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Abstract. We determine the possible even sets of nodes on sextic surfaces inP3, showing in par-
ticular that their cardinalities are exactly the numbers in the set{24,32,40,56}. We also show that
all the possible cases admit an explicit description. The methods that we use are an interplay of
coding theory and projective geometry on one hand, and of homological and computer algebra on
the other.

We give a detailed geometric construction for the new case of an even set of 56 nodes, but the
ultimate verification of existence relies on computer calculations. Moreover, computer calculations
have been used more than once in our research in order to get good guesses.

The construction gives a maximal family, unirational and of dimension 27, of nodal sextics with
an even set of 56 nodes.

As in [Ca-Ca] (where other cases were described), each such nodal surfaceF is given as the
determinant of a symmetric mapϕ : E∨ → E , for an appropriate vector bundleE depending
on F . The first difficulty here is to show the existence of such vector bundles. This leads us to
the investigation of a hitherto unknown moduli space of rank 6 vector bundles which we show
elsewhere to be birational to a moduli space of plane representations of cubic surfaces inP3. The
resulting picture shows a very rich and interesting geometry. The main difficulty is to show the
existence of “good” mapsϕ, and the interesting phenomenon which shows up is the following:
the “moduli space” of such pairs(E, ϕ) is (against our initial hope) reducible, and for a general
choice ofE the determinant ofϕ is the double of a cubic surfaceG. Only when the vector bundle
E corresponds to a reducible cubic surface, we get an extra component of the space of such pairs
(E, ϕ), and a general choice in this component yields one of our desired nodal sextic surfaces.

Introduction

Let F be a nodal surface inP3 of degreed, i.e.,F has onlyµ nodes (ordinary double
points)P1, . . . , Pµ as singularities.

A natural and classical question is to ask for the maximum possible number of nodes
µ(d) that such a surfaceF can have.

The theory of projectively dual surfaces shows easily thatµ(d) < 1
2d(d − 1)2 for

d ≥ 3 and the slightly better inequality given by Bassett in 1907 (cf. [Bass]) was obtained
using this method.
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The functionµ(d) is only known ford ≤ 6, and ford ≤ 5 one has an explicit
description of the nodal surfaces which attain the maximumµ(d): the Cayley cubic, the
Kummer quartics, and the Togliatti quintics (cf. [Cay1], [Cay2], [Kum], [Tog1], [Tog2],
[Bea] and also [Ca-Ce], [Ba1]).

An important tool to investigate the functionµ(d) for small values ofd (d ≤ 17),
and to characterize the maximizing surfaces, was introduced by Beauville in [Bea]: he
attached a binary code to each nodal surfaceF and used coding theory in order to show
thatµ(5) = 31.

The coding theory method was later used by Jaffe and Ruberman in order to show
(see [Ja-Ru]) thatµ(6) = 65, but their proof is not so short as the one by Beauville,
partly because at that time a complete knowledge of the cardinality of an even set of
nodes1 on a sextic was missing (the binary code consists of the even sets of nodes onF ,
introduced in [Cat1], where a complete classification of even sets for degreed = 5 was
given).

Today we still do not know if the Barth sextics (see [Ba1]) are those which achieve
the maximumµ(6) = 65 and until now an explicit description of the possible even sets
of nodes for sextic surfaces has been missing. A general structure theorem for even and
1/2-even sets was given in [Ca-Ca], but the cases where the cardinalityt of an even set
would be> 40 were excluded as a consequence of a conceptual error which was pointed
out to the authors by Duco van Straten. Thus the simple proof by J. Wahl (cf. [Wahl]) of
µ(6) = 65 also became invalid.

We rescue the situation here by showing the following

Main Theorem A. LetF be a nodal surface of degreed = 6 in P3 with an even set of
t nodes. Thent ∈ {24,32,40,56}. These four possibilities occur and can be explicitly
described.

The situation is thus more complicated than ford ≤ 5, and the list of possible cardinalities
t is (cf. e.g. [Ca-Ca]):

d = 3, t = 4,
d = 4, t ∈ {8,16},
d = 5, t ∈ {16,20},
d = 6, t ∈ {24,32,40,56}.

We first show in Section 1 that an even set of 64 nodes cannot exist. The simple new
idea is to study the so called extended code (cf. e.g. [Cat2]) and we then use a mixture
of geometric and coding theory arguments, as was done in the papers cited above, for
instance in [Ja-Ru], where the case of an even set of 48 nodes was excluded.

We then proceed, using the structure theorem of [Ca-Ca], to construct explicit cases
of sextics with an even set of 56 nodes.

The bulk of the paper is devoted to this purpose, and we get the following result.

1 We adopt here the terminology of [Ca-Ca] concerning the notion of even sets of nodes which
was introduced in [Cat1]: namely, the strictly even sets of [Cat1] are called even sets, while the
weakly even sets of [Cat1] are called half-even, or 1/2-even sets of nodes.
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Main Theorem B. There is a family of nodal sextic surfaces with56 nodes forming
an even set, parametrized by a smooth irreducible rational variety80 of dimension33,
whose image40 is a unirational subvariety of dimension27 of the space of sextic sur-
faces. Moreover, the above family is versal, thus40 yields an irreducible component of
the subvariety of nodal sextic surfaces with56nodes.

The fact that a maximal family of nodal sextics with 56 nodes forming an even set has
dimension equal to 27 means that these nodes impose independent conditions on the space
of sextic surfaces (cf. [Bu-Wa]). It is an interesting question to find the nodal surfaces
of smallest degree which possess an even set of nodes failing to impose independent
conditions.

As already mentioned, it follows from the more general result of [Ca-Ca] that every
even nodal set on a sextic surfaceF occurs as the corank 2 degeneracy locus of a sym-
metric mapϕ : E∨ → E , for an appropriate vector bundleE depending onF (and the
nodal set).

The method to constructE is based on Beilinson’s theorem and on revisiting Hor-
rocks’ correspondence due to Charles Walter (cf. [Wal]), which was exploited in [Ca-Ca].
The bundleE is constructed starting from a submoduleM of the intermediate cohomol-
ogy moduleH 1

∗ (F) of the quadratic sheafF associated to the even set, and corresponding
to the choice of a Lagrangian subspaceU of H 1(F(1)). The choice ofM determines a
unique vector bundleE , if a certain generality assumption (which we call thefirst assump-
tion) is satisfied.

The construction is quite explicit if we make another generality assumption, namely
that the two nonzero degree components of the artinian graded moduleM, the previously
mentionedU and another one denoted byW , both have dimension equal to 3. If we
denote, as is customary, byV the vector space of linear forms onP3, then the moduleM
is completely determined by the multiplication tensorB ∈ U∨ ⊗ V ∨ ⊗W for M.

We then show that the tensorB determines explicitly the bundleE as the kernel of an
exact sequence

0→ E → U ⊗ V ⊗O(1) (B,ε)−−−→ (W ⊗O(1))⊕ (U ⊗O(2))→ 0

where the first component is preciselyB, and the second is the standard Euler map, here
denoted byε.

Section 3 then ends by showing that the family of pairs(E, ϕ) is parametrized (not
uniquely) by the following family of pairs:

MAB := {(B,A) | B ∈ U∨ ⊗ V ∨ ⊗W,

A ∈ (U ⊗ V )⊗ (U ⊗ V )⊗H 0(OP3(2)), A = tA, (B, ε) · A = 0}.

MAB sits inside an affine space of dimension 816, and it is not possible to find the de-
composition ofMAB into irreducible components even by computer. It is clear thatMAB

dominates the space of the above tensorsB, and, if MAB were irreducible, one would
obtain the sextic surfaces immediately by a random choice.



708 Fabrizio Catanese, Fabio Tonoli

However, for a long time all the random choices would always give the double of
a cubic surfaceG as determinant ofϕ, and it looked like even sets with 56 nodes did
not exist. We then tried to prove that this was indeed the case, and we had to find an
explanation for the occurrence of the cubic surfaceG.

Now, it is classical that to a 3×3×4 tensorB one can associate a cubic surface inP3 by
taking the determinant of the corresponding 3×3 matrix of linear forms onP3. However,
in our case we get a cubic surfaceG∗ in the dual projective spaceP3∨

= Proj(V ∨),
together with two different realizations ofG∗ as a blow up of a projective plane Proj(U∨)

(respectively, Proj(W)) in a set of six points. These are the points where the Hilbert–
Burch 3× 4 matrix of linear forms onU drops rank by 1, and the rational map toP3∨ is
given by the system of cubics through the 6 points, a system which is generated by the
determinants of the four 3× 3 minors of the Hilbert–Burch matrix.

One passes from one realization to the other simply by transposing the tensor, and we
will call this the trivial involution for 3× 3× 4 tensors; but what we have discovered,
through geometry, is the existence of another involution for 3× 3× 4 tensors, which we
call thecross-product involution.

This second involution associates to a general tensorB ∈ U∨ ⊗ V ∨ ⊗ W another
tensorB ∈ W ′∨ ⊗ V ⊗ U ′∨, whereW ′ := 32W andU ′∨ is defined as the kernel of the
map32W∨⊗ V → U∨⊗W∨ induced by contraction withB (cf. 4.19 for the proof that
we have indeed a birational involution).

In fact, toB corresponds now a cubic surfaceG ⊂ P3, which is related to a general
bundleE through the existence of an exact sequence

0→ 6O→ E → τ → 0,

whereτ is an invertible sheaf on the cubic surfaceG. One can see more precisely thatB
determines a sheafG onG such thatτ = G⊗2(−1).

We found in this way a nice explanation of the phenomenon pointed out by com-
puter calculations: we got as determinant the surfaceG counted twice, simply because, in
view of the above exact sequence, for a smooth cubic surface (indeed, irreducible) all the
symmetric endomorphismsφ ∈ H 0(S2E) are induced by the inclusionS2(6O)→ S2E .

It was clear at this point that ifH 0(S2E) always had dimension 21, then we could
not get any nodal sextic surface of the desired type, but it was of course possible that
the dimension could jump up for special surfacesG, and that our parameter spaceMAB

would be reducible. As explained in Section 6, a small computational simplification and
the reduction to finite fields allowed us to make many more random attempts, until the first
sextic surface appeared. Since a determinantal approach predicts that the space of tensors
B for which the dimension ofH 0(S2E) jumps has codimension 7, it was only natural to
guess that the case which works is the case of tensorsB corresponding to reducible cubic
surfaces. This guess turned out to be true.

