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1 Introduction

The aim of this paper is to give an explicit geometric description of the bira-
tional structure of the moduli space of pairs (C, η), where C is a general curve
of genus 3 over an algebraically closed field k of arbitrary characteristic and
η ∈ Pic0(C)3 is a nontrivial divisor class of 3-torsion on C.

As was observed in [B-C04, Lemma (2.18)], if C is a general curve of
genus 3 and η ∈ Pic0(C)3 is a nontrivial 3-torsion divisor class, then we
have a morphism ϕη := ϕ|KC+η| × ϕ|KC−η| : C → P

1 × P
1, corresponding

to the sum of the linear systems |KC + η| and |KC − η|, which is birational
onto a curve Γ ⊂ P

1 × P
1 of bidegree (4, 4). Moreover, Γ has exactly six

ordinary double points as singularities, located in the six points of the set
S := {(x, y)|x �= y, x, y ∈ {0, 1,∞}}.

In [B-C04] we only gave an outline of the proof (and there is also a minor
inaccuracy). Therefore we dedicate the first section of this article to a detailed
geometrical description of such pairs (C, η), where C is a general curve of genus
3 and η ∈ Pic0(C)3 \ {0}.

The main result of the first section is the following:

Theorem 1.1. Let C be a general (in particular, nonhyperelliptic) curve of
genus 3 over an algebraically closed field k (of arbitrary characteristic) and
η ∈ Pic0(C)3 \ {0}.
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Then the rational map ϕη : C → P
1 × P

1 defined by

ϕη := ϕ|KC+η| × ϕ|KC−η| : C → P
1 × P

1

is a morphism, birational onto its image Γ , which is a curve of bidegree (4, 4)
having exactly six ordinary double points as singularities. We can assume, up
to composing ϕη with a transformation of P

1 × P
1 in PGL(2, k)2, that the

singular set of Γ is the set

S := {(x, y) ∈ P
1 × P

1|x �= y ;x, y ∈ {0, 1,∞}}.

Conversely, if Γ is a curve of bidegree (4, 4) in P
1×P

1, whose singularities
consist of exactly six ordinary double points at the points of S, its normaliza-
tion C is a curve of genus 3, such that OC(H2 −H1) =: OC(η) (where H1,
H2 are the respective pullbacks of the rulings of P

1 × P
1) yields a nontrivial

3-torsion divisor class, and OC(H1) ∼= OC(KC + η), OC(H2) ∼= OC(KC − η).

From Theorem 1.1 it follows that

M3,η := {(C, η) : C is a general curve of genus 3, η ∈ Pic0(C)3 \ {0}}

is birational to P(V (4, 4,−S))/S3, where

V (4, 4,−S) := H0(OP1×P1(4, 4)(−2
∑

a�=b,a,b∈{∞,0,1}
(a, b))).

In fact, the permutation action of the symmetric group S3 := S({∞, 0, 1})
extends to an action on P

1, so S3 is naturally a subgroup of PGL(2, k). We
consider then the diagonal action of S3 on P

1 × P
1, and observe that S3 is

exactly the subgroup of PGL(2, k)2 leaving the set S invariant. The action
of S3 on V (4, 4,−S) is naturally induced by the diagonal inclusion S3 ⊂
PGL(2, k)2 .

On the other hand, if we consider only the subgroup of order three of
Pic0(C) generated by a nontrivial 3-torsion element η, we see from Theo-
rem 1.1 that we have to allow the exchange of η with −η, which corresponds
to exchanging the two factors of P

1 × P
1. Therefore

M3,〈η〉 := {(C, 〈η〉) : C general curve of genus 3, 〈η〉 ∼= Z/3Z ⊂ Pic0(C)}

is birational to P(V (4, 4,−S))/(S3 ×Z/2), where the action of the generator
σ (of Z/2Z) on V (4, 4,−S) is induced by the action on P

1 × P
1 obtained by

exchanging the two coordinates.
Our main result is the following:

Theorem 1.2. Let k be an algebraically closed field of arbitrary characteristic.
We have:

1) the moduli space M3,η is rational;
2) the moduli space M3,〈η〉 is rational.
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One could obtain the above result abstractly from the method of Bogo-
molov and Katsylo (cf. [B-K85]), but we prefer to prove the theorem while
explicitly calculating the field of invariant functions. It mainly suffices to de-
compose the vector representation of S3 on V (4, 4,−S) into irreducible fac-
tors. Of course, if the characteristic of k equals two or three, it is no longer
possible to decompose the S3-module V (4, 4,−S) as a direct sum of irre-
ducible submodules. Nevertheless, we can write down the field of invariants
and see that it is rational.

Acknowledgment. The research of the authors was performed in the realm of
the DFG Forschergruppe 790 “Classification of algebraic surfaces and compact
complex manifolds.”

