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Abstract. We formulate a new theorem giving several necessary and sufficient conditions
in order that a surjection of the fundamental group 7;(X') of a compact Kahler manifold onto
the fundamental group IT, of a compact Riemann surface of genus g > 2 be induced by a
holomorphic map. For instance, it suffices that the kernel be finitely generated.

We derive as a corollary a restriction for a group G, fitting into an exact sequence 1| — H —

G — I1, — 1, where H is finitely generated, to be the fundamental group of a compact Kéhler
manifold.

Thanks to the extension by Bauer and Arapura of the Castelnuovo—de Franchis theorem to
the quasi-projective case (more generally, to Zariski open sets of compact Kihler manifolds)
we first extend the previous result to the non-compact case. We are finally able to give a topo-
logical characterization of quasi-projective surfaces which are fibred over a (quasi-projective)
curve by a proper holomorphic map of maximal rank, and we extend the previous restriction
to the monodromy of any fibration onto a curve.

1 Introduction

The study of fibrations of algebraic (or Kihler) manifolds f : X — C over curves C
of genus at least 2, called classically irrational pencils, has a long history.

Around 1905 almost simultaneously de Franchis and Castelnuovo—Enriques ([14],
[7]) found that the existence of such a fibration is equivalent to the existence of at
least two linearly independent holomorphic 1-forms whose wedge product yields a
holomorphic 2-form which is identically zero.

Hodge theory was yet to be developed and only much later ([9]) it was shown that
combining the Hodge decomposition with the theorem of Castelnuovo—de Franchis
one obtains a topological characterization of such fibrations via any subspace in de
Rham cohomology obtained as the pull-back of a maximal isotropic subspace in the
cohomology of C.

Other topological characterizations in terms of the induced surjection of funda-
mental groups f, : m;(X) — 7 (C), or other statements in this direction, had been
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obtained earlier by several authors (cf. Jost—Yau and Siu, [35], [22], (23], [36], who
used the theory of harmonic maps, Beauville, [6], used instead the generic vanishing
theorems of Green and Lazarsfeld, [17]).

In [10] I tried to show how the isotropic subspace theorem, which predicts the
genus of the image curve C (it equals the dimension of the corresponding maximal
isotropic subspace), unlike the other statements, could be used to obtain also simple
proofs of statements concerning surjections of fundamental groups, as the one given
by Gromov ([19]).

Hodge theory also works for quasi-projective manifolds, and it turns out that in the
non-compact case it works much better than the other methods ([4], [2]). These results
were then used in [11] to give topological characterizations of varieties isogenous to
a product and of isotrivial fibrations of surfaces. Kotschick ([28]) instead used very
similar methods to give a topological characterization of Kodaira fibrations, which
was independently also obtained by Hillman ([21]). Our first motivation was to
extend this result to any fibration, a goal that we have achieved in the following

Theorem 6.4. Assume that U is a non-complete Zariski open set of an algebraic surface
and that the following properties hold.

(P1) We have an exact sequence 1 — I1, — m;(U) — Fy — 1, where g > 2.

(P2) The topological Euler—Poincaré characteristic e(U) of Uis 2(g — 1)(r — 1).

(P3) For each end & of U, the corresponding fundamental group nf surjects onto a
cyclic subgroup of Ty, and each simple geometric generator y; has a non-trivial
image in TF,. ]

Then U is a good open set of a fibration, more precisely, there exists a proper holo-

morphic submersion f : U — C inducing the previous exact sequence.

For this purpose, we started to put together the existing results, both in the com-
pact and in the non-compact case, with some small addition: we refer to Theorems
4.3 and 5.4 for full statements. We only indicate here some new results:

Theorem A. Let X be a compact Kdhler manifold, and assume that its fundamental
group admits a non-trivial homomorphism  to the fundamental group 1, of a com-
pact Riemann surface of genus g = 2, with kernel H. Then the following conditions are
equivalent:

(4) ¥ is induced by an irrational pencil of genus g without multiple fibres.
(5) ¥ is surjective and its kernel H is finitely generated.
Theorem A’. Let X be a compact Kihler manifold and Y = X — D be a Zariski open

set. Assume that the fundamental group of Y admits a homomorphism  : m1(Y) — IF,
to a free group of rank g, with kernel H. Then the following are equivalent:

(1Y  is induced by a pencil f:Y — C of type g without multiple fibres and by a
surjection m (C) — TF,.

