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THE ABSOLUTE GALOIS GROUP ACTS FAITHFULLY ON

THE CONNECTED COMPONENTS OF THE MODULI

SPACES OF SURFACES OF GENERAL TYPE

INGRID BAUER, FABRIZIO CATANESE AND FRITZ GRUNEWALD

Abstract. We show that the Galois group Gal(Q̄/Q) operates faithfully
on the set of connected components of the moduli spaces of surfaces of
general type, and also that for each element σ ∈ Gal(Q̄/Q) different from
the identity and from complex conjugation, there is a surface of general
type such that X and the Galois conjugate variety Xσ have nonisomor-
phic fundamental groups. The result was announced by the second author
at the Alghero Conference ’Topology of algebraic varieties’ in september
2006. Before the present paper was actually written, we received a very
interesting preprint by Robert Easton and Ravi Vakil ([E-V07]), where it is
proven, with a completely different type of examples, that the Galois group
Gal(Q̄/Q) operates faithfully on the set of irreducible components of the
moduli spaces of surfaces of general type. We also give other simpler exam-
ples of surfaces with nonisomorphic fundamental groups which are Galois
conjugate, hence have isomorphic algebraic fundamental groups.

Introduction

In the 60’s J. P. Serre showed in [Ser64] that there exists a field automor-
phism σ ∈ Gal(Q̄/Q), and a variety X defined over Q̄ such that X and the
Galois conjugate variety Xσ have non isomorphic fundamental groups, in par-
ticular they are not homeomorphic.

In this note, using completely different methods, we show the following two
results, which give a strong sharpening of the phenomenon discovered by Serre.

Theorem 0.1. The absolute Galois group Gal(Q̄/Q) acts faithfully on the set
of connected components of the (coarse) moduli spaces of minimal surfaces of
general type.

Theorem 0.2. Assume that σ ∈ Gal(Q̄/Q) is different from the identity and
from complex conjugation. Then there is a minimal surface of general type X
such that X and Xσ have non isomorphic fundamental groups.

In order not to get confused by the above two statements, note that while the
absolute Galois group Gal(Q̄/Q) acts on the set of connected components of
the (coarse) moduli spaces of minimal surfaces of general type, it does not act
on the set of isomorphism classes of fundamental groups of surfaces of general
type. Observe that obviously complex conjugation does not change the iso-
morphism class of the fundamental group (X and X̄ are diffeomorphic). Now,
if we had an action on the set of isomorphism classes of fundamental groups,
then all the normal closure of the Z/2 generated by complex conjugation would
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act trivially. This would contradict theorem 2 since complex conjugation does
not lie in the centre of Gal(Q̄/Q).

The surfaces we consider in this note are the socalled ’surfaces isogenous to
a product’ whose weak rigidity was proven in [Cat00], and which by definition
are the quotient of a product of curves (C1 ×C2) by the free action of a finite
group G.

Therefore our method is strictly related to the socalled theory of ’dessins d’
enfants’ (see [Gro97]). Dessins d’ enfants are, in view of Riemann’s existence
theorem (generalized by Grauert and Remmert in [GR58]), a combinatorial
way to look at the monodromies of algebraic functions with only three branch
points. It goes without saying that we make here an essential use of Belyi
functions ([Belyi79]) and of their functoriality.

It would be interesting to obtain similar types of results with examples in-
volving rigid varieties belonging to the class of varieties isogenous to a product.
For instance we expect that similar results also hold if we restrict ourselves
to consider only the socalled Beauville surfaces (see [Cat00] for the definition
of Beauville surfaces and [Cat03],[BCG05], [BCG06] for further properties of
these).

In the last section we use Beauville surfaces and polynomials with two critical
values in order to produce simple examples of pairs of surfaces with noniso-
morphic fundamental groups which are conjugate under the absolute Galois
group (hence the two groups have isomorphic profinite completions).

1. Very special hyperelliptic curves

Fix a positive integer g ∈ N, g ≥ 3, and define, for any complex number
a ∈ C \ {−2g, 0, 1, . . . , 2g − 1}, Ca as the hyperelliptic curve of genus g

w2 = (z − a)(z + 2g)Π2g−1
i=0 (z − i)

branched over {−2g, 0, 1, . . . , 2g − 1, a} ⊂ P1
C.