2 The geometric description of pairs (C, η)

In this section we give a geometric description of pairs (C, η), where C is a
general curve of genus 3 and η is a nontrivial element of Pic0(C)3, and we
prove Theorem 1.1.

Let k be an algebraically closed field of arbitrary characteristic. We recall
the following observation from [B-C04, p. 374].

Lemma 2.1. Let C be a general curve of genus 3 and η ∈ Pic0(C)3 a non-
trivial divisor class (i.e., η is not linearly equivalent to 0). Then the linear
system |KC + η| is base point free. This holds more precisely under the as-
sumption that the canonical system |KC | does not contain two divisors of the
form Q + 3P , Q + 3P ′, and where the 3-torsion divisor class P − P ′ is the
class of η. This condition for all such η is in turn equivalent to the fact that
C is either hyperelliptic or it is nonhyperelliptic but the canonical image Σ of
C does not admit two inflexional tangents meeting in a point Q of Σ.

Proof. Note that P is a base point of the linear system |KC + η| if and only if

H0(C,OC(KC + η)) = H0(C,OC(KC + η − P )).

Since dimH0(C,OC(KC + η)) = 2 this is equivalent to

dimH1(C,OC(KC + η − P )) = 1.

Since H1(C,OC(KC + η−P )) ∼= H0(C,OC(P − η))∗, this is equivalent to
the existence of a point P ′ such that P − η ≡ P ′ (note that we denote linear
equivalence by the classical notation “≡”). Therefore 3P ≡ 3P ′ and P �= P ′,
whence in particular H0(C,OC(3P )) ≥ 2. By Riemann–Roch we have

dimH0(C,OC(KC − 3P )) =

deg(KC − 3P ) + 1− g(C) + dimH0(C,OC(3P )) ≥ 1.
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In particular, there is a point Q such that Q ≡ KC − 3P ≡ KC − 3P ′.

Going backwards, we see that this condition is not only necessary, but
sufficient. If C is hyperelliptic, then Q+ 3P,Q+ 3P ′ ∈ |KC |, hence P, P ′ are
Weierstrass points, whence 2P ≡ 2P ′, hence P −P ′ yields a divisor class η of
2-torsion, contradicting the nontriviality of η.

Consider now the canonical embedding of C as a plane quartic Σ. Our
condition means, geometrically, that C has two inflection points P , P ′, such
that the tangent lines to these points intersect in Q ∈ C.

We shall show now that the (nonhyperelliptic) curves of genus 3 whose
canonical image is a quartic Σ with the above properties are contained in a
five-dimensional family, whence are special in the moduli spaceM3 of curves
of genus 3.

Let now p, q, p′ be three noncollinear points in P
2. The quartics in P

2

form a linear system of dimension 14. Imposing that a plane quartic contains
the point q is one linear condition. Moreover, the condition that the line
containing p and q has intersection multiplicity equal to 3 with the quartic
in the point p gives three further linear conditions. Similarly for the point p′,
and it is easy to see that the above seven linear conditions are independent.
Therefore the linear subsystem of quartics Σ having two inflection points p, p′,
such that the tangent lines to these points intersect in q ∈ Σ, has dimension
14−3−3−1 = 7. The group of automorphisms of P

2 leaving the three points
p, q, p′ fixed has dimension 2 and therefore the above quartics give rise to a
five-dimensional algebraic subset of M3.

Finally, if the points P, P ′, Q are not distinct, we have (w.l.o.g.) P = Q
and a similar calculation shows that we have a family of dimension 7− 3 = 4.

�


Consider now the morphism

ϕη(:= ϕ|KC+η| × ϕ|KC−η|) : C → P
1 × P

1,

and denote by Γ ⊂ P
1 × P

1 the image of C under ϕη.

Remark 2.2.
1) Since η is nontrivial, either Γ is of bidegree (4, 4), or degϕη = 2 and Γ

is of bidegree (2, 2). In fact, deg ϕη = 4 implies η ≡ −η.
2) We shall assume in the following that ϕη is birational, since otherwise

C is either hyperelliptic (if Γ is singular) or C is a double cover of an elliptic
curve Γ (branched in 4 points).

In both cases C lies in a five-dimensional subfamily of the moduli space
M3 of curves of genus 3.

Let P1, . . . , Pm be the (possibly infinitely near) singular points of Γ , and
let ri be the multiplicity in Pi of the proper transform of Γ . Then, denoting
by H1, respectively H2, the divisors of a vertical, respectively of a horizontal
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line in P
1 × P

1, we have that Γ ∈ |4H1 + 4H2 −
∑m
i=1 riPi|. By adjunction,

the canonical system of Γ is cut out by |2H1 + 2H2 −
∑m
i=1(ri − 1)Pi|, and

therefore

4 = degKC = Γ · (2H1 + 2H2 −
m∑

i=1

(ri − 1)Pi) = 16−
m∑

i=1

ri(ri − 1).

