 6.12, H1(OX) = (V̄∨) ⊕ ker(B′), where we
see B′ as a linear map (B′) : (Ū∨) → Λ2(V̄∨).

We have then, according to Corollary 6.14, an exact sequence

V → U ⊗ (V̄∨ ⊕ kerB′) → H1(ΘX ) → V ⊗ (V̄∨ ⊕ kerB′)

→ U ⊗ (Λ2(V̄∨) ⊕ (V̄∨ ⊗ (kerB′)),

where the first and last map are given by contraction with B′′.
We first analyse when holds the desired dimensional estimate dim H1(ΘX ) =

m2 + m.

Case 1. B′′ is zero, whence X is parallelizable, thus dim H1(ΘX ) = (m+1)h1(OX ).
But in this case B′ is non zero, whence h1(OX ) = m and we are done.

Case 2. B′′ �= 0 and B′ �= 0, then h1(OX ) = m and thus follows dim H1(ΘX ) ≤
(m + 1)h1(OX ) = m(m + 1).

We omit the not difficult verification that in both cases the Kodaira–Spencer
map is surjective.

Case 3. B′ = 0, and B′′ �= 0. In this case A = B′′ + B̄′′, whence we observe that
the image of B′′ has dimension = 1.

We leave aside this case, where the rank of the antisymmetric matrix B′′ also
plays a role.

We finally describe the most well-known example of such elliptic bundles over
2-dimensional tori, namely, the so-called Iwasawa manifold (cf. [K-M71]).

One lets N (biholomorphic to C3) be the unipotent group of 3 × 3 upper
trangular matrices with all eigenvalues equal to 1.
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N contains the discrete cocompact subgroup Π which is the subgroup of the
matrices with entries in the subring Λ ⊂ C, Λ := Z[i].

Obviously, X := N/Π is a fibre bundle f : X → C
2/Λ2, where f is induced

by the homomorphism F : N → C
2 given by the coordinates z12, z23.

X is parallelizable being a quotient of a complex Lie group by a discrete
subgroup.

Moreover, in our case, the alternating form A is obtained as the antisymmetriza-
tion of the product map C× C→ C, which induces Λ × Λ → Λ.

Thus in this case there is no Hermitian part, confirming the parallelizability,
and then h1(OX ) = 2 , and dim H1(ΘX ) = 6.

That’s why the Kuranishi family of X is smooth of dimension 6, and gets small
deformations which are not parallelizable (cf. [Nak75]).

7. Blanchard–Calabi Manifolds

The Sommese–Blanchard examples ([Bla53], [Bla56], [Somm75]) provide non-
Kähler complex structures X on manifolds diffeomorphic to a product C × T ,
where C is a compact complex curve and T is a 2-dimensional complex torus.

In fact, in these examples, the projection X → C is holomorphic and all the
fibres are 2-dimensional complex tori.

Remark 7.1. Start with a Sommese–Blanchard 3-fold with trivial canonical bundle
and deform the curve C and the line bundle L in such a way that the canonical
bundle becomes the pull-back of a non-torsion element of Pic0(C): then this is the
famous example showing that the Kodaira dimension is not deformation invariant
for non-Kähler manifolds (cf. [Ue80]).

Also Calabi ([Cal58]) showed that there are non-Kählerian complex structures
on a product C × T .

We briefly sketch (cf. [Cat02] for precise results in the case where the base
manifold Y is a curve and X has dimension 3) how to vastly generalize these
constructions.

Definition 7.2 (Blanchard–Calabi Jacobian manifolds). Let Y be a compact
complex manifold, and let W be a rank d holomorphic vector bundle admitting 2d
holomorphic sections σ1, σ2, .., σ2d, which are everywhereR-linearly independent.

Then the quotient X of W by the Z2d-action acting fibrewise by translations :
w → w + Σi=1,..2d niσi is a complex manifold diffeomorphic to the differentiable
manifold Y × T, where T is a d- dimensional complex torus. X will be called
a Jacobian Blanchard–Calabi manifold.

Remark 7.3. The canonical divisor of X equals K X = π∗(KY − detW ), where
π : X → Y is the canonical projection. Moreover, if Y is Kähler, X is Kähler only
if the bundle W is trivial (i.e., iff X is a holomorphic product Y × T ).