The cross-product involution can also be phrased as a duality theorem for a certain
moduli space of vector bundles onP3. Namely, we prove elsewhere the following

Theorem C. Consider the moduli spaceMs(6;3,6,4) of simple rank6 vector bundles
E onP3 with Chern polynomial1+ 3t + 6t2+ 4t3 (cf. [Kob]), and inside it the open set
A corresponding to the simple bundles with minimal cohomology, i.e., those with
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(1) H i(E) = 0 ∀i ≥ 1; (2) H i(E(−1)) = 0 ∀i 6= 1;
(3) H i(E(−2)) = 0 ∀i 6= 1; (4) H i(E(−3)) = 0 ∀i;
(5) H i(E(−4)) = 0 ∀i.

ThenA is irreducible of dimension19 and it is bimeromorphic toA0, whereA0 is an
open set of the G.I.T. quotient space of the projective spaceB of tensors of type(3,4,3),
B := {B ∈ P(U∨ ⊗ V ∨ ⊗W)} by the natural action ofSL(W)× SL(U).

Let moreover[B] ∈ A0 be a general point. Then to[B] corresponds a vector bundle
EB on P3, and also a vector bundleE∗B on P3∨, obtained from the direct construction
applied to the sheafG∗B defined by

0→ U ⊗OP(V )(−1)
B
−→ W ⊗OP(V )→ G∗B → 0.

E∗B is the vector bundleEB, where[B] ∈ A0
∗ is obtained fromB via the cross-product

involution.

Section 6 is devoted to a brief account of the random approach which we already men-
tioned, while the two Macaulay scripts, which are needed for the ultimate verification of
the existence of surfaces which have an even set of 56 distinct nodes as the only singular-
ities, can be found on the web pages of the authors.

1. Excluding via coding theory

Throughout this sectionF will be a normal surface inP3 of degreed having at most
rational double points as singularities, and possessing moreoverµ nodes (ordinary double
points)P1, . . . , Pµ among its singularities.

We letπ : F̃ → F be the minimal resolution of the singularities ofF . It is well known
(cf. [Tju]) that F̃ is diffeomorphic to a smooth surface of degreed in P3; in particularF̃
is simply connected and for its second Betti number we haveb2(F̃ ) = d(d

2
−4d+6)−2.

We letA1, . . . , Aµ be the exceptional(−2)-curves (∼= P1) coming from the blow up
of the nodesP1, . . . , Pµ, and we letH be the full transform of a plane section ofF .

LetX be theZ/2-vector space freely generated by theAi ’s and consider the map

ε : X :=
µ⊕
i=1
(Z/2)Ai → H 2(F̃ ,Z/2),

given by the reduction modulo two of the integral first Chern class of a divisor:
ε(

∑
i aiAi) := c1(

∑
i aiAi) (mod 2). LetU be the image ofε.

SinceAi · Aj = −2δij , Ai · H = 0, H 2
= d, it follows thatU is an isotropic

subspace ofH 2(F̃ ,Z/2), and since the intersection product modulo 2 is non-degenerate
its dimension does not exceedb2(F̃ )/2.

In the case where the surface has even degreed ≡ 0 (mod 2), we consider more
generallyX̃ := X ⊕ (Z/2)H , ε̃ : X̃ → H 2(F̃ ,Z/2), and the corresponding isotropic
subspacẽU := Im(ε̃).
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Definition 1.1. 1) The strict codeK associated to the nodal set{P1, . . . , Pµ} on the
surfaceF is the binary codeK := ker(ε).

2) If d ≡ 0 (mod 2) theenlarged codẽK associated to the nodal set{P1, . . . , Pµ} on the
surfaceF is the binary codeK̃ := ker(ε̃).

By the above inequality for dimU , we get

dimK ≥ µ−
1

2
b2(F̃ ) = µ−

1

2
d(d2
−4d+6)+1, dimK̃ ≥ µ−

1

2
d(d2
−4d+6)+2.

Remark 1.2. By Miyaoka’s inequality (cf. [Miy])µ ≤ 4
9d(d − 1)2, therefore only for

d ≤ 17 we get for sure a nontrivial codeK, because dimK ≥ µ− 1
2d(d

2
− 4d + 6)+ 1.

Notice that the notion of an even, respectively half-even, set of nodes can be derived
from the coding-theory framework.

Definition 1.3. A vectorv ∈ X is completely determined by itssupportNv := {i |
vi = 1}. The cardinality of the support is called theweight of v and denoted by
w(v) := #Nv.

By the universal coefficients theorem and Lefschetz’(1,1) theorem the condition
v ∈ K is equivalent to the2-divisibility of

∑
i∈Nv

Ai in Pic(F̃ ). We denote byL a di-

visor onF̃ such that2L ≡
∑
i∈Nv

Ai . The class ofL in Pic(F̃ ) is uniquely determined,

becausePic(F̃ ) has no torsion. We then have a finite double coverS̃ of F̃ branched ex-
actly on the nodal curvesAi such thati ∈ Nv, and moreoverf∗OS̃ = OF̃ ⊕ OF̃ (−L).
Correspondingly, we have a double coverf : S → F , with f∗OS = OF ⊕ F , ramified
exactly in1 := {Pi ∈ F | i ∈ Nv} (cf. [Cat1] and [Ca-Ca]for more details). These sets
1 are calledeven sets of nodes(cf. [Cat1]).

Similarly, one defines ahalf-even set of nodes1 by the condition that its associated
word ṽ := (v1, . . . , vµ,1), obtained by settingvi = 1⇔ Pi ∈ 1, belongs to the enlarged
codeK̃. This condition is again equivalent to the existence of a divisorL in Pic(F̃ ) with
2L ≡

∑
i∈Nv

Ai +H .
We define theweight and supportof ṽ as the weight and support of the wordv :=

(v1, . . . , vµ) ∈ X (these notions are different from the corresponding ones in coding
theory). Observe finally thatK = K̃ ∩ {ṽ | ṽµ+1 = 0}.

As shown in [Cat1, Prop. 2.11 and Prop. 2.13], the geometric interpretation of even sets
of nodes in terms of double coverings allows one to give the following restrictions on the
cardinalityt of an even (resp. half-even) set of nodes:

Proposition 1.4. Let t := w(u) be the weight of a code wordu.

(1) If u ∈ K, thent ≡ 0 (mod 4). Moreover, ifd is even, thent ≡ 0 (mod 8).
(2) If (d is even and)u ∈ K̃ \K, thent ≡ d(2d−7)/2 (mod 4). In particular, ford = 6,

t ≡ −1 (mod 4).

Corollary 1.5. Letd = 2(2k+ 1) be twice an odd integer and assume thatK, K̃ are the
codes corresponding to an even set of nodes1. ThenK̃ = K.



Even sets of nodes on sextic surfaces 711

Proof. Our assumption is that the codeK ⊂ K̃ contains the vectorI whose coordinates
are all equal to 1, except the last which equals 0. If we have a vectorw ∈ K̃ \ K and let
t be its weight, then the weight ofI + w ∈ K̃ \ K is congruent to−t modulo 4. Since
t ≡ d(2d − 7)/2 ≡ 2k + 1 (mod 4), we have−t 6≡ d(2d − 7)/2 (mod 4), contradicting
(2) of the previous proposition. ut

Let us examine by means of coding theory which even sets of nodes can occur on sextic
nodal surfaces. The main result of this section is the following theorem.

Theorem 1.6. On a sextic normal surfaceF with only rational double points as singu-
larities there does not exist an even set of nodes of cardinalityt = 64.

In order to prove the theorem we first prove some preliminary results.

Lemma 1.7. Suppose that there exists an even set1 of nodes of cardinalityt = 64 on a
normal sextic surfaceF . Let γ : F 99K F∨ ⊂ P3 be the Gauss map ofF , given by the
partial derivatives∂F/∂xi .

(1) γ corresponds to a linear subsystemL of |5H −
∑t
i=1Ai | on F̃ whose fixed part8

is contained in the preimage of the singular points ofF which are not the nodes of1.
(2) LetL be a divisor onF̃ with 2L ≡

∑t
i=1Ai . ThenH 0(F̃ ,O

F̃
(2H − L)) = 0.

Proof. The first assertion follows since the zero locus of the partial derivatives∂F/∂xi
onF is exactly the singular locus ofF , and at each node the derivatives∂F/∂xi define
the maximal ideal. Thusγ is a morphism around each(−2)-curveAi , which is indeed
embedded as a plane conic.

Assertion (2) is proven by contradiction. Assume in fact thatC ∈ |2H − L|. Then
C · (5H −

∑t
i=1Ai) = 60− 64= −4.

However,8 · H = 8 · Ai = 0 by our first assertion, whenceC · (5H −
∑t
i=1Ai)

equals the intersection number ofC with the movable part of the linear systemL, which
is obviously non-negative.

We have obtained the desired contradiction. ut

Proposition 1.8. Suppose there exists an even set of nodes of cardinality64 on a sextic
normal surface with only rational double points as singularities, and letf : S → F be
the corresponding finite double cover. Thenh1(S,OS) = 5.

Proof. We have
h1(S,OS) = h1(F,F) = h1(F̃ ,O

F̃
(−L)).

Moreover, sinceH ·L = 0 one easily sees thath0(F̃ ,O
F̃
(−L)) = 0 and argues then that

h2(F̃ ,O
F̃
(−L)) = h0(F̃ ,O

F̃
(2H + L)) = h0(F̃ ,O

F̃
(2H − L)) = 0 by the previous

lemma, the second equality following from the fact that every divisor in|2H+L| contains∑t
i=1Ai . Hence

−h1(S,OS) = −h1(F̃ ,O
F̃
(−L)) = χ(F̃ ,O

F̃
(−L))

= χ(O
F̃
)+ 1

2(−L) · (−L− 2H) = 11− 16= −5. ut
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Lemma 1.9. Suppose there exists an even set of nodes1 of cardinality 64 on a sextic
normal surfaceF with only rational double points as singularities. LetK, K̃ denote the
corresponding binary codes. ThendimK̃ = 12> dimK = 11.

Proof. By the previous proposition the surfaceS, the finite double cover ofF ramified
exactly along1, has invariantspg = 10,q = 5,K2

S = 48,χ(S) = 6. The corresponding
(non-minimal) smooth surfacẽS, the double cover of̃F , has the same invariants asS.

By [Bea, Lemma 2] or [Ja-Ru, Thm. 4.5] it follows that the codeK has dimension
b1(S̃)+ 1= 11. We already remarked that dim̃K ≥ 65− 53= 12, and it is obvious that
K ⊂ K̃ has codimension at most 1. ut

Proof of Theorem 1.6.The conclusion of Lemma 1.9 contradicts Corollary 1.5. ut

As an immediate consequence of Thm. 1.6 and [Ja-Ru, Sec. 7], we obtain the following.

Corollary 1.10. LetF be a sextic normal surface inP3 with only rational double points
as singularities with an even set oft nodes. Thent ∈ {24,32,40,56}.

