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Abstract. This is the first in a series of articles on the moduli spaces of Burniat surfaces.
We prove that Burniat surfaces are Inoue surfaces and we calculate their fundamental
groups. As a main result of this paper we prove that every smooth projective surface
which is homotopically equivalent to a primary Burniat surface (i.e., a Burniat surface
with K2 = 6) is indeed a primary Burniat surface.
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Introduction

In a recent joint paper ([BCGP09]) with Fritz Grunewald and Roberto Pignatelli
we constructed many new families of surfaces of general type with pg = 0, hence
we got interested about the current status of the classification of such surfaces, in
particular about the structure of their moduli spaces.

For instance, in the course of deciding which families were new and which were
not new, we ran into the problem of determining whether surfaces with K2 = 4 and
with fundamental group equal to the one of Keum-Naie surfaces were indeed Keum-
Naie surfaces. This problem was solved in [BC09a], where we showed that any
surface homotopically equivalent to a Keum-Naie surface is a Keum-Naie surface,
whence we got a complete description of a connected irreducible component of the
moduli space of surfaces of general type.

We soon realized that similar methods would apply to the ’primary’ Burniat
surfaces, the ones with K2 = 6; hence we got interested about the components of
the moduli space containing the Burniat surfaces.

This article is the first of a series of articles devoted to the so called Bur-
niat surfaces. These are several families of surfaces of general type with pg = 0,
K2 = 6, 5, 4, 3, 2, first constructed by P. Burniat in [Bu66] as ’bidouble covers’ (i.e.,
(Z/2Z)2 Galois covers) of the plane P2 branched on certain configurations of nine
lines.

These surfaces were later considered by Peters in [Pet77], who gave an account
of Burniat’s construction in the modern language of double covers. He missed

∗The present work took place in the realm of the DFG Forschergruppe 790 ”Classification of
algebraic surfaces and compact complex manifolds”.
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however one of the two families with K2 = 4, the ’non nodal’ one. He also cal-
culated (ibidem) the torsion group H1(S, Z) for Burniat’s surfaces (observe that a
surface of general type with pg = 0 has first Betti number b1 = 0). He asserted
that H1(S, Z) ∼= (Z/2Z)K2

S . This result is however correct only for K2 ̸= 2, as we
shall see.

Later, following a suggestion by Miles Reid, another construction of these sur-
faces was given by Inoue in [In94], who constructed ’surfaces closely related to
Burniat’s surfaces’ with a different technique as G2 := (Z/2Z)3-quotients of a
G2-invariant hypersurface X̂ of multidegree (2, 2, 2) in a product of three elliptic
curves.

Another description of the Burniat surfaces as ’singular bidouble covers’ was
later given in [Cat99], where also other examples were proposed of ’Burniat type
surfaces’. These however turn out to give no new examples.

The important feature of the Burniat surfaces S is that their bicanonical map
is a bidouble cover of a normal Del Pezzo surface of degree K2

S (obtained as the
anticanonical model of the blow up of the plane in the points of multiplicity at
least 3 of the divisor given by the union of the lines of the configuration).

Burniat surfaces with K2 = 6 were studied from this point of view by Mendes-
Lopes and Pardini in [MLP01].

Although Burniat surfaces had been known for a long time, we found that their
most important properties were yet to be discovered, and we devote two articles
to show in particular that the four families of Burniat surfaces, the ones with
K2 = 6, 5 respectively, and the two ones with K2 = 4 (the nodal and the non
nodal one) are irreducible connected components of the moduli space of surfaces
of general type.

Since there is no reference known where it is proved that Burniat’s surfaces are
exactly Inoue’s surfaces, we start by giving in the present paper a proof of this
fact.

This is crucial in order to calculate the fundamental groups of Burniat’s surfaces
with K2 = 6, 5, 4, 3, 2. Our proof confirms the results stated by Inoue without
proof in his beautiful paper, except for K2 = 2 where Inoue’s claim turns out to
be wrong.

Our proof combines the ’transcendental’ description given by Inoue with deli-
cate algebraic calculations, which are based on explicit algebraic normal forms for
the 2-torsion of elliptic curves, described in the first section.

We first prove the following:

Theorem 0.1. Let S be the minimal model of a Burniat surface.
i) K2

S = 6 =⇒ π1(S) = Γ, H1(S, Z) = (Z/2Z)6;
ii) 3 ≤ K2

S ≤ 5 =⇒ π1(S) = H ⊕ (Z/2Z)K2−2, H1(S, Z) = (Z/2Z)K2
;

iii) K2 = 2 =⇒ π1(S) = H1(S, Z) = (Z/2Z)3.
Here H denotes the quaternion group of order 8, while Γ is a group of affine trans-
formations on C3, explicitly described in section 3.

The main result of this article is however the following theorem:
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Theorem 0.2. Let S be a smooth complex projective surface which is homotopi-
cally equivalent to a primary Burniat surface. Then S is a Burniat surface.

We can then use this result to give an alternative, and less involved proof of
the following result due to Mendes-Lopes and Pardini ([MLP01]).

Theorem 0.3. The subset of the Gieseker moduli space corresponding to primary
Burniat surfaces is an irreducible connected component, normal, rational and of
dimension equal to 4.

In [MLP01] openness is shown (using Burniat’s description of a primary Burniat
surface) by standard local deformation theory of bidouble covers. We give an
alternative proof of this result using Inoue’s description.

For the closedness, Mendes Lopes and Pardini use their characterization of
primary Burniat surfaces as exactly those surfaces with pg = 0, K2 = 6 such that
the bicanonical map has degree 4.

Our proof is much less involved. It only uses the description of the fundamental
group as an affine group of transformations of C3.

Moreover we prove the rationality of the moduli space of primary Burniat
surfaces.

In the second article we shall show that the Burniat surfaces with K2 = 5
yield an irreducible connected component of dimension 3 in the moduli space of
surfaces of general type. Instead, there are two different configurations in the plane
giving Burniat surfaces with K2 = 4. We shall show that, in fact, both yield an
irreducible connected component of dimension 2 in the moduli space of surfaces of
general type.

This is interesting, since it follows that the bicanonical map of S is a bidouble
cover of a Del Pezzo surface of degree K2

S for all the surfaces in the connected
component.

There is only one Burniat surface with K2 = 2, and since its fundamental group
is (Z/2Z)3, it turns out to be a surface in the 6 dimensional family of standard
Campedelli surfaces ([Miy77]), for which the bicanonical map is then a degree 8
covering of the plane.

We analyse it briefly in the last section. In fact, at the moment of completing
the paper we became aware of the article [Ku04] where the author had already
pointed out and corrected the errors of [In94] and [Pet77] on the fundamental
group and the first homology of the Burniat surface with K2 = 2.

1. The Legendre and other normal forms for 2-torsion of el-
liptic curves

This section reviews classical mathematics which will be reiteratedly used in the
sequel.

The Legendre form of an elliptic curve is given by an equation of the form

y2 = (ξ2 − 1)(ξ2 − a2).



52 I. Bauer, F. Catanese

It yields a curve E ′ of genus 1 as a double cover of P1 branched on the 4 points
ξ = ±1, ξ = ±a.

These 4 points yield 4 points on E ′ , P ′
1, P

′
−1, P

′
a, P ′

−a, which correspond to the
2-torsion points, once any of them is fixed as the origin, as we shall more amply
now illustrate.

We consider now 3 automorphisms of order 2 of E ′ defined by:

g′1(ξ, y) := (−ξ,−y), g′2(ξ, y) := (ξ,−y), g′3(ξ, y) := (−ξ, y).

We get in this way an action of (Z/2Z)2 on E ′ such that the quotient is P1, with
coordinate u := ξ2.

Clearly the quotient by g′2 is the original P1 with coordinate ξ, hence g′2 corre-
sponds to multiplication by −1 on the elliptic curve, once we fix one of the above
points as the origin.

