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Abstract. The existence of a Kodaira fibration, i.e., of a fibration of a compact com-
plex surface S onto a complex curve B which is a di¤erentiable but not a holomorphic bun-
dle, forces the geographical slope nðSÞ ¼ c2

1ðSÞ=c2ðSÞ to lie in the interval ð2; 3Þ. But up to
now all the known examples had slope nðSÞe 2þ 1=3. In this paper we consider a special
class of surfaces admitting two such Kodaira fibrations, and we can construct many new
examples, showing in particular that there are such fibrations attaining the slope
nðSÞ ¼ 2þ 2=3. We are able to explicitly describe the moduli space of such class of sur-
faces, and we show the existence of Kodaira fibrations which yield rigid surfaces. We ob-
serve an interesting connection between the problem of the slope of Kodaira fibrations and
a ‘packing’ problem for automorphisms of algebraic curves of genus f 2.

1. Introduction

It is well known that the topological Euler characteristic e is multiplicative for fibre
bundles and in 1957 Chern, Hirzebruch and Serre ([8]) showed that the same holds true for
the signature s if the fundamental group of the base acts trivially on the (rational) coho-
mology of the fibre.

In 1967 Kodaira [17] constructed examples of fibrations of a complex algebraic sur-
face over a curve which are di¤erentiable fibre bundles for which the multiplicativity of the
signature does not hold true. In his honour such fibrations are nowadays called Kodaira
fibrations.

Definition 1.1. A Kodaira fibration is a smooth holomorphic fibration c : S ! B of
a compact complex surface over a compact complex curve, which is not a (locally trivial)
holomorphic fibre bundle.

The hypothesis that c is a fibration means that every fibre F is connected, that c is
smooth means that every fibre F is nonsingular. We denote by g the genus of F , respec-
tively by b the genus of the base curve B.

Note that by [9] c is a holomorphic fibre bundle if and only if all the fibres are
isomorphic.
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It is well known that one has a holomorphic bundle if the fibre genus g is e 2, and
there are no singular fibres. Likewise the genus b of the base curve of a Kodaira fibration
has to bef 2.

Atiyah and Hirzebruch ([1], [13]) presented variants of Kodaira’s construction analy-
sing the relation of the monodromy action to the non multiplicativity of the signature.

Other constructions of Kodaira fibrations have been later given by Gonzalez-Diez
and Harvey and others (see [11], [21], [3] and references therein) in order to obtain fibra-
tions over curves of small genus with fixed signature and fixed fibre genus.

A precise quantitative measure of the non-multiplicativity of the signature is given by
the geographic slope, i.e., the ratio n :¼ c2

1ðSÞ=c2ðSÞ ¼ K 2
S=eðSÞ between the Chern num-

bers of the surface: for Kodaira fibred surfaces it lies in the interval ð2; 3Þ, in view of
the well known Arakelov inequality and of the improvement by Kefeng Liu ([19]) of the
Bogomolov-Miyaoka-Yau inequality K 2

S=eðSÞe 3.

The basic problem we approach in this paper is: which are the slopes of Kodaira fi-
brations?

This problem was posed by Claude Le Brun who raised the question whether the
slopes can be bounded away from 3: is it true for instance that for a Kodaira fibration the
slope is at most 2,91? In fact, the examples by Atiyah, Hirzebruch and Kodaira have slope
not greater than 2þ 1=3 ¼ 2;33 . . . (see [2], page 221) and if one considers Kodaira fibra-
tions obtained from a general complete intersection curve in the moduli space Mg of curves
of genus gf 3, one obtains a smaller slope (around 2,18).

Our main result in this direction is the following

Theorem A. There are Kodaira fibrations with slope equal to 2þ 2=3 ¼ 2;66 . . . :

Our method of construction is a variant of the one used by Kodaira, and is briefly
described as follows: we consider branched coverings S ! B1 � B2 branched over a smooth
divisor DHB1 � B2 such that the respective projections D! Bi are étale (unramified) for
i ¼ 1; 2. We call these double étale Kodaira fibrations.

The advantage of this construction is that we are able to completely describe the
moduli spaces of these surfaces.

The starting point is the topological characterization (derived from [18]) of the sur-
faces which admit two di¤erent Kodaira fibrations, called here double Kodaira fibred sur-

faces.

Proposition 2.5. Let S be a complex surface. A double Kodaira fibration on S is equi-

valent to the datum of two exact sequences

1! Pgi
! p1ðSÞ !

ci
Pbi
! 1; i ¼ 1; 2;

(here Pg denotes the fundamental group of a compact curve of genus g) such that:
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(i) bi f 2, gi f 3,

(ii) the composition homomorphism

Pg1
! p1ðSÞ !

c2
Pb2

is neither zero nor injective, and

(iii) the Euler characteristic of S satisfies

eðSÞ ¼ 4ðb1 � 1Þðg1 � 1Þ ¼ 4ðb2 � 1Þðg2 � 1Þ:

The above result shows that surfaces admitting a double Kodaira fibration form a
closed and open subset in the moduli spaces of surfaces of general type; since for these
one has a realization as a branched covering S ! B1 � B2, branched over a divisor
DHB1 � B2, it makes sense to distinguish the étale case where D is smooth and the two
projections D! Bi are étale. It is not clear a priori that this property is also open and
closed, but we are able to prove it.

Theorem 6.4. Double étale Kodaira fibrations form a closed and open subset in the

moduli spaces of surfaces of general type.

We can speak then of the moduli spaces of double étale Kodaira fibred surfaces
S: they are given by a union of connected components of the moduli spaces of surfaces
of general type. We conjecture that these connected components are irreducible, and we
are able to prove this conjecture in the special case of standard double étale Kodaira
fibred surfaces, the case which is most interesting since we have there lots of concrete
examples.

To explain what we mean by the ‘standard’ case, the case where double étale Kodaira
fibrations are constructed starting from curves with automorphisms, let us see how a double
étale Kodaira fibration is related to a set of étale morphisms between two fixed curves.

In fact, every component of the branch divisor DHB1 � B2 is an étale covering of
each Bi, in particular of B1. Hence we can take an étale cover p : ~BB1 ! B1 dominating
each of them; then the pullback, i.e., the fibre-product S 0 :¼ S �B1

~BB1, ‘is a double étale
Kodaira fibration’ S 0 ! ~BB1 � B2 with the property that its branch divisor D 0 is composed
of disjoint graphs of étale maps fi : ~BB1 ! B2.

The philosophy, as the reader may guess, is then: the larger the cardinality of
S ¼ ffig compared to the genus of B2, the bigger the slope, and conversely, once we find
such a set S we get (by the so-called tautological construction, described in section 4)
plenty of corresponding double (étale) Kodaira fibrations. If by a further pullback we
can achieve B1 ¼ B2 ¼ B and SHAutðBÞ, our question concerning the slope of double
Kodaira fibrations is related to the following question.

Question B. Let B be a compact complex curve of genus bf 2, and let SHAutðBÞ
be a subset such that all the graphs Gs, s A S are disjoint in B� B: which is the best upper
bound for jSj=ðb� 1Þ?
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We find examples with jSj=ðb� 1Þ ¼ 3, and in this way we obtain the slope 8=3.
Conversely, it is interesting to observe that the cited upper bound for the slope (nðSÞ < 3)
implies that jSj=ðb� 1Þ < 8.

It would be desirable to find examples with jSj=ðb� 1Þ > 3, for instance examples
with jSj=ðb� 1Þ ¼ 4 would yield a slope equal to 2;75. Even more interesting would be
to find sharper upper bounds for the slope of Kodaira fibrations.

The consideration of double étale Kodaira fibrations related to curves with many
automorphisms enables us also to prove the following interesting

Corollary 6.6. There are double Kodaira fibred surfaces S which are rigid.

In the last section we interpret the above corollary as an existence result for rigid
curves in the moduli stack of genus 7 curves.