Proof. Sincet ≡ 0 (mod 8), the inequalityt ≤ 64 follows from the classical inequalities
of Bassett and of Miyaoka, and the caset = 64 has just been excluded. In [Ca-Ca] it is
shown thatt ≥ 24, and that the casest = 24,32,40 do exist.

The non-existence of even sets of 48 nodes on nodal sextics is proven in [Ja-Ru,
Sec. 7]. ut

2. Cohomology modules and bundle symmetric maps

In this section, after recalling the main result of [Ca-Ca], namely the correspondence be-
tween even sets of nodes and bundle symmetric maps, we shall give bounds for the coho-
mology groupsH i(F(j)) of the quadratic sheafF associated to an even set of nodes1.

We first recall the main result of [Ca-Ca], according to the following notation:δ ∈

{0,1} andδ/2-even stands for even ifδ = 0, and half-even ifδ = 1.

Theorem 2.1([Ca-Ca, Thm. 0.3]).Let1 be aδ/2-even set of nodes on a normal surface
F of degreed, let f : S → F denote a corresponding double cover ofF , and letF be
the anti-invariant part off∗OS . Then there exists a locally free sheafE on P3 and a
symmetric mapϕ yielding an exact sequence

0→ E∨(−d − δ) ϕ
−→ E → F → 0. (∗∗)

In particular,F = {x | det(ϕ(x)) = 0},1 = {x | corank(ϕ(x)) ≥ 2}.
Conversely, assume that one is given an exact sequence as in(∗∗) with ϕ symmetric,

such thatF = {x | det(ϕ(x)) = 0} is a normal surface and1 := {x | corank(ϕ(x)) ≥ 2}
is a reduced set oft points. Then1 is a δ/2-even set of nodes onF .
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The ideal of the reduced subscheme1 is the second Fitting ideal ofϕ, i.e., on local
trivializing affine sets forE , it is given by the determinants of the(rk(E) − 1)-minors
of ϕ.

We briefly explain how the sheafE is explicitly constructed in [Ca-Ca] by means
of C. Walter’s interpretation of Horrocks’ correspondence (cf. [Wal]).

Assume that the intermediate cohomology moduleH 1
∗ (F,F) :=

⊕
i∈ZH

1(F,F(i))
is known (it is an Artinian graded module over the polynomial ring ofP3, A :=
C[x0, x1, x2, x3]).

One then considers the (Artinian) graded module

M := U ⊕
⊕

i>(d−4)/2
H 1(F,F(i)). (2.1)

where, ifd is even,U is a Lagrangian subspace in the Serre self-dual cohomology space
H 1(F,F((d − 4)/2)), andU := 0 if d is odd.

Remark 2.2. Recall that the first syzygy bundle Syz1(M) is obtained from a projective
graded resolution of the moduleM by freeA-modules

0→ P 4
→ · · · → P 1 α1

−→ P 0 α0
−→ M → 0

as follows: the homomorphismα1 : P 1
→ P 0 induces a corresponding homomorphism

(α1)
∼ between the (Serre-) associated sheaves(P 1)∼ and (P 0)∼ and the first syzygy

bundle ofM is defined as Syz1(M) := ker(α∼1 ).

One has a natural homomorphism Syz1(M)→ F (cf. [Ca-Ca, pp. 240–241]) induced
by truncation, whence one gets a homomorphismH 0

∗ (Syz1(M))→ H 0
∗ (F), which need

not be surjective.
The bundleE is then defined as the direct sum of Syz1(M) and a direct sum of line

bundles, whose generators induce a minimal set of generators of the cokernel. One obtains
in this way a surjection betweenH 0

∗ (P3, E) andH 0
∗ (F,F).

Thus a first important step is to determine the intermediate (Artinian) cohomology
moduleH 1

∗ (F,F) :=
⊕

i∈ZH
1(F,F(i)), in particular one has to determine the possible

dimensions of its graded pieces, i.e., the numbersh1(F(i)). Later on, when we want to
impose the surjectivity ofH 0

∗ (P3, E)→ H 0
∗ (F,F), it will also be important to determine

the dimensionsh0(F(i)).
In short, the first necessary task is to determine the possible values for the cohomology

tablehj (F(i)) of F (a priori onlyχ(F(i)) is known, and it is determined by the degree
d of F and the numbert of nodes of1).

Besides geometrical estimates, an important tool used in [Ca-Ca] is the Beilinson
complex (cf. [Bei]) constructed from the cohomology tablehj (F(i)).

Remark 2.3. It is well known that for any coherent sheafG on Pn the complexKi :=⊕
j (H

i−j (Pn,G(j)) ⊗ �−j (−j)), calledBeilinson’s monad, has cohomologyH i(K∗)
equal toG in degreei = 0 and 0 in all other degrees (cf. [Bei]).
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In the case of even sets of nodes on sextics, [Ca-Ca] classifies the sets of cardinalities
t = 24,32,40.

Let us therefore restrict ourselves to the cased = 6 andt = 56, and consider the
moduleM := U ⊕

⊕
i>1H

1(F,F(i)).
We shall use the analysis in [Ca-Ca, p. 254] forF |H , whereH is a smooth plane

section ofF ; it shows thath0(F,F(1)) = h2(F,F(1)) = 0 (it is shown there that this
holds unlessF |H is of type(2,4), but if F |H is of type(2,4) then so isF , in the sense
of [Cat1, Thm. 2.2 and Thm. 2.16], andt = 24).

Hence we may assume thath0(F,F(1)) = h2(F,F(1)) = 0, so that by Riemann–
Roch applied toF̃ ,

h1(F,F(1)) = −χ(F(1)) = −8+
t

4
= 6.

According to the notation in [Ca-Ca, p. 254], set 2τ := h1(F,F(1)), a := h1(F,F)
= h1(F,F(2)), b := h2(F,F) = h0(F,F(2)), the equalities following by Serre duality.
Our previous calculation yieldsτ = 3.

The exact sequence

H 0(F,F(1)) = 0→ H 0(H,F(1)|H )→ H 1(F,F)→ H 1(F,F(1))
→ H 1(H,F(1)|H )→ H 2(F,F)→ H 2(F,F(1)) ∼= H 0(F,F(1)) = 0 (2.2)

gives the relationχ(F(1)|H )− a + 2τ + b = 0. An application of Riemann–Roch onH
yieldsχ(F(1)|H ) = −3 and the above relation becomes 0≤ b = a − 3.

Finally, notice that (see [Ca-Ca, formula (3.2), p. 248])

H 1(F,F(−m)) ∼= H 1(F,F(m+ 2))∨ = 0, m > 0,

and trivially alsoH 0(F,F(−m)) = 0, m > 0.
Since the rank ofF at the generic point ofP3 is 0, a computation of the ranks of all

the terms of Beilinson’s monad ofF(3) yields the relation 4b + 6τ − 4a − c = 0, i.e.
c = 12− 2τ = 6.

Proposition 2.4. LetF be a nodal surface of degree6 with t nodes and with an even set
1 of t = 56nodes, andL ∈ Pic(F̃ ) the corresponding divisor such that

∑
i∈N1

Ai = 2L.

Thenb = h0(2H − L) ≤ 1.

Proof. Assumeb := h0(F,F(2)) = h0(2H − L) ≥ 2 and write|2H − L| = |M| + 9,
where9 is the fixed part of the linear system|2H − L|. Let L be the Gaussian linear
subsystem of 5H −

∑t
i=1Ai andC any effective divisor in|2H − L|.

SinceF is nodal it follows by our previous argument thatL is free from base points,
hence for any effective divisorC′ ≤ C we haveC′L ≤ CL = 60− t = 4.

Observe that by [Ja-Ru] the numbert of nodes ofF satisfiest ≤ 65; sinceL2
≥

150− 2t ≥ 20, the index theorem ensures that(C′)2 ≤ 0. In particular, it follows that
M2
= 0.
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Since the dual surfaceF∨ is birational toF and therefore it is still of general type,
γ (M) has degree at least 4.

Hence, by the previous calculation,ML = 4 and9L = 0, the general curve in|M|
is irreducible (hence smooth) and maps 1 : 1 to a quartic.

Since the arithmetic genus ofM is at least 2, it follows thatM maps 1 : 1 to a plane
quartic, and therefore its arithmetic genus is at most 3.

But then 4≥ 2pa(M)− 2= M · (M +KF ) = M ·KF = 2M ·H , i.e.M ·H ≤ 2, a
contradiction sinceF is of general type. ut

We can summarize the above discussion in the following statement.

Theorem 2.5. LetF be a nodal surface of degree6 with an even set of56 nodes. Then
M is an Artinian module of length2 with Hilbert function(τ, a) = (3,3) or (3,4).

Proof. By hypothesis,τ = 3. Proposition 2.4 yieldsb = h1(F,F(2)) ≤ 1. Therefore
only the following two cases are possible:b = 0, a = 3 orb = 1, a = 4. ut

In what follows we shall treat only the first case, for the second one we observe

Remark 2.6. Case(3,4) of Theorem 2.5 cannot be excluded by coding theory since
there exists a 9-dimensional codeK ⊂ (Z/2Z)56 with weights(24,32,56).

Question. Does case(3,4) of Theorem 2.5 occur?

Proof. This code is constructed as follows: consider a codeU ⊂ (Z/2Z)51 of dimen-
sion 8 and weights(24,32), and lete ∈ (Z/2Z)56 be the vector with all coordinates equal
to 1. It suffices to defineK as the span ofU ande.

The existence ofU (cf. [McW-Sl, p. 229]) is easily established if we letF be the finite
field with 28 elements, andξ a generator ofF∗. Thenξ5 is a primitive 51-st root of unity,
it generatesF as a field, thusF∼= (Z/2Z)[ξ5]/(P ), whereP is an irreducible polynomial
of degree 8 dividingx51

− 1. By the Chinese remainder theoremF ∼= (Z/2Z)[ξ5]/(P )
is a direct summand of(Z/2Z)[x]/(x51

− 1) ∼= (Z/2Z)51, and it suffices to letU be the
subspace of(Z/2Z)51 which corresponds toF. ut

3. Hilbert function (3,3): general features

We shall assume, throughout the rest of the paper, that we have an even set1 of 56 nodes,
and thatb = 0, i.e.,a = 3 (cf. Theorem 2.5) . In other terms, the Artinian moduleM has
dimensionτ = 3 in degree 1, dimensiona = 3 in degree 2, and 0 in degree6= 1,2.

Therefore, the Beilinson table ofF(3) is:xi
6 0 0 0 0

0 3 6 3 0

0 0 0 0 6
−→
j
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By Theorem 2.1, if we denote byE the previousE(3), we have a resolution ofF(3)
of the form

0→ E∨ ϕ
−→ E → F(3)→ 0. (3.1)

In this setting, the symmetric mapϕ appearing in the resolution ofF(3) belongs to
H 0(P3, S2(E)) ⊂ Hom(E∨, E).