The quotient of E ′ by g′3 is instead the smooth curve of genus 0, given by the
conic y2 = (u − 1)(u − a2).

What is more interesting is the quotient of E ′ by g′1: the invariants are u and
r := ξy, thus we obtain as quotient the elliptic curve

E := {r2 = u(u − 1)(u − a2)}

in Weierstrass normal form.
This shows that g′1 is the translation by a 2-torsion element η′. By looking at

the action of g′1 on the 4 above points, we see that η′ is the class of the degree zero
divisor [P ′

1] − [P ′
−1]. In other words, the divisor classes of degree 0

η′ := [P ′
1] − [P ′

−1] = [P ′
a] − [P ′

−a], η′′ := [P ′
1] − [P ′

a] = [P ′
−1] − [P ′

−a]

generate Pic0(E ′)[2] ∼= (Z/2Z)2.
We can now also understand that the automorphism g′3 , which is the product

g′1g
′
2 = g′2g

′
1, has as fixed points the 4 points lying over ξ = 0 and ξ = ∞. These

correspond to the 4-torsion points whose associated translation has as square the
translation by the 2-torsion point η′.

More importantly, we want to give now a nicer form for the group of translations
of order 2 of an elliptic curve (this leads to the theory of 2-descent on an elliptic
curve). This form will be used in the sequel, but in another coordinate system for
the line P1 with coordinate ξ.

To this purpose, let us consider the curve C defined by

v2 = (ξ2 − 1), w2 = (ξ2 − a2).

We shall show that this curve is the same elliptic curve E which we had above.
In fact, setting y := vw, we see that we obtain C as a double cover of E ′, which

is unramified (as we see by calculating the ramification of the (Z/2Z)2-Galois cover
of P1 with coordinate ξ).

The transformations of order 2

g1 : (ξ, v, w) (→ (ξ,−v,−w), f2 : (ξ, v, w) (→ (−ξ, v,−w),
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f3 : (ξ, v, w) (→ (−ξ,−v, w)

generate a group H ∼= (Z/2Z)2 such that the quotient curve is the elliptic curve E ,
since the invariants are ξ2 = u, v2 = u − 1, w2 = u − a2, ξvw = ξy = r.

The quotients by the above involutions are respectively E ′, the elliptic curve

E ′′ := {t2 = (v2 + 1)(v2 + 1 − a2)}

(where we have set t := ξw), and the elliptic curve

E ′′′ := {s2 = (w2 + a2)(w2 + a2 − 1)}

(where we have set s := ξv).
The first conclusion is that C is isomorphic to E , the group H is the group of

translations by the 2-torsion points of E , whereas the quotient map C → E = C/H
is multiplication by 2 in the elliptic curve C ∼= E .

We have another group G ∼= (Z/2Z)2 acting on C ∼= E , namely the one with
quotient the P1 with coordinate ξ. Here, we set

g2 : (ξ, v, w) (→ (ξ,−v, w), g3 := g1g2 = g2g1 : (ξ, v, w) (→ (ξ, v,−w).

Again, g1 corresponds to translation by a 2-torsion element η, while we view
g2 as multiplication by −1. The fixed points of g2 are the points with v = 0, i.e.,
the 4 points with v = 0, ξ = ±1, w = ±

√
1 − a2. Translation by η then acts on

them simply by multiplying their w coordinate by −1.
An important observation is that the covering C → P1, where P1 has coordinate

u, is a (Z/2Z)3-Galois cover of the P1 with coordinate u which is the maximal
Galois covering of P1 branched on the 4 points 0, 1, a2,∞ and with group of the
form (Z/2Z)m.

It would be nice if also for surfaces one could treat such Galois covers with
group (Z/2Z)m in the same elementary way . This however can be done only in
the birational setting, since in dimension ≥ 2 we have different normal models for
the same function field. Hence we have to resort to the theory of abelian covers,
developed in [Cat84], [Par91], [Cat99].

In this biregular theory, coverings are described through equations holding in
certain vector bundles. To compare the surface case with the curve case it is
therefore useful first of all to rewrite the above (Z/2Z)3-Galois cover in terms of
homogeneous coordinates.

And, for later calculations, it will be convenient to replace the points ξ = ±1
with the points 0,∞. We replace then the affine coordinates (1 : ξ) by coordinates
(x′ : x) with x

x′ = ξ−1
ξ+1 .

We can then rewrite the (Z/2Z)2 cover as the normalization of the curve in
P1 × P1 × P1 given by

{(v′ : v), (w′ : w), (x′ : x) | v2x′ = v′
2
x, w2x′2 = w′2(x2 − xx′(b +

1
b
) + x′2)}.

Now the involution exchanging pairs of branch points is simply the involution
(x′ : x) → (x : x′). The normalization is obtained simply by considering the curve
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of genus 1 which is the subvariety of the vector bundle whose sheaf of sections on
P1 is OP1(1) ⊕OP1(1), given by equations

V 2 = xx′, W 2 = (x2 − xx′(b +
1
b
) + x′2),

which is shorthand notation for the following two equations in the local chart
outside x′ = 0, respectively in the local chart outside x = 0:

(
v

v′
)
2

= (
x

x′ ), (
w

w′ )
2

= (
x

x′ )
2
− (b +

1
b
)
x

x′ + 1,

(
v′

v
)
2

= (
x′

x
), (

w

w′
x′

x
)
2

= (
x′

x
)
2

− (b +
1
b
)
x′

x
+ 1.

In other words, we have v2 = x, v′2 = x′, hence V = vv′. While, setting W :=
( w

w′ )x′, we get W 2 = (x2 − xx′(b + 1
b ) + x′2). We have now the group (Z/2Z)3

acting on C by the following transformations

g1 : ((x′ : x), (v′ : v), (w′ : w)) (→ ((x′ : x), (v′ : −v), (w′ : −w)),

f2 : ((x′ : x), (v′ : v), (w′ : w)) (→ ((x : x′), (v : v′), (w′x : −wx′)),

f3 : ((x′ : x), (v′ : v), (w′ : w)) (→ ((x : x′), (−v : v′), (w′x : wx′)),

g2 : ((x′ : x), (v′ : v), (w′ : w)) (→ ((x′ : x), (v′ : −v), (w′ : w)),

g3 = g1g2 : ((x′ : x), (v′ : v), (w′ : w)) (→ ((x′ : x), (v′ : v), (w′ : −w)).

The sections V and W are clearly eigenvectors for the group action. It is easy to
see, in view of the above table, that the image of V = vv′ equals −V, V,−V,−V, V
respectively, while the image of W equals −W,−W,W,W,−W respectively.

2. Burniat surfaces are Inoue surfaces

The aim of this section is to show that Burniat surfaces are Inoue surfaces. This
fact seems to be known to the experts, but, since we did not find any reference, we
shall provide a proof of this assertion, which is indeed crucial for our main result.

In [Bu66], P. Burniat constructed a series of families of surfaces of general
type with K2 = 6, 5, 4, 3, 2 and pg = 0 (of respective dimensions 4, 3, 2, 1, 0) as
singular bidouble covers (Galois covers with group (Z/2Z)2) of the projective plane
branched on 9 lines. We briefly recall the construction.

Let P1, P2, P3 ∈ P2 be three non collinear points and denote by Y := P̂2(P1, P2, P3)
the blow up of P2 in P1, P2, P3.

Y is a Del Pezzo surface of degree 6 and it is the closure of the graph of the
rational map

ϵ : P2 !!" P1 × P1 × P1

such that
ϵ(y1 : y2 : y3) = ((y2 : y3), (y3 : y1), (y1 : y2)).
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It is immediate to observe that Y ⊂ P1 × P1 × P1 is the following hypersurface of
type (1, 1, 1):

Y = {((x′
1 : x1), (x′

2 : x2), (x′
3 : x3)) | x1x2x3 = x′

1x
′
2x

′
3}.