Hence
∑m
i=1 ri(ri − 1) = 12, and we have the following possibilities:

m (r1, . . . , rm)
i) 1 (4)
ii) 2 (3,3)
iii) 4 (3,2,2,2)
iv) 6 (2,2,2,2,2,2)

We will show now that for a general curve only the last case occurs, i.e.,
Γ has exactly 6 singular points of multiplicity 2.

We denote by S the blowup of P
1 × P

1 in P1, . . . , Pm, and let Ei be the
exceptional divisor of the first kind, total transform of the point Pi.

We shall first show that the first case (i.e., m = 1) corresponds to the case
η ≡ 0.

Proposition 2.3. Let Γ ⊂ P
1×P

1 be a curve of bidegree (4, 4) having a point
P of multiplicity 4, such that its normalization C ∈ |4H1 + 4H2 − 4E| has
genus 3 (here, E is the exceptional divisor of the blowup of P

1 × P
1 in P ).

Then
OC(H1) ∼= OC(H2) ∼= OC(KC).

In particular, if Γ = ϕη(C) (i.e., we are in the case m = 1), then η ≡ 0.

Remark 2.4. Let Γ be as in the proposition. Then the rational map P
1 ×

P
1 ��� P

2 given by |H1 +H2−E| maps Γ to a plane quartic. Vice versa, given
a plane quartic C′, blowing up two points p1, p2 ∈ (P1 × P

1) \ C′, and then
contracting the strict transform of the line through p1, p2, yields a curve Γ of
bidegree (4, 4) having a singular point of multiplicity 4.

Proof (of the proposition). Let H1 be the full transform of a vertical line
through P . Then there is an effective divisor H ′

1 on the blowup S of P
1 × P

1

in P such that H1 ≡ H ′
1 +E. Since H1 ·C = E ·C = 4, H ′

1 is disjoint from C,
whence OC(H1) ∼= OC(E). The same argument for a horizontal line through
P obviously shows that OC(H2) ∼= OC(E). If h0(C,OC(H1)) = 2, then the
two projections p1, p2 : Γ → P

1 induce the same linear series on C, thus
ϕ|H1| and ϕ|H2| are related by a projectivity of P

1, hence Γ is the graph of a
projectivity of P

1, contradicting the fact that the bidegree of Γ is (4, 4).
Therefore we have a smooth curve of genus 3 and a divisor of degree 4

such that h0(C,OC(H1)) ≥ 3. Hence h0(C,OC(KC −H1)) ≥ 1, which implies
that KC ≡ H1. Analogously, KC ≡ H2. �
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The next step is to show that for a general curve C of genus 3, cases ii)
and iii) do not occur. In fact, we show:

Lemma 2.5. Let C be a curve of genus 3 and η ∈ Pic0(C)3\{0} such that ϕη
is birational and the image ϕη(C) = Γ has a singular point P of multiplicity
3. Then C belongs to an algebraic subset of M3 of dimension ≤ 5.

Proof. Let S again be the blow up of P
1×P

1 in P , and denote by E the excep-
tional divisor. Then OC(E) has degree 3 and arguing as in Proposition 2.3, we
see that there are points Q1, Q2 on C such that OC(Hi) ∼= OC(Qi+E). There-
fore OC(Q2−Q1) ∼= OC(H2−H1) ∼= OC(KC−η−(KC+η)) ∼= OC(η), whence
3Q1 ≡ 3Q2, Q1 �= Q2. This implies that there is a morphism f : C → P

1 of
degree 3, having double ramification in Q1 and Q2. By Hurwitz’ formula the
degree of the ramification divisor R is 10 and since R ≥ Q1+Q2 f has at most
eight branch points in P

1. Fixing three of these points to be∞, 0, 1, we obtain
(by Riemann’s existence theorem) a finite number of families of dimension at
most 5. �


From now on, we shall make the following

Assumptions.
C is a curve of genus 3, η ∈ Pic0(C)3 \ {0}, and

1) |KC + η| and |KC − η| are base point free;
2) ϕη : C → Γ ⊂ P

1 × P
1 is birational;

3) Γ ∈ |4H1 +4H2| has only double points as singularities (possibly infinitely
near).

Remark 2.6. By the considerations so far, we know that a general curve of
genus 3 fulfills the assumptions for any η ∈ Pic0(C)3 \ {0}.

We use the notation introduced above: we have π : S → P
1 × P

1 and
C ⊂ S, C ∈ |4H1 + 4H2 − 2

∑6
i=1 Ei|.

Remark 2.7. Since S is a regular surface, we have an easy case of Ramanu-
jam’s vanishing theorem: if D is an effective divisor which is 1-connected (i.e.,
for every decomposition D = A+B with A,B > 0, we have A ·B ≥ 1), then
H1(S,OS(−D)) = 0.