Definition 3.1. Throughout the rest of the paper we denote byU a given Lagrangian3-
dimensional subspace ofH 1(F(1)), and we denote byW the3-dimensional spaceW :=
H 1(F(2)).

Moreover, we shall denote byV the 4-dimensional vector spaceV := H 0(O(1)).
Later on, more generally,V shall denote a4-dimensional vector space and we shall often
continue to denoteProj(V ) byP3.

Remark 3.2. Beilinson’s theorem and the cohomology table forF(2) imply thatE(−1)
is obtained by adding a direct sum of line bundles to

E ′(−1) := ker(U ⊗�1(1) ∼= 3�1(1)→ W ⊗O ∼= 3O),

and that (since Beilinson’s complex has no cohomology in degree6= 0) the above map is
surjective; henceE ′ is a vector bundle with rk(E ′) = 6.

Consider now the Euler sequence

0→ �1(1)→ V ⊗O ∼= 4O→ O(1)→ 0. (3.2)

It implies thath0(�1(1)) = 0 andh0(�1(2)) = 6, thush0(E ′(−1)) = 0 and, since
Beilinson’s table forF(3) implies thath1(E ′) = 0, we infer thath0(E ′) = 3 × 6 −
4× 3= 6.

On the other hand, Beilinson’s complex forF(3) yields an exact sequence

0→ 3O(−4)→ 6�2(2)→ 3�1(1)⊕ 6O→ F(3)→ 0,

and we make the following simplifying

First assumption. F is generated in degree3 and the linear mapH 0(E ′)→ H 0(F(3))
is an isomorphism.

Proposition 3.3. According to the previous notation, the above first assumption implies
that E = E ′, equivalently, thatrk(E) = 6. More precisely, it means that there exists a
homomorphismβ : U ⊗ �1(2) ∼= 3�1(2) → W ⊗ O(1) ∼= 3O(1) such thatE = kerβ
and that we have an exact sequence

0→ E → U ⊗�1(2) ∼= 3�1(2)
β
−→ W ⊗O(1) ∼= 3O(1)→ 0. (3.3)

Conversely, ifE is obtained in this way, it is a rank6 bundle with an intermedi-
ate cohomology moduleM with the required Hilbert function of type(3,3). Moreover
H 0(E∨) = 0.
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Proof. If F is generated in degree 3, there is an exact sequence

0→ G̃→ 6O→ F(3)→ 0,

whereh0(G̃) = h1(G̃) = 0 (cf. Beilinson’s table).

Dualizing the sequence 0→ E ′→ 3�1(2)
β
−→ 3O(1)→ 0 yields

0→ 3O(−1)→ 3T (−2)→ E ′∨→ 0.

Thush0(E ′∨) = 0.
Assume now thatH 0

∗ (E ′)→ H 0
∗ (F(3)) is not surjective. Then, since by our assump-

tion H 0(E ′) → H 0(F(3)) is surjective,E will be obtained fromE ′ by adding a direct
sum of line bundlesO(−m) wherem > 0. This, however, leads to a contradiction, since
thenO(m) is a direct summand ofE∨ but it cannot embed inE sinceH 0(E ′(−1)) = 0
implies that Hom(O(m), E) = H 0(E(−m)) = H 0(E ′(−m)) = 0.

For the converse, we simply observe that if (3.3) holds, thenH 1(E(−2)) ∼= 3H 1(�1)

andH 1(E(−1)) ∼= 3H 0(O). SinceE ′ ∼= E it follows right away thatH 0(E∨) = 0. ut

Therefore we get the following exact commutative diagram:

0 0

��
0 // E∨

ϕ //

OO

E //

��

F(3)→ 0

U∨ ⊗ T (−2)

OO

8 // U ⊗�1(2)

β

��
W∨ ⊗O(−1)

tβ

OO

W ⊗O(1)

��
0

OO

0

and the mapϕ yields, by composition, a homomorphism

8 ∈ Hom(U∨ ⊗ T (−2), U ⊗�1(2))

which is symmetric sinceϕ is symmetric. Conversely, such a homomorphism8 deter-
minesϕ if and only if β8 = 8 tβ = 0; since, however, we choose8 symmetric, the two
conditions are equivalent to each other.

A more concrete way to set up the parameter space for such vector bundles is to
replace Hom(T (−2),�1(2)) by matrices of polynomials, as follows.
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RecallV := H 0(P3,O(1)) is the space of linear forms onP3. Applying Hom(−,O)
to the Euler sequence and tensoring byO(1) yields, since Hom(O(2),O(1)) = 0 and
Ext1(O(2),O(1)) = 0,

Hom(�1(2),O(1)) ∼= Hom(V ⊗O(1),O(1)). (3.4)

Thus the mapβ factors through a mapB : U ⊗ (V ⊗ O(1)) → W ⊗ O(1) and the
sheaf mapB is surjective. This surjectivity is obviously equivalent toH 0(B(−1)) : U⊗V
→ W being surjective. We shall often identify the sheaf mapB with the corresponding
tensorH 0(B(−1)) ∈ U∨ ⊗ V ∨ ⊗W .

Let ε be the tensor product of the identity map of the isotropic subspaceU with the
evaluation mapV ⊗O→ O(1). Then one sees easily thatE = ker(β) = ker(B)∩ker(ε),
the short exact sequence (3.3) becomes

0→ E → U ⊗ V ⊗O(1) (B,ε)−−−→ (W ⊗O(1))⊕ (U ⊗O(2))→ 0, (3.5)

and the previous diagram is replaced by

0 0

��
0 // E∨

ϕ //

OO

E //

��

F(3)→ 0

U∨ ⊗ V ∨ ⊗O(−1))

OO

A // U ⊗ V ⊗O(1)

(B,ε)

��
W∨ ⊗O(−1)

⊕

U∨ ⊗O(−2)

t(B,ε)

OO

W ⊗O(1)
⊕

U ⊗O(2)

��
0

OO

0

where by a similar token to the one before, the mapϕ yields a symmetric matrixA ∈
Mat(12× 12,Hom(O(−1),O(1))), and conversely such a matrix determinesϕ if and
only if (B, ε) · A = 0.

Thus we obtain, as a parameter space for the symmetric resolutions ofF(3) satisfying
the open condition given by the first assumption, the variety of pairs

MAB := {(B,A) | B ∈ Mat(3× 12,C),

A ∈ Mat(12× 12, H 0(OP3(2))), A = tA, (B, ε) · A = 0}. (3.6)

As a matter of fact, the equation of the surfaceF will then be given as the G.C.D. of
the determinants of the 6×6 minors of the matrixA, whereas the even set of nodes1will
be found to be given by the ideal of the determinants of the 5× 5 minors of the matrixA.
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A direct but complicated calculation shows that for a general choice of the parame-
terB (determining the bundleE) the solution space for theA’s (yielding the symmetric
mapϕ) has positive dimension.

However, by computer algebra, one checks that a random choice ofB and a random
choice ofA do not give a sextic surface with 56 nodes, but the square of a cubic surface.
Notice that the condition that a given pair (B,A) yields a sextic with 56 nodes is an open
condition, and therefore there can exist sextics with an even set of 56 nodes and satisfying
the first assumption only if the above parameter space is reducible; we shall later show
that this is indeed the case.

We finish this section by remarking thatB is the multiplication matrix of the module
H 1
∗ (E) (i.e., the matrix of the only part of the multiplication map which is not a priori

trivial).

Remark 3.4. The cohomology exact sequence associated to the following twist of (3.5):

0→ E(−2)→ U ⊗ V ⊗O(−1)
(B,ε)
−−−→ (W ⊗O(−1))⊕ (U ⊗O)→ 0

yields a canonical isomorphismU ∼= H 1(E(−2)).
Since there is a canonical isomorphism

H 0(ε(−1)) : U ⊗ V → U ⊗H 0(O(1)),

the projectionW ⊕ (U ⊗ V )→ W induces an isomorphism of the spaceH 1(E(−1)) =
cokerH 0((B ⊕ ε)(−1)) with W such that the mapB : U ⊗ V → W corresponds to the
multiplication map of the cohomology moduleH 1

∗ (E).

Remark 3.5. The condition that the linear mapB has maximal rank 3 (which, as we
observed, follows from the first assumption) is obviously equivalent to the condition that
the moduleM is generated in degree−2. On the other hand, it also implies that there is
an exact sequence

0→ E → 9O(1) b
−→ 3O(2)→ 0.

We proceed in the next section with the analysis of the vector bundles corresponding
to a general choice ofB, giving a geometrical explanation of the phenomenon of which
the computer search made us aware.

4. General bundles and cubic surfaces

The main purpose of this section is to describe the beautiful geometry which relates the
main component of the moduli space of our vector bundles to a given intermediate coho-
mology moduleM and the space of cubic surfaces viewed as blow ups of the projective
plane in six points.

Let us first observe that, if the first assumption is satisfied, the vector bundleE is
determined by the matrixB, hence we have an irreducible parameter space for our vector
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bundles, and each open condition, if satisfied at some point, is satisfied by the generic
bundleE .

Next, we have a surjectionH 0(E) → H 0(F(3)) and we have seen that both spaces
are 6-dimensional, whence we get a homomorphismι : 6O→ E . We make the

Second assumption.1) ι : 6O→ E is injective, whence there is an exact sequence

0→ 6O→ E → τ → 0, (4.1)

2) the torsion sheafτ isOG-invertible, whereG is the divisor of36(ι).

Lemma 4.1. Let a vector bundleE be given as in3.3 or as in3.5. Then its total Chern
class is

c(E)(t) = 1+ 3t + 6t2+ 4t3. (4.2)

In particular, if the second assumption is satisfied, the divisorG is a cubic surface.

Proof. The sheafτ has Chern polynomial

c(τ ) = c(E) = c(�1(2))3c(O(1))−3
= (c(O(1))4c(O(2))−1)3c(O(1))−3

= (1+ t)9(1+ 2t)−3
= (1+ 9t + 36t2+ 84t3)(1− 6t + 24t2− 80t3)

= 1+ 3t + 6t2+ 4t3. ut

Remark 4.2. Observe that the spaceH 0(S2E) of symmetric morphisms fromE∨ to E
containsH 0(S2(6O)) since toα̃ ∈ H 0(S2(6O)) correspondsα := ι∨α̃ι. For these mor-
phisms one has det(α) = det(α̃)(det(ι))2, whence in this case div(det(α)) = 2G, and not
a sextic surface.

The next lemmas are meant to investigate the question: when does one have equality
h0(S2E) = 21, i.e., whenH 0(S2E) = H 0(S2(6O))?

In order to answer this question, it is convenient first to analyze the geometry and the
cohomology of the invertible sheafτ onG.