Lemma 1.1. Consider two complex numbers a, b such that a ∈ C \ Q: then
Ca

∼= Cb if and only if a = b.

Proof.

One direction being obvious, assume that Ca
∼= Cb. Then the two sets with

2g+ 2 elements Ba := {−2g, 0, 1, . . . , 2g− 1, a} and Bb := {−2g, 0, 1, . . . , 2g−
1, b} are projectively equivalent over C (the latter set Bb has also cardinality
2g + 2 since Ca

∼= Cb and Ca smooth implies that also Cb is smooth).

In fact, this projectivity ϕ is defined over Q, since there are three rational
numbers which are carried into three rational numbers (since g ≥ 2).

Since a /∈ Q it follows that b /∈ Q and ϕ maps B := {−2g, 0, 1, . . .2g− 1} to
B, and in particular ϕ has finite order. Since ϕ either leaves the cyclical order
of (−2g, 0, 1, . . . , 2g − 1) invariant or reverses it, and g ≥ 3 we see that there
are 3 consecutive integers such that ϕ maps them to 3 consecutive integers.
Therefore ϕ is either an integer translation, or an affine symmetry of the form
x 7→ −x + 2n. In the former case ϕ = id, since it has finite order, and in
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particular, a = b. In the latter case it must be 2g + 2n = ϕ(−2g) = 2g − 1
and 2n = ϕ(0) = 2g − 2, a contradiction.

�

Remark 1.2. The previous lemma holds more generally under the assumption
that a, b ∈ C \ {−2g, 0, 1, . . . , 2g − 1}, provided g ≥ 6.

Proof.

The case where a, b ∈ Q is similar to the previous one: ϕ preserves the
cyclical order of the two sets, and we are done if ϕ(a) = b or there are 3
consecutive integers which are mapped by ϕ to 3 consecutive integers.

set Bb each consecutive triple of points is a triple of consecutive integers,
unless one element in the triple is −2g or b. This excludes six triples. Keep in
mind that a ∈ Ba and consider all the consecutive triples of integers in the set
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}: at most two such triples are not a consecutive
triple of points of Ba. We conclude that there is a triple of consecutive integers
in the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} mapping to a triple of consecutive
integers under ϕ. Then either ϕ is an integer translation x 7→ x + n, or it
is a symmetry x 7→ −x + 2n. In both case the intervals equal to the convex
spans of the sets Ba, Bb are sent to each other by ϕ, in particular the length
is preserved and the extremal point are permuted. If a ∈ [−2g, 2g − 1] also
b ∈ [−2g, 2g − 1] and in the translation case n = 0, so that ϕ(x) = x and
a = b. We see right away that ϕ cannot be a symmetry, because only two
points belong to the left half of the interval. If a < −2g the interval has length
2g−1−a, if a > 2g−1 the interval has length 2g+a. We only need to exclude
a < −2g, b > 2g−1, 2g−1−a = 2g+ b, i.e., a = −b−1. In this case b = ϕ(a)
leads to a contradiction since we should have b = ϕ(a) = −a+2n = b+1+2n.
Else, ϕ(x) = x + n and ϕ(2g − 1) = b, ϕ(2g − 2) = 2g − 1, hence n = 1, and
ϕ(−2g) = −2g + 1, a contradiction.

�

We shall assume from now on that a, b ∈ Q̄ \ Q and that there is a field
automorphism σ ∈ Gal(Q̄/Q) such that σ(a) = b. (Obviously, for any σ ∈
Gal(Q̄/Q) different from the identity, there are a, b ∈ Q̄ \Q with σ(a) = b and
a 6= b.)

Proposition 1.3. Let P be the minimal polynomial of a and consider the field
L := Q[x]/(P ). Let Cx be the hyperelliptic curve over L

w2 = (z − a)(z + 2g)Π2g−1
i=0 (z − i).