This follows immediately from Ramanujam’s lemma ensuringH0(D,OD) =
k, and from the long exact cohomology sequence associated to

0→ OS(−D)→ OS → OD → 0.

In most of our applications we shall show that D is linearly equivalent
to a reduced and connected divisor (this is a stronger property than 1-
connectedness).
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We know now that OC(H1 +H2) ∼= OC(2KC), i.e.,

OC ∼= OC(3H1 + 3H2 −
6∑

i=1

2Ei).

Since h1(S,OS(−H1 −H2)) = 0, the exact sequence

0→ OS(−H1 −H2)→ OS(3H1 + 3H2 −
6∑

i=1

2Ei)

→ OC(3H1 + 3H2 −
6∑

i=1

2Ei) ∼= OC → 0, (1)

is exact on global sections.
In particular, h0(S,OS(3H1 + 3H2 −

∑6
i=1 2Ei)) = 1. We denote by G

the unique divisor in the linear system |3H1 + 3H2 −
∑6
i=1 2Ei|. Note that

C ∩G = ∅ (since OC ∼= OC(G)).

Remark 2.8. There is no effective divisor G̃ on S such that G = G̃ + Ei,
since otherwise G̃ · C = −2, contradicting that G̃ and C have no common
component.

This means that G + 2
∑6
i=1 Ei is the total transform of a curve G′ ⊂

P
1 × P

1 of bidegree (3,3).

Lemma 2.9. h0(G,OG) = 3, h1(G,OG) = 0.

Proof. Consider the exact sequence

0→ OS(KS)→ OS(KS +G)→ OG(KG)→ 0.

Since h0(S,OS(KS)) = h1(S,OS(KS)) = 0, we get

h0(S,OS(KS +G)) = h0(G,OG(KG)).

Now, KS + G ≡ H1 + H2 −
∑6

i=1 Ei, therefore (KS + G) · C = −4, whence
h0(G,OG(KG)) ∼= h0(S,OS(KS +G)) = 0.

Moreover, h1(G,OG(KG)) = h1(S,OS(KS + G)) + 1, and by Riemann–
Roch we infer that, since h1(S,OS(KS + G)) = h0(S,OS(−G)) = 0, that
h1(S,OS(KS +G)) = 2. �


We will show now that G is reduced, hence, by the above lemma, we shall
obtain that G has exactly three connected components.

Proposition 2.10. G is reduced.
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Proof. By Remark 2.8 it is sufficient to show that the image of G in P
1 × P

1,
which we denoted by G′, is reduced.

Assume that there is an effective divisor A′ on P
1×P

1 such that 3A′ ≤ G′.
We clearly have A′∩Γ �= ∅ but, after blowing up the six points P1, . . . , P6, the
strict transforms of A′ and of Γ are disjoint, whence A′ and G′ must intersect
in one of the Pi’s, contradicting Remark 2.8.

If G′ is not reduced, we may uniquely write G′ = 2D1 + D2 with D1, D2

reduced and having no common component. Up to exchanging the factors of
P

1 × P
1, we have the following two possibilities:

i) D1 ∈ |H1 +H2|;
ii) D1 ∈ |H1|.
In the first case also D2 ∈ |H1 + H2| and its strict transform is disjoint from
C. Remark 2.8 implies that D2 meets Γ in points which do not belong to D1,
whence D2 has double points where it intersects Γ . Since D2 · Γ = 8 we see
that D2 has two points of multiplicity 2, a contradiction (D2 has bidegree
(1, 1)).

Assume now that D1 ∈ |H1|. Then, since 2D1 · Γ = 8, D1 contains four of
the Pi’s and D2 passes through the other two, say P1, P2. This implies that
for the strict transform of D2 we have: D̂2 ≡ H1 + 3H2 − 2E1 − 2E2, whence
D̂2 · C = 8, a contradiction. �


We write now G = G1 + G2 + G3 as a sum of its connected components,
and accordingly G′ = G′

1 +G′
2 +G′

3.

Lemma 2.11. The bidegree of G′
j (j ∈ {1, 2, 3}) is (1, 1). Up to renumbering

P1, . . . , P6 we have

G′
1 ∩G′

2 = {P1, P2}, G′
1 ∩G′

3 = {P3, P4} and G′
2 ∩G′

3 = {P5, P6}.

More precisely,

G1 ∈ |H1 +H2 − E1 − E2 − E3 − E4|,
G2 ∈ |H1 +H2 − E1 − E2 − E5 − E6|,
G3 ∈ |H1 +H2 − E3 − E4 − E5 − E6|.

Proof. Assume for instance that G′
1 has bidegree (1, 0). Then there is a subset

I ⊂ {1, . . . , 6} such that G1 = H1−
∑
i∈I Ei. Since G1 ·C = 0, it follows that

|I| = 2. But then G1 · (G − G1) = 1, contradicting the fact that G1 is a
connected component of G.