Remark 4.3. Even without assumingτ to beOG-invertible, setτ ′ = Ext1(τ,O). Then
the dual of the previous exact sequence (4.1) gives

0→ E∨→ 6O→ τ ′→ 0 (4.3)

and:

(1) By (4.1) we clearly haveH 0(τ ) = H 1(τ ) = H 2(τ ) = 0.
(2) From (4.3) andhi(E∨) ∼= h3−i(E(−4)) we geth0(τ ′) = 6,H 1(τ ′) = H 2(τ ′) = 0.
(3) Since by definitionτ ′ = Ext1(τ,O), applying the functor Hom(τ,−) to the exact

sequence 0→ O→ O(3)→ OG(3)→ 0 we getτ ′ = Hom(τ,OG(3)). Therefore,
if τ = OG(D), thenτ ′ = OG(3H −D).
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Sincehi(D) = 0 for all i, h0(3H −D) = 6,hi(3H −D) = 0 for i = 1,2, it follows
by Riemann–Roch thatD2

+DH = −2 and 10= 36−7DH +D2. ThereforeHD = 3,
D2
= −5. By setting1 := D +H , it turns out that1H = 6,12

+1KG = −2.
We give elsewhere the proof of the following lemma.

Lemma 4.4. Assume thatG is a smooth cubic surface. Then there exists a realization of
G as the image of the plane under the system|3L−

∑6
i=1Ei | of plane cubics through six

points such that either1 ≡ 2L, i.e.,1 corresponds to the conics in the plane, or (up to
permutations of the six points)1 ≡ 3L− 2E1− E2.

Remark 4.5. The complete linear system1 has as image inP5 either the Veronese em-
bedding ofP2, or the embedding ofP1

×P1 throughH 0(OP1×P1(1,2)). In both cases we
have a surface of minimal degree (= 4).

Thus we have concluded that eitherD = 2L−H = −L+
∑
Ei , orD = 3L−2E1−

E2−H = −E1+
∑6
i=3Ei . We shall see later that the latter case does not occur (Lemma

4.12).

Corollary 4.6. H i(OG(2D)) = 0 for i = 0,2, andh1(OG(2D)) = 6.

Proof. The second part follows from the first by Riemann–Roch; for the first it suffices
to intersect withL (using Serre duality in the case ofH 2(OG(2D))). ut

We are now ready to show that the smoothness assumption for the cubic surfaceG implies
that all symmetric morphisms fromE∨ to E factor through and are induced by symmetric
morphisms from 6O to 6O, whence their determinant is a double cubic, instead of a nodal
sextic (cf. Rem. 4.2).

Lemma 4.7. Let

0→ F i
−→ E → τ → 0

be a locally free resolution of a coherent torsion sheafτ , which isOG-invertible on a
divisorG. Then we have an exact sequence

0→ 32F → F ⊗ E → S2E → τ ⊗ τ → 0 (4.4)

and a monad

0→ S2F → F ⊗ E → 32E → 0 (4.5)

whose cohomology in the middle is exactlyTor1(τ, τ ).

Proof. Recall that locally, by our assumption, we can write

E = Oe1⊕Oe2⊕ · · · ⊕Oer , F = Oxe1⊕Oe2⊕ · · · ⊕Oer ,

wherex is a local equation forG.
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Since Tor1(B,B′) = 0 if B is locally free, we obtain the following commutative
diagram with exact rows and columns:

0 0 0

0 // Tor1(τ, τ ) // F ⊗ τ //

OO

E ⊗ τ //

OO

τ ⊗ τ //

OO

0

0 // F ⊗ E //

OO

E ⊗ E //

OO

τ ⊗ E //

OO

0

0 // F ⊗ F //

OO

E ⊗ F //

OO

τ ⊗ F //

OO

0

0

OO

0

OO

Tor1(τ, τ )

OO

0

OO

Hence the composite mapE⊗E → τ ⊗E → τ ⊗τ is surjective and has kernel generated
by (F ⊗ E) ⊕ (E ⊗ F), as the diagram shows. LetK denote the kernel of the map
(F ⊗ E)⊕ (E ⊗ F)→ E ⊗ E . ThenK contains the image ofF ⊗ F under the injective
map(id⊗ i,−id⊗ i), wherei : F → E is the inclusion.

Therefore we get the complex

0→ F ⊗ F → (F ⊗ E)⊕ (E ⊗ F)→ E ⊗ E → τ ⊗ τ → 0,

exact except possibly at(F⊗E)⊕(E⊗F), where the cohomology is equal toK/(F⊗F).
Now letK1 be the inverse image of Tor1(τ, τ ) in F ⊗ E via the short exact sequence

0→ F ⊗ F → F ⊗ E → F ⊗ τ → 0.
We claim thatK ∼= K1. In fact, if h1⊕ (−h2) ∈ K, the diagram shows thath1 ∈ K1

and moreover thath2 is uniquely determined. Conversely, ifh1 ∈ K1, then there is a
(unique) elementh2 ∈ E ⊗ F with h1 = h2 ∈ E ⊗ E .

This implies thatK/(F ⊗ F) ∼= Tor1(τ, τ ).
Locally,K1 is generated byxe1⊗ e1 (modF ⊗ F). ThusK/F ⊗ F is generated by

(xe1⊗ e1)⊕ (−e1⊗ xe1) ∈ (F ⊗ E)⊕ (E ⊗ F), which is an antisymmetric tensor, and
we are done. ut

Corollary 4.8. According to the previous notation, assume thatG is a smooth cubic sur-
face. Thenh0(S2E) = 21, h1(S2E) = 6, h2(S2E) = h3(S2E) = 0. The same conclusion
h0(S2E) = 21 holds if more generallyE satisfies the first and second assumption and
H 0(τ⊗2) = 0.



Even sets of nodes on sextic surfaces 723

Proof. Split the long exact sequence (4.4) into

0→ 15O→ 6E → H→ 0, 0→ H→ S2E → τ⊗2
→ 0.

Recall from the construction ofE that h0(E) = 6 andhi(E) = 0 for i = 1,2,3. The
first corresponding long exact cohomology sequence yieldsh0(H) = 36− 15= 21 and
hi(H) = 0 for i = 1,2,3.

Therefore it suffices to observe that ifG is smooth, then by the previous corollary,
one hash0(τ⊗2) = h2(τ⊗2) = 0,h1(τ⊗2) = 6. The rest is straightforward. ut

Recall now that the vector bundleE , provided that the first assumption and the second
assumption are satisfied, produces an invertible sheafτ on a cubic surfaceG; conversely,
given such a sheafτ , one can constructE as an extension of 6O andτ as in (4.1).

Setting as beforeτ ′ := Ext1(τ,O), we see that such an extension is parametrized by
Ext1(τ,6O) = H 0(6 Ext1(τ,O)) ∼= C36, if, as in Remark 4.3, we haveh0(τ ′) = 6.

Lemma 4.9. Let E be a vector bundle as in(3.3) with h0(E) = 6 and satisfying the
second assumption. Thenhom(E, E) = 1, i.e.,E is simple.

Proof. We consider the exact sequence

0→ Hom(E,6O)→ Hom(E, E)→ Hom(E, τ )→ Ext1(E,O).

We have Ext1(E,O) ∼= H 1(E∨) ∼= H 2(E(−4)) and from the exact sequence (3.3)
we inferH 2(E(−4)) = 0. Since Hom(E,6O) = 0 by Proposition 3.3, it follows that
Hom(E, E) ∼= Hom(E, τ ).

We compute hom(E, τ ) by considering the exact sequence

0→ Hom(τ, τ )→ Hom(E, τ )→ Hom(6O, τ ).

Indeed, hom(O, τ ) = h0(τ ) = 0 (sinceh0(E) = 6) and, sinceτ is OG-invertible, we
have hom(τ, τ ) = 1. ut

Lemma 4.10. Assume thath0(E∨) = 0 (cf. the proof of Proposition3.3), and thatE is
an extension as in(4.1). Then the extension class inExt1(τ,6O) = H 0(6 Ext1(τ,O)) ∼=
C6
⊗ C6 is a rank6 tensor (we shall refer to this statement by saying thatthe extension

does not partially split). In particular,E is then uniquely determined up to isomorphism.

Proof. The extensions which yield vector bundles form an open set.
We canonically view these extension classes as

Hom(H 0(τ ′),H 0(6O)) = Hom(H 0(τ ′),C6)

through the coboundary map of the corresponding exact sequence. We then have an
action of GL(6,C) as a group of automorphisms of 6O, which induces an action on
Hom(H 0(τ ′),H 0(6O)) = Hom(H 0(τ ′),C6) which is immediately identified with the
composition of the corresponding linear maps.
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The extensions which yield vector bundles form an open set, which contains an open
dense orbit, on which this action is free, namely, the tensors of rank 6.

If the rank of the tensor corresponding to an extension isr < 6, it follows that the
extension is obtained from an extension 0→ rO → E ′′ → τ → 0 by taking a direct
sum with(6− r)O; but then(6− r)O is a direct summand ofE∨, a contradiction. ut

Corollary 4.11. E as in Lemma4.10is a vector bundle ifH 0(τ ′) has no base points.

Proof. Our hypothesis shows that at each point ofG the local extension class is non-zero,
hence it yields a locally free sheaf. ut

Let us now show that the second case in Lemma 4.4 does not occur, since it produces a
vector bundleE with a different intermediate cohomology from the one we require.

Lemma 4.12. The second case in Lemma4.4does not occur, since otherwise the associ-
ated vector bundleE would haveh2(E(−3)) = 1 6= b = 0.

Proof. Assume thatD =
∑6
i=3Ei−E1. Then the linear system|2H −D| = |6L−E1−

2E2 − 3(
∑6
i=3Ei)| has dimension greater than the expected dimension 27− 28= −1,

since it contains an effective divisor,|2L−E1−(
∑6
i=3Ei)|+2|2L−E2−(

∑6
i=3Ei)|. This

amounts to the non-vanishing of the cohomology groupH 2(−3H +D) = H 2(τ (−3)).
From the exact sequence (4.1) we infer thath2(E(−3)) = 1, whereas we assumed

throughout thath2(E(−3)) =: b = 0, a contradiction. ut

We now assume thatG is a smooth cubic surface, and thatτ is an invertible sheaf onG,
corresponding to the divisor class−L+

∑6
i=1Ei .

Consider the associated vector bundleE ; we want to verify thatE has the required
cohomology table, i.e., we want to calculate the dimensionshi(E(−n)) for n = 0,1,2,3.
This will allow us to verify that there are bundlesE which satisfy the first and second
assumptions.

Lemma 4.13. LetG be a smooth cubic surface, and letτ be the invertible sheaf onG
corresponding to the divisor class−L +

∑6
i=1Ei . Then the associated vector bundleE

has the required cohomology table.