The moduli space of some special Kodaira fibrations were described by Kas [16] and
Jost/Yau [15]; here, we prove the following general

Theorem 6.5. The subset of the moduli space corresponding to s tandard double étale

Kodaira fibred surfaces S (those admitting a pullback branched in a union of graphs of auto-

morphisms), is a union of connected components which are irreducible, and indeed isomorphic

to the moduli space of pairs ðB;GÞ, where B is a curve of genus b at least two and G is a group

of biholomorphisms of B of a given topological type.

2. General set-up

Definition 2.1. A Kodaira fibration is a smooth fibration c1 : S ! B1 of a com-
pact complex surface over a compact complex curve, which is not a holomorphic fibre
bundle.

S is called a double Kodaira fibred surface if it admits a double Kodaira fibration, i.e., a
surjective holomorphic map c : S ! B1 � B2 yielding two Kodaira fibrations ci : S ! Bi

ði ¼ 1; 2Þ.

Let DHB1 � B2 be the branch divisor of c. If D is smooth and both projections
prBj
jD : D! Bj are étale we call c : S ! B1 � B2 a double étale Kodaira fibration.

Remark 2.2. Observe that S admits a double Kodaira fibration, if and only if S

admits two distinct Kodaira fibrations. If S admits two Kodaira fibrations ci : S ! Bi,
i ¼ 1; 2, then we can consider the product morphism c :¼ c1 � c2 : S ! B1 � B2. Let R

be the ramification divisor of c and D its branch locus. We observe here R and D are not
necessarily smooth, as shown by the following local computation.

Take in fact a point P of the ramification divisor R: since c1 is of maximal rank, there
are local holomorphic coordinates ðx; yÞ on S and ti on Bi such that P corresponds to the
origin and, t1

�
c1ðx; yÞ

�
¼ x, and t2

�
c2ð0; 0Þ

�
¼ 0.
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Hence, since P is a ramification point, we may assume without loss of generality that

c2ðx; yÞ ¼ xþ f ðx; yÞ. The local equation of R is
qf

qy
ðx; yÞ ¼ 0, while the local equation of

B is given by the resultant Resy

qf

qy
ðt1; yÞ; t1 þ f ðt1; yÞ � t2

� �
.

For instance, if f ðx; yÞ ¼ yx2 � 1=4y4, R is singular at P, with equation y3 ¼ x2, and
D is singular at the image point, with equation 33t8

1 ¼ 43t3
2.

Observe finally that a surface S could admit three or more di¤erent Kodaira fibra-
tions.

Remark 2.3. Arnold Kas remarked in [16] that, if f : S ! B is a Kodaira fibration,
then the genus of the base is at least two and the genus g of the fibre is at least three.

In the case of a double Kodaira fibration the genus of the fibre is easily seen to be at
least four by Hurwitz’ formula, since a fibre of ci is a branched covering of a curve of genus
at least two, namely the base curve of the other fibration.

In particular, S cannot contain rational or elliptic curves, since no such curve is con-
tained in a fibre or admits a non-constant map to the base curve. Hence S is minimal and
one sees, using the superadditivity of Kodaira dimension, that S is an algebraic surface of
general type.

Lemma 2.4. Let S be a surface admitting two di¤erent smooth fibrations ci : S ! Bi

where bi :¼ genusðBiÞf 2 and where the fibre genus also satisfies gi f 2. If e.g. c1 is a

holomorphic fibre bundle map, then S has an étale covering which is isomorphic to a product

of curves, S ! B1 � B2 is étale, and also c2 is a holomorphic fibre bundle.

Proof. Let F be a fibre of c1. Since the genus of F is at least two, the automorphism
group of F is finite. Hence we can pull back S by an étale map f : ~BB1 ! B1 to obtain a
trivial bundle resulting in the diagram

~BB1 � F ���!f S ���!c B1 � B2???y
???yc1

~BB1 ���!f B1
 ���

���

where c :¼ c1 � c2.

The composition c � f maps f~bbg � F to f f ð~bbÞg � B2 and we infer from [4], Rigidity-

Lemma 3.8, that this map does not depend on ~bb A ~BB1. In other words, there exists a map
g : F ! B2 such that c � f ¼ f � g.

Now we pick x A F and set gðxÞ :¼ y, Sy :¼ c�1
2 ðyÞ. In the diagram

~BB1 � fxg ����!f Sy???ycjSy

B1 � fyg

 ����
��

f
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f and f are étale and consequently also cjSy
is étale. Since this holds Ex A F , whence

Ey A B2, we see that c and g are étale. Now any fibre of c2 is an étale covering of B1 of
fixed degree, corresponding to a fixed subgroup of p1ðB1Þ. Thus the fibres are all isomor-
phic and we have a holomorphic bundle (by [9]). r

We can now give a topological characterization of double Kodaira fibrations. We de-
note by Pg the fundamental group of a compact complex curve of genus g.

Proposition 2.5. Let S be a complex surface. A double Kodaira fibration on S is

equivalent to the datum of two exact sequences

1! Pgi
! p1ðSÞ !

ci
Pbi
! 1; i ¼ 1; 2

(here Pg denotes the fundamental group of a compact curve of genus g) such that:

(i) bi f 2, gi f 3,

(ii) the composition homomorphism

Pg1
! p1ðSÞ !

c2
Pb2

is neither zero nor injective, and

(iii) the Euler characteristic of S satisfies

eðSÞ ¼ 4ðb1 � 1Þðg1 � 1Þ ¼ 4ðb2 � 1Þðg2 � 1Þ:

Proof. Let us make a preliminary remark. Note that a holomorphic map f : C 0 ! C

between algebraic curves of genus at least 1 is étale if and only if the induced map f� on the
fundamental groups is injective. In fact, in this case there is a covering space g : D! C

corresponding to the subgroup f�
�
p1ðC 0Þ

�
in p1ðCÞ and by the lifting theorem we have a

holomorphic map ~ff : C 0 ! D which induces an isomorphism of the fundamental groups.
Hence C 0, D have the same genus and ~ff is an isomorphism by Hurwitz’s formula if the
genus of D isf 2, while if D has genus 1, then it is étale, whence an isomorphism since it
induces an isomorphism of fundamental groups. The conclusion is that also f ¼ g � ~ff is
étale.

Given now a double Kodaira fibration, the above exact sequences are just the homo-
topy exact sequences of the two di¤erentiable fibre bundles ci. We observed already that (i)
holds, while (iii) is the multiplicativity of the topological Euler number for fibre bundles
(in algebraic geometry, it is called the Zeuthen-Segre formula). Since the two fibrations
are di¤erent, the map in (ii) cannot be zero. Furthermore, it cannot be injective by Lemma
2.4, hence (ii) holds.

Assume conversely that we have two exact sequences satisfying the above conditions
(i), (ii) and (iii). Using [5], Theorem 6.3, (i) and (iii) guarantee the existence of two curves Bi

of genus bi and of holomorphic submersions ci : S ! Bi with ci� ¼ ci whose fibres have
respective genera g1, g2.
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Condition (ii) implies that the two fibrations are di¤erent and it remains to see that
neither of the ci’s can be a holomorphic bundle. But if it were so, by Lemma 2.4, then
S ! B1 � B2 would be étale and the map in (ii) would be injective. r

Remark 2.6. Double Kodaira fibrations which are not double étale were con-
structed in [11] and [21], essentially with the same method. Let B be a curve of genus b at
least 2. The map F : B� B! JacðBÞ, ðx; yÞ 7! x� y contracts the diagonal DB HB� B

and maps B� B to

Y :¼ B� BH JacðBÞ:

One takes GHY to be a general very ample divisor, and DHG� B as D :¼
S

x AG
F�1ðxÞ.

The projection of D to G is étale of degree 2, while the projection of D to B is of degree
equal to b but is not étale. The pair DHG� B yields, as we shall explain in a forthcoming
section, a ‘logarithmic Kodaira fibration’, and from it one can construct, via the tautolog-
ical construction, an actual Kodaira fibration.

We shall be primarily interested in the case of double étale Kodaira fibrations. Given
a holomorphic map f between two curves let us denote by Gf its graph.

Definition 2.7. A double étale Kodaira fibration S ! B1 � B2 is said to be simple if

there exist étale maps f1; . . . ; fm from B1 to B2 such that D ¼ _SSm
k¼1

Gfk
; i.e., if each compo-

nent of D is the graph of one of the fk’s.