Indeed, if d = 2, one has h0(Ω1
X ) = h0(Ω1

Y ) unless W is trivial, as follows
from the dual of the sequence (5)

0 → V → (OY )2d → W → 0.
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Proof. If X is Kähler, then, since the first Betti number of X equals 2d +2h0(Ω1
Y ),

then it must hold that h0(Ω1
X ) = h0(Ω1

Y ) + d, in particular h0(W∨) ≥ d.
But (W∨) is a sub-bundle of a trivial bundle of rank 2d, whence d linearly

independent sections of (W∨) yield a composition (OY )d → (W∨) → (OY )2d

whose image is a trivial bundle of rank ≤ d.
Indeed the rank must be d, else the d sections would not be C-linearly inde-

pendent.
Assume now that h0(W∨) = r: then the corresponding image of the composi-

tion (OY )r → (W∨) → (OY )2d would be a trivial bundle of rank r, thus (W∨) has
a trivial summand Ir of rank r . Then we have a direct sum (W∨) = Ir ⊕ Q and
dually W is a direct sum Ir ⊕ Q∨. We use now the hypothesis that there are 2d −2r
holomorphic sections of W which are R-independent at any point: it follows then
that if d = 2 and 0 < r < d = 2, then Q∨ has rank 1 and admits holomorphic
sections which are everywhere R-independent, thus it is trivial. 
�
Definition 7.4. Given a Jacobian Blanchard–Calabi manifold π : X → Y, any
X-principal homogeneous space π ′ : Z → Y will be called a Blanchard–Calabi
manifold.

Remark 7.5. Given a Jacobian Blanchard-Calabi manifold X → Y , the associated
X-principal homogeneous spaces are classified by H1(Y, W ).

Thus, the main existence problem is the one concerning the Jacobian Blanchard–
Calabi manifolds.

Proposition 7.6. Let G be the d2-dimensional projective Grassmann variety
GP(d − 1, 2d − 1) of d − 1-dimensional projective subspaces in P2d−1. The datum
of Jacobian Blanchard–Calabi manifold f : X → Y is equivalent to the datum of a
“totally non-real” holomorphic map h : Y → G, i.e., such that the corresponding
ruled variety Rh given by the union of the d − 1-dimensional projective subspaces
h(y) has no real points.

Proof. Let G be the Grassmann variety GP(d − 1, 2d − 1) = Gr(d, 2d), so G
parametrizes the d-dimensional vector subspaces in C2d : observe that the datum of
an exact sequence

0 → V → (OC )2d → W → 0

is equivalent to the datum of a holomorphic map h : Y → G, since for any such f
we let V, W be the respective pull-backs of the universal sub-bundle U and of the
quotient bundle Q.

The condition that the standard 2d sections are R-linearly independent means
that there is no y ∈ Y and no real vector v ∈ R2d such that v belongs to the subspace
corresponding to h(y). 
�

If h is constant, W is trivial and we have a product.
Else, we assume for simplicity that h is generically finite onto its image, and

we consider the deformation of the holomorphic map h.
We have the following exact sequence:

0 → ΘY → ( f )∗ΘG → Nh → 0,
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where Nh , the normal sheaf of the morphism h, governs the deformation theory of
the morphism h, in the sense that the tangent space to Def(h) is the space H0(Nh),
while the obstructions lie in H1(Nh).

By virtue of the fact that ΘG = Hom(U, Q), and of the cohomology sequence
associated to the above exact sequence, we get 0 → H0(ΘY ) → H0(V∨ ⊗ W ) →
H0(Nh) → H1(ΘY ) → H1(V∨ ⊗ W ) → H1(N f ) → 0, and we conclude that the
deformations of the map are unobstructed provided H1(V∨ ⊗ W ) = 0.

In [Cat02] we saw that this holds, in the special case where W = L ⊕ L, if the
degree d of L satisfies d ≥ g. We showed in this way that if d ≥ g the dimension of
the space of deformations of the map f is given by 3g−3+4h0(2L) = 4d +1−g,
and this number clearly tends to infinity together with d = deg(L).

Whence we got (loc. cit.) the following:

Corollary 7.7. The space of complex structures on the product of a curve C with
a four-dimensional real torus has unbounded dimension.

As a corollary of our Theorem 4.1 we also obtain:

Corollary 7.8. The space of complex structures on the product of a curve C of
genus g ≥ 2 with a four-dimensional real torus contains manifolds which are not
deformation equivalent to each other, namely, Blanchard–Calabi 3-folds which are
not Kähler and holomorphic principal bundles in the family Fg,0.
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