Proof. Observe that:

• Clearlyh0(τ (−n)) = h0(D − nH) = h0(−(1+ 3n)L + (n + 1)
∑6
i=1Ei) = 0 for

n = 0,1,2,3.
• Also h2(τ (−n)) = h0((n − 1)H − D) = h0((3n − 2)L − n

∑6
i=1Ei) = 0 for n =

0,1,2, since a quartic with six double points is a union of four lines.
• h1(τ (−3)) = h1(−3H + D) = h1(−(10L − 4

∑6
i=1Ei)) = 0 by Ramanujam’s

vanishing trick for regular surfaces, since the linear system|10L−4
∑6
i=1Ei | contains

a reduced and connected divisor, namelyQ1 + · · · + Q5 + E6, whereQi ∈ |2L −∑6
j=1Ej + Ei |.

• Sinceχ(τ(−n)) = 1 + 1
2(D − nH)(D − (n − 1)H) = 3

2n(n − 3), we also have
h1(τ ) = 0,h1(τ (−1)) = h1(τ (−2)) = 3,h2(τ (−3)) = 0. ut
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We have seen how to a linear mapB : V ⊗U → W , whereV = H 0(P3,OP3(1)) denotes
the space of linear forms,U is a fixed isotropic subspace inH 1(F(1)),W := H 1(F(2)),
corresponds a homomorphism of vector bundlesB : V ⊗ U ⊗ O → W ⊗ O, inducing
β : U ⊗ �1(2) → W ⊗ O(1), whence finally a vector bundleE := ker(β) if β is
surjective.

The second assumption yields a cubic surfaceG ⊂ Proj(V ) and an invertible sheafτ
onG. If G is smooth, then the invertible sheafτ(1) yields a birational morphism onto
a Veronese surface, whence representsG as the blow up of a projective planeP2 in a
subschemeζ consisting of six points, and as the image ofP2 through the linear system of
cubic curves passing throughζ . The Hilbert–Burch theorem allows us to make an explicit
construction which goes in the opposite direction.

Remark 4.14. Let U ′,W ′ be 3-dimensional vector spaces. Consider a 3× 3× 4 tensor
B ∈ (W ′∨ ⊗ V ⊗ U ′∨) and assume that the corresponding sheaf homomorphismB̂ :
W ′ ⊗OP2(−1)→ V ⊗OP2 yields an exact sequence

0→ W ′ ⊗OP2(−1)
B̂
−→ V ⊗OP2 → OP2(3)→ Oζ (3)→ 0 (4.6)

which is the Hilbert–Burch resolution of a codimension 2 subschemeζ of length 6.
We obtain a canonical isomorphismV ∼= H 0(Iζ (3)) and we letG ⊂ Proj(V ) be the

image ofP2 under the rational mapψ associated toV . Under the above assumption onB,
and if moreoverζ is a local complete intersection,G is a normal cubic surface, and if we
defineG := ψ∗O(1), then we have an exact sequence on Proj(V ), corresponding again
toB:

0→ W ′ ⊗O(−1)
B
−→ U ′∨ ⊗O→ G → 0. (4.7)

Under the more general assumption thatB never drops rank by 2,G is an invertible
sheaf on a cubic surfaceG, andG = OG(L) with h0(L) = 3.

Conversely, given an exact sequence as in (4.7), the spaceH 0(G), sinceG is generated
by global sections, yields a morphismπ : G → Proj(H 0(G)). We calculate the Euler
characteristic ofG:

χ(G(n)) = 3

[(
n+ 3

3

)
−

(
n+ 2

3

)]
=

1

2
(3n2
+ 9n+ 6).

If the cubic surfaceG is normal, and we letG′ be its minimal resolution, the Hilbert
polynomial ofOG′(L) is equal to

χ(L+ nH) = 1+ 1
2(L+ nH)(L+ (n+ 1)H) = 1+ 1

2(L
2
+LH)+ 3

2n
2
+ n(3

2 +LH)

and thereforeLH = 3,L2
= 1. SinceL2

= 1, π is a birational morphism, and sinceL
has genus 0 and degree three,G′ is the birational image ofP2 under a linear system of
plane cubicsH 0(Iζ (3)), whereζ is a length six zero-dimensional subscheme.
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Proposition 4.15. More generally, assume thatG is an invertible sheaf on a (not neces-
sarily irreducible) cubic surfaceG, given by Lemma4.7. Then the Cartier divisorL has
degree3, and the morphismπ yields a birational morphism of a component of the surface
G onto the plane. IfG is irreducible andτ := G⊗2(−1), thenH 0(τ⊗2) = 0.

Proof. It suffices to consider two general divisorsL1, L2 in the linear system|L|, and to
consider the Hilbert polynomials of the sheaves appearing in the two exact sequences

0→ OG(nH)→ OG(nH + L1)→ OL1(nH + L1)→ 0,

0→ OL2(nH)→ OL2(nH + L1)→ OL1∩L2(nH + L1)→ 0.

The conclusion is thatH 0(OL1∩L2(nH + L1)) = 1 for all n � 0, thusL1 andL2 meet
transversally in a smooth point.

Let us now assume thatG is irreducible, and consider the inverse of the birational
morphismπ . We can factor it as a sequence of blow upsσ : Y → P2 followed by a
projectionp : Y → G, to which corresponds a sublinear system of a complete linear
system onY , which reads on the plane as|H | = |bL −

∑
i aiEi |. Here,b = H · L, and

if b ≥ 3, clearlyL · (4L− 2H) < 0, hence|4L− 2H | = ∅ and our desired vanishing is
proven.

If insteadb ≤ 2, since dim|H | ≥ 3, it follows thatH = 2L − E andG is a linear
projection of the cubic scrollY ⊂ P4 with centre a point inP4

\ Y . We claim, however,
that this case does not occur, essentially because otherwiseG = p∗(OY (L)) would not
be invertible.

As an alternative argument, observe that the factorizationσ = π ◦ p is not possible,
sinceσ is an isomorphism on the complement of the lineE ⊂ Y , while the inverse image
of the double curve ofG is a conic (possibly reducible) contained inY . ut

Definition 4.16. We now define thedirect constructionof the bundleE relying on our
results above.

Consider a sheafG defined by an exact sequence as in(4.7), and which is invertible
on a cubic surfaceG (i.e., rk(G ⊗ Cy) ≤ 1 at eachy ∈ P3).

Defineτ := G⊗2(−1) and letE be a vector bundle which is an extension of6O by τ
as in(4.1) (here and elsewhere,O := OProj(V ) ).

Proposition 4.17. E as above is unique up to isomorphism in the following cases:

(1) if G is a smooth cubic surface;
(2) if G is reducible to the union of a planeT and a smooth quadricQ intersecting

transversally.

Proof. As before, it suffices to show that dim Ext1(τ,O) = 6.
Now, Ext1(τ,O) = H 0(Ext1(τ,O)) and the exact sequence

0→ O(−3)→ O→ OG→ 0

yields
0→ Hom(τ,OG)→ Ext1(τ,O(−3))→ Ext1(τ,O)

where the last map is 0 onG. Hence, Ext1(τ,O) ∼= Hom(τ,OG(3)) = H 0(τ∨(3)).
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Using the previous notation for the Cartier divisors corresponding toG andOG(1),
we want to show thath0(OG(4H − 2L)) = 6.

Assume first thatG is a smooth cubic surface: then by Riemann–Roch it suffices to
show the vanishing of the first cohomology grouph1(OG(4H − 2L)) = 0.

We argue as before using Ramanujam’s vanishing theorem, since

h1(OG(4H − 2L)) = h1(OG(−5H + 2L)) = h1
(
OG

(
−13L+ 5

∑
i

Ei

))
,

and|13L−5
∑
i Ei | ⊃ |10L−4

∑
i Ei |+ |H | contains a reduced and connected divisor.

In the second case, observe that there is no birational morphism of a smooth quadric
Q onto the plane, thusG definesπ which is an isomorphism on the plane, and has degree
zero onQ.

Since we know thatπ is an embedding ofQ∩T ,π |Q is the projection ofQ ∼= P1
×P1

on the second factor, followed by the isomorphism ofP1 ontoQ ∩ T .
Sinceτ∨(3)|T = OT (2), τ∨(3)|Q = OQ(4,0), andH 0(τ∨(3)|T = OT (2)) →

H 0(τ∨(3)|Q = OQ(4,0)) is surjective, we obtain

dim Ext1(τ,O) = h0(τ∨(3)) = 6. ut

Remark 4.18. Indeed, the above proof shows that ifG = T ∪ Q with Q a smooth
quadric, andG is invertible, then necessarilyT andQ intersect transversally.

We now observe that Lemma 4.7 provides a resolution ofτ := G⊗2(−1) starting from
(4.7). We take the second symmetric power of the sequence (4.7) to obtain a resolution

0→ (32W ′)⊗O(−2)
¬B(−1)
−−−−→ (U ′∨ ⊗W ′)⊗O(−1)

B̃
−→ (S2U ′∨)⊗O→ τ(1)→ 0, (4.8)

where¬B is the contraction given by the composition of the natural inclusion from
(32W ′) ⊗ O(−1) to (W ′ ⊗ W ′) ⊗ O(−1) with the mapB ⊗ idW ′(−1), while B̃ is the
composition of idU ′∨ ⊗ B with the surjection of(U ′∨ ⊗ U ′∨ ⊗O onto(S2U ′∨)⊗O.

Consider now the exact sequence definingE ,

0→ 6O→ E → τ → 0,

and the above projective resolution ofτ ; by the mapping cone construction (cf. e.g. [Eis,
pp. 650–651]) we obtain a projective resolution ofE :

0→ 32W ′ ⊗O(−3)
¬B(−2)
−−−−→ U ′∨ ⊗W ′ ⊗O(−2)

(B̃(−1),λ)
−−−−−→ 6O ⊕ (S2U ′∨ ⊗O(−1))→ E → 0. (4.9)

We now want to find a relation between the multiplication mapB : U ⊗ V → W ,
whereU (resp.W ) denotes as usualH 1(E(−2)) (resp.H 1(E(−1))), and the above map
B : W ′ ⊗ V ∨→ U ′∨ (cf. (4.7)). LetE be the unique sheaf given byB (cf. (3.5)).
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We split the above resolution (4.9) ofE into two short exact sequences, denoting by
K the image of(B̃(−1), λ). This givesH 1

∗ (E) ∼= H 2
∗ (K) = ker[H 3

∗ (3
2W ′ ⊗O(−3))→

H 3
∗ (U

′∨
⊗W ′⊗O(−2))]. Fixing these isomorphisms, we can make the following identi-

fications:U ∼= ker[¬B : 32W ′ ⊗ V ∨→ U ′∨ ⊗W ′], W = 32W ′, and the multiplication
mapB is given as the composition in the following diagram:

U ⊗ V� _

��

B // W = 32W ′

32W ′ ⊗ V ∨ ⊗ V

¬

66mmmmmmmmmmmmm

of the natural inclusion with the natural contraction¬ : V ∨ ⊗ V → C.
One can also obtain the above factorization in the following alternative way: Beilin-

son’s complex yields the short exact sequence

0→ U ⊗�2(2)→ W ⊗�1(1)⊕ 6O→ E → 0,

whereU (resp.W ) denotes as usualH 1(E(−2)) (resp.H 1(E(−1))).
From the above we get

0→ (U ⊗O(−2))⊕ (W ⊗O(−3))→ (U ⊗33V ⊗O(−1))

⊕ (W ⊗33V ⊗O(−2))→ 6O ⊕ (W ⊗32V (−1))→ E → 0. (4.10)

Comparing (4.9) and (4.10), we obtain the following identifications:

(1) W ′ ∼= 32W , U ∼= ker[¬B : 32W ′ ⊗ V ∨→ U ′∨ ⊗W ′],
(2) U ′∨ ⊗W ′ ∼= (W ⊗33V )/U , S2U ′∨ ∼= (W ⊗32V )/(U ⊗ V ).