We say that S is very simple if B1 ¼ B2 and all the fk’s are automorphisms.

Lemma 2.8. Every double étale Kodaira fibration admits an étale pullback which is

simple.

Proof. Let S ! B1 � B2 be a double étale Kodaira fibration. The branch divisor D

is smooth and we can consider the monodromy map m : p1ðB1; b1Þ ! Sm1
of the étale map

p1 : D! B1. Let f : B! B1 the (finite) covering associated to the kernel of m1. By con-
struction the monodromy of the pullback f �D! B is trivial, hence every component
maps to B with degree 1 and the corresponding pullback f �S :¼ B�B1

S is a simple Ko-
daira fibration. r

Remark 2.9. Kollár claimed that it should be possible to construct double étale Ko-
daira fibrations which do not admit any étale pullback which is very simple. But up to now
we do not know any example of this situation.

This motivates the following:

Definition 2.10. A double étale Kodaira fibration is called standard if there exist
étale Galois covers B! Bi, i ¼ 1; 2, such that the étale pullback

S 0 :¼ S �ðB1�B2Þ ðB� BÞ;

induced by B� B! B1 � B2, is very simple.

211Catanese and Rollenske, Double Kodaira fibrations

Brought to you by | Ecole Normale Superieure de Paris
Authenticated

Download Date | 2/6/15 5:53 PM



3. Invariants of double étale Kodaira fibrations

In this section we want to calculate some invariants of a double étale Kodaira fibra-
tion. First we need to fix the notation.

Let S be a double étale Kodaira fibration as in Definition 2.1. Let d be the degree
of c : S ! B1 � B2, let DHB1 � B2 be the branch locus of c and let D1; . . . ;Dm be the
connected components of D.

By assumption, the composition map

Di ,! B1 � B2 !
prj

Bj

is étale and we denote by dij its degree. Then the degree of prjjD : D! Bj is dj ¼
Pm
i¼1

dij and
we get two formulae for the Euler characteristic of Di,

eðDiÞ ¼ di1eðB1Þ ¼ di2eðB2Þ:

The canonical divisor KB1�B2
of B1 � B2 is numerically (indeed, algebraically) equi-

valent to �eðB1ÞB2 � eðB2ÞB1, where we denote by B1 any divisor of the form B1 � fyg
(similarly for B2), and we calculate

KB1�B2
�Di ¼ �eðB1ÞB2 �Di � eðB2ÞB1 �Di

¼ �eðB1Þdi1 � eðB2Þdi2 ¼ �2eðDiÞ

so that by adjunction

D2
i ¼ degðKDi

Þ � KB1�B2
�Di

¼ �eðDiÞ þ 2eðDiÞ ¼ eðDiÞ:

We write

c�1ðDiÞ ¼
Sti

j¼1

Rij

as a union of disjoint curves and denote by nij the degree of cjRij
: Rij ! Di and by rij the

branching order of c along Rij (i.e., the multiplicity of the reduced divisor Rij in the full
transform of Di). Then

KS ¼ c�KB1�B2
þ
P
i; j

ðrij � 1ÞRij and d ¼
Pti

j¼1

nijrij:

To summarize the situation we label the arrows in the following diagram by the de-
grees of the corresponding maps:

Rij �����!nij

Di �����!di1
B1H���!

H���!

S ���!d B1 � B2:
������

!
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Proposition 3.1. In the above situation we have the following formulae:

(i) Setting bi :¼
Pti

j¼1

nijðrij � 1Þ,

c2ðSÞ ¼ dc2ðB1 � B2Þ �
Pm
i¼1

bieðDiÞ;

c2
1ðSÞ ¼ 2c2ðSÞ �

Pm
i¼1

Pti

j¼1

nijðrij � 1Þðrij þ 1Þ
rij

eðDiÞ

thus the signature is

sðSÞ ¼ 1

3

�
c2

1ðSÞ � 2c2ðSÞ
�
¼ � 1

3

Pm
i¼1

Pti

j¼1

nijðrij � 1Þðrij þ 1Þ
rij

eðDiÞ:

(ii) (a) If c : S ! B1 � B2 is a Galois covering then rij ¼ ri and

c2
1ðSÞ

c2ðSÞ
¼ 2þ

�
Pm
i¼1

r2
i � 1

r2
i

eðDiÞ

eðB1ÞeðB2Þ �
Pm
i¼1

ri � 1

ri

eðDiÞ
:

(b) If in addition D is composed of graphs of étale maps from B1 to B2, i.e., S is

simple, we have

c2
1ðSÞ

c2ðSÞ
¼ 2þ

1� 1

m

Pm
i¼1

1

r2
i

2g� 2

m
þ 1� 1

m

Pm
i¼1

1

ri

where g is the genus of B2.

Proof. The first formula can be obtained by calculating the genus of a fibre F of
S ! B1 using the Riemann-Hurwitz formula and using c2ðSÞ ¼ eðSÞ ¼ eðB1ÞeðFÞ.

For the second one a rather tedious calculation of intersection numbers is needed so
that we prefer to cite [14]1) which gives us

c2
1ðSÞ ¼ dc2

1ðB1 � B2Þ �
Pm
i¼1

�
2bieðDiÞ þ

Pti

j¼1

nijðrij � 1Þðrij þ 1Þ
rij

D2
i

�

¼ 2deðB1ÞeðB2Þ �
Pm
i¼1

2bieðDiÞ �
Pm
i¼1

Pti

j¼1

nijðrij � 1Þðrij þ 1Þ
rij

eðDiÞ

¼ 2c2ðSÞ �
Pm
i¼1

Pti

j¼1

nijðrij � 1Þðrij þ 1Þ
rij

eðDiÞ:

The formula for the signature is now obvious.

1) Note that we have a slightly di¤erent notation.
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Let’s look at (ii). If the covering c is Galois the stabilizers of Rik and Ril are conjugate
in the covering group and consequently nij ¼ ni and rij ¼ ri do not depend on j. Hence for
every i

d ¼ tiniri , tini

d
¼ 1

ri

and bi ¼ tiniðri � 1Þ ¼ d � tini:

Plugging this into the above formulae we get (a):

c2
1ðSÞ

c2ðSÞ
� 2 ¼

�
Pm
i¼1

tiniðri � 1Þðri þ 1Þ
ri

eðDiÞ

deðB1 � B2Þ �
Pm
i¼1

bieðDiÞ

¼
�
Pm
i¼1

ritiniðri � 1Þðri þ 1Þ
r2

i

eðDiÞ

d eðB1 � B2Þ �
1

d

Pm
i¼1

ðd � tiniÞeðDiÞ
� �

¼
�
Pm
i¼1

r2
i � 1

r2
i

eðDiÞ

eðB1ÞeðB2Þ �
Pm
i¼1

ri � 1

ri

eðDiÞ
:

For (b) we further assume the components of D to have all the same genus as B2, i.e.,
eðDiÞ ¼ eðB2Þ for all i. Then

c2
1ðSÞ

c2ðSÞ
� 2 ¼

�
Pm
i¼1

r2
i � 1

r2
i

eðB2Þ

eðB1ÞeðB2Þ �
Pm
i¼1

ri � 1

ri

eðB2Þ

¼
m�

Pm
i¼1

1

r2
i

�eðB1Þ þm�
Pm
i¼1

1

ri

¼
1� 1

m

Pm
i¼1

1

r2
i

2g� 2

m
þ 1� 1

m

Pm
i¼1

1

ri

: r

The above formulae will allow us to give upper bounds for the slope of double étale
Kodaira fibrations under some conditions.

4. Tautological construction

Definition 4.1. A log-Kodaira fibration is a pair ðS;DÞ consisting of

(i) a smooth fibration c : S ! B with fibres Ft and
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(ii) a divisor DHS such that

(a) the projection D! B is étale and

(b) the fibration of pointed curves ðFt;FtnDÞ is not isotrivial, i.e., the fibres are
not all isomorphic (as pointed curves).