Lemma 2.1. Consider the cartesian diagram

p−1(Y )
p !!

""

Y

i

""
P1 × P1 × P1

p
!! P1 × P1 × P1

where p : P1 × P1 × P1 → P1 × P1 × P1 is the (Z/2Z)3 -Galois covering given by
xi = v2

i , x′
i = (v′i)2. Then p−1(Y ) splits as the union p−1(Y ) = Z ∪ Z ′ of two

degree 6 Del Pezzo surfaces, where

Z := {((v1 : v′1), (v2 : v′2), (v3 : v′3)) : v1v2v3 = v′1v
′
2v

′
3}

and
Z ′ := {((v1 : v′1), (v2 : v′2), (v3 : v′3)) : v1v2v3 = −v′1v

′
2v

′
3}.

And p|Z induces on P2 the Fermat squaring map

(y0 : y1 : y2) (→ (y2
0 : y2

1 : y2
2).

Moreover, Z∩Z ′ = {v1v2v3 = v′1v
′
2v

′
3 = 0}, which is the union of 6 lines yielding in

each Del Pezzo surface the fundamental hexagon of the blow up of P2 in three non
collinear points (i.e., the pull back of the triangle with vertices the three points).

Proof. The equation of p−1(Y ) is x1x2x3 = x′
1x

′
2x

′
3, i.e.,

(v1v2v3)2 = (v′1v
′
2v

′
3)

2.

The surface Z is invariant under the subgroup

Go ⊂ { 1,−1}3 ∼= (Z/2Z)3, Go ∼= (Z/2Z)2,

Go = {(ϵi) ∈ {±1}3|
∏

i

ϵi = 1}.

Go acts on Z by sending vi (→ ϵivi, v′i (→ v′i, and this is easily seen to give on P2

the Galois group of the Fermat squaring map.

We denote by Ei the exceptional curve lying over Pi and by Di,1 the unique
effective divisor in |L−Ei −Ei+1|, i.e., the proper transform of the line yi−1 = 0,
side of the triangle joining the points Pi, Pi+1.

For the present choice of coordinates Ei is the side xi−1 = x′
i+1 = 0 of the

hexagon, while Di,1 is the side xi = x′
i+1 = 0 of the hexagon.
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Consider on Y the following divisors

Di = Di,1 + Di,2 + Di,3 + Ei+2 ∈ |3L − 3Ei − Ei+1 + Ei+2|,

where Di,j ∈ |L−Ei|, for j = 2, 3, Di,j ̸= Di,1, is the proper transform of another
line through Pi and Di,1 ∈ |L − Ei − Ei+1| is as above. Assume also that all the
corresponding lines in P2 are distinct, so that D :=

∑
i Di is a reduced divisor.

Observe that all the indices in {1, 2, 3} have here to be understood as residue
classes modulo 3.

Note that, if we define the divisor Li := 3L − 2Ei−1 − Ei+1, then

Di−1 + Di+1 = 6L − 4Ei−1 − 2Ei+1 ≡ 2Li,

and we can consider (cf. [Cat99]) the associated bidouble cover X → Y branched
on D :=

∑
i Di (but with different ordering of the indices: we take here one which

is more apt for our notation).
We recall that this precisely means the following: let Di = div(δi), and let ui

be a fibre coordinate of the geometric line bundle Li, whose sheaf of holomorphic
sections is OY (Li). Then X ⊂ L1 ⊕ L2 ⊕ L3 is given by the equations:

u1u2 = δ1u3, u2
1 = δ3δ1;

u2u3 = δ2u1, u2
2 = δ1δ2;

u3u1 = δ3u2, u2
3 = δ2δ3.

From the birational point of view, we are simply adjoining to the function field
of P2 two square roots, namely

√
∆1
∆3

and
√

∆2
∆3

, where ∆i is the cubic polynomial
in C[x0, x1, x2] whose zero set has Di as strict transform.

This shows clearly that we have a Galois cover with group (Z/2Z)2. The equa-
tions above give a biregular model X which is nonsingular exactly if the divisor
D does not have points of multiplicity 3 (there cannot be points of higher mul-
tiplicities). These points give then quotient singularities of type 1

4 (1, 1), i.e., the
quotient of C2 by the action of (Z/4Z) sending (u, v) (→ (iu, iv) (or, equivalently ,
the affine cone over the 4-th Veronese embedding of P1).

This (cf. [Cat08] for more details) can be seen by an elementary calculation.
Assume in fact that δ1, δ2, δ3 are given in local holomorphic coordinates by x, y, x−
y, and that we define locally wi as the square root of δi. Then:

w2
1 = x, w2

2 = y, w2
3 = x − y ⇒ w2

3 = w2
1 − w2

2.

Therefore the singularity is an A1 singularity, quotient of C2 by the action of
(Z/2Z) sending (u, v) (→ (−u,−v) (here, w3 = uv, u2 = w1 + w2, v2 = w1 − w2).
The action of (Z/4Z) on C2 induces the action of (Z/2Z) on the A1 singularity,
sending wi (→ −wi, ∀i. Finally, the functions ui = wi+1wi+2 and w2

i = δi generate
the (Z/4Z)-invariants, subject to the linear relation δ1 − δ2 = δ3.

The singularity can be resolved by blowing up the point x = y = 0, and
then the inverse image of the exceptional line is a smooth rational curve with self
intersection −4.
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Definition 2.2. A primary Burniat surface is a surface constructed as above, and
which is moreover smooth. It is then a minimal surface S with KS ample, and
with K2

S = 6, pg(S) = q(S) = 0.
A secondary Burniat surface is a surface constructed as above, and which more-

over has 1 ≤ m ≤ 2 singular points (necessarily of the type described above). Its
minimal resolution is then a minimal surface S with KS nef and big, and with
K2

S = 6 − m, pg(S) = q(S) = 0.
A tertiary Burniat surface is a surface constructed as above, and which more-

over has 3 ≤ m ≤ 4 singular points (necessarily of the type described above). Its
minimal resolution is then a minimal surface S with KS nef and big, and with
K2

S = 6 − m, pg(S) = q(S) = 0.

Remark 2.1. 1) We remark that for K2
S = 4 there are two possible types of

configurations. The one where there are three collinear points of multiplicity at
least 3 for the plane curve formed by the 9 lines leads to a Burniat surface S which
we call of nodal type, and with KS not ample, since the inverse image of the
line joining the 3 collinear points is a (-2)-curve (a smooth rational curve of self
intersection −2).

In the other cases with K2
S = 4, 5, instead, KS is ample.

2) In the nodal case, if we blow up the two (1, 1, 1) points of D, we obtain a weak
Del Pezzo surface, since it contains a (-2)-curve. Its anticanonical model has a
node (an A1-singularity, corresponding to the contraction of the (-2)-curve). In
the non nodal case, we obtain a smooth Del Pezzo of degree 4.

This fact has obviously been overlooked by [Pet77], since he only mentions the
nodal case.

In the sequel to this paper we shall show that in the case of secondary Bur-
niat surfaces with K2

S = 4 these two families indeed give two different connected
components of dimension 2 in the moduli space. And also that secondary Burniat
surfaces with K2

S = 5 form a connected component of dimension 3 in the moduli
space.
3) We illustrate the possible configurations in the plane in figure 1.

In [In94] Inoue constructed a series of families of surfaces with K2 = 6, 5, 4, 3, 2
and pg = 0 (of respective dimensions 4, 3, 2, 1, 0, exactly as for the Burniat surfaces)
as the (Z/2Z)3 quotient of an invariant hypersurface of type (2, 2, 2) in a product of
three elliptic curves. As already mentioned, it seems to be known to the specialists
that these Inoue’s surfaces are exactly the Burniat’s surfaces, but for lack of a
reference we show here:

Theorem 2.3. Burniat’s surfaces are exactly Inoue’s surfaces.