Let (aj , bj) be the bidegree of Gj : then aj, bj ≥ 1 since a reduced divisor of
bidegree (m, 0) is not connected for m ≥ 2. Since

∑
aj =

∑
bj = 3, it follows

that aj = bj = 1.
Writing now Gj ≡ H1 +H2 −

∑6
i=1 μ(j, i)Ei we obtain

3∑

j=1

μ(j, i) = 2,
6∑

i=1

μ(j, i) = 4,
6∑

i=1

μ(k, i)μ(j, i) = 2
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since Gj · C = 0 and Gk · Gj = 0. We get the second claim of the lemma
provided that we show: μ(j, i) = 1, ∀i, j.

The first formula shows that if μ(j, i) ≥ 2, then μ(j, i) = 2 and μ(h, i) = 0
for h �= j. Hence the second formula shows that

∑

h,k �=j

6∑

i=1

μ(j, i)(μ(h, i) + μ(k, i)) ≤ 2,

contradicting the third formula. �


In the remaining part of the section we will show that each G′
i consists of

the union of a vertical and a horizontal line in P
1 × P

1.
Since OC(KC + η) ∼= OC(H1) and OC(KC − η) ∼= OC(H2) we get:

OC(2H2 −H1) ∼= OC(KC) ∼= OC(2H1 + 2H2 −
6∑

i=1

Ei),

whence the exact sequence

0→ OS(−H1 − 4H2 +
6∑

i=1

Ei)→ OS(3H1 −
6∑

i=1

Ei)

→ OC(3H1 −
6∑

i=1

Ei) ∼= OC → 0. (2)

Proposition 2.12. H1(S,OS(−(H1 + 4H2 −
∑6
i=1 Ei))) = 0.

Proof. The result follows immediately by Ramanujam’s vanishing theorem,
but we can also give an elementary proof using Remark 2.7.

It suffices to show that the linear system |H1 + 4H2 −
∑6
i=1 Ei| contains

a reduced and connected divisor.
Note that G1 + |3H2−E5−E6| ⊂ |H1 +4H2−

∑6
i=1 Ei|, and that |3H2−

E5 − E6| contains |H2 − E5 − E6| + |2H2|, if there is a line H2 containing
P1, P2, else it contains |H2 − E5|+ |H2 − E6|+ |H2|. Since

G1 ·H2 = G1 · (H2 − E5) = G1 · (H2 − E6) = G1 · (H2 − E5 − E6) = 1,

we have obtained in both cases a reduced and connected divisor.
�


Remark 2.13. One can indeed show, using

G2 + |3H2 − E3 − E4| ⊂ |H1 + 4H2 −
6∑

i=1

Ei|,
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G3 + |3H2 − E1 − E2| ⊂ |H1 + 4H2 −
6∑

i=1

Ei|,

that |H1 + 4H2 −
∑6
i=1 Ei| has no fixed part, and then by Bertini’s theorem,

since (H1 +4H2−
∑6

i=1 Ei)
2 = 8− 6 = 2 > 0, a general curve in |H1 +4H2−∑6

i=1 Ei| is irreducible.

In view of Proposition 2.12 the above exact sequence (and the one where
the roles of H1, H2 are exchanged) yields the following:

Corollary 2.14. For j ∈ {1, 2} there is exactly one divisor Nj ∈ |3Hj −∑6
i=1 Ei|.

By the uniqueness of G, we see that G = N1 +N2. Denote by N ′
j the curve

in P
1 × P

1 whose total transform is Nj +
∑6

i=1 Ei.
We have just seen that G is the strict transform of three vertical and three

horizontal lines in P
1 × P

1. Hence each connected component Gj splits into
the strict transform of a vertical and a horizontal line. Since G is reduced, the
lines are distinct (and there are no infinitely near points).

We can choose coordinates in P
1× P

1 such that G′
1 = ({∞}× P

1)∪ (P1 ×
{∞}), G′

2 = ({0} × P
1) ∪ (P1 × {0}), and G′

3 = ({1} × P
1) ∪ (P1 × {1}).

Remark 2.15. The points P1, . . . , P6 are then the points of the set S previ-
ously defined.

Conversely, consider in P
1 × P

1 the set

S := {P1, . . . , P6} = ({∞, 0, 1} × {∞, 0, 1}) \ {(∞,∞), (0, 0), (1, 1)}.

Let π : S → P
1 × P

1 be the blowup of the points P1, . . . , P6 and suppose
(denoting the exceptional divisor over Pi by Ei) that C ∈ |4H1+4H2−

∑
2Ei|

is a smooth curve. Then C has genus 3, OC(3H1) ∼= OC(
∑

Ei) ∼= OC(3H2).
Setting OC(η) := OC(H2 −H1), we obtain therefore 3η ≡ 0.

It remains to show that OC(η) is not isomorphic to OC .

Lemma 2.16. η is not trivial.