Our typical example of the above situation will be a product of curves S :¼ B1 � B2

together with a divisor D such that the first projection D! B1 is étale and the second pro-
jection D! B2 is finite.

We shall now see that in order to construct Kodaira fibrations it su‰ces to construct
log-Kodaira fibrations.

Proposition 4.2. Let ðS;DÞ ! B be a log-Kodaira fibration and let f : ~FF ! F be a

Galois-covering of a fibre F , with Galois group G, and branched over DXF. Then we can

extend f to a ramified covering of surfaces f : ~SS 0 ! ~SS obtaining a diagram

~FF H������������! ~SS 0???yf

???yf

F H���������! ~SS :¼ g�S����
???y

F H���! S ~BB???y g

B

 ���
���

 ���
���

where

� g : ~BB! B is an étale covering,

� ~SS is the pullback of S via g,

� f is a ramified covering with Galois group G branched over ~DD :¼ g�D and such that

f j ~FF ¼ f .

Proof. First we translate the problem into a group-theoretical question by looking
at the above desired situation in terms of fundamental groups.

Set for convenience F̂F :¼ FnD, ŜS :¼ SnD, F :¼ p1ðF̂FÞ, G :¼ p1ðŜSÞ and ~GG ¼ p1ð ~SSn ~DDÞ.
Then the fibre bundle ŜS ! B and its étale pullback via g give rise to a diagram

1 ���! F ���! ~GG ���! p1ð ~BBÞ ���! 1����

H���!

H���! g�

1 ���! F ���! G ���! p1ðBÞ ���! 1:
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The ramified coverings of F and ~SS with Galois group G then would yield a diagram
of exact sequences of group homomorphisms:

1 1???y
???y

1 ���! ~FF ���! p1ð ~SS 0n f �1D 0Þ ���! p1ð ~BBÞ ���! 1???y f�

???y f �

����
1 ���! F �������! ~GG �������! p1ð ~BBÞ ���! 1???yr

???y~rr

G G???y
???y

1 1:

In other words, in order to prove the proposition we have to find a subgroup of finite
index ~GG < G such that Fp ~GG and such that the homomorphism r : F! G extends to a
homomorphism ~rr : ~GG! G.

We will need several étale pullbacks in order to

(1) make the pullback D 0 of the divisor D a union of sections,

(2) kill the monodromy which prevents us from extending the homomorphism,

(3) make the selfintersection of each component of D 0 divisible by the exponent of the
group G (the minimal integer k such that gk ¼ 1 Eg A G).

Step (1) is achieved by induction on the intersection number D � F , since

(i) the pull-back of a section is always a section, while

(ii) if D1 is a component of D which is not a section, the pull-back of D under the
covering D1 ! B contains a new section (namely, the diagonal of D1 �D1 HD1 �B S).

For step (2), since F is a normal subgroup, g A G operates on F by conjugation and
hence on HomðF;GÞ via f 7! gðfÞ ¼ f � Intg�1 .

Let Gr be the stabilizer of r under this action. For g A Gr it holds rðgxg�1Þ ¼ rðxÞ and
in particular g normalizes ~FF, the kernel of r (this should certainly be true for elements in ~GG).
Let G 0 be the subgroup of G generated by F and Gr.

Note that since F is normal in G we can write every element g 0 A G 0 as a product
g 0 ¼ fg where f 2 F and g A Gr.
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The subgroup G 0 < G gives rise to an exact sequence

1! F! G 0 ! P 0 ! 1

(where P 0 is a subgroup of finite index of pðBÞ), hence to an étale pullback p : S 0 ! S.

Let D0 be a component of p�1D, the pullback of the branch divisor, and let N0 be a
tubular neighbourhood of D0. Let g0 be a small loop around D0 contained in N0 XF . We
consider g0 also as an element of F and regard N0 as a small neighbourhood of the zero
section in the normal bundle ND0=S.

The idea is to extend the homomorphism r to the surface by moving along D0.

Observe that, since D0 is a section, the fundamental group p1ðD0Þ is equal to P 0.

Lemma 4.3. Let P 0 :¼ p1ðD0Þ ¼ hai; bi

�� Q
i

½ai; bi� ¼ 1i. Then G 00 :¼ p1ðN0nD0Þ is a

central extension

1! Z! G 00 ! P 0 ! 1

where
Q

i

½ai; bi� ¼ gk
0 and k ¼ �D2

0 .

Proof (See [7], page 139). Pick a point P A D0 and write D0 ¼ ðD0nPÞWDP where
DP is a small disk around P. The S1 bundle (homotopically equivalent to) N0nD0 restricted
to these two open subsets is trivial and the Cy-cocycle of N0 with regard to this trivial-
isation can be given as zk, where z is a local coordinate in P and k ¼ �c1ðND0=SÞ ¼ �D2

0.
The fundamental group of N0 is then calculated using the Seifert-van Kampen Theo-
rem. r

By a further base change we may assume that gk
0 is in ~FF (i.e., rðg0Þ

k ¼ 1). In fact, since
D0 is a section, its pull-back under an étale base change (with base that we shall denote by
~BB) of order d yields a new section D 00 whose selfintersection �D 020 ¼ �dD2

0, and it su‰ces to
choose d divisible by the order of G (the exponent of G indeed su‰ces).

Defining P 00 as the fundamental group p1ð ~BBÞ of the base curve obtained by the above
procedure, and ~GG as the inverse image of P 00 in G, we obtain a new diagram:

1 ���! Z ���! G 000 ���! P 00 ���! 1???y
???y

����
1 ���! F ���! ~GG ���! P 00 ���! 1

and may finally extend r to ~GG as follows: after choosing arbitrary images r 00ðaiÞ ¼ r 00ðbiÞ in
the centre of G and setting r 00ðg0Þ :¼ rðg0Þ, we get a homomorphism r 00 : G 00 ! G which
coincides with r on g0 (every such assignment is compatible with the relations in the
group).
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We are now in the situation

G 000

�����
!

 ���
��

Z ~GG � � !~rr G

 ���
��

�����
!

F:

 �����
����� r 00

�������
���!

r

Writing each ~gg A ~GG as a product ~gg ¼ fg with f A F and g A G 000 we define

~rrð~ggÞ :¼ rð f Þ � r 00ðgÞ:

To see that this is well defined let f1g1 ¼ f2g2. Then f �1
2 f1 ¼ g2g�1

1 is an element of
F and of G 000, i.e., a multiple of g0. Hence, applying r and r 00 respectively, we get

rð f2Þ�1rð f1Þ ¼ r 00ðg2Þr 00ðg1Þ�1 since the two homomorphisms act in the same way on
g0. This implies rð f1g1Þ ¼ rð f2g2Þ.

It remains to check that this defines a homomorphism. We consider two elements
f1g1, f2g2 as above. Since G 000 is contained in G 0 we can actually assume that the gi’s can
be written as a combination of the ai’s, bi’s and are contained in Gr, hence they stabilize
r. Now

rð f1g1 f2g2Þ ¼ r
�

f1g1 f2ðg�1
1 g1Þg2

�
¼ rð f1g1 f2g�1

1 Þr 00ðg1g2Þ

¼ rð f1Þrðg1 f2g�1
1 Þr 00ðg1Þr 00ðg2Þ

¼ rð f1Þrð f2Þr 00ðg1Þr 00ðg2Þ

¼ rð f1Þr 00ðg1Þrð f2Þr 00ðg2Þ ¼ rð f1g1Þrð f2g2Þ

where the last line follows because we have chosen the images of the ai’s, bi’s in the centre
of G.

Hence we have extended r to a finite index subgroup ~GG of G and the Kodaira fibra-
tion ~SS 0 arises as the ramified Galois cover of ~SS associated to this homomorphism. r

If S is a double étale Kodaira fibration or a product of curves, one can easily see that
also S 0 is a double étale Kodaira fibration, provided that the restriction of the second pro-
jection to D is étale. Moreover the following holds:

Lemma 4.4. Assume that we have a curve B of genus at least two and a subset

S ¼ ff1; . . . ; fmgHAut B such that the graphs of these automorphisms are disjoint subsets

of B� B. If we construct a Kodaira fibration applying the tautological construction to this

log-Kodaira fibration, then the resulting surface is in fact a standard Kodaira fibration.