Then there is a rational function Fx : Cx → P1
L such that for each a ∈ C with

P (a) = 0 it holds that the rational function Fa (obtained under the specializa-
tion x 7→ a) is a Belyi function for Ca.

Proof. Let fx : Cx → P1
L be the hyperelliptic involution, branched in

{−2g, 0, 1, . . . , 2g − 1, x}. Then P ◦ fx has as critical values:

• the images of the critical values of fx under P , which are ∈ Q,
• the critical values y of P , i.e. the zeroes of the discriminant h1(y) of
P (z) − y with respect to the variable z.
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h1 has degree deg(P ) − 1, whence, inductively, we obtain f̃x := h ◦ P ◦ f
whose critical values are all contained in Q∪{∞}. If we take any root a of P ,

then obviously f̃a has the same critical values.

Let now r1, . . . , rn ∈ Q be the (pairwise distinct) finite critical values of f̃x.
We set:

yi :=
1

Πj 6=i(ri − rj)
.

Let N ∈ N be a positive integer such that mi := Nyi ∈ Z. Then we have
that the rational function

g(t) := Πi(t− ri)
mi ∈ Q(t)

is ramified at most in ∞ and r1, . . . rn. In fact, g′(t) vanishes exactly when the

logarithmic derivative G(t) := g′(t)
g(t)

=
∑

imi(
1

t−ri

) has a zero or a pole, but the

choice made yields a zero of order n at ∞.

Therefore the critical values of g ◦ f̃x are at most 0, ∞, g(∞) (for details
see [Wo01]).

We set Fx := Φ ◦ g ◦ f̃x where Φ is the affine map z 7→ g(∞)−1z, so that the
critical valus of Fx are equal to {0, 1,∞}. It is obvious by our construction
that for any root a of P , Fa has the same critical values as Fx, in particular,
Fa is a Belyi function for Ca.

�

Since in the sequel we shall consider the normal closure (we prefer here, to
avoid confusion, not to use the term ’Galois closure’ for the geometric setting)
ψa : Da → P1

C of each of the functions Fa : Ca → P1
C, we recall in the next

section the ’scheme theoretic’ construction of the normal closure.

2. Effective construction of normal closures

In this section we consider algebraic varieties over the complex numbers,
endowed with their Hausdorff topology, and, more generally, ’good’ cover-
ing spaces (i.e., between topological spaces which are arcwise connected and
semilocally simply connected).

Lemma 2.1. Let π : X → Y be a finite ’good’ unramified covering space of
degree d between connected spaces X and Y . Then the normal closure Z of
π : X → Y is isomorphic to any connected component of

W := Wπ := (X ×Y . . .×Y X)\∆ ⊂ Xd\∆,

where ∆ := {(x1, . . . , xd) ∈ X×Y . . .×Y X|∃i 6= j , xi = xj} is the big diagonal.

Proof. Choose base points x0 ∈ X, y0 ∈ Y such that π(x0) = y0 and denote
by F0 the fibre over y0, F0 := π−1({y0}).

We consider the monodromy µ : π1(Y, y0) → Sd = S(F0) of the unramified
covering π. The monodromy of φ : W → Y is induced by the diagonal product
monodromy µd : π1(Y, y0) → S(F d

0 ), such that, for (x1, . . . , xd) ∈ F d
0 , we have

µd(γ)(x1, . . . , xd) = (µ(γ)(x1), . . . , µ(γ)(xd)).

It follows that the monodromy of φ : W → Y , µW : π1(Y, y0) → S(Sd) is
given by left translation µW (γ)(τ) = µ(γ) ◦ (τ).
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If we denote by G := µ(π1(Y, y0)) ⊂ Sd the monodromy group, it follows
right away that the components of W correspond to the cosets Gτ of G. Thus
all the components yield isomorphic covering spaces.

�

The theorem of Grauert and Remmert ([GR58]) allows to extend the above
construction to yield normal closures of morphisms between normal algebraic
varieties.

Corollary 2.2. Let π : X → Y be a finite map between normal projective
varieties, let B ⊂ Y be the branch locus of π and set X0 := X \ π−1(B),
Y 0 := Y \B.