(2")  is surjective and the kernel H of Y is finitely generated.
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The new ingredient here is a remarkable property of free groups and of the fun-
damental groups of compact curves of genus g > 2. This property is that every non-
trivial Normal subgroup of Infinite index is Not Finitely generated. We abbreviate
this property by the acronym NINF, and we devote Section 3 to establishing this
result for the above mentioned groups.

This property plays an important role, for instance it shows that, contrary to what
is stated by some author, the kernel of the homomorphism between fundamental
groups fi : 71(X) — m;(C) needs not be finitely generated, it is finitely generated if
and only if there are no multiple fibres.

In the case where there are multiple fibres, one can take a ramified base change
which eliminates the multiple fibres, and indeed one could extend Theorems A and
A’ to include the case where H is not finitely generated, but we believed that the
results stated in this article are already sufficiently complicated, so we omitted to treat
this extension.

We preferred instead to concentrate on some important consequence, concerning
the monodromy of fibrations over curves. For instance, putting together Theorem A
with the old isotropic subspace theorem we obtain

Corollary 7.3. If a finitely presented group I" admits a surjection I — I1, with finitely
generated kernel H, then I cannot be the fundamental group of a compact Kihler

manifold X if there is a non-zero element ue H'(H,Z) Mo such that the cup product
with u yields the zero map

H'(T,,Z) —» H'(T1,, H'(H,Z)).

We then spell out in detail the meaning of degeneracy of the above cup product: it
means that there exists a bad monodromy submodule.

By extending everything to the non-compact case one obtains then a restriction for
the monodromy of fibrations over curves which is in the same spirit as Deligne’s
Semisimplicity Theorem (4.2.6. of [14]).

2 Notation

IT, denotes the fundamental group of a compact Riemann surface C, of genus g > 2,
I, :=<ai,...,a4,b1,...,by|la1,b1]...[a,,b,] = 1). By F, we denote a free group of
rank g = 2, and X will be a compact Kédhler manifold.

3 Non-finitely generated subgroups

This section is devoted to a remarkable property enjoyed, for g > 2, by the free

groups IF, and by the fundamental groups I, of a compact Riemann surface C,; of
genus g = 2.

Definition 3.1. A group G is said to satisfy property NINF (to be more precise, but
less concise, we should call it NIINFG) if every normal non-trivial subgroup K of
infinite index is not finitely generated. We shall also say that G is a NINF.
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The application of the above notion that we shall need is the following

Lemma 3.2. Let 1 — A — I1 — B — 1 be an exact sequence of group homomorphisms
such that the following conditions are satisfied.

(1) A is finitely generated.

(2) B is infinite.

(3) @ : I — B factors as p o Yy, where Y : I1 — G is surjective.
(4) Gisa NINF.

Then p : G — B is an isomorphism.

Proof. Let j : A — II be the inclusion and define K’ := ker(y o), K := ker(y). Then
K’ =K since K = 4 = ker(p). Set A’ := A/K, so A’ injects into G = I1/K. More-
over, A’ is normal in G with quotient B = I1/4 which is infinite by assumption. Since
A’ is finitely generated, as a quotient of 4, and G is a NINF it follows that 4’ is
trivial. Whence 4 = K and p : G — B is an isomorphism, as desired. d

Lemma 3.3. 4 free group IF, enjoys property NINF.

Proof. We may assume that n > 2. We view IF, as the fundamental group =;(Y),
where Y is a bouquet of 7 circles. Let Z be the covering space corresponding to a
normal subgroup K of infinite index. Z is indeed the Cayley graph for the infinite
group G :=[F,/K with respect to the finite set of n generators, gi,...,gs, corre-
sponding to the surjection IF, — G.