Proof. Without loss of generality we may assume that f1 ¼ idB, i.e., we identify the
vertical and the horizontal part of the product B� B via the automorphism f1. We fix a
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base point x0 in B. It su‰ces to prove the following: for any étale Galois covering B 0 ! B

there exists another étale covering map f : B 00 ! B 0 ! B such that the pullback of
D :¼ Gf1

W � � �WGfm
under the map f � f : B 00 � B 00 ! B� B is composed of graphs of

automorphisms of B 00.

The fundamental group p1ðB; x0Þ can be considered as a subgroup of a Fuchsian
group which acts on the upper half plane. Let G be the maximal Fuchsian group which
contains p1ðB; x0Þ as a normal subgroup. Then we have an exact sequence

1! p1ðB; x0Þ ! G! AutðBÞ ! 1:

The Galois covering B 0 ! B corresponds to an inclusion p1ðB 0; y0ÞH p1ðB; x0Þ where
y0 maps to x0. Consider the Galois covering B 00 ! B 0 ! B associated to the subgroup
pðB 00; z0Þ :¼

T
g AG

gp1ðB 0; y0Þg�1 which is the largest normal subgroup of G contained in

p1ðB 0; y0Þ. It is in fact a finite index subgroup of p1ðB 0; y0Þ since p1ðB 0; y0Þ is of finite index
in G. We have exact sequences

1x???
1 ���! p1ðB; x0Þ ���! G ���! AutðBÞ ���! 1

H ���
!

���� a

x???
1 ���! p1ðB 00; z0Þ ���! G �����! G �����! 1x???

GalðB 00 ! BÞx???
1

where G is a group of automorphisms of B 00.

Let d be the degree of the covering f : B 00 ! B. Then the degree of the map
f � f : B 00 � B 00 ! B� B is d 2 and it su‰ces to exhibit for any given automorphism f of
B a set of d automorphisms of B 00 such that their graphs map d to 1 to Gf under the map
f � f . In order to do so pick c A G such that aðcÞ ¼ f which means f � c ¼ f � f . Then
for any s A GalðB 00 ! BÞ we have

ð f � f ÞðGs�cÞ ¼ ð f � f Þ
�
fðx; yÞ A B 00 � B 00

�� y ¼ s � cðxÞg
�

¼
��

f ðxÞ; f
�
s � cðxÞ

�� �� x A B 00
	

¼
��

f ðxÞ; f � cðxÞ
� �� x A B 00

	
¼
��

f ðxÞ; f
�

f ðxÞ
�� �� x A B 00

	
¼ Gf

and this map has in fact the same degree as f . r
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The reason why the monodromy problems mentioned in 2.9 do not occur in this case
is that the horizontal and the vertical curve in the product are in fact identified via f1 and
therefore, once we fix a basepoint on the curve during the tautological contruction, there is
no ambiguity in the choice of the basepoint on the other curve.

5. Slope of double étale Kodaira fibrations

Kefeng Liu proved in [18] that the slope n of a Kodaira fibration S satisfies

n :¼ c2
1ðSÞ

c2ðSÞ
< 3

and Le Brun asked whether the better bound c2
1ðSÞ < 2:91c2ðSÞ would hold.

We will now address the question about what can be said for double étale Kodaira
fibrations. Our purpose here is twofold: to find e¤ective estimates from below for the
maximal slope via the construction of explicit examples and then to see whether one can
prove also an upper bound for the slope of double Kodaira fibrations, using their explicit
description.

To separate the numerical considerations from the geometrical problems we pose the
following

Definition 5.1. Let B1, B2 be curves of genus at least two. An admissible configura-
tion for B1 � B2 is a tuple A ¼ ðD; d; fti; frij; nijggÞ consisting of

� a smooth curve D ¼ D1 W � � �WDm HB1 � B2 such that each connected compo-
nent Di maps in an étale fashion to each of the factors,

� a positive integer d, and positive integers ti, for all i ¼ 1; . . . ;m ,

� for all i ¼ 1; . . . ;m , a ti-tuple fðrij; nijÞgj¼1;...; ti
of pairs of positive integers with

rij f 2, and such that

d ¼
Pti

j¼1

nijrij:

We call the configuration Galois if rij and nij do not depend on j, and we then write
A ¼

�
D; d; fðti; ri; niÞg

�
. If moreover D consists of graphs of étale maps fk : B1 ! B2 (au-

tomorphisms if B1 GB2) we call A simple (resp.: very simple). Setting bi :¼
Pti

j¼1

nijðrij � 1Þ
we define the abstract slope of A by

aðAÞ ¼ 2þ
�
Pm
i¼1

Pti

j¼1

nijðrij � 1Þðrij þ 1Þ
rij

eðDiÞ

deðB1 � B2Þ �
Pm
i¼1

bieðDiÞ
:
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We have seen in section 3 that a double étale Kodaira fibration S gives rise to an
admissible configuration AðSÞ. If A is any admissible configuration and S a double étale
Kodaira fibration with AðSÞ ¼A we say that S realizes A. In this case the abstract slope
aðAÞ coincides with the slope of S by Proposition 3.1. Note that we also calculated formu-
lae for the abstract slope of (very) simple Galois configurations.

To attain a bound from above for the slope we can now independently study the
questions:

� Which is the maximal possible abstract slope for an admissible configuration?

� How to realize a given configuration?

We already addressed the second problem in section 4 and we shall proceed by ana-
lysing the case of very simple configurations.

5.1. Packings of graphs of automorphisms. In this section we let B be a curve of ge-
nus g and G ¼ AutðBÞ its automorphism group. We want to study subsets of G such that
the corresponding graphs do not intersect. We can translate this into a group-theoretical
condition:

Lemma 5.2. Let P1; . . . ;Pn be the points in B which have a non trivial stabilizer

SPi
< G. Let pi : G ! G=SPi

be the map that sends f A G to the left coset fSPi
.

(i) Two automorphisms f3 f 0 A G have intersecting graphs if and only if piðfÞ ¼ piðf 0Þ
for some i A f1; . . . ; ng.

(ii) A subset SHG of cardinality m has non-intersecting graphs if and only if for each

i A f1; . . . ; ng the image of S under the map

pi : G ! G=SPi
; g 7! gSPi

has cardinality m. In particular:

meMinimumfjG=SPi
jgi¼1;...;n:

Proof. To prove the first claim let f, f 0 be two automorphisms of B. Their
graphs intersect in some point ðP1;P2Þ A B� B i¤ fðP1Þ ¼ f 0ðP1Þ ¼ P2. But this means

f�1 � f 0ðP1Þ ¼ P1, i.e., f�1 � f 0 A SP1
or equivalently fSP1

¼ f 0SP1
.

The second claim is now an easy consequence. r

Note that, if Q1; . . . ;Qr are the branch points of the quotient map B! B=G and P 0i
(Ei ¼ 1; . . . ; r) is an arbitrary point in the inverse image of Qi, then the non trivial stabi-
lizers of points are exactly all the subgroups conjugated to the stabilizers SP 0

i
ði ¼ 1; . . . ; rÞ.

It is now a natural question to ask for the maximal possible m that one can realize,
given a curve B, or given a fixed genus b (of B).
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For the formulation of a partial result we introduce the following notation: we say
that B is of type ðn1; . . . ; nkÞ if B=G has genus zero and the map B! B=G is a ramified
covering, branched over k points with respective multiplicities ni.

We always order the branch points so that n1 e � � �e nk.