If X is connected, then the normal closure Z of π is isomorphic to any
connected component of the closure of W 0 := (X0 ×Y 0 . . . ×Y 0 X0)\∆ in the

normalization W n of W := (X ×Y . . .×Y X) \ ∆.

Proof.

The irreducible components of W correspond to the connected components
of W 0, as well as to the connected components Z of W n. So, our component
Z is the closure of a connected component Z0 of W 0. We know that the
monodromy group G acts on Z0 as a group of covering transformations and
simply transitively on the fibre of Z0 over y0: by normality the action extends
biholomorphically to Z, and clearly Z/G ∼= Y .

�

3. Connected components of moduli spaces associated to very

special hyperelliptic curves

Let a be an algebraic number, g ≥ 2, and consider as in section 1 the
hyperelliptic curve Ca of genus g defined by the equation

w2 = (z − a)(z + 2g)Π2g−1
i=0 (z − i).

Let Fa : Ca → P1 be the Belyi function constructed in proposition 1.3 and
denote by ψa : Da → P1 the normal closure of Ca as in corollary 2.2.

Remark 3.1. We denote by Ga the monodromy group of Da and observe that
there is a subgroup Ha ⊂ Ga acting on Da such that Da/Ha

∼= Ca.

We choose a monodromy representation µ : π1(P
1 \ {0, 1,∞}) → Ga corre-

sponding to the normal ramified covering ψa : Da → P1 and we denote the
images of geometric loops around 0, 1, ∞ by τ0, τ1, τ∞. Then we have that
Ga is generated by τ0, τ1, τ∞ and τ0 · τ1 · τ∞ = 1.

Fix now another integer g′ ≥ 2 and consider all the possible smooth complex
curves C ′ of genus g′. Observe that the fundamental group of C ′ is isomorphic
to the standard group

Πg′ := 〈α1, β1, . . . , αg′, βg′|Π
g′

i=1[αi, βi] = 1〉.

Since g′ ≥ 2 there are epimorphisms (surjective homomorphisms) ρ : Πg′ →
Ga. For instance it suffices to consider the epimorphism θ : Πg′ → Fg′ from Πg′

to the free group Fg′ :=< λ1, . . . , λg′ > in g′ letters given by θ(αi) = θ(βi) = λi,
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∀ 1 ≤ i ≤ g′, and to compose θ with the surjection φ : Fg′ → Ga, given by
φ(λ1) = τ0, φ(λ2) = τ1, and φ(λi) = 1 for 3 ≤ i ≤ g′.

Consider all the possible epimorphisms ρ : Πg′ → Ga. Each such ρ gives a
normal unramified covering D′ → C ′ with monodromy group Ga.

Definition 3.2. Let Ma be the subset of the moduli space of surfaces of general
type given by surfaces S ∼= (Da ×D′)/Ga, where Da, D

′ are as above and the
group Ga acts by a diagonal action.

From [Cat00] and especially Theorem 3.3 of [Cat03] it follows:

Proposition 3.3. For each a ∈ Q̄, Ma is a union of connected components of
the moduli spaces of surfaces of general type.

Moreover, for σ ∈ Gal(Q̄/Q), σ(Ma) = Mσ(a).

Proof. Since Da is a triangle curve, the pair (Da, Ga) is rigid, whereas,
varying C ′ and ρ, we obtain the full union of the moduli spaces for the pairs
(D′, Ga), corresponding to the possible free topological actions of the group
Ga on a curve D′ of genus |Ga|(g

′ − 1) + 1.

Thus, the surfaces S ∼= (Da×D
′)/Ga give, according to the cited theorem 3.3

of [Cat03], a union of connected components of the moduli spaces of surfaces
of general type.

Choose now a surface S as above (thus, [S] ∈ Ma) and apply the field
automorphism σ ∈ Gal(Q̄/Q) to a point of the Hilbert scheme corresponding
to the 5-canonical image of S (which is isomorphic to S, since the canonical
divisor of S is ample). We obtain a surface which we denote by Sσ.

By taking the fibre product of σ with Da × D′ → S it follows that Sσ has
an étale covering with group Ga which is the product (Da)

σ × (D′)σ.