If K is not trivial, then Z is not simply connected, and there is a non-trivial mini-
mal closed simplicial path ¢ based on the base point xo = 1: (xo = 1,x1 =y,...,
Xm =1 ---Ym), Where the y; belong to the given set of generators {gi,...,gn}. Let
M < G be the set {xo = 1,x,...,xn} and let M’ be the finite set MM~ = G. Since
G is infinite, there exist infinitely many 4, such that , ¢ hgM' for o # . Whence, for
a # f and for all x; and x;, we have Ayx; # hgx;. It follows that the cycles 4,({) are
homologically independent.

A fortiori, we have shown Rank(H,(Z,Z)) = oo and K is not finitely generated.

O

Lemma 3.4. 4 fundamental group I1, enjoys property NINF for g > 2.

Proof. Let T" be a non-trivial normal subgroup of IT := I1,, and let f : D — C be the
corresponding unramified covering of a compact Riemann surface of genus g. We
have that g > 2, whence we may view D as a quotient of the upper half plane H by
the action of the group I' acting freely and properly discontinuously.

As in [34], Theorem 4, page 35, we consider fundamental domains, % resp. #r,
bounded by non-Euclidean segments (possibly also lines or half-lines). While % has
finite area, the area of #r is the area of %1 multiplied by the index of I', whence %
has infinite area.



Fibred Kédhler and quasi-projective groups S17

Assume that I' is finitely generated: then (cf. [S] Theorem 10.1.2, page 254) there is
such a fundamental domain % with finitely many sides. Since however its area is
infinite, it cannot be a non-Euclidean ideal polygon, and there are intervals in the real
line P, which need to be added for a compactification of #r..

Let us recall the following standard definitions (cf. [34], and especially [33], [5]).

Definition 3.5. (1) A subgroup I' of PSL(2,R) acting properly discontinuously on
H is called a Fuchsian group (more generally, a Fuchsian group is a conjugate in
PSL(2, C) of such a subgroup).

(2) T is properly discontinuous if and only if it is discrete in PSL(2, R).

(3) The limit set L(T') is defined as

L) = | TzNPg.
zeH

(4) Equivalently, (cf. [33], page 108)
L(T):={ze P} |3yeT,y # 1, such that y(z) = z}.

(5) A Fuchsian subgroup T is said to be of the first kind if L(T') = P} (else, it is
said to be of the second kind).

We have (cf. e.g. Lemma 3.12.2, page 108 of [33]) that if H/T is compact, then I is
of the first kind. This implies a consequence for our group II. In fact, since IT nor-
malizes I', the group IT carries the limit set L(I") to itself.

Let I be an interval in the real line P} which is in the boundary of %t Since IT is of
the first kind, there is x € I and g € I — {1} such that gx = x. Since, as we observed,
g(L(T")) = L(T'), g carries the interior of the complement to L(I') in P} to itself. Let
the interval (a,b) be the connected component of this interior containing x. Since
moreover gx = x, g carries (a, b) to itself.

Assume that a # b: then g? has three fixed points (a, b, x), thus g? is the identity,
contradicting the hyperbolicity of g.

If however a = b, this means that the limit set L(I') consists of a single point a
(fixed by each g € IT), contradicting the fact that I is of the first kind. O

4 Mappings to curves

If a manifold X is fibred (with connected fibres) onto a curve C, certainly we have a
surjection of fundamental groups 7;(X) — 7;(C). In fact, let py, ..., p, be the criti-
cal values of f, and set C* := C — {py,..., pr}, X* = f~}(C*): then we have sur-
jections 7 (X*) — (X)), 71 (C*) — 7 (C), and an exact homotopy sequence

7!1(F) - nl(X*) - 7I1(C*) — 1.

It suffices to observe that the surjection n;(X*) — 7;(C) factors through
(X)) — 7 (C).
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If however there is a non-trivial holomorphic map F : C — C’ such that F does not
factor as F = F' o F”, where F’ is unramified, then it is not difficult to show that
there is a surjection of fundamental groups F, : 7;(C) — m;(C’).