Proof. Assume η ≡ 0. Then OC(H1) ∼= OC(H2) and, since Γ has bidegree
(4, 4), we argue as in the proof of Proposition 2.3 that h0(OC(Hi)) ≥ 3,
whence OC(Hi) ∼= OC(KC).

The same argument shows that the two projections of Γ to P
1 yield two

different pencils in the canonical system. It follows that the canonical map
of C factors as the composition of C → Γ ⊂ P

1 × P
1 with the rational map

ψ : P
1 × P

1 ��� P
2 which blows up one point and contracts the vertical and

horizontal line through it. Since Γ has six singular points, the canonical map
sends C birationally onto a singular quartic curve in P

2, contradiction. �
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3 Rationality of the moduli spaces

In this section we will use the geometric description of pairs (C, η), where C
is a genus 3 curve and η a nontrivial 3-torsion divisor class, and study the
birational structure of their moduli space.

More precisely, we shall prove the following:

Theorem 3.1.
1) The moduli space

M3,η := {(C, η) : C a general curve of genus 3, η ∈ Pic0(C)3 \ {0}}

is rational.
2) The moduli space

M3,〈η〉 := {(C, 〈η〉) : C a general curve of genus 3, 〈η〉 ∼= Z/3Z ⊂ Pic0(C)}

is rational.

Remark 3.2. By the result of the previous section, and since any automor-
phism of P

1×P
1 which sends the set S to itself belongs to the group S3×Z/2Z,

it follows immediately that, if we set

V (4, 4,−S) := H0(OP1×P1(4, 4)(−2
∑

i�=j,i,j∈{∞,0,1}
Pij)),

then M3,η is birational to P(V (4, 4,−S))/S3, while M3,〈η〉 is birational to
P(V (4, 4,−S))/(S3×Z/2Z), where the generator σ of Z/2Z acts by coordinate
exchange on P

1 × P
1, whence on V (4, 4,−S).

In order to prove the above theorem we will explicitly calculate the respec-
tive subfields of invariants of the function field of P(V (4, 4,−S)) and show that
they are generated by purely transcendental elements.

Consider the following polynomials of V := V (4, 4,−S), which are invari-
ant under the action of Z/2Z:

f11(x, y) := x2
0x

2
1y

2
0y

2
1 ,

f∞∞(x, y) := x2
1(x1 − x0)2y2

0(y1 − y0)2,

f00(x, y) := x2
0(x1 − x0)2y2

0(y1 − y0)2.

Let ev : V→
⊕

i=0,1,∞ k(i,i) =: W be the evaluation map at the three standard
diagonal points, i.e., ev(f) := (f(0, 0), f(1, 1), f(∞,∞)).

Since fii(j, j) = δi,j , we can decompose V ∼= U ⊕W, where U := ker(ev)
and W is the subspace generated by the three above polynomials, which is
easily shown to be an invariant subspace using the following formulae (∗):
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• (1, 3) exchanges x0 with x1, multiplies x1 − x0 by −1,

• (1, 2) exchanges x1 − x0 with x1, multiplies x0 by −1,

• (2, 3) exchanges x0 − x1 with x0, multiplies x1 by −1.

In fact, ‘the permutation’ representation W of the symmetric group splits
(in characteristic �= 3) as the direct sum of the trivial representation (gen-
erated by e1 + e2 + e3) and the standard representation, generated by
x0 := e1 − e2, x1 := −e2 + e3, which is isomorphic to the representation
on V (1) := H0(OP1(1)).

Note that U = x0x1(x1 − x0)y0y1(y0 − y1)H0(P1 × P
1,OP1×P1(1, 1)).

We write

V (1, 1) := H0(P1 × P
1,OP1×P1(1, 1)) = V (1)⊗ V (1),

where V (1) := H0(P1,OP1(1)), is as above the standard representation of S3.
Now V (1)⊗V (1) splits, in characteristic �= 2, 3, as a sum of irreducible rep-

resentations I⊕A⊕W , where the three factors are the trivial, the alternating
and the standard representation of S3.

Explicitly, V (1) ⊗ V (1) ∼= ∧2(V (1)) ⊕ Sym2(V (1)), and Sym2(V (1)) is
isomorphic to W, since it has the following basis: x0y0, x1y1, (x1−x0)(y1−y0).
We observe for further use that Z/2Z acts as the identity on Sym2(V (1)),
while it acts on ∧2(V (1)), spanned by x1y0 − x0y1 via multiplication by −1.

We have thus seen

Lemma 3.3. If char(k) �= 2, 3, then the S3-module V splits as a sum of
irreducible modules as follows:

V ∼= 2(I⊕W )⊕ A.

Choose now a basis (z1, z2, z3, w1, w2, w3, u) of V, such that the zi’s and the
wi’s are respective bases of I⊕W consisting of eigenvectors of σ = (123), and
u is a basis element of A. The eigenvalue of zi, wi with respect to σ = (123)
is εi−1, u is σ-invariant and (12)(u) = −u.