Since (Ca)
σ = Cσ(a) and since σ(a) corresponds to another embedding of the

field L into C, it follows that (Fa)
σ = Fσ(a), whence (Da)

σ = Dσ(a).

On the other hand, the quotient of (D′)σ by the action of the group Ga has
genus equal to the dimension of the space of invariants dim(H0(Ω1

(D′)σ)Ga),

but this dimension is the same g′ = dim(H0(Ω1
D′)Ga). Hence the action of Ga

on (D′)σ is also free (by Hurwitz’ formula), and we have shown that Sσ is a
surface whose moduli point is in Mσ(a).

�

4. Proof of the main theorems

Prooof of theorem 1.

Given a ∈ Q̄, consider a connected component Na of Ma. Our main theorem
1 follows easily from the following

Main Claim: if Na = σ(Na), then necessarily a = σ(a).

Proof. Denote σ(a) by b. We know that Ca
∼= Da/Ha, that Cb

∼= Db/Hb, and
we have already shown that σ yields an isomorphism Ga

∼= Gb. The assumption
that Na = σ(Na) implies, by theorem (3.3) of [Cat03], the condition that
the pairs (Da, Ga) and (Db, Gb) are isomorphic as complex triangle curves.
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It suffices therefore to show that under this isomorphism the subgroup Ha

corresponds to the subgroup Hb, because then we conclude that the curves Ca,
Cb are not only Galois conjugate, but also isomorphic.

And then by lemma 1 we conclude that a = b.

To show thatHa corresponds to the subgroup Hb, let K be the Galois closure
of the field L (= splitting field of the field extension Q ⊂ L), and view L as
embedded in C under the isomorphism sending x 7→ a.

Consider the curve Ĉx obtained from Cx by scalar extension Ĉx := Cx⊗LK.
Let also F̂x := Fx ⊗L K the corresponding Belyi function with values in P1

K .

Apply now the effective construction of the normal closure of section 2, and,
taking a connected component of (Ĉx ×P1

K
. . .×P1

K
Ĉx) \ ∆ we obtain a curve

Dx defined over K.

Note that Dx is not geometrically irreducible, but once we tensor with C

it splits into several components which are Galois conjugate and which are
isomorphic to the conjugates of Da.

Apply now the Galois automorphism σ to the triple Da → Ca → P1. Since
the triple is induced by the triple Dx → Cx → P1

K by taking a tensor product
⊗KC via the embedding sending x 7→ a, the morphisms are induced by the
composition of the inclusion Dx ⊂ (Cx)

d with the coordinate projections, re-
spectively buy the fibre product equation, it follows from proposition 1.3 that
σ carries the triple Da → Ca → P1 to the triple Db → Cb → P1.

�

If we want to interpret our argument in terms of Grothendieck’s étale fun-
damental group, we define C0

x := F−1
x (P1 \ {0, 1,∞}), and accordingly Ĉ0

x and
D0

x.

There are the following exact sequences for the Grothendieck étale funda-
mental group (compare Theorem 6.1 of [SGA1]):

1 → πalg
1 (Da) → πalg

1 (Dx) → Gal(Q̄/K) → 1

1 → πalg
1 (Ca) → πalg

1 (Cx) → Gal(Q̄/K) → 1

1 → πalg
1 (P1

C \ {0, 1,∞}) → πalg
1 (P1

K \ {0, 1,∞}) → Gal(Q̄/K) → 1

where Ha andGa are the respective factor groups for the inclusions of the left
hand sides, corresponding to the first and second sequence, and corresponding
to the first and third sequence.

On the other hand, we also have the exact sequence

1 → πalg
1 (P1

C \ {0, 1,∞}) → πalg
1 (P1

Q \ {0, 1,∞}) → Gal(Q̄/Q) → 1.

The finite quotient Ga of πalg
1 (P1

C \ {0, 1,∞}) (defined over K) is sent by
σ ∈ Gal(Q̄/Q) to another quotient, corresponding to Dσ(a), and the subgroup
Ha, yielding the quotient Ca, is sent to the subgroup Hσ(a).