This is the reason why one needs some extra assumptions on a surjection of fun-
damental groups 7;(X) — 7, (C’) in order to decide whether the corresponding map
is a fibration (i.e., it has connected fibres).

Recall (cf. e.g. [12], Lemma 3, page 283) the following

Definition 4.1. Let m; for i = 1,...,r be the greatest common divisor of the multi-
plicities of the components of the divisor f~'(p;) (p1, ..., pr are again the critical
values of f). Then the orbifold fundamental group n{™(f) is defined as the quotient of
71(C — {pi, ..., pr}) by the subgroup normally generated by {y;"}, y; being a simple
geometric path around the point p;.

As a corollary of the results of the previous section we have

Lemma 4.2. If X admits a surjective holomorphic map f with connected fibres
f : X — C where C is a Riemann surface of genus g > 0, then the induced homomor-
phism f, : n1(X) — Il is surjective, and its kernel H is finitely generated exactly when
g = 0 or when g > 1 and there are no multiple fibres, i.e., n?™(f) = n)(C).

Proof. As is well known (cf. e.g. a slightly more general version given in [12], Lemma
3, page 283, whose notation we will follow) we have an exact sequence

1 (F) = m(X) = 2™ (f) = 1,

where F is a smooth fibre of f.

Let ¢ := f,. Thus ker(y) contains the normal subgroup K, the image of 7;(F),
which is finitely generated since F is compact, and the cokernel ker(y)/K is isomor-
phic to the kernel of p : z0™(f) — m1(C).

Therefore ker(y) is finitely generated if and only if ker p is finitely generated. This
is then the case for g = 0, so let us assume that g > 1. If we moreover assume that
there are no multiple fibres, then p is an isomorphism, and we are again done.

Otherwise, z{(f) is a Fuchsian group and the same proof as in Lemma 3.4 shows
that nP™(f) is NINF. Then ker p is finitely generated if only if it is trivial, since the
alternative that its index be finite is ruled out by the condition g > 1.

Finally, if ker p is trivial, then p is an isomorphism, and by looking at the Abelia-
nization we see that r = 1. But then the orbifold fundamental group 7™ (f) is a free
product of a free group of rank 2g — 1 with a cyclic group of order m; and its
Abelianization is then not a free Abelian group of rank 2g, a contradiction. O

Theorem 4.3. Let X be a compact Kéhler manifold, and assume that its fundamental
group admits a non-trivial homomorphism  to the fundamental group I1, of a com-
pact Riemann surface of genus g = 2, with kernel H. Then the following conditions are
equivalent:
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(1)  is induced by an irrational pencil of genus g, i.e., there is a surjective holomorphic
map f with connected fibres f : X — C such that y = f,, and where C is a Rie-
mann surface of genus g.

(2) ¥ is surjective and the image of Y*: H'(I1,,Q) —» H'(X,Q) contains a g-
dimensional maximal isotropic subspace (for the bilinear pairing H'(X,Q) x
H'(X,Q) - H*(X,Q)).

(3) ¥ induces an injective map in cohomology y* : H'(I1,, Q) — H'(X,Q), and the
image of Y* contains a g-dimensional maximal isotropic subspace.

Likewise, the following conditions are also equivalent to each other:

(4) y is induced by an irrational pencil of genus g without multiple fibres, i.e., for each
fibre F' the equation of divisors F' = rD, withr 2 1, impliesr = 1.

(5) ¥ is surjective and its kernel H is finitely generated.

Proof. We observe first that (2) implies (3), since a surjective homomorphism induces
a surjective homomorphism between the Abelianizations, and dualizing one obtains
an injective homomorphism in cohomology.

Recall that, by the isotropic subspace theorem of [9], given a maximal isotropic
subspace ¥ < H'(X,Q) of dimension g, there is a holomorphic fibration onto a
curve C of genus g such that V = f*(H'(C,Q)).