Note that if (v1, v2, v3) is a basis of I⊕W , such that S3 acts by permutation
of the indices, then z1 = v1 +v2 +v3, z2 = v1 + εv2 + ε2v3, z3 = v1 + ε2v2 + εv3,
where ε is a primitive third root of unity.

Remark 3.4. Since z1, w1 are S3-invariant, P(V (4, 4,−S))/S3 is birational
to a product of the affine line with Spec(k[z2, z3, w2, w3, u]S3), and therefore
it suffices to compute k[z2, z3, w2, w3, u]S3 .

Part 1 of the theorem follows now from the following

Proposition 3.5. Let T := z2z3, S := z3
2, A1 := z2w3 + z3w2, A2 := z2w3 −

z3w2. Then
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k(z2, z3, w2, w3, u)S3 ⊃ K := k(A1, T, S +
T 3

S
, u(S − T 3

S
), A2(S −

T 3

S
)),

and [k(z2, z3, w2, w3, u) : K] = 6, hence k(z2, z3, w2, w3, u)S3 = K.

Proof. We first calculate the invariants under the action of σ = (123), i.e.,
k(z2, z3, w2, w3, u)σ. Note that u, z2z3, z2w3, w2w3,z3

2 are σ-invariant, and
[k(z2, z3, w2, w3, u) : k(u, z2z3, z2w3, w2w3, z

3
2)] = 3. In particular,

k(z2, z3, w2, w3, u)σ = k(u, z2z3, z2w3, w2w3, z
3
2) =: L.

Now, we calculate Lτ , with τ = (12). Observe that L = k(T,A1, A2, S, u).
Since τ(z2) = εz3, τ(z3) = ε2z2 (and similarly for w2, w3), we see that τ(A1) =
A1 and τ(T ) = T . On the other hand, τ(u) = −u, τ(A2) = −A2, τ(S) = T 3

S .

Claim.
Lτ = k(A1, T, S + T 3

S , u(S − T 3

S ), A2(S − T 3

S )) =: E.

Proof of the Claim. Obviously A1,T ,S+ T 3

S ,u(S− T 3

S ), A2(S− T 3

S ) are invariant
under τ , whence E ⊂ Lτ . Since L = E(S), using the equation B ·S = S2 +T 3

for B := S + T 3

S , we get that [E(S) : E] ≤ 2.

This proves the claim and the proposition. �


It remains to show the second part of the theorem. We denote by τ ′ the
involution on k(z1, z2, z3, w1, w2, w3, u) induced by the involution (x, y) �→
(y, x) on P

1 × P
1. It suffices to prove the following

Proposition 3.6. Eτ
′
= k(A1, T, S + T 3

S , (u(S − T 3

S ))2, A2(S − T 3

S )).

Proof. Since [E : k(A1, T, S + T 3

S , (u(S − T 3

S ))2, A2(S − T 3

S ))] ≤ 2, it suffices
to show that the five generators A1, T ,S + T 3

S ,(u(S − T 3

S ))2, A2(S − T 3

S ) are
τ ′-invariant. This will now be proven in Lemma 3.7. �


Lemma 3.7. τ ′ acts as the identity on (z1, z2, z3, w1, w2, w3) and sends u �→
−u.

Proof. We note first that τ ′ acts trivially on the subspace W generated by the
polynomials fii.

Since U = x0x1(x1−x0)y0y1(y1−y0)V (1, 1) and x0x1(x1−x0)y0y1(y1−y0)
is invariant under exchanging x and y, it suffices to recall that the action of
τ ′ on V (1, 1) = V (1) ⊗ V (1) is the identity on the subspace Sym2(V (1)),
while the action on the alternating S3-submodule A sends the generator u to
−u. �
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3.1 Char(k) = 3

In order to prove Theorem 3.1 if the characteristic of k is equal to 3, we
describe the S3-module V as follows:

V ∼= 2W⊕ A,

where W is the (three-dimensional) permutation representation of S3.
Let now z1, z2, z3, w1, w2, w3, u be a basis of V such that the action of S3

permutes z1, z2, z3 (resp. w1, w2, w3), and (123) : u �→ u, (12)u �→ −u. Then
we have:

Proposition 3.8. The S3-invariant subfield k(V)S3 of k(V) is rational.
More precisely, the seven S3-invariant functions

σ1 = z1 + z2 + z3,

σ2 = z1z2 + z1z3 + z2z3,

σ3 = z1z2z3,

σ4 = z1w1 + z2w2 + z3w3,

σ5 = w1z2z3 + w2z1z3 + w3z1z2,

σ6 = w1(z2 + z3) + w2(z1 + z3) + w3(z1 + z2),

σ7 = u(z1(w2 − w3) + z2(w3 − w1) + z3(w1 − w2))

form a basis of the purely transcendental extension over k.