Proof of theorem 2.
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Assume that σ(a) = b, and that σ is neither complex conjugation nor the
identity. Consider a surface Xa with [Xa] ∈ Ma and its Galois conjugate
(Xa)

σ = Xσ(a) = Xb.

Denote as before by Na the connected component of the moduli space of
surfaces of general type containing [Xa].

Assume now that the Xa andXb have isomorphic fundamental groups. Since
obviously the two surfaces have the same Euler number e(Xa) = e((Xa)

σ)
(since they have the same Hodge numbers hi(Ωj)) we can apply again theorem
3.3. of [Cat03] and there are only two possibilities : either [Xa] and [Xb] belong
to the same connected component Na of the moduli space, or [Xb] belongs to
the complex conjugate component Nā of the connected component Na.

In the first case the main claim says that σ(a) = a, in the second case it
says that σ(a) = ā.

Since however σ is neither complex conjugation nor the identity, we find an
a ∈ Q̄ such that b := σ(a) 6= a and b := σ(a) 6= ā.

Therefore the corresponding surfaces Xa and (Xa)
σ have nonisomorphic fun-

damental groups.

�

Remark 4.1. We observe that Xa and (Xa)
σ have isomorphic Grothendieck

étale fundamental groups. In particular, the profinite completion of πi(Xa) and
π1((Xa)

σ) are isomorphic.

It is not so easy to calculate explicitly the fundamental groups of the surfaces
constructed above, since one has to explicitly calculate the monodromy of the
Belyi function of the very special hyperelliptic curves.

Therefore we give in the next section an explicit example of two rigid surfaces
with non isomorphic fundamental groups which are Galois conjugate.

5. An explicit example

In this section we provide, as we already mentioned, an explicit example
of two surfaces with non isomorphic fundamental groups which are conjugate
under the absolute Galois group, hence with isomorphic profinite completions
of their respective fundamental groups. These surfaces are rigid.

We consider (see [BCG06] for an elementary treatment of what follows)
polynomials with only two critical values: {0, 1}.

Let P ∈ C[z] be a polynomial with critical values {0, 1}.

In order not to have infinitely many polynomials with the same branching
behaviour, one considers normalized polynomials P (z) := zn+an−2z

n−2+. . . a0.
The condition that P has only {0, 1} as critical values, implies, as we shall
briefly recall, that P has coefficients in Q̄. Denote by K the number field
generated by the coefficients of P .

Fix the types the types (m1, . . . , mr) and (n1, . . . , ns) of the cycle decompo-
sitions of the respective local monodromies around 0 and 1: we can write our
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polynomial P in two ways, namely as:

P (z) =

r∏

i=1

(z − βi)
mi ,

and

P (z) = 1 +

s∏

k=1

(z − γk)
nk .

We have the equations F1 =
∑
miβi = 0 and F2 =

∑
nkγk = 0 (since P

is normalized). Moreover, m1 + . . . + mr = n1 + . . . + ns = n = degP and
therefore, since

∑
j(mj − 1) +

∑
i(ni − 1) = n− 1, we get r + s = n+ 1.

Since we have
∏r

i=1(z − βi)
mi = 1 +

∏s

k=1(z − γk)
nk , comparing coeffi-

cients we obtain further n − 1 polynomial equations with integer coefficients
in the variables βi, γk, which we denote by F3 = 0, . . . , Fn+1 = 0. Let
V(n; (m1, . . . , mn), (n1, . . . , ns)) be the algebraic set in affine (n+ 1)-space de-
fined by the equations F1 = 0, . . . , Fn+1 = 0. Mapping a point of this algebraic
set to the vector (a0, . . . , an−2) of coefficients of the corresponding polynomial
P we obtain a set

W(n; (m1, . . . , mn), (n1, . . . , ns))

(by elimination of variables) in affine (n − 1) space. Both these are finite
algebraic sets defined over Q since by Riemann’s existence theorem they are
either empty or have dimension 0.

Observe also that the equivalence classes of monodromies µ : π1(P
1 \

{0.1.∞}) → Sn correspond to the orbits of the group of n-th roots of 1 (we
refer to [BCG06] for more details).