Now, (1) implies (2) because, if the pull back of a maximal isotropic subspace from
the given curve C is not maximal, then we have another fibration /' : X — C’' to a
curve of genus g’ > g such that f*(H°(C,Q()) < f*(H*(C',QL.)), whence f factors
through f’, contradicting the fact that f has connected fibres.

Let us show that (3) implies (1). The isotropic subspace theorem gives us the
desired f : X — C, where C has genus g. Since however C is a classifying space for
I1,, there is a continuous map F : X — C such that yy = F,. Compose both maps with
the Jacobian embedding o : C — J and observe that by the proof of the isotropic
subspace theorem the two subspaces f*(H'!(C,®)) and F*(H'(C,Q)) coincide.

Therefore the two maps a o F, oo f are given by integrals of the same differentiable
1-forms, hence there is an isogeny p : J — J such that a o f = p o « o F. We get thus,
up to changing F in its homotopy equivalence class, a factorization f = p’ o F. Thus,
p’ is surjective, and actually it has degree 1 or otherwise f*(#), with (5) the positive
generator of H2(C,Z), would be divisible, contradicting the fact that f has con-
nected fibres.

The conclusion is that f and F are homotopy equivalent, thus y = F, = f,.

The implication (4) = (5) is exactly Lemma 4.2, so we are left with showing that
(5) implies (4).

Now, (5) implies that the image of /* contains a g-dimensional isotropic subspace.
Assume this subspace is not maximal: then there is a fibration f : X — C where the
genus g’ of C is strictly larger than g. Arguing as we did before, we find a factoriza-
tion of Y through f. Since y is surjective, Lemma 3.2 applies and we get that g’ = g,
and ¢ = f,. Finally, f has no multiple fibres again by Lemma 4.2. O
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5 The logarithmic case

In this section we shall generalize the results of the previous section to the case where
we have a Zariski open set Y in a compact Kédhler manifold X. One may assume
without loss of generality that the complement X — Y is a normal crossings divisor
D. We shall consider holomorphic maps f : Y — C, where C is Zariski open in a
compact curve C, and the map f is meromorphic on X, whence there is another
compactification X of X where f extends holomorphically.

When we shall say that f is a pencil, we shall mean that f is as above, that the
extension f of f has connected fibres, and that f is surjective (Arapura calls these
maps admissible maps). We shall denote by B the complement C — C, because quite
often it will be the branch locus of a fibration of a compact manifold.

However, X will not necessarily be non-compact, the reason for this being that
we shall here consider surjective homomorphisms 7; (X' ) — IF, to a non-Abelian free
group. Notice moreover that

* any automorphism of IT, composed with the standard surjection p : I1, — IF, such
that p(a;) = p(b;) = x; produces a maximal isotropic subspace of H!(C,Z).
* There is a surjection p : IT; — IF, iff g > n (since Im(p*) is an isotropic subspace of
dimension n).
The next theorem extends the results of I. Bauer and D. Arapura (Theorems 2.1
and 3.1 of [4] and Corollary 1.8 of 2], cf. also Theorem 2.11 of [11]) using the new
ideas introduced in the previous sections.

Observe that also in this context a pencil induces a surjective homomorphism of
fundamental groups.

Definition 5.1. Let f : Y — C be a pencil as above. We shall say that f is of zype g if
either

C is compact of genus g (then 7 (C) =~ I1,), or
C is not compact and its first Betti number equals g (then 7;(C) = IF,).

Definition 5.2. Let f/ : Y — C be a pencil as above. We may assume that f extends
to a holomorphic fibration F : X — C. We can separate the complementary divisor
D = X — Y into three parts:

D'r: the union of the components dominating C
DFVert: the union of the fibres over C — C

DPVert: the union of the components mapping to points of C.