Proposition 5.3. (i) If the genus g of B is at least two, the maximal cardinality m of a

subset with non-intersecting graphs is smaller or equal to 3ðg� 1Þ unless the type of B occurs

in the following table:

type upper bound for m jGj

ð2; 2; 2; 3Þ 4ðg� 1Þ 12ðg� 1Þ
ð2; 3; 7Þ 12ðg� 1Þ 84ðg� 1Þ
ð2; 3; 8Þ 6ðg� 1Þ 48ðg� 1Þ
ð2; 3; 9Þ 4ðg� 1Þ 36ðg� 1Þ
ð2; 4; 5Þ 8ðg� 1Þ 40ðg� 1Þ
ð2; 4; 6Þ 4ðg� 1Þ 24ðg� 1Þ
ð2; 5; 5Þ 4ðg� 1Þ 20ðg� 1Þ
ð3; 3; 4Þ 6ðg� 1Þ 24ðg� 1Þ

(ii) If the genus of B is small we get the following list:

type upper bound for m up to genus

ð2; 2; 2; 3Þ 2ðg� 1Þ 30

ð2; 3; 7Þ 3ðg� 1Þ 23
ð2; 3; 8Þ 3ðg� 1Þ 23

ð2; 3; 9Þ 2ðg� 1Þ 23
ð2; 4; 5Þ 2ðg� 1Þ 23

ð2; 4; 6Þ 2ðg� 1Þ 50
ð2; 5; 5Þ 4=3ðg� 1Þ 50
ð3; 3; 4Þ 3ðg� 1Þ 50

If the genus of the curve is one, we can clearly produce an arbitrarily large number of
automorphisms with pairwise disjoint graphs by choosing appropriate translations.

Proof. Part (i) is a case by case analysis using the previous lemma. Let B be a curve
of genus gf 2, let G be its automorphism group and let h be the genus of B=G. Let
P1; . . . ;Pk A B=G be the branch points and n1 e � � �e nk be the corresponding indices
(branching multiplicities). Then we have the Hurwitz formula

2g� 2 ¼ jGj
 

2h� 2þ
Pk
i¼1

1� 1

ni

� �!

and by the lemma a maximal subset as above has at most cardinality

m :¼ jGj
nk

¼ 2g� 2

nk

 
2h� 2þ

Pk
i¼1

1� 1

ni

� �! ;
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where we set n1 ¼ 1 if there is no ramification. Note that the denominator can never be zero
since this would imply g ¼ 1. We distinguish the following cases:

hf 2: Clearly

me
2g� 2

nk

 
2þ

Pk
i¼1

1� 1

ni

� �! e g� 1:

h ¼ 1: We have

me
2g� 2

nk

Pk
i¼1

1� 1

ni

� � e 2ðg� 1Þ:

h ¼ 0: Also in this case we necessarily have ramification and

me
2g� 2

nk

 
� 2þ

Pk
i¼1

1� 1

ni

� �! ;

hence we have to check in which cases holds

0 < l :¼ nk

 
� 2þ

Pk
i¼1

1� 1

ni

� �!
<

2

3
:

Since k f 5 implies lf 1 we have k at most 4, and nk > 2. If k ¼ 4 then lf ð1=2Þnk � 1
thus nk ¼ 3 and one sees immediately that ð2; 2; 2; 3Þ is the only possibility. If k ¼ 3

one can check that 1�
P3
i¼1

1=ni f 1� 1=2� 1=3� 1=7 ¼ 1=42 (which corresponds to

jGj ¼ 84ðg� 1Þ), hence there are only finitely many cases for nk which are easy to consider
and which yield exactly the remaining cases in the above table.

For part (ii) note that a finite group G can occur as an automorphism group of
a curve of type ðn1; . . . ; nkÞ i¤ there are distinct elements g1; . . . ; gk in G such that

g1; . . . ; gk�1 generate G,
Qk
i¼1

gi ¼ 1 and the order of gj is nj (cf. section 5.2 for a

construction). For all possible combinations of groups and generators up to the given
genus, maximal subsets satisfying the conditions of the above lemma were calculated using
the program GAP and its database of groups of small order (cf. [10]). r

Remark 5.4. The bounds in the second table are sharp, that is, there exist examples
that realize the given upper bound. The smallest group realizing 3ðg� 1Þ is Slð2;Z=3ZÞ act-
ing on a curve of genus 2 of type ð3; 3; 4Þ.

We will see in Remark 5.10 that the slope inequality obtained by Liu implies in fact
the better bound m < 8ðg� 1Þ.
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It is clear that we can realize the bound m ¼ 3ðg� 1Þ for arbitrary large genera g by
taking Galois étale coverings of the examples we have obtained.

Question 5.5. Can one prove that 3ðg� 1Þ is an upper bound for all curves?

5.2. Bounds for the slope. Since the slope of a Kodaira fibration does not change
under étale pullback, by Lemma 2.8 it su‰ces to treat the slope for a simple configuration.
We do this here for the Galois case.

Proposition 5.6. Let A ¼ ðD1 W � � �WDm; d; fti; ri; nigÞ be a simple, Galois configu-

ration and let g be the genus of the target curve B2. If me 3ðg� 1Þ then aðAÞe 2þ 2=3
with equality if and only if m ¼ 3ðg� 1Þ and all the branching multiplicities ri are equal to

three.

Remark 5.7. (i) We believe that the same result should hold also in the non-Galois
case.

(ii) We do not know any example of a possible (very) simple configuration with
m > 3ðg� 1Þ.

Proof. First of all let us assume that m ¼ 3ðg� 1Þ and let us calculate aðAÞ � 8=3
in this case.

aðAÞ � 8=3 ¼
1� 1

m

Pm
i¼1

1

r2
i

2

3
þ 1� 1

m

Pm
i¼1

1

ri

� 2

3

¼
3� 3

m

Pm
i¼1

1

r2
i

� 10

3
þ 2

m

Pm
i¼1

1

ri

5� 3

m

Pm
i¼1

1

ri

and if we denote by mk the number of components Di of D which have branching multi-
plicity ri ¼ k,

¼
� 1

3
þ 1

m

P
k

2mk

k
� 3mk

k2

� �

5� 3

m

P
k

mk

k

¼
� 1

3
þ 1

m

P
k

mk

2k � 3

k2

5� 3

m

P
k

mk

k

:

The expression
2k � 3

k2
has a global maximum in k ¼ 3 and which yields the in-

equality

� 1

3
þ 1

m

P
k

mk

2k � 3

k2
e� 1

3
þ 1

m

P
k

mk

3

9
¼ 0

for the numerator. Equalitiy holds if and only if m3 ¼ m and all other mk’s are zero.
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Since the denominator is always positive we conclude aðAÞ � 8=3e 0 with equality if
and only if m3 ¼ m and all other mk’s are zero.

It remains to show that the abstract slope can only decrease if m < 3ðg� 1Þ: this
follows by induction from the next lemma. r

Lemma 5.8. Let A ¼ ðD1 W � � �WDmþ1; d; fti; ri; nigÞ be a simple configuration,
Galois and with me 4

�
gðB2Þ � 1

�
. Let A 0 ¼ ðD1 W � � �WDm; d; fti; ri; nigÞ be the configura-

tion obtained by omitting the last component. Then aðA 0Þ < aðAÞ.

Proof. Using again the formulae from Proposition 3.1 we calculate

aðA 0Þ � 2 < aðAÞ � 2

, m�
Pm
i¼1

1

r2
i

� �
2g� 2þmþ 1�

Pmþ1

i¼1

1

ri

� �
< mþ 1�

Pmþ1

i¼1

1

r2
i

� �
2g� 2þm�

Pm
i¼1

1

ri

� �

, m�
Pm
i¼1

1

r2
i

� �
1� 1

rmþ1

� �
< 1� 1

r2
mþ1

 !
2g� 2þm�

Pm
i¼1

1

ri

� �

, aðA 0Þ � 2 ¼
1� 1

m

Pm
i¼1

1

r2
i

2g� 2

m
þ 1� 1

m

Pm
i¼1

1

ri

<

1� 1

r2
mþ1

1� 1

rmþ1

¼ 1þ 1

rmþ1
:

The denominator on the left is bigger or equal to one since
2g� 2

m
f

1

2
and ri f 2. Hence

the left-hand side is smaller than one which is strictly smaller than the right-hand side and
we are done. r

Example 5.9. We want now to construct an example of a double Kodaira fibration
which actually realizes the slope 8=3 thereby proving Theorem A. First of all we construct
the curve mentioned in Remark 5.4.