We recall also the following

Definition 5.1. A smooth algebraic curve C is called a triangle curve iff there
is a finite group G acting effectively on C with the property that C/G ∼= P1 in
such a way that f : C → P1 is ramified only in {0, 1,∞}.

Example 5.2. We calculate (here and in the following, either by a MAGMA
routine, or, sometimes, more painfully by direct calculation) that W :=
W(7; (2, 2, 1, 1, 1); (3, 2, 2)) is irreducible over Q. This implies that Gal(Q̄/Q)
acts transitively on W. Looking at the possible monodromies, one sees that
there are exactly two real non equivalent polynomials. Observe also that the
equivalence classes of monodromies µ : π1(P

1 \ {0, 1,∞}) → (S)n correspond
to the orbits of the group µn of n-th roots of 1 (we refer to [BCG06] for more
details). In both cases, which will be explicitly described later on, the two
permutations, of types (2, 2) and (3, 2, 2), are seen to generate A7 and the re-
spective normal closures of the two polynomial maps are easily seen to give
(we use here the fact that the automorphism group of A7 is S7) nonequivalent
triangle curves C1, C2.

By Hurwitz’s formula, we see that g(Ci) = |A7|
2

(1 − 1
2
− 1

6
− 1

7
) + 1 = 241.

We remark that A7 admits generators a1, a2 of order 5 such that their product
has order 5, hence we get a triangle curve C (of genus 505).

Consider the triangle curve C given by a spherical system of generators

of type (5, 5, 5) of A7, i.e., generators a1, a2, a3 of A7 such that a1 ·a2 ·a3 = 1.
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Definition 5.3. Let (a1, a2, a3) and (b1, b2, b3) be two spherical systems
of generators of a finite group G of the same unordered type, i.e.,
{ord(a1), ord(a2), ord(a3)} = {ord(b1), ord(b2), ord(b3)}. Then (a1, a2, a3) and
(b1, b2, b3) are called Hurwitz equivalent iff they are equivalent under the
equivalence relation generated by

(a1, a2, a3) ≡ (a2, a
−1
2 a1a2, a3),

(a1, a2, a3) ≡ (a1, a3, a
−1
3 a2a3).

It is well known that two such triangle curves are isomorphic, compatibly
with the action of the group G, if and only if the two spherical systems of
generators are Hurwitz equivalent.

Remark 5.4. An easy MAGMA routine shows that there is exactly one Hur-
witz equivalence class of triangle curves given by a spherical system of gener-
ators of type (5, 5, 5) of A7. In other words, if D1 and D2 are two triangle
curves given by spherical systems of generators of type (5, 5, 5) of A7, then D1

and D2 are not only isomorphic as algebraic curves, but they have the same
action of G.

Let C be as above the triangle curve given by a(ny) spherical systems of
generators of type (5, 5, 5) of A7, and consider the two triangle curves C1 and
C2 as in example 5.2. Clearly A7 acts freely on C1×C as well as on C2×C and
we obtain two non isomorphic so-called Beauville surfaces S1 := (C1 × C)/G,
S2 := (C2 × C)/G.

Obviously, these two surfaces have the same topological Euler characteristic.
If they had isomorphic fundamental groups, by theorem 3.3 of [Cat03], S2

would be the complex conjugate surface of S1. In particular, C1 would be the
complex conjugate triangle curve of C2: but this is absurd since we shall show
that both C1 and C2 are real triangle curves.

Proposition 5.5. There is a field automorphism σ ∈ Gal(Q̄/Q) such that
S2 = (S1)

σ.

Proof. We know that (S1)
σ = ((C1)

σ × (C)σ)/G. Since there is only one
Hurwitz class of triangle curves given by a spherical system of generators of
type (5, 5, 5) of A7, we have (C)σ ∼= C (with the same action of G).

�

We determine now explicitly the respective fundamental groups of S1 and
S2.

In general, let (a1, . . . , an) and (b1, . . . , bm) be two sets of spherical generators
of a finite group G of respective order types r := (r1, . . . , rn), s := (s1, . . . , sm).
We denote the corresponding ‘polygonal’ curves by D1, resp. D2.