Proof. Consider as in lemma 2.1 the cartesian diagram

p−1(Y )
p !!

""

Y

i

" "
P1 × P1 × P1

p
!! P1 × P1 × P1
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P1

P3

P2 P1

P3

P2

P4

P2

P3

P1
P1

P3

P2

P4

P5

P1

P3

P2

P6

P4
P5

P3

P4

P2

P6
P1

P5

P7

K2=6 K2=5

K2=4
nodal

P4

P5

K2=4
non-
nodal

K2=3 K2=2

Figure 1. Configurations of lines
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where p : P1 × P1 × P1 → P1 × P1 × P1 is the (Z/2Z)3 -Galois covering given by
xi = v2

i , x′
i = (v′i)2. Then p−1(Y ) splits as the union of two degree 6 Del Pezzo

surfaces p−1(Y ) = Z ∪ Z ′, where

Z := {((v1 : v′1), (v2 : v′2), (v3 : v′3)) : v1v2v3 = v′1v
′
2v

′
3}

and
Z ′ := {((v1 : v′1), (v2 : v′2), (v3 : v′3)) : v1v2v3 = −v′1v

′
2v

′
3}.

Recall that the subgroup of (Z/2Z)3 stabilizing Z is Go = {(ϵi) ∈ {±1}3|
∏

i ϵi =
1}.

We can further extend the previous diagram by considering a (Z/2Z)6 Galois-
covering p̂ : E1 × E2 × E3 → P1 ×P1 ×P1 obtained by taking, with different choices
of the (x′ : x) coordinates, the direct product of three (Z/2Z)2 Galois-coverings
Ei → P1 as in section 1.

What we have now explained is summarized in the bottom two lines of the
following commutative diagram, where X̂ is defined as the inverse image of the
Del Pezzo surface Z.

X̂
G2

!!

î

""

X = X̂/G2

##!!!!!!!!!!!!!!

X̂ ∪ X̂ ′ !!

""

Z ∪ Z ′

""

!! Y

""
E1 × E2 × E3

(Z/2)3 !! P1 × P1 × P1
(Z/2)3 !! P1 × P1 × P1.

Note that the vertical map i : X̂ ∪ X̂ ′ ↪→ E1 × E2 × E3 is the inclusion of X̂ ∪ X̂ ′ as
a divisor of multidegree (4, 4, 4) splitting as a union of two divisors of respective
multidegrees (2, 2, 2).

Next we want to show that X̂ is a (Z/2Z)3 Galois covering of X, ramified only
in the points of type 1

4 (1, 1) (and hence étale in the case of a primary Burniat X).
In fact, the stabilizer of X̂ is

G1 := {(ϵi, ϵ′i) ∈ {±1}3 × {±1}3|
∏

i

ϵi = 1} ∼= (Z/2Z)5.

The action of G1 makes X̂ a (Z/2Z)5 Galois covering of Y , and we claim that we
obtain X as an intermediate cover by setting

ui = Wi−1Wiviv
′
i.

Let us denote (Di,2+Di,3) by D′
i. This is the divisor defined by a section δ′i = 0

which is the pull back of a homogeneous polynomial of degree 2 on the ith copy of
P1 (this polynomial is the polynomial (x2

i − xix′
i(bi + 1

bi
) + x′

i
2) in the notation of

section 1). Let us then write

Di = (Di,1 + Ei+2) + (Di,2 + Di,3) = Di,1 + Ei+2 + D′
i.



60 I. Bauer, F. Catanese

Observe that div(xi) = Di,1 + Ei+1, div(x′
i) = Di−1,1 + Ei−1, whence

Di + Di−1 = D′
i + D′

i−1 + Di,1 + Ei+2 + Di−1,1 + Ei+1 = div(δ′iδ
′
i−1xix

′
i).

Now, the (Z/2Z)2 Galois- covering of the ith copy of P1 is given by:

(v′ivi)2 = xix
′
i, W 2

i = δ′i.

Since
u2

i = δiδi−1,

we see that
u2

i = δiδi−1 = δ′iδ
′
i−1xix

′
i = (WiWi−1viv

′
i)

2.

Whence we have established our claim that setting

ui = Wi−1Wiviv
′
i ,

we get a mapping X̂ → X.
We also see that X̂ → X is Galois with Galois group the subgroup G2 < G1

leaving each ui invariant, which, by the above formulae, is given by

{(ϵi, ϵ′i) ∈ G1|ϵ′i−1ϵ
′
iϵi = 1, i ∈ {1, 2, 3}} ∼= (Z/2Z)3.

The last isomorphism follows since the ϵ′i’s determine ϵi = ϵ′i−1ϵ
′
i.

A natural basis for G2 ≤ G1 ≤ (Z/2Z)6 ∼= (Z/2Z)3 ⊕ (Z/2Z)3 is given by

(

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
1
1
0

⎞

⎠) =: g1, (

⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
0
1
1

⎞

⎠) =: g2, (

⎛

⎝
0
0
1

⎞

⎠ ,

⎛

⎝
1
0
1

⎞

⎠) =: g3.

Therefore, if zi is a uniformizing parameter for the elliptic curve Ei, with zi = 0
corresponding to the origin of Ei, we see that the action of G2 on E1 × E2 × E3 (cf.
section 1) is given as follows:

g1

⎛

⎝
z1

z2

z3

⎞

⎠ =

⎛

⎝
z1 + η1

−z2

z3

⎞

⎠ , g2

⎛

⎝
z1

z2

z3

⎞

⎠ =

⎛

⎝
z1

z2 + η2

−z3

⎞

⎠ , g2

⎛

⎝
z1

z2

z3

⎞

⎠ =

⎛

⎝
−z1

z2

z3 + η3

⎞

⎠ .

Remark 2.2. If X is a primary Burniat surface, then X̂ → X is an étale (Z/2Z)3-
covering.

Instead, for each (1, 1, 1) - point of D = D1 + D2 + D3, X has a singular point
of type 1

4 (1, 1), and X̂ → X is ramified in exactly these singular points, yielding 4
nodes on X̂ for each one of these singular points on X.

Since X̂ is a divisor of type (2, 2, 2) invariant by the action of G2, we have seen
that any Burniat surface X is an Inoue surface.

Conversely, assume that X = X̂/G2 is an Inoue surface: since every such G2-
invariant surface X̂ is the pull back of a Del Pezzo surface

Zc := {(v′i, vi)|v1v2v3 − cv′1v
′
2v

′
3 = 0}, (1)

we see that X is a Burniat surface.
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Remark 2.3. In the above equation (1) there is a constant c appearing, whereas
in the previous description we had normalized this constant to be equal to 1.

On each P1 there are the points vi = 0, v′i = 0, hence these coordinates are
determined up to a constant λi. In turn, we have two more branch points, forming
the locus of zeroes of an equation which we normalized as being v2

i +(bi + 1
bi

) viv′i +
v′i

2 = 0. This normalization now determines the constant λi uniquely, and finally
with these choice of coordinates we get the equation (1) with c =

∏
i λi, and we see

that c is a function of b1, b2, b3.

3. The fundamental groups of Burniat surfaces

The aim of this section is to combine our and Inoue’s representation of Burniat
surfaces in order to calculate the fundamental groups of the Burniat surfaces with
K2 = 6, 5, 4, 3, 2.

In [In94] the author gave a table of the respective fundamental groups, but
without supplying a proof. As we shall now see, his assertion is right for K2 =
6, 5, 4, 3 but wrong for the case K2 = 2. So we believe it worthwhile to give a
detailed proof, especially in order to cast away any doubt on the validity of his
assertion for K2 = 6, 5, 4, 3.

Let (E , o) be any elliptic curve, and consider as in section 1 the G = (Z/2Z)2 =
{0, g1, g2, g3 := g1g2} - action given by

g1(z) := z + η, g2(z) = −z,

where η ∈ E is a 2 - torsion point of E .