Let P1, P2, P3 be distinct points in P1 and let g1, g2, g3 be simple geometrical loops
around these points. The fundamental group p1ðP1nfP1;P2;P3gÞ is generated by the gi’s
with the relation g1g2g3 ¼ 1.

Consider in Slð2;Z=3ZÞ the elements

g1 ¼
0 2

1 2

� �
; g2 ¼

0 1

2 2

� �
; g3 ¼

2 2

2 1

� �

and define r : p1ðP1nfP1;P2;P3gÞ ! Slð2;Z=3ZÞ by gi 7! gi. This map is well defined and
surjective, because g1 and g2 generate Slð2;Z=3ZÞ and g1g2g3 ¼ 1.
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We define B to be the ramified Galois cover of P1 associated to the kernel of r.
By construction Slð2;Z=3ZÞ acts on B as the Galois group of the covering and by the
Riemann-Hurwitz formula

gðBÞ ¼ jSlð2;Z=3ZÞj
2

 P3
i¼1

1� 1

ordðgiÞ

� �
� 2

!
þ 1 ¼ 24

2
1� 1

3
� 1

3
� 1

4

� �
þ 1 ¼ 2:

The subset

S ¼ f1 ¼
1 0

0 1

� �
; f2 ¼

2 0

1 2

� �
; f3 ¼

0 1

2 1

� �
 �
HSlð2;Z=3ZÞ

satisfies the conditions of Lemma 5.2 since f2, f3 and f3 � f�1
2 have no fixed points being of

order six. This gives us 3 ¼ 3
�
gðBÞ � 1

�
graphs of automorphisms in B� B which do not

intersect and we denote the corresponding divisor by D.

In order to use the tautological construction we have to construct a ramified covering
of a curve of genus two minus three points (which we denote for the sake of simplicity by
BnD) and Proposition 5.6 tells us that the branching indices should all be equal to three in
order to obtain the maximal possible slope.

Let a1, b1, a2, b2 be generators for p1ðBÞ and let g1, g2, g3 simple geometrical loops
around the three points. Then

p1ðBnDÞ ¼ ha1; b1; a2; b2; g1; g2; g3i=ðP½ai; bi� ¼ g1g2g3Þ

is a free group and we can define a map

r : p1ðBnDÞ ! Z=3Z;

gi 7! 1;

ai; bi 7! 0;

which induces the desired ramified covering F ! B.

At this point we use the tautological construction, but we observe that in this case
only the first étale covering B 0 ! B is needed.

Indeed, the divisor D ¼ D1 þD2 þD3 has degree 3 on each fibre of the first projec-
tion p : B� B! B and the homomorphism r determines a simple cyclic covering of the
fixed fibre B0 :¼ fx0g � B, ramified on the divisor DXB0.

Therefore there is a divisor M on BGB0 such that the simple cyclic covering is
obtained by taking the cubic root of D in the line bundle corresponding to M, and in par-
ticular the following linear equivalence holds:

3M 1DjB0 :
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This linear equivalence determines M up to 3-torsion, and the monodromy of M is the
same as the monodromy of r.

Therefore, if we take as before the étale covering B 0 ! B associated to the stabilizer
of r, and denote by D 0 the pull back of D on B 0 � B, then on B 0 � B the divisor
D 0 � 3p�2ðMÞ is trivial on each fibre of the first projection p1, hence there is a divisor L 0

on B 0 such that D� 3p�2 ðMÞ ¼ p�1 ðL 0Þ.

By intersecting with the fibres of the second projection we find that degðL 0Þ ¼ 0,
hence there is a divisor M 0 on B 0 such that L 01 3M 0, and we conclude that on B 0 � B we
have the linear equivalence

D 01 3
�

p�2 ðMÞ þ p�1 ðL 0Þ
�

and we can take the corresponding simple cyclic covering branched on D 0 inside the line
bundle corresponding to the divisor p�2 ðMÞ þ p�1ðL 0Þ.

We obtain in this way a double étale Kodaira fibration which is in fact a standard
Kodaira fibration by Lemma 4.4. In particular we have a Kodaira fibration with base curve
B 0 and with fibre of genus g ¼ 7 (since 2g� 2 ¼ 3 � 2þ 3 � 2).

Since the associated ramified covering is branched exactly over D 0 with branching in-
dex three at each component, the formula for the slope of a simple configuration calculated
in Proposition 3.1 yields

c2
1ðSÞ

c2ðSÞ
¼ 2þ

1� 1

3

P3
i¼1

1

32

� eðBÞ
3
þ 1� 1

3

P3
i¼1

1

3

¼ 8

3
:

Remark 5.10. We can also use this construction to give a partial answer to the ques-
tion raised in 5.5. Knowing that the slope of a Kodaira fibration is strictly smaller than 3 it
follows that m < 8ðg� 1Þ. In fact, via a suitable base change we obtain a divisor
D 0HB 0 � B such that

(i) if m is odd, then there is a component D1 mapping to B 0 with degree one,

(ii) setting D 00 :¼ D 0 if m is even, and D 00 :¼ D 0 �D1 if m is odd, then

(iii) we can take a double cover branched over D 00.

The Kodaira fibration constructed in this way turns out, under the assumption
mf 8ðg� 1Þ, and in view of the above formulae, to have a slope f 3: this is a contradic-
tion.

It follows in particular as a consequence: if B is a curve of genus 2 and we have 8 étale
maps from a fixed curve C of arbitrary genus to B, then two of them have a coincidence
point.
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6. The moduli space

This section is devoted to the description of the moduli space of double étale Kodaira
fibrations. We start with some lemmas.

Lemma 6.1. Let B1, B2 be curves of genus bi f 2 resp. and let C HB1 � B2 be an

irreducible curve. Then

� C is smooth and the restricted projections pi : C ! Bi are étale if and only if

� the negative of the selfintersection of C attains its maximum possible value, i.e., if and

only if

�C2 ¼ 2miðbi � 1Þ ði ¼ 1; 2Þ

where m1 ¼ C � f�g � B2 and m2 ¼ C � B1 � f�g.

Proof. ‘‘)’’ We calculated this at the beginning of section 3.1.

‘‘(’’ Let p ¼ pðCÞ be the arithmetic genus of C. Then

2p� 2 ¼ KB1�B2
� C þ C2 ¼ 2ðb1 � 1Þm1 þ 2ðb2 � 1Þm2 � 2ðbj � 1Þmj

¼ 2miðbi � 1Þ ði3 jÞ

Let ~CC ! C be the normalization and let g ¼ gð ~CCÞ be the geometric genus of C. We have
2p� 2f 2g� 2 by the normalization sequence and on the other hand

2g� 2f 2miðbi � 1Þ ¼ 2p� 2

by the Hurwitz formula for the projection C ! Bi. Hence g ¼ p, C is smooth and equality
holds in the last inequality, i.e., there is no ramification and the maps pi are étale. r

Remark 6.2. In general we see that KB1�B2
� C þ C2 ¼ 2miðbi � 1Þ þ 2dþ ri where

d is the ‘number of double points’ and ri is the total ramification index of C ! Bi.
So

�C2 ¼ 2mjðbj � 1Þ � 2d� ri ði3 jÞ:

Lemma 6.3. Assume that we have a family of e¤ective divisors ðDtÞt AT ,
Dt H ðB1; t � B2; tÞ, parametrized by a smooth curve T and such that the special fibre

D :¼ D0 ¼ nC with C as in Lemma 6.1. If D 0 is another fibre (D 0 ¼ Dt for some t), then D 0

is of the same type D 0 ¼ nC 0 (the integer n being the same as before).