We define then the orbifold fundamental group of f by the usual procedure:
let pi,...,p, be the critical values of f, and m; for i =1,...,r, be the respective
greatest common divisor of the multiplicities of the components of the divisor
£~Y(p:). Then the orbifold fundamental group n{™(f) is defined as the quotient of
71 (C — {p1,...,pr}) by the subgroup normally generated by {y;"}, y; being a simple
geometric path around the point p;.
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Lemma 5.3. Let X be a compact Kihler manifold and Y = X — D be a Zariski open
set. If Y admits a pencil f:Y — C, then the induced homomorphism f, : m;(X) —
n1(C) is surjective, and its kernel H is finitely generated exactly when g =0 or when
g = 1 and there are no multiple fibres, i.e., nY™(f) = n;(C).

Proof. We use once more the exact sequence (the situation being more general, but
the proof exactly the same as in [12], Lemma 3, page 283)

m(F) = m(X) = 2y®(f) = 1,

where F is a smooth fibre of f which is transversal to Dher.

Let ¢ := f,. Thus ker(¢) contains the normal subgroup K, the image of =;(F),
which is finitely generated since F is of finite type, and the cokernel ker(y)/K is iso-
morphic to the kernel of p : 0™(f) — =1 (C).

Therefore ker(y) is finitely generated if and only if kerp is finitely generated.
Assume that there are no multiple fibres: then p is an isomorphism.

Otherwise, 9™( f) is a Fuchsian group and the same proof as in Lemma 3.4 shows
that z2™(f) is NINF. Then ker p is finitely generated if only if it is trivial, its index
being infinite for g > 1. O

Theorem 5.4. Let X be a compact Kdhler manifold and Y = X — D be a Zariski open
set. Assume that the fundamental group of Y admits a homomorphism { : m1(Y) — IF,
to a free group of rank g, with kernel H. Then the following are equivalent:

(1) ¢ is induced by a pencil f : Y — C of type g and by a surjection n;(C) — IF,.

(2) ¥ is surjective and the image of Y* : H'(F,,Q) — H'(Y,Q) is a g-dimensional
maximal isotropic subspace (for the bilinear pairing H'(Y,Q) x H'(Y,Q) —
HY(Y,Q)).

Likewise, the following are also equivalent to each other:
(1Y) ¥ is induced by a pencil of type g without multiple fibres.
(2") ¥ is surjective and the kernel H of \ is finitely generated.

Finally, the curve C is compact if and only if Y*(H'(IF,,Q)) is also an isotropic sub-
space in H'(X,Q) (cHY(Y,Q)).

Proof. (1) implies (2): it suffices to show that y*(H'(IF,, Q)) is 2 maximal isotropic
subspace. Assume the contrary: then, there is a strictly larger maximal isotropic
subspace V induced (cf. [11], Theorem 2.11) by a pencil f': Y — C’. The pencil is
induced by integrations of linearly independent forms in H°(Q!(log D)), whence we
get a factorization Y — C’ — C: since f has connected fibres C' =~ C, contradicting
that the logarithmic genus of C’ is strictly larger than g.

Assume (2). Then by Arapura’s Corollary 1.9 there is a pencil f: ¥ — C and
t: H\(C,Z) — Z9 such that there is a factorization in homology H;(y) = t o H (f).
Since ¥ is surjective, so is H(y), whence we may lift 7 to a surjection =, (C) — 9
(since Aut(IF,) surjects onto GL(g, Z), cf. [29], Sections 3.5 and 3.6).
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The equivalence of (1’) and (2’) follows as in the proof of Theorem 4.3 in view of
Lemma 5.3. The last assertion is already contained in Theorem 2.11, loc. cit. O

6 Fibred algebraic surfaces and good open sets

In this section we shall consider a smooth compact algebraic surface, and a holo-
morphic fibration f: S — C.

Definition 6.1. A good open set of a fibration will be any set of the form U =
f~1(C — B), where B is any finite set containing the set of critical values of f.

Remark 6.2. In the above situation one has an exact sequence of fundamental groups
1 - 7t|(F) — 7Z](U) - 7Z|(C— B) — 1
where F is any fibre of f over a point of C — B.