Based on the above considerations we give the following

Definition-Proposition 4.19. Thecross-product involution on tensors of type 3×3×4 is
given as follows: to a5-uple (U ′,W ′, V , δ′,B), whereU ′,W ′ are 3-dimensional vector
spaces,V is a4-dimensional vector space,B ∈ Hom(W ′⊗V ∨, U ′∨) = W ′∨⊗V ⊗U ′∨,
δ′ : 33W ′ ∼= C an isomorphism, we associate the5-uple(U,W, V ∨, δ, B), where:

(1) W := 32W ′ and, sinceW is then canonically isomorphic toW ′∨, by the duality
W ′ ⊗32W ′→ C induced byδ′, we letδ := δ′∨,

(2) U := ker[¬B : 32W ′ ⊗ V ∨ → U ′∨ ⊗ W ′], where¬B is the contraction with the
tensorB described above;

(3) B ∈ Hom(U⊗V,W) = W⊗V ∨⊗U∨ is the composition of the inclusionU⊗V ↪→

32W ′ ⊗ V ∨ ⊗ V with the natural contraction¬.

The dimension ofU is equal to three if we make

Main assumption. ¬B is surjective (this in turn obviously implies the injectivity of the
mapB : U ′→ V ⊗W ).

The cross-product involution is then defined through the associated5-uple on the open set
of tensors satisfying the main assumption, and it is involutive whenever the composition
is defined.
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Proof. Given a 5-uple(U ′,W ′, V , δ,B), let (U,W, V ∨, δ, B) be its corresponding
5-uple, to which corresponds a third 5-uple(U ′′,W ′′, V , δ, B ′′). We haveB ∈ W ′∨ ⊗ V
⊗ U ′∨, B ∈ W ⊗ V ∨ ⊗ U∨, B ′′ ∈ W ⊗ V ⊗ (U ′′)∨.

We claim that there exists a canonical isomorphismU ′∨ = (U ′′)∨, equivalently, a
canonical isomorphismU ′′ = U ′.

To show this, we shall first observe that both spaces can be canonically regarded as
subspaces ofW ⊗ V , and then, since they have the same dimension (forU ′′, this is a
consequence of the hypothesis that(U,W, V ∨, δ, B) also satisfies the main assumption),
it will suffice to show thatU ′ ⊂ U ′′.

U ′′ is the kernel of¬B : 32W ′ ⊗ V → U∨ ⊗ W ′. Upon identifying32W ′ with
W , the previous map becomes¬B : W ⊗ V → U∨ ⊗ W∨. We now considerB as the
mapB : U ′ → W ⊗ V . It suffices to show(¬B) ◦ B(U ′) = 0, i.e., by dualizing, that
B∨ ◦ (¬B)∨(U ⊗W) = 0. This is a consequence of the commutativity of the following
diagram:

U ⊗W� _

��

(¬B)∨ // V ∨ ⊗W∨
B∨ // U ′∨

(32W ′ ⊗ V ∨)⊗W

¬

55kkkkkkkkkkkkkk

¬B⊗idW
// (U ′∨ ⊗W ′)⊗W

¬

88qqqqqqqqqqqq
ut

5. The explicit unirational family

Up to now we have studied extensively the vector bundlesE such that an even set of 56
nodes on a sextic surfaceF should come from a symmetric homomorphism associated to
a section ofS2E .

We have almost shown, however, in Corollary 4.8 and Proposition 4.15, that all such
sections have as determinant the square of a cubic surfaceG, if the cubicG appearing in
the direct construction is irreducible.

It seems therefore only natural to try to see what happens for a reducible cubic, hoping
that thenh0(S2E) > 21.

We assume henceforth thatG is the union of a smooth quadricQ with a planeT
intersecting transversally. We have already observed in the proof of Proposition 4.17 that
in this case there is a unique choice forG, likewise forE .

Lemma 5.1. If G is the union of a smooth quadricQ and of a planeT which intersect
transversally, thenh0(τ⊗2) = 1 andh0(S2E) = 22.

Proof. In this case the sheafG corresponds to the sheafOQ(0,2) onQ and toOT (1)
on T . Thereforeτ := G⊗2(−1) corresponds toOQ(−1,3) onQ and toOP (1) on P .
Thus the sections ofH 0(τ⊗2) vanish identically onQ and correspond to sections of
OT (2) vanishing onQ ∩ T .

The second statement then follows from the proof of Corollary 4.8. ut

We also remark that, since we assumeQ ∩ T is smooth,G is unique up to projective
equivalence.
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We shall now give an explicit tensorB0 whose associated sheaf is the uniqueG on a
reducible cubic of the formT ∪Q, whereQ andQ∩T are smooth, and compute explicitly
that the tensor corresponding to the uniqueE obtained from the direct construction is
againB0; this will allow us to calculate explicitly the determinant of a generic symmetric
mapE∨→ E , and to show that it is a nodal sextic.

Lemma 5.2. Consider the following3× 3× 4 tensorB0:

B0 =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

+ x0

1 0 0
0 1 0
0 0 1

 . (5.1)

The sheafG0 associated toB0 is an invertible sheaf on the reducible cubicG0 :=
{x0(

∑
i x

2
i ) = 0}. Its class inA0 is invariant under the cross-product involution. More

precisely, the vector bundleE0 obtained fromB0 via the direct construction has the re-
quired cohomology table and its multiplication matrix is againB0 for the intermediate
cohomology moduleM0 := H 1

∗ (E0). Moreover,h0(S2E0) = 22.

Proof. The determinant ofB0 equalsG0. On the planex0 = 0 the Pfaffians arex1 = x2 =

x3 = 0 andµ has rank 2. ElsewhereG0 is smooth, whenceG is everywhere invertible.
It is a routine calculation to verify that its class is invariant under the cross-product

involution. The direct construction then gives a unique vector bundleE (cf. Proposition
4.17), and we claim that its cohomology table is as required. As in the proof of Lemma
4.13 it suffices to calculate the dimensionshi(τ (−n)) for 0 ≤ n ≤ 3, and to show they
vanish fori = 0, i = 2.

We use the exact sequence

0→ τ → OQ(−1,3)⊕OT (1)→ OQ∩T (1) ∼= OP1(2)→ 0,

which is easily seen to be exact on global sections, hence the casei = 0 follows right
away.

For the casei = 2 we observe that in the exact cohomology sequence

0→ H 1(τ (−n))→ H 1(OQ(−1−n,3−n))
ψ
−→ H 1(OQ∩T (1−n))→ H 2(τ (−n))→ 0

ψ is surjective, since its cokernel is isomorphic toH 2(OQ(−2−n,2−n)) whose dimen-
sion equalsh0(OQ(n, n− 4)) = 0 (sincen < 4).

The last claim follows from Lemma 5.1. ut

Remark 5.3. Consider the invertible sheaf given by

0→ 3O(−1)
B0
−→ 3O→ G0→ 0. (5.2)

We haveh0(G0) = 3 and the associated morphismπ fromG0 to P2 is determined by the
rational map given by the entries of any column of Ad(B0):

Ad(B0) =

 x2
1 + x

2
0 x1x2− x0x3 x1x3+ x0x2

x1x2+ x0x3 x2
2 + x

2
0 x2x3− x0x1

x1x3− x0x2 x2x3+ x0x1 x2
3 + x

2
0

 .



Even sets of nodes on sextic surfaces 731

We see right away thatπ is the identity on the planeT , and the projection along one
ruling from the quadricQ toQ ∩ T .

Proposition 5.4. For a sectionφ ∈ H 0(S2E0), denote byϕ ∈ Hom(E∨, E) its associated
symmetric morphism. Then, forφ general,F := {x | det(ϕ) = 0} is a nodal sextic surface
with, as singularities, exactly an even set of56nodes1 = {x | corank(ϕ) = 2}.

Proof. The required computations were performed and can be verified by using the com-
puter-algebra system [Gr-St] over a finite field, or overQ.

The first step is to compute explicitly the fibre overB0 inside the variety of pairsMAB

(cf. (3.6)), i.e., the vector space of symmetric matricesA ∈ Mat(12× 12, H 0(OP3(2)))
satisfying the equation(B0, ε) · A = 0.

Step two: for a randomA in such a fibre one computes the G.C.D. of two (different)
6× 6 minors ofA: if the G.C.D. has degree 6, then it is the equation of the sexticF .

Step three: one verifies with the jacobian criterion that the singular locus ofF consists
exactly of a 0-dimensional subscheme of length 56.

Step four: one verifies that the ideal sheaf of the singular locus is a radical ideal. Then
the singularities are just a set of nodes.

A further (but not absolutely necessary) check consists in verifying that the scheme1

coincides with the subscheme formed by those 56 reduced points; this can be performed
by computing a set of 5× 5 minors ofA sufficient to generate the ideal of the 56 points.

ut

Remark 5.5. Since the space of reducible cubic surfaces has dimension 12 (9 + 3), we
obtain an explicit family parametrized by a rational variety80 of dimension 33= 21+12.

Proof. We simply construct a parameter space by choosing a 12-dimensional subgroup
H ⊂ PGL(V ) such that the orbit ofG0 dominates the space of reducible cubics, and then
we take as parameter spaceH × P(H 0(S2E)).

Then to the pair(g, φ0) corresponds the vector bundleg∗(E) := EgG0 and the section
g∗(φ0), and, correspondingly, the sextic surfaceg∗(det(ϕ) = 0). ut

Lemma 5.6. The morphism80 → P(S6V ) associating to(g, ϕ) the corresponding
nodal sexticF = det(ϕ) has fibres of dimension6.

Proof. Recall first that we have already shown that the surfaceg(G0) uniquely determines
a vector bundleE and conversely.