Remark 3.1. The divisor [o] + [η] ∈ Div2(E) is invariant under G, hence the
invertible sheaf OE([o] + [η]) carries a natural G-linearization.

In particular, G acts on the vector space H0(E ,OE([o] + [η])) which splits then
as a direct sum

H0(E ,OE([o] + [η])) =
⊕

χ∈G∗

H0(E ,OE([o] + [η]))χ

of the eigenspaces corresponding to the characters χ of G.
We shall use a self explanatory notation:

for instance, H0(E ,OE([o]+[η]))+− is the eigenspace corresponding to the character
χ such that χ(g1) = 1, χ(g2) = −1.

We recall the following:

Lemma 3.1 ([BC09a], lemma 2.1). Let E be as above. Then

H0(E ,OE([o] + [η])) = H0(E ,OE([o] + [η]))++ ⊕ H0(E ,OE([o] + [η]))−−.

I.e., H0(E ,OE([o] + [η]))+− = H0(E ,OE([o] + [η]))−+ = 0.
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Let now Ei := C/Λi, i = 1, 2, 3, be three complex elliptic curves, and write
Λi = Zei ⊕ Ze′i. Define now affine transformations γ1, γ2, γ3 ∈ A(3, C) as follows:

γ1

⎛

⎝
z1

z2

z3

⎞

⎠ =

⎛

⎝
z1 + e1

2
−z2

z3

⎞

⎠ , γ2

⎛

⎝
z1

z2

z3

⎞

⎠ =

⎛

⎝
z1

z2 + e2
2

−z3

⎞

⎠ , γ3

⎛

⎝
z1

z2

z3

⎞

⎠ =

⎛

⎝
−z1

z2

z3 + e3
2

⎞

⎠ ,

and let Γ ≤ A(3, C) be the affine group generated by γ1, γ2, γ3 and by the transla-
tions by the vectors e1, e′1, e2, e′2, e3, e′3.

Remark 3.2. Γ contains the lattice Λ1 ⊕ Λ2 ⊕ Λ3, hence Γ acts on E1 × E2 × E3

inducing a faithful action of G2 := (Z/2Z)3 on E1 × E2 × E3.

We prove next the following

Theorem 3.2. Let S be the minimal model of a Burniat surface.

i) K2 = 6 =⇒ π1(S) = Γ, H1(S, Z) = (Z/2Z)6;

ii) K2 = 5 =⇒ π1(S) = H ⊕ (Z/2Z)3, H1(S, Z) = (Z/2Z)5;

iii) K2 = 4 =⇒ π1(S) = H ⊕ (Z/2Z)2, H1(S, Z) = (Z/2Z)4;

iv) K2 = 3 =⇒ π1(S) = H ⊕ (Z/2Z),H1(S, Z) = (Z/2Z)3;

v) K2 = 2 =⇒ π1(S) = H1(S, Z) = (Z/2Z)3.

Here H denotes the quaternion group of order 8.

Remark 3.3. As already said, these results confirm, except for the case K2 = 2,
the results of Inoue [In94], stating that for K2 ≤ 5, π1(S) = H ⊕ (Z/2Z)K2−2.

Proof. i) Let S be the minimal model of a Burniat surface with K2
S = 6. Then,

by the previous section 2, S = X has an étale (Z/2Z)3 Galois covering X̂, which
is a hypersurface of multidegree (2, 2, 2) in the product of three elliptic curves
E1 × E2 × E3. Since X̂ is smooth and ample, by Lefschetz’s theorem π1(X̂) =
π1(E1 × E2 × E3) ∼= Z6.

Γ acts on the universal covering of E1 × E2 × E3
∼= C3, and acts freely on

the invariant hypersurface X̃ ⊂ C3, the universal covering of X̂, with quotient
S = X = X̃/Γ. Hence X̃ is also the universal covering of S = X and π1(S) = Γ.

Next we shall prove that H1(S, Z) = (Z/2Z)6. Since γ2
i = ei, for i = 1, 2, 3, it

follows that Γ is generated by g1, g2, g3, e′1, e
′
2, e

′
3. It is clear that

a) γ1 commutes with e1, e′1, e3, e′3;

b) γ2 commutes with e2, e′2, e1, e′1;

c) γ3 commutes with e2, e′2, e3, e′3.
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Writing tei ∈ A(3, C) for the translation by the vector ei, we see that

γ1te2 = t−1
e2
γ1, γ1te′

2
= t−1

e′
2
γ1;

γ2te3 = t−1
e3
γ2, γ2te′

3
= t−1

e′
3
γ2;

γ3te1 = t−1
e1
γ3, γ3te′

1
= t−1

e′
1
γ3.

This implies that 2e1, 2e′1, 2e2, 2e′2, 2e3, 2e′3 ∈ [Γ,Γ]. Moreover,

γ1γ2

⎛

⎝
z1

z2

z3

⎞

⎠ =

⎛

⎝
z1 + e1

2
−z2 − e2

2
−z3

⎞

⎠ = t−1
e2
γ2γ1,

whence e2 ∈ [Γ,Γ]. Similarly, we see that (as the respective commutators of γ1

with γ3, γ2 with γ3) e1, e3 ∈ [Γ,Γ].
Therefore Γ′ := Γ/⟨e1, e2, e3, 2e′1, 2e′2, 2e′3⟩ surjects onto Γab. But Γ′ is already

abelian, since the morphism

Γ′ → (Z/2Z)3 ⊕ (Z/2Z)3,

mapping the residue classes of γ1, γ2, γ3, e′1, e
′
2, e

′
3 onto the ordered set of coordinate

vectors of (Z/2Z)3 is easily seen to be well defined and an isomorphism. This shows
that H1(S, Z) = (Z/2Z)6.

In order to prove the assertions ii) − v) observe preliminarly that, if X is
the above singular model of S, then, by van Kampen’s theorem, π1(S) ∼= π1(X).
Therefore, for the remaining cases, it suffices to calculate π1(X).

Let X be the above singular model of a Burniat surface with K2 ≤ 5. Consider
the G2 ∼= (Z/2Z)3-Galois cover X̂. Since the singularities of X̂ are only nodes,
π1(X̂) ∼= Z6 by the theorem of Brieskorn-Tyurina (cf. [Brie68], [Brie71], [Tju70]).
By [Arm65], [Arm68] π1(X) ∼= Γ/ Tors(Γ), where Tors(Γ) is the normal subgroup
of Γ generated by all elements of Γ having fixed points on the universal covering
X̃ of X̂ (which is, as we have seen before, a Γ-invariant hypersurface in C3).

Note that the elements in G2 ∼= (Z/2Z)3 induced by the elements

γ1, γ2, γ3, γ1γ2, γ1γ3, γ2γ3 ∈ Γ

do not have fixed points on E1 × E2 × E3. Instead,

γ1γ2γ3

⎛

⎝
z1

z2

z3

⎞

⎠ =

⎛

⎝
−z1 + e1

2
−z2 − e2

2
−z3 − e3

2

⎞

⎠

has as fixed points the 64 points on E1 × E2 × E3 corresponding to vectors in C3

such that
2zi ≡

ei

2
mod Λi,∀i. (2)

Equivalently,

zi ≡
ei

4
mod

1
2
Λi,∀i. (3)
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ii) Let X be the singular model of a Burniat surface with K2 = 5. Then X̂ has 4
nodes (lying over the point P4 ∈ P2, see figure 1.

We observed that if γ ∈ Γ has a fixed point on X̃, then there is a

λ ∈ Z6 ∼= ⟨e1, e2, e3, e
′
1, e

′
2, e

′
3⟩ =: Λ

such that
γ = γ1γ2γ3tλ.