The next theorem will give a topological characterization of good open sets of
some fibration. The case where U = S was already treated by Kotschick ([28], Prop-
osition 1) and Hillman ([21]), cf. also Kapovich ([25]), and we only prove an &2 more
general result:

Theorem 6.3. Assume that S is a compact Kdhler surface and that we have an exact
sequence

1 -1, - m(S) -1, — 1,

where g = 2. If moreover the topological Euler—Poincaré characteristic of S, e(S),
equals 4(g — 1)(r — 1), then there exists a holomorphic submersion f : S — C inducing
the previous exact sequence.

Proof. By Theorem 4.3 we find a fibration f : § — C, where C has genus g, inducing
the given epimorphism of fundamental groups. By the theorem of Zeuthen-Segre
the Euler—Poincaré¢ characteristic of S, e(.S), equals 4(g — 1)(s — 1) + x where s is the
genus of a smooth fibre of f and where u > 0, equality holding if and only if all the
singular fibres are multiples of a smooth elliptic curve. It is clear that s > r.

Our assumption implies 4(g — 1)(s — ) + 4 = 0, whence s = r and u = 0. We are
therefore done in the case where r =0 or r > 2. If finally r = 1, we are done unless
there is some multiple fibre. But the existence of a multiple fibre is excluded by
Lemma 4.2. O

We come now to the non-compact case.

Theorem 6.4. Assume that U is a non-complete Zariski open set of an algebraic surface
and that the following properties hold:
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(P1) we have an exact sequence 1 — I1, — 7;(U) — IF; — 1, where g > 2.
(P2) The topological Euler—Poincaré characteristic e(U) of Uis 2(g — 1)(r — 1).

(P3) For each end & of U, the corresponding fundamental group nf surjects onto a
cyclic subgroup of TF,, and each simple geometric generator y; has a non-trivial
image in IF,.

Then U is a good open set of a fibration, more precisely, there exists a proper holo-
morphic submersion f : U — C inducing the previous exact sequence.

Proof. By Theorem 5.4 we have a fibration f : U — C inducing the surjection =; (U) )
— FF, — 1, and without loss of generality we have an extension f : § — C, where §
isa blow -up of S. By condition (P3) there is no component of D which is horizontal,
and each component of D pulls back to a fibre of f.

Therefore it turns out that there is no point of indeterminacy of f on D, whence
S = 8, and again by condition (P3) U is the full inverse image of C under f.

It suffices to apply the logarithmic version of the Zeuthen—Segre theorem, similarly
to Theorem 2.14 of [11], and we conclude that (e(U) being the same in ordinary and
Borel-Moore homology by virtue of Poincaré duality) e(U) =2(g—1)(r—1) =
2(g — 1)(s — 1) + p, where s > r is the genus of a smooth fibre of f. Whence, as
usual, 0 = 2(g — 1)(s — r) + 4, thus s = r and 2 = 0. We conclude as in Theorem 6.3.

O

Note. The next question: when is the fibration f a constant moduli fibration? was
already answered, with similar methods, in the previous paper [11], cf. 5.4 and 5.7.

7 Restrictions for the monodromy

Before we present some interesting corollary of the previous theorem, we need to
recall some well known results

Lemma 7.1. Let X be a topological manifold and T its fundamental group. Then
HY(X,Z) = H'(T',Z) and H*(T, Z) injects into H*(X,Z).

Proof. Let X be the universal covering of X, so that X =~ X/I". The proof is a
direct consequence of the spectral sequence for group cohomology with terms
HP(T,H?(X,Z)), converglng to a suitable graded quotient of HP*9(X,Z), in view of
the fact that H'(X,Z) = O

Lemma 7.2. Let | = H — I — B — 1 be an exact sequence of groups, where B is

a finitely generated free group, or the fundamental group 11, of a compact hyperbolic
Riemann surface. Assume that

(*+) H?(B,Z) injects into H*(T', Z).
Then H'(B,Z) = H'(T, Z) with quotient H'(H,Z)%, and the cup product H'(B, Z) x

HY(T,Z) — H*(T',Z) lands in the subgroup F fitting into the exact sequence 0 —
H2(B,Z) — F — H'(B,H'(H,Z)) — 0.
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In particular, let V a maximal isotropic subspace of H'(B,Z): then V remains a
maximal isotropic subspace in H'(T', Z) only if (resp.: if and only if, in the case where
B is free)

(%%) the cup product H'(B,Z) x H'(H,Z)® — H'(B,H'(H,Z)) is non-degenerate
in the second factor.