Second, observe that ifF has exactly 56 nodes thenF determines the quadratic
sheafF uniquely (observe moreover thatF has only constant automorphisms).

Suppose that there are two different vector bundlesE, E ′ and respective morphisms
ϕ, ϕ′ forming exact sequences as in Theorem 2.1 which define isomorphic cokernels
F,F ′.

By abuse of notation we identifyF ′ with F and assume that we haveγ : E → F ,
γ ′ : E ′→ F inducing such isomorphisms of the respective cokernels withF .
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A first question is whether there exist liftsα : E ′ → E andβ : E ′∨ → E∨ of the
identity idF onF such that the following diagram commutes:

0 // E∨
ϕ // E

γ // F // 0

0 // E ′∨
ϕ′ //

β

OO

E ′
γ ′ //

α

OO

F //

idF

OO

0

(5.3)

If such anα exists, then necessarily the submoduleM := Im(H 1
∗ (γ )) of H 1

∗ (F) equals
the submoduleM ′ := Im(H 1

∗ (γ
′)).

Assume now thatM ′ = M; then since any automorphism ofM lifts to an isomor-
phism of two minimal resolutions ofM, this automorphism induces an isomorphismα
of the respective first syzygy bundles, hereE , resp.E ′ (cf. Section 2). We can henceforth
assume that ifM = M ′, thenE = E ′, and then, using Hom(E, E) = C (cf. Lemma 4.9)
we conclude thatα is multiplication by a constant, necessarily6= 0.

From the exact sequence

0→ Hom(E∨, E∨)→ Hom(E∨, E) γ ◦−→ Hom(E∨,F),

it follows that there exists a unique homomorphismβ making the diagram commute.
Again, using Hom(E, E) = C, we infer thatβ is multiplication by a non-zero constant,
and we have thus shown that ifM = M ′ then the sectionsφ andφ′ are proportional.

On the other hand, the choice ofM is completely determined by the choice of a
Lagrangian subspaceU of the 6-dimensional spaceH 1(F(1)), and we saw that for each
choice ofU there is a bundleE and aφ yielding an exact sequence as in Theorem 2.1,
with M equal to the image ofH 1

∗ (E).
We are done, since the dimension of the Lagrangian Grassmannian LGr(3,6) equals 6.

ut

We want to show that the explicit unirational family that we constructed is locally max-
imal. To this purpose, observe that to a pair(g, φ0) corresponds a vector bundleg∗(E0)

and a sectiong∗(φ0), but more precisely a tensorg∗(B) and a matrix of quadratic forms
Ag,φ0 representingg∗(φ0) as in (3.5).

Thus80 maps in a generically finite way to the variety of pairsMAB (cf. (3.6)) and
we can consider the GL(U)×GL(W)-orbit of its image.

Observe that we then obtain an irreducible algebraic set90 of dimension 33+ 1+
9+ 9− 1= 51.

The following lemma shows that90 is indeed a component ofMAB .

Lemma 5.7. Let (B0, A0) ∈ MAB be a general point of the fibre overB0. Then the
tangent space toMAB at the point(B0, A0) has dimension51.

Proof. Fix the pair (B0, A0) ∈ MAB . For a generic pair(B,A) ∈ Mat(3,12,C) ×
MatSym(12,12, H 0(OP3(2))) we search for the solutions of the equations

(B0+ tB, ε)(A0+ tA) ≡ 0 (modt2).
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The above equation is equivalent to the two equationsBA0+ B0A = 0, εA = 0, and we
have to compute the space of solutions.

Again this is done by means of a computer-algebra system over a finite field; it suf-
fices to choose a pointA0 at random for which the tangent space has dimension 51. The
computation works out successfully. ut

We can now summarize the result of the construction of the above explicit family:

Main Theorem B. There is a family of nodal sextic surfaces with56 nodes forming
an even set, parametrized by a smooth irreducible rational variety80 of dimension33,
whose image40 is a unirational subvariety of dimension27 of the space of sextic sur-
faces. Moreover, the above family is versal, thus40 yields an irreducible component of
the subvariety of nodal sextic surfaces with56nodes.

Proof. The first assertions were proven between Lemma 5.1 and Lemma 5.6.
Let 4 be the subvariety of nodal sextic surfaces with 56 nodes. Since the property

that the set of nodes is even is a topological property (cf. for instance [Cat1], [Cat2]), it
follows that there is an open and closed set4′ ⊂ 4 such that forF ∈ 4′ the set of 56
nodes is even. We only need to prove that40 ⊂ 4

′ is open.
But 4′ contains the open set4′′ such that, forF ∈ 4′′, H 1(F(2)) has dimension 3

and the first assumption is satisfied.
We can form a variety9 ′ consisting of quadruples(F,U,B, φ) where:

(i) F ∈ 4′ is a sextic surface,
(ii) U ⊂ H 1(F(1)) is a Lagrangian subspace,

(iii) B is the multiplication tensor for the intermediate cohomology submoduleM of
H 1
∗ (F) determined as in (2.1) by the choice ofU ,

(iv) if E is the unique vector bundle determined byB as in (3.5), thenφ is a section of
the vector bundleS2E such that det(ϕ) = F .

Then we see that the map9 ′ → MA,B is an embedding. Now Lemma 5.7 shows that
90 ⊂ 9

′ is open, and we are done. ut

It is a natural question to ask if the above is the unique irreducible component of the
subvariety of nodal sextic surfaces with 56 nodes forming an even set. For this purpose
one should first settle the case of Hilbert function(3,4) for M.

6. The random approach

Let M be a variety defined over a finite field of orderq and letM0 ⊂ M be a subvariety
of codimensionk. The random approach consists in finding a point inM0 by choosing
points inM at random. Since the probability of hitting a point ofM0 is q−k, it is evident
that this method is only successful if the computation time to decide whether a point of
M actually belongs toM0 is small enough (cf. [Sch], [Sch-To]).

In this section we show how this method was applied to find the first examples of
sextic surfaces with an even set of 56 nodes.
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LetA denote the coordinate ring ofP3 and letB be the multiplication matrix of the
intermediate cohomology moduleM. If B is general, sinceE is a syzygy bundle (cf.
Section 3), it follows (cf. 3.5 and 4.9) thatM has a resolution of the form

0← M ← 3A[2] ← 9A[1] ← 6A⊕ 6A[−1]← 9A[−2]← 3A[−3]← 0. (6.1)

In an analogous way to the one followed after the exact sequence (3.5) we find that
the symmetric morphismsϕ : E∨ → E are exactly induced by the symmetric morphisms
a : 9O(−1)→ 9O(1) such thatb ◦ a = 0, according to the following diagram:

0 3O(2)oo 9O(1)boooo Eoo

0 // 3O(−2)
tb //

0

OO

9O(−1) ////

a

OO

E∨

ϕ

OO

It is clear that the replacement of(A,B) with (a, b) reduces the memory and the time
required for computations.

Repeated random choices ofb allow one to find anE with

h0(S2E) = dim{a : 9O(−1)→ 9O(1) | a = ta, b ◦ a = 0} ≥ 22.

This property leads to the definition ofM andM0.

Definition 6.1. LetM be the Zariski open set

M := {b : 9O(1)→ 3O(2) | M := coker(b) has a resolution as in(6.1)and

ι : 6O→ E := Syz1(M) is injective}
and let

M0 := {b ∈M | h0(S2E) ≥ 22}.

We already remarked thatM is non-empty. A resolution forS2E is provided by the fol-
lowing lemma.

Lemma 6.2. If 0 → A → B → C → E → 0 is an exact sequence of locally free
sheaves, then the following sequence is also exact:

0→ S2A→ A⊗ B → 32B ⊕ (A⊗ C)→ B ⊗ C → S2C → S2E → 0.

Proof. By hypothesis we have 0→ B/A → C → E → 0. Therefore we get 0→
32(B/A)→ (B/A)⊗C → S2C → S2E → 0. Resolutions for32(B/A) and(B/A)⊗C
are standard, respectively 0→ S2A → A ⊗ B → 32B → 32(B/A) → 0 and 0→
A⊗C → B ⊗C → (B/A)⊗C → 0. The resolution forS2E stated in the lemma is the
mapping cone of the previous resolutions. ut

Hence it was guessed that the “good” locus has codimension 7:

Proposition 6.3. The conditionh0(S2E) ≥ 22 is expected to hold on a codimension7
algebraic subset ofM.
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Proof. By applying the previous lemma to a minimal free resolution ofE we get a (not
necessarily minimal) free resolution ofS2E :

0→ 6O(−6)→ 27O(−5)
r3
−→

18O(−4)
⊕

18O(−3)
⊕

36O(−4)

r2
−→

54O(−3)
⊕

54O(−2)

r1
−→

21O(−2)
⊕

36O(−1)
⊕

21O

r0
−→ S2E → 0

Denote byKi the image of the mapri , split the above exact sequence into short exact
sequences and look at the associated long exact cohomology sequences. From

0→ H 0(K1)→ H 0(21O) S
2ι0

−−→ H 0(S2E)→ H 1(K1)→ 0

and sinceS2ι0 is injective (ι : 6O → E being injective), we get, using also the other
cohomology sequences, 0= H 0(K1) ∼= H

1(K2) ∼= H
2(K3) andH 0(S2E)/H 0(21O) ∼=

H 1K1 ∼= H
2K2.

We also have the short exact sequence

H 2(K3) = 0→ H 3(6O(−6))→ H 3(27O(−5))→ H 3(K3)→ 0,

henceH 3(K3) has dimension 48.
Finally, the exact sequence

0→ H 2(K2)→ H 3(K3)
α
−→ H 3(54O(−4))→ H 3(K2)→ 0,

sinceH 3(K2) ∼= H
2(K1) ∼= H

1(S2E), yields

0→
H 0(S2E)
H 0(21O)

→ C48 α
−→ C54

→ H 1(S2E)→ 0. (6.2)

Therefore the condition thatH 0(S2E) ∼= H 0(21O) is equivalent to the linear mapα
having maximal rank, and since we know that this happens in general, the condition
h0(S2E) ≥ 22 holds in a determinantal subscheme ofM of expected codimension 54−
48+ 1= 7. ut

Let Mab be the variety, analogous toMAB (cf. (3.6)), of pairs(b, a) such thata =
ta, ab = 0. Computations similar to the ones in Lemma 5.7 verified over a finite field
that at a random point(b0, a0) the variety of pairsMab is smooth of dimension 123. A
standard argument then ensures the existence of a lift of the pair(b0, a0) from a finite
field to a number field (cf. [Sch]).

This random approach, and the remark that the space of reducible cubic surfaces is a
codimension 7 subvariety of the projective space of cubic surfaces, led then to the explicit
family constructed in the previous section.
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