Let now z = (z1, z2, z3) ∈ X̃ ⊂ C3. Then z yields a fixed point of γ1γ2γ3 on X̂ if
and only if there is a λ̂ ∈ Λ such that

2

⎛

⎝
z1

z2

z3

⎞

⎠ =
1
2

⎛

⎝
e1

−e2

−e3

⎞

⎠ + λ̂ ⇐⇒ z =
1
4
ϵ+

λ̂

2
,

where we have set ϵ :=

⎛

⎝
e1

−e2

−e3

⎞

⎠.

We show now that z is a fixed point of a γ as above iff λ = −λ̂. In fact:

γ(z) = γ1γ2γ3tλ(z) = −(z + λ) +
1
2
ϵ =

−1
4
ϵ− λ̂

2
− λ+

1
2
ϵ = z − λ− λ̂.

Modifying z modulo Λ, we replace z by z + λ′, and the corresponding λ̂ gets
replaced by λ̂ + 2λ′; hence we see that γ1γ2γ3tλ has a fixed point on X̃ for all
λ ∈ −λ̂ + 2Λ. Therefore 2Λ is contained in Tors(Γ). Since the above arguments
apply to all remaining cases (ii) - (v) we summarize what we have seen in the
following

Lemma 3.3. If Γ has a fixed point z on the universal covering of X̂ (i.e., we are
in one of the cases ii) - v)), then π1(X) is a quotient of Γ̄ := Γ/2Λ. We have thus
an exact sequence

1 → (Z/2Z)6 → Γ̄ → (Z/2Z)3 → 1.

In particular, we already showed that the fundamental group of a Burniat
surface with K2 ≤ 5 is finite: we are now going to write its structure explicitly.

Remark 3.4. 1) The images of ei, e′j, i, j ∈ {1, 2, 3} in Γ̄ are contained in the
center of Γ̄, i.e., the above exact sequence yields a central extension.
2) Note that over each (1, 1, 1) point of the branch divisor D ⊂ P2 there are 4 nodes
of X̂, which are a G2-orbit of fixed points of γ1γ2γ3 on X̂. Let z ∈ X̃ induce a
fixed point of γ1γ2γ3 on X̂: then z = 1

4ϵ + λ̂z
2 , and the other 3 fixed points in the

orbit are exactly the points induced by γi(z) on X̂, for i = 1, 2, 3. We have:
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γ1(z) = γ1

⎛

⎝
e1
4 + 1

2 (λ̂z)1
−e2
4 − 1

2 (λ̂z)2
−e3
4 + 1

2 (λ̂z)3

⎞

⎠ =
1
4
ϵ+

λ̂γ1(z)

2
.

This implies that

λ̂γ1(z) ≡ λ̂z +

⎛

⎝
e1

e2

0

⎞

⎠ mod 2Λ,

and similarly

λ̂γ2(z) ≡ λ̂z +

⎛

⎝
0
e2

e3

⎞

⎠ mod 2Λ, λ̂γ3(z) ≡ λ̂z +

⎛

⎝
e1

0
e3

⎞

⎠ mod 2Λ.

3) Let X be the singular model of a Burniat surface, and choose w.l.o.g. one of the
points in X̃ over the (1, 1, 1) - point P4 to be z := 1

4ϵ. This is equivalent to λ̂z = 0.
For each (1, 1, 1) point of the branch divisor D ⊂ P1 choose one singular point of
X̂ lying over it.

Let S := {z(4) = z, . . . , z(9 − K2)} be a choice of representatives for each
G2-orbit of points of X̂ lying over the respective (1, 1, 1) - points. Then:

π1(X) = Γ/⟨γ1γ2γ3tλ : λ ∈ −λ̂z + 2Λ, z ∈ S⟩.

In particular, we have the relations:

γ1γ2γ3 = 1,

and, by 2) :
e1 = e2 = e3.

Recall now that γ2
i = ei. Therefore in π1(X) we have:

γ2
1 = γ2

2 = γ2
3 = e1 + e2 + e3.

Thus we get an exact sequence (cf. Lemma 3.3):

1 → (Z/2Z)3 ⊕ (Z/2Z) → π1(X) → (Z/2Z)2 → 1,

where the map ϕ : π1(X) → (Z/2Z)2 is given by γ1 (→ (1, 0), γ2 (→ (0, 1), e′i (→ 0.
This immediately shows that the kernel of ϕ is equal to ⟨e′1, e′2e′3, e1+e2+e3 = γ2

i ⟩.
Let H := {±1,±i,±j,±k} be the quaternion group, and let γ1, γ2, γ3 corre-

spond respectively to i, j,−k: then we obtain an isomorphism

π1(X) ∼= H ⊕ (Z/2Z)3.

This proves the assertion on the fundamental group for Burniat surfaces with
K2 = 5. That H1(S, Z) = (Z/2Z)5 follows, since Hab = (Z/2Z)2.
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iii), iv) First observe that, by the above, if X is the singular model of a Burniat
surfaces with K2 ≤ 5, then π1(X) is the quotient of H ⊕ (Z/2Z)3 by the relations
λ̂z(i) − λ̂z(j) = 0, where z(i) ≠ z(j) ∈ S.

Note that for K2 = 4 (nodal or non nodal), the projections of z(4) and z(5) to
E2, resp. E3, are points whose differences are non trivial 2-torsion elements. Since
each of the corresponding (1, 1, 1) points lies on two different lines D2,2, D2,3,
respectively D3,2, D3,3, the images of z(4) and z(5) under the composition of the
projection to E2 (resp. to E3) with the quotient map E2 → P1 (resp. E3 → P1)
have different x2-value (resp. x3-value).
Claim. The image of λ̂z(4) − λ̂z(5) in ⊕3

i=1e
′
iZ/2Z is non zero.

Proof of the claim. Again, we look at the image of z(4) (resp. z(5)) in E2 → P1

(with coordinate of P1 equal to x2). We have seen that the corresponding (1, 1, 1)
points P4, P5 lie on two different lines D2,2, D2,3, respectively D3,2, D3,3; hence
the respective x2 coordinates of the projection of z(4) and z(5) to P1 are different.

We conclude since the description of the transformations of order 2 of E2 given
by translation by 2-torsion elements (cf. section 1) shows that translation by e2

2 is
the only one which leaves the x2 coordinate invariant. QED for the claim.

Therefore, if X is the singular model of a Burniat surface with K2 = 4, π1(X)
is the quotient of H ⊕ (Z/2Z)3 by an element having a non trivial component in
(Z/2Z)3, hence π1(X) ∼= H ⊕ (Z/2Z)2.

Assume now that X is the singular model of a Burniat surface with K2 = 3.
Here the branch divisor on P2 has three (1, 1, 1)-points. Repeating the above
argument, we see that π1(X) is the quotient of H ⊕ (Z/2Z)3 by λ̂z(4) − λ̂z(5) and
λ̂z(4) − λ̂z(6).

As above, we look at the image in ⊕3
i=1e

′
iZ/2Z and see that they give (up to a

permutation of indices) the elements

⎛

⎝
0
1
1

⎞

⎠,

⎛

⎝
1
0
1

⎞

⎠. This implies that π1(X) is the

quotient of H⊕(Z/2Z)3 by two linear independent relations in (Z/2Z)3. Therefore
π1(X) = H ⊕ (Z/2Z).

v) Let X be the singular model of a Burniat surfaces with K2 = 2.

Remark 3.5. Observe that, by [Rei], [Rei79], [Miy77], |π1(X)| ≤ 9. Since π1(X)
is a quotient of H ⊕ (Z/2Z) by a relation coming from an element of Λ there are
only two possibilities: either π1(X) = H or π1(X) = (Z/2Z)3.