Proof. Write D 0 ¼
P

j

rjCj as a sum of irreducible components, so that Ci � Cj f 0

for i 3 j. Write also m
j
1 ¼ Cj � ðf�g � B2; tÞ and m

j
2 ¼ Cj � ðB1; t � f�gÞ.
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We compare the self-intersection of the general fibre,

�D 02 ¼
P

j

r2
j ð�C2

j Þ � 2
P
i3j

rirjCi � Cj

e
P

j

r2
j ð�C2

j Þe
P

j

r2
j 2m

j
i ðbi � 1Þ;

and the central fibre (using the same notation as in Lemma 6.1),

�D 02 ¼ �D2 ¼ n2ð�C2Þ ¼ n22miðbi � 1Þ;

obtaining

P
j

r2
j m

j
i f n2mi:ð1Þ

Since D and D 0 have the same intersection number with a horizontal (resp. vertical)
curve we have

nmi ¼
P

j

rjm
j
i :ð2Þ

Every component of the general fibre Ci tends to a positive multiple of the curve C

underlying the special fibre D and comparing again intersection numbers yields

m
j
i fmi:ð3Þ

Combining (1), (2) and (3) we get

P
j

r2
j m

j
i

2
f n2m2

i ¼
�P

j

rjm
j
i

�2

f
P

j

r2
j m

j
i

2
:

Hence equality holds which, in the last step, is only possible if there is only one sum-
mand, i.e., D 0 ¼ n 0C 0 for some irreducible curve C 0.

The (in)equalities (1), (2) and (3) read now

n2mi e n 02m 0i ; nmi ¼ n 0m 0i ; mi em 0i :

Combining the two inequalities with the equality in the middle we get ne n 0e n, hence
n ¼ n 0.

Observing that C 0 fullfills the conditions of Lemma 6.1 we conclude the proof. r

Theorem 6.4. Being a double étale Kodaira fibration is a closed and open condition in

the moduli space.

Proof. Since we know that the property of being a double Kodaira fibration is open
and closed in the moduli space we can deduce from the previous lemma that the condition
of being double étale is actually open.
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It remains to show that it is also closed for which it su‰ces to show that it is closed
under holomorphic 1-parameter limits (see e.g. [6], Lemma 2.8).

Assume that we have a 1-parameter family of surfaces with general fiber St a double
étale Kodaira fibration. By the topological characterization (Proposition 2.5) also the spe-
cial fibre S0 is a double Kodaira fibration and we have to show that is in fact double étale.

By Lemma 2.8, we may assume that St is a branched covering of B1; t � B2; t branched
over Dt ¼

P
i

kiDi; t, where the Di; t’s are disjoint graphs of étale maps fi : B1; t ! B2; t.

Now, S0 ! B1;0 � B2;0 is branched over D0 :¼
P

i

kiniDi;0 where Di; t tends to niDi;0.

Since however Di; t:ðB1; t � f�gÞ ¼ 1 we have niDi;0:ðB1;0 � f�gÞ ¼ 1 which implies ni ¼ 1.
Hence Di;0 is the graph of a map f 0i : B1;0 ! B2;0 and another application of Lemma 6.1
shows that also f 0i is étale and S0 is a double étale Kodaira fibration. r

We can now describe the moduli space of standard Kodaira fibrations in detail. Let S

be a standard Kodaira fibration: then there exists a minimal common Galois cover B 0 of
B1, B2 yielding an étale pullback S 0 which is very simple. We call B 0 the simplifying cover-

ing curve. We have diagrams

S 0 B 0

p

???y f2

S ���!c2
B2???yc1

B 0 ���!f1
B1

B 0 � B 0 ���! B1 � B2

H ���
!

H ���
!

D 0 ¼
S

f AS
Gf ���! D

�����������!c 02

 ���
����

 
���

���
���

�

c 01

where D is the ramification divisor of c ¼ c1 � c2 and D 0 ¼ p�D is made of the graphs of a
set of automorphisms SHAutðB 0Þ. If we denote the Galois group of fi by Gi ði ¼ 1; 2Þ the
following holds:

Theorem 6.5. Let S be a standard Kodaira fibred surface and let N be the irreducible

(and connected ) component of the moduli space containing ½S�. N is then isomorphic to the

moduli space of the pair ðB 0;GÞ, where B 0 is the simplifying covering curve defined above

and G is the subgroup of AutðB 0Þ generated by G1, G2 and S.

Proof. Let us first consider the case where S ¼ S 0, i.e., where S itself is very simple.
By Proposition 2.5 every deformation in the large of S 0 is a branched cover of a product
surface B1 � B2. Moreover, clearly B1 ¼ B2 if

ð*Þ there is a component of the branch locus mapping to both curves
B1, B2 with degree 1.

So let ðStÞt AT , be a family with connected parameter space T , having S 0 as a fibre. It is
clear that the set of points of T where (*) holds is open.

It is also closed because in the proof of Theorem 6.4 we have seen that the type of the
branch divisor remains the same under specialization and therefore the connected compo-
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nent N parametrizes very simple Kodaira fibrations, i.e., branched coverings of a product
B� B branched over the union of graphs of automorphisms.

The automorphisms defining the components of the branch divisors for di¤erent sur-
faces in ðStÞt AT are clearly pairwise isotopic to each other and therefore we obtain a family
of curves with automorphisms.

For each curve let G be the finite group generated by these automorphisms. This
group has a faithful representation on the fundamental group of the curve, and therefore
the group G remains actually constant.

G is a finite group and we have a faithful action on Teichmüller space Tb. We use
now [4], Lemma 4.12, page 29, to the e¤ect that the fixed locus of this action is a connected
submanifold (di¤eomorphic to a Euclidean space), hence the moduli space of such pairs
ðB;GÞ is irreducible.

Viceversa any element in this moduli space gives rise to a complex structure on the
di¤erentiable manifold underlying S 0.

Consider now the general case. It is clear that any deformation of S induces a defor-
mation of B 0 ! Bi, hence any deformation of S yields a deformation of the pair ðB 0;GÞ.

Conversely, any deformation of the pair ðB 0;GÞ yields a deformation of the pair
D 0HB 0 � B 0 such that the group G1 � G2 leaves D 0 and the monodromy of the unramified
covering of ðB 0 � B 0Þ �D 0 invariant. r

Corollary 6.6. There exist double étale Kodaira fibred surfaces which are rigid.

Proof. Take the fibration constructed in Example 5.9: the automorphisms corre-
sponding to the ramification divisor generate the whole triangle group of type ð3; 3; 4Þ and
it is well known that pairs ðB;GÞ yielding a triangle curve are rigid. Similarly for the other
examples in Proposition 5.3 which yield m ¼ 3ðg� 1Þ. r

7. Rigid maps to the moduli stack of curves

In this section we want to interpret some of our results in terms of curves in the
moduli space of curves.

One considers the moduli functor

C : ðSchemesÞ ! ðSetsÞ;

X 7! fflat families of smooth curves of genus g over Xg:

This functor is not representable in the category of schemes but there exists an alge-
braic stack Mg which is a fine moduli space of curves of genus g (see e.g. [12]). In other
word we have an isomorphism of functors from the category of schemes to the category
of sets

Cð�ÞGHomð�;MgÞ
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and there is a universal family Cg !Mg such that any flat family of smooth curves Y ! X

arises via a pullback diagram

Y G m�Cg ���! Cg???y
???y

X �����!m
Mg:

We consider now the Kodaira fibration S ! B 0 constructed in Example 5.9 which
is a smooth fibrations of smooth curves of genus 7. By the universal property we have a
corresponding moduli map

m : B 0 !M7

which is not constant.

Proposition 7.1. The map B 0 !m D :¼ mðB 0ÞHM7 is rigid in the following sense:

If

D ���!~mm M7???y
X

is any connected family of smooth curves in M7 such that for some point x0 A X the map

~mmx0
: Dx0

!M7 coincides with m then ~mmx ¼ m for all x A X and the image of ~mm is equal to D.

Proof. This follows directly from Corollary 6.6: The map ~mm corresponds to a family
of curves over D and, since D! X is a family of curves, this yields a family of smooth
surfaces

S ¼ ~mm�C7 ! X :

By our assumption the surface Sx0
over the point x0 A X is isomorphic to S. Since S is rigid

we have Sx GS for all x A X and moduli maps coincide. r
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Finally, the referee observes an interesting coincidence between the fact that our Ko-
daira fibrations with the highest slope n ¼ 8=3 are rigid, and some results of Igor Reider
([20]). Reider shows that, if the slope of a surface S satisfies nf 8=3, then not only the sur-
face S has ‘few moduli’, but also one can analyse the structure of the local moduli space.
The investigation of this interesting analogy seems however not easy.
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