Assume now that the diagonal action of G on D1 ×D2 is free. We get then
the smooth surface S := (D1 ×D2)/G, isogenous to a product.

Denote by Tr := T (r1, . . . , rn) the polygonal group

〈x1, . . . , xn−1|x
r1

1 = . . . = x
rn−1

n−1 = (x1x2 . . . xn−1)
rn = 1〉.
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We have the exact sequence (cf. [Cat00] cor. 4.7)

1 → π1 × π2 → Tr × Ts → G×G→ 1,

where πi := π1(Di).

Let ∆G be the diagonal in G × G and let H be the inverse image of ∆G

under Φ : Tr × Ts → G×G. We get the exact sequence

1 → π1 × π2 → H → G ∼= ∆G → 1.

Remark 5.6. π1(S) ∼= H (cf. [Cat00] cor. 4.7).

We choose now an arbitrary spherical system of generators of type (5, 5, 5)
of A7, for instance ((1, 7, 6, 5, 4), (1, 3, 2, 6, 7), (2, 3, 4, 5, 6)). Note that we use
here MAGMA’s notation, where permutations act on the right (i.e., ab sends
x to (xa)b).

A MAGMA routine shows that

(1) ((1, 2)(3, 4), (1, 5, 7)(2, 3)(4, 6), (1, 7, 5, 2, 4, 6, 3))

and

(2) ((1, 2)(3, 4), (1, 7, 4)(2, 5)(3, 6), (1, 3, 6, 4, 7, 2, 5))

are two representatives of spherical generators of type (2, 6, 7) yielding two
non isomorphic triangle curves C1 and C2, each of which is isomorphic to
its complex conjugate. In fact, an alternative direct argument is as follows:
first of all Ci is isomorphic to its complex conjugate triangle curve since, for
an appropriate choice of the real base point, complex conjugation sends a 7→
a−1, b 7→ b−1 and then one sees that the two corresponding monodromies are
permutation equivalent (see Figure 1 and Figure 2).

Moreover, since Aut(A7) = S7, if the two triangle curves were isomorphic,
then the two monodromies were conjugate in S7. That this is not the case is
seen again by the following pictures.

Figure 1. Monodromy corresponding to (1)

Figure 2. Monodromy corresponding to (2)

The two corresponding homomorphisms Φ1 : T(2,6,7) ×T(5,5,5) → A7×A7 and
Φ2 : T(2,6,7) × T(5,5,5) → A7 × A7 give two exact sequences
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1 → π1(C1) × π1(C) → T(2,6,7) × T(5,5,5) → A7 × A7 → 1,

and
1 → π1(C2) × π1(C) → T(2,6,7) × T(5,5,5) → A7 × A7 → 1,

yielding two non isomorphic fundamental groups π1(S1) = Φ−1
1 (∆A7

) and
π1(S2) = Φ−1

2 (∆A7
) fitting both in an exact sequence of type

1 → Π241 × Π505 → π1(Sj) → ∆A7

∼= A7 → 1,

where Π241
∼= π1(C1) ∼= π1(C2), Π505 = π1(C).

Remark 5.7. 1) Using the same trick that we used for our main theorems,
namely, using a surjection of a group Πg → A7 we get infinitely many exam-
ples of pairs of fundamental groups which are nonisomorphic, but which have
isomorphic profinite completions. Each pair fits into an exact sequence

1 → Π241 × Πg′ → π1(Sj) → A7 → 1.

2) Many more explicit examples as the one above (but with cokernel group
different from A7) can be obtained using polynomials with two critical values.

A construction of polynomials with two critical values having a very large
Galois orbit was proposed to us by D. van Straten.

Remark 5.8. In the sequel to this work we plan to show that the absolute
Galois group in fact acts faithfully also on the set of Beauville surfaces.

Acknowledgements. The research of the authors was performed in the
realm of the Forschergruppe ’Classification of algebraic surfaces and compact
complex manifolds’ of the D.F.G.. We would like to thank Ravi Vakil for his
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