We are going to show that the second alternative holds. Here the branch divisor
D on P2 has four (1, 1, 1)-points P4, P5, P6, P7. As above, π1(X) is the quotient of
H ⊕ (Z/2Z)3 by the relations:

λ̂z(4) − λ̂z(5) = 0, λ̂z(4) − λ̂z(6) = 0, λ̂z(4) − λ̂z(7) = 0,

where z(j) ∈ X̂ is a point lying over Pj .
Looking at figure 1 of the configuration of lines in P2 for the Burniat surface

with K2 = 2, we see that

P4, P5 ∈ D1,2, P4, P6 ∈ D2,2, P4, P7 ∈ D3,2,
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i.e., P4, P5 lie in the same dashed line, but in two different dotted and two different
black lines, P4, P6 lie in the same dotted line, but in two different dashed and two
different black lines, and P4, P7 lie in the same black line, but in two different
dashed and two different dotted lines.

This means that if we look at the image of λ̂z(4)−λ̂z(5), λ̂z(4)−λ̂z(6), λ̂z(4)−λ̂z(7)

in ⊕3
i=1e

′
iZ/2Z we see that they give (up to a permutation of indices) the elements

⎛

⎝
0
1
1

⎞

⎠ ,

⎛

⎝
1
0
1

⎞

⎠ ,

⎛

⎝
1
1
0

⎞

⎠ .

These three vectors are linearly dependent, hence, taking the quotient by these
relations, the rank of ⊕3

i=1e
′
iZ/2Z drops only by two.

In order to determine the component of the image of λ̂z(4)− λ̂z(5), λ̂z(4)− λ̂z(6),
λ̂z(4) − λ̂z(7) in the center of the quaternion group, we have to write the points
z(j), j ∈ {4, 5, 6, 7} more explicitly, using section 1.

Observe that in the case K2 = 2, we have E1 = E2 = E3 =: E . The fixed points
of γ1γ2γ3 are given by wi = 0, i = 1, 2, 3. Setting x′

i = 1, and a :=
√

b, we can
assume w.l.o.g. that

z(4) =

⎛

⎝
(1 : b), (1 : a), (1 : 0)
(1 : b), (1 : a), (1 : 0)
(1 : b), (1 : a), (1 : 0)

⎞

⎠ .

By equation (1), we have v1v2v3 = cv′1v
′
2v

′
3, whence c = a3. W.l.o.g., by (2) of

remark 3.4, we can assume that z(5) is given by

z(5) =

⎛

⎝
(1 : b), (1 : ζ), (1 : 0)
(b : 1), (a : 1), (1 : 0)
(b : 1), (a : 1), (1 : 0)

⎞

⎠ =

⎛

⎝
(1 : b), (1 : ζ), (1 : 0)

f2((1 : b), (1 : a), (1 : 0))
f2((1 : b), (1 : a), (1 : 0))

⎞

⎠ .

We have now to determine ζ in such a way that v1v2v3 = a3v′1v
′
2v

′
3.

For z(5) we have

v1v2v3 = ζ = cv′1v
′
2v

′
3 = a3a2 = a5. (4)

Since by section 1 the only two translations of order 2 leaving (x′ : x) unchanged
are the identity and g1, we have

((1 : b), (1 : ζ), (1 : 0)) = ((1 : b), (1 : a), (1 : 0))

or

((1 : b), (1 : ζ), (1 : 0)) = g1((1 : b), (1 : a), (1 : 0)) = ((1 : b), (1 : −a), (1 : 0)).

Together with equation (4) we get: a5 = ζ = ±a, i.e., a4 = ±1. a4 = 1 is not
possible, because this would imply that b = a2 = ±1, a contradiction to b ̸= 1

b .
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Hence we have that a4 = −1, i.e., ζ = a5 = −a, and we see that the relation
λ̂z(4) − λ̂z(5) = 0 is given by

⟨

⎛

⎝
0
1
1

⎞

⎠ , 1⟩ ∈
3⊕

i=1

e′i(Z/2Z) ⊕ Z/2Z,

where the last summand is the center of the quaternion group.
Using for z(6) and z(7) the same argument as for z(5), we get two further

elements which have to be set equal to zero in the quotient:

⟨

⎛

⎝
1
0
1

⎞

⎠ , 1⟩, ⟨

⎛

⎝
1
1
0

⎞

⎠ , 1⟩ ∈
3⊕

i=1

e′i(Z/2Z) ⊕ Z/2Z.

Taking the sum of these three elements in
⊕3

i=1 e′i(Z/2Z) ⊕ Z/2Z we see that we
get

⟨

⎛

⎝
0
0
0

⎞

⎠ , 1⟩ = 0,

and we have concluded the proof of the theorem.

Remark 3.6. We shall show in the last section how Burniat surfaces with K2 = 2
are classical Campedelli surfaces, i.e., obtained as the tautological (Z/2Z)3 Galois
covering of P2 branched on seven lines.

4. The moduli space of primary Burniat surfaces

In this section we finally devote ourselves to the main result of the paper. First of
all, we show

Theorem 4.1. The subset of the Gieseker moduli space corresponding to primary
Burniat surfaces is an irreducible connected component, normal, rational and of
dimension equal to 4.

This result was already proven in [MLP01] using the fact that the bicanonical
map of the canonical model X ′ of a Burniat surface is exactly the bidouble covering
X ′ → Y ′ onto the normal Del Pezzo surface Y ′ of degree K2

X′ obtained as the
anticanonical model of the weak Del Pezzo surface obtained blowing up not only
the points P1, P2, P3, but also all the other triple points of D.

We shall now give an alternative proof of their theorem.

Proof. The singular model X of a primary Burniat surface is smooth, and has
ample canonical divisor. Hence it equals the minimal model S (and the canonical
model X ′).
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Since X̂ → X is étale with group G2, it suffices to show that the Kuranishi
family of X̂ is smooth. Then it will also follow that the Kuranishi family of X
is smooth, whence the Gieseker moduli space is normal (being locally analytically
isomorphic to the quotient of the base of the Kuranishi family by the finite group
Aut(X)).

Since X̂ ⊂ E1 × E2 × E3 is a smooth hypersurface, setting for convenience
T := E1 × E2 × E3, we have the tangent bundle sequence

0 → ΘX̂ → ΘT ⊗OX̂
∼= O3

X̂
→ OX̂(X̂) → 0

with exact cohomology sequence

0 → C3 → H0(OX̂(X̂)) ∼= C10 →

→ H1(ΘX̂) → H1(ΘT ⊗OX̂) ∼= C9 → H1(OX̂(X̂)) ∼= C3.

Since X̂ moves in a smooth family of dimension 13 = 6 + 7, a fibre bundle
over the family of deformations of the principally polarized Abelian variety T ,
with fibre the linear system P(H0(T,OT (X̂))), it suffices to show that the map
H1(ΘT ⊗OX̂) → H1(OX̂(X̂)) is surjective.

It suffices to observe that H1(ΘT ⊗ OX̂) ∼= H1(ΘT ), H1(OX̂(X̂)) ∼= H2(OT ),
and that, as well known, the above map corresponds via these isomorphisms to the
contraction with the first Chern class of X̂, an element of H1(Ω1

T ) which represents
a non degenerate alternating form. Whence surjectivity follows.

Thus the base of the Kuranishi family of X̂ is smooth (moreover the Kodaira-
Spencer map of the above family is a bijection, but we omit the verification here),
whence the base of the Kuranishi family of X, which is the G2-invariant part of
the base of the Kuranishi family of X̂, is also smooth.

Moreover the Kuranishi family of X fibres onto the family of G2-invariant
deformations of T , which coincides with the deformations of the three individual
elliptic curves.

The fibres of the corresponding morphism between the bases of the respective
families are given by the G2-invariant part of the linear system |X̂|, which we are
going to calculate explicitly as being isomorphic to P1.

We obtain thereby a rational family of dimension 4 parametrizing the primary
Burniat surfaces. This proves the unirationality of the 4 dimensional irreducible
component.

That the irreducible component of the moduli space is in fact a connected
component follows from the more general result below (theorem 4.2).