Proof. The proof of the first assertions is a direct consequence of the spectral se-
quence for group cohomology, with terms H?(B, H9(H,Z)), converging to a suitable
graded quotient of H?19(I",Z), in view of the fact that, by assumption (), the dif-
ferential & : H'(H,Z)® = H°(B, H'(H,Z)) — H*(B,Z) is zero.

The second assertion holds with “if and only if” in the case where B is a free
group, since then H%(B,Z) =0, F = H'(B, H'(H,Z)), and the question is whether
H'(B,Z) is a maximal isotropic subspace in H'!(T, Z).

In the other case, observe that H2(B,Z) = Z, and that we can find two maximal
isotropic subspaces V,V’ such that H'(B,Z) = V @ V': moreover then the cup
product yields an isomorphism of ¥/ with V'V.

If we get an element w’ € H'(H, Z)® annihilating H'(B, Z), this means that there
is a lift we H'(I',Z) — H'(B,Z) such that wU H'(B,Z) = H*(B,Z). In particular,
there is u € V' such that (w —u) UV = 0.

We easily conclude then that the span of ¥ and of w — u is isotropic. O

Corollary 7.3. If the finitely presented group I admits a surjection I — I1, with finitely
generated kernel H, then T cannot be the fundamental group of a compact Kdihler
manifold X if there is a non-zero element ue H'(H,Z)™ such that the cup product
with u yields the zero map

H'(1,,Z) — H' (I, H'(H,Z)).

We now want to write down explicitly, for IT equal either to IT, or to a free group

IF,, the condition that there is a non-zero element u € H'(H, Z)™ such that the cup
product with u yields the zero map

H'(1,Z) - H'(I1, H'(H, Z)).
Observe first that H'!(I1,Z) = Homgz(I1,Z) = Z°, where b = g in the free case,
otherwise b = 2g.
The condition that pu = 0 in H!(I1, H'(H,Z)) for each ¢ € Homz(I1,Z) means
that there is an element v, € H'!(H, Z) such that
p(y)u=1yv, —v, forallyell

Taking a basis ¢y, ..., ¢,, we get vy, ..., v, such that

yo; = v+ 9;(y)u forall y eIl (1)
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Recall moreover that u is invariant, whence
yu=u forallyell 2)

Conditions (1), (2) and the Z-linear independence of the characters ¢; imply the Z-
linear independence of u, vy, . .., v, since the Z-module H!(H,Z) is torsion free.

Definition 7.4. A bad monodromy module is a free Z-module of rank b + 1, with basis
u,v1,...,0, and with an action of IT given by (1) and (2).

Example 7.5. Let H be a finitely generated group, andlet 1 - H - T - II; — 1 be
an exact sequence such that the induced action of I1; on H by conjugation induces on
the Z-dual of the Abelianization of H a Il -module structure which contains a bad

monodromy module. Then I" cannot be the fundamental group of a compact Kéahler
manifold.

Remark 7.6. One can use the same type of restriction in the case where U # X is the
inverse image of the non-critical values of a fibration f : X’ — C, and obtain in this
way a restriction for the monodromy in the case where C — B has first Betti number
at least 2.

Remark 7.7. To see finally the relation of the above condition with the theory of
Lefschetz pencils (in particular with the splitting in invariant and vanishing cycles),
let us observe that our cup product is non-degenerate if we have a monodromy
invariant splitting H'(H,Z) = H'(H,Z)" @ W. Because then we may write v, =
up, +w, and we obtain ¢(y)u = yv, — v, = yw, —w, € W for each y e Il, whence
u = 0. This splitting is proven by Deligne’s Semisimplicity Theorem (4.2.6. of [14], cf.
also thm. 3.1., page 37 of Chapter II of [20]).
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