Proof. σ1, . . . , σ7 determine a morphism ψ : V → A
7
k. We will show that ψ

induces a birational map ψ̄ : V/S3 → A
7
k, i.e., for a Zariski open set of V we

have: ψ(x) = ψ(x′) if and only if there is a τ ∈ S3 such that x = τ(x′). By
[Cat, Lemma 2.2] we can assume (after acting on x with a suitable τ ∈ S3)
that xi = x′i for 1 ≤ i ≤ 6, and we know that (setting u := x7, u′ := x′7)

u(x1(x5 − x6) + x2(x6 − x4) + x3(x4 − x5)) =
u′(x1(x5 − x6) + x2(x6 − x4) + x3(x4 − x5)).

Therefore, if B(x1, . . . , x6) := x1(x5 − x6) + x2(x6 − x4) + x3(x4 − x5) �= 0,
this implies that u = u′. �


Therefore, we have shown part 1 of Theorem 3.1.
We denote again by τ ′ the involution on k(z1, z2, z3, w1, w2, w3, u) induced

by the involution (x, y) �→ (y, x) on P
1 × P

1. In order to prove part 2 of The-
orem 3.1, it suffices to observe that σ1, . . . , σ6, σ

2
7 are invariant under τ ′ and

[k(σ1, . . . , σ7) : k(σ1, . . . , σ
2
7)] ≤ 2, whence (k(V)S3 )(Z/2Z) = k(σ1, . . . , σ

2
7).

This proves Theorem 3.1.
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3.2 Char(k) = 2

Let k be an algebraically closed field of characteristic 2. Then we can describe
the S3-module V as follows:

V ∼= W⊕ V (1, 1),

where W is the (three-dimensional) permutation representation of S3. We
denote a basis of W by z1, z2, z3. As in the beginning of the chapter, V (1, 1) =
H0(P1 × P

1,OP1×P1(1, 1)). We choose the following basis of V (1, 1): w1 :=
x1y1, w2 := (x0 + x1)(y0 + y1), w3 := x0y0, w := x0y1. Then S3 acts on
w1, w2, w3 by permutation of the indices and

(1, 2) : w �→ w + w3,

(1, 2, 3) : w �→ w + w2 + w3.

Let ε ∈ k be a nontrivial third root of unity. Then Theorem 3.1 (in character-
istic 2) follows from the following result:

Proposition 3.9. Let k be an algebraically closed field of characteristic 2. Let
σ1, . . . , σ6 be as defined in (3.6) and set

v := (w + w2)(w1 + εw2 + ε2w3) + (w + w1 + w3)(w1 + ε2w2 + εw3),

t := (w + w2)(w + w1 + w3).

Then

1) k(z1, z2, z3, w1, w2, w3, w)S3 = k(σ1, . . . , σ6, v);

2) k(z1, z2, z3, w1, w2, w3, w)S3×Z/2Z = k(σ1, . . . , σ6, t).

In particular, the respective invariant subfields of k(V) are generated by
purely transcendental elements, and this proves Theorem 3.1.

Proof (of Proposition 3.9). 2) We observe that Z/2Z (xi �→ yi) acts triv-
ially on z1, z2, z3, w1, w2, w3 and maps w to w + w1 + w2 + w3. It is now
easy to see that t is invariant under the action of S3 × Z/2Z. There-
fore k(σ1, . . . , σ6, t) ⊂ K := k(z1, z2, z3, w1, w2, w3, w)S3×Z/2Z. By [Cat,
Lemma 2.8], [k(z1, z2, z3, w1, w2, w3, t) : k(σ1, . . . , σ6, t)] = 6, and obvi-
ously, [k(z1, z2, z3, w1, w2, w3, w) : k(z1, z2, z3, w1, w2, w3, t)] = 2. Therefore
[k(z1, z2, z3, w1, w2, w3, w) : k(σ1, . . . , σ6, t)] = 12, whenceK = k(σ1, . . . , σ6, t).

1) Note that for W2 := w1 + εw2 + ε2w3, W3 := w1 + ε2w2 + ε3w3,
we have: W 3

2 and W 3
3 are invariant under (1, 2, 3) and are exchanged un-

der (1, 2). Therefore v is invariant under the action of S3 and we have
seen that k(σ1, . . . , σ6, v) ⊂ L := k(z1, z2, z3, w1, w2, w3, w)S3 , in particular
[k(z1, z2, z3, w1, w2, w3, w) : k(σ1, . . . , σ6, v)] ≥ 6. On the other hand, note
that k(z1, z2, z3, w1, w2, w3, w) = k(z1, z2, z3, w1, w2, w3, v) (since v is linear in
w) and again, by [Cat, Lemma 2.8], [k(zi, wi, v) : k(σ1, . . . , σ6, v)] = 6. This
implies that L = k(σ1, . . . , σ6, v). �
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