We calculate now

H0(E1 × E2 × E3, p
∗
1OE1([o1] + [

e1

2
]) ⊗ p∗2OE2([o2] + [

e2

2
]) ⊗ p∗3OE3([o3] + [

e3

2
]))G2

,

where pi : E1 × E2 × E3 → Ei is the i - th projection.
From lemma 3.1 it follows that
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H1 := H0(E1,OE1([o1] + [
e1

2
])) = H+++

1 ⊕ H−+−
1 =

= H0(E1,OE1([o1] + [
e1

2
]))+++ ⊕ H0(E1,OE1([o1] + [

e1

2
]))−+−,

H2 := H0(E2,OE2([o2] + [
e2

2
])) = H+++

2 ⊕ H−−+
2 =

= H0(E2,OE2([o2] + [
e2

2
]))+++ ⊕ H0(E2,OE2([o2] + [

e2

2
]))−−+,

H3 := H0(E3,OE3([o3] + [
e3

2
])) = H+++

3 ⊕ H+−−
3

= H0(E3,OE3([o3] + [
e3

2
]))+++ ⊕ H0(E3,OE3([o3] + [

e3

2
]))+−−.

As a consequence of this, we get

H0(E1×E2×E3, p
∗
1OE1([o1]+ [

e1

2
])⊗p∗2OE2([o2]+ [

e2

2
])⊗p∗3OE3([o3]+ [

e3

2
]))G2

=

(H+++
1 ⊗ H+++

2 ⊗ H+++
3 ) ⊕ (H−+−

1 ⊗ H−−+
2 ⊗ H+−−

3 ) ∼= C2.

We have obtained a 4 - dimensional rational family parametrizing all the pri-
mary Burniat surfaces. This can also be seen in a more direct fashion by the fact
that, fixing 4 points in P2 in general position, we can fix the 3 lines Di,1, i = 1, 2, 3
and 2 lines D1,2, D2,2. Then the other 4 lines vary each in a pencil, hence we get
4 moduli.

In the remaining part of this section, we will prove the following result:

Theorem 4.2. Let S be a smooth complex projective surface which is homotopi-
cally equivalent to a primary Burniat surface. Then S is a Burniat surface.

Proof. Let S be a smooth complex projective surface with π1(S) = Γ.
Recall that γ2

i = ei for i = 1, 2, 3. Therefore Γ = ⟨γ1, e′1, γ2, e′2, γ3, e′3⟩ and we
have the exact sequence

1 → Z6 ∼= ⟨e1, e
′
1, e2, e

′
2, e3, e

′
3⟩ → Γ → (Z/2Z)3 → 1,

where ei (→ γ2
i . If we set Λi := Zei ⊕ Ze′i, i = 1, 2, 3 then

π1(E1 × E2 × E3) = Λ1 ⊕ Λ2 ⊕ Λ3.

We also have the three lattices Λ′
i := Z ei

2 ⊕ Ze′i.



Burniat surfaces I 71

Remark 4.1. 1) Γ is a group of affine transformations on Λ′
1 ⊕ Λ′

2 ⊕ Λ′
3.

2) We have an étale double cover Ei = C/Λi → E ′
i := C/Λ′

i, which is the quotient
by the semiperiod ei

2 of Ei.

Γ has the following three subgroups of index two:

Γ3 := ⟨γ1, e
′
1, e2, e

′
2, γ3, e

′
3⟩,

Γ1 := ⟨γ1, e
′
1, γ2, e

′
2, e3, e

′
3⟩,

Γ2 := ⟨e1, e
′
1, γ2, e

′
2, γ3, e

′
3⟩,

corresponding to three étale double covers of S: Si → S, for i = 1, 2, 3.

Lemma 4.3. The Albanese variety of Si is E ′
i. In particular, q(S1) = q(S2) =

q(S3) = 1.

Proof. Observe once more that

i) γ1 commutes with e1, e′1, e3, e′3;

ii) γ2 commutes with e2, e′2, e1, e′1;

iii) γ3 commutes with e2, e′2, e3, e′3.

Denoting by tei ∈ A(3, C) the translation with vector ei, we see that

γ1te2 = t−1
e2
γ1 γ1te′

2
= t−1

e′
2
γ1;

γ3te1 = t−1
e1
γ3 γ3te′

1
= t−1

e′
1
γ3.

This implies that 2e2, 2e′2, 2e1, 2e′1 ∈ [Γ3,Γ3].
Moreover, γ1γ3 = t−1

e1
γ3γ1, whence already e1 ∈ [Γ3,Γ3]. Therefore we have a

surjective homomorphism

Γ′
3 := Γ3/⟨2e2, 2e′2, e1, 2e′1⟩ = Γ3/(2Z3 ⊕ Z) → Γab

3 = Γ3/[Γ3,Γ3].

Since the images of γ3 and e′3 are in the centre of Γ′
3, we get that Γ′

3 is abelian,
hence H1(S3, Z) = Γab

3 = Γ′
3 and

Γ′
3 = ⟨γ3, e

′
3⟩ ⊕ (Z/2Z)4 = Ze3

2
⊕ Ze′3 ⊕ (Z/2Z)4 = Λ3 ⊕ (Z/2Z)4.

This implies that Alb(S3) = C/Λ′
3 = E ′

3.
The same calculation shows that Γab

i = H1(Si, Z) = Λ′
i ⊕ (Z/2Z)4, whence

Alb(Si) = C/Λ′
i = E ′

i , also for i = 2, 3.

Let now Ŝ → S be the étale (Z/2Z)3 - covering associated to the subgroup
Z6 ∼= ⟨e1, e′1, e2, e′2, e3, e′3⟩ ▹ Γ. Since Ŝ → Si → S, and Si maps to E ′

i (via the
Albanese map), we get a morphism

f : Ŝ → E ′
1 × E ′

2 × E ′
3 = C/Λ′

1 × C/Λ′
2 × C/Λ′

3.
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Since the covering of E ′
1 × E ′

2 × E ′
3 associated to Λ1 ⊕ Λ2 ⊕ Λ3 < Λ′

1 ⊕ Λ′
2 ⊕ Λ′

3 is
E1 × E2 × E3, we see that f factors through E1 × E2 × E3 and the Albanese map of
Ŝ is α̂ : Ŝ → E1 × E2 × E3.

Let Y := α̂(Ŝ) ⊂ T = E1 × E2 × E3 be the Albanese image of Ŝ.
We consider for i ̸= j ∈ {1, 2, 3}, the natural projections

πij : E1 × E2 × E3 → Ei × Ej .

Claim 4.4. If S is homotopically equivalent to a primary Burniat surface, then
for i ̸= j ∈ {1, 2, 3} we have deg(πij ◦ α̂) = 2.

Moreover the cohomology class of the image Y equals 2F1 + 2F2 + 2F3, where
Fi is the pull back of a point in the elliptic curve Ei.

Proof. The degree of πij ◦ α̂ is the index of the image of H4(Ei × Ej , Z) inside
H4(Ŝ, Z). But the former equals ∧4(Λi ⊕Λj), hence we see that this number is an
invariant of the cohomology algebra of Ŝ.

There remains to show that, identifying the first cohomology group H1(Ŝ, Z) to
the one which we obtain for a homotopically equivalent primary Burniat surface,
the class of Y remains the same.

It suffices to show that, for each class γ ∈ H4(T, Z) = ∧4 (H1(T, Z)) the
intersection product γ · Y is the same. But this number is the multiple of the
fundamental class of Ŝ yielding α̂∗(γ), and, identifying H1(T, Z) with H1(Ŝ, Z),
it is an invariant of the cohomology algebra H∗(Ŝ, Z), which is isomorphic to the
one we obtain for a homotopically equivalent primary Burniat surface.

The above claim implies that Ŝ → Y is a birational morphism and that Y ⊂ Z
has cohomology class 2F1 + 2F2 + 2F3. Thus KY = OY (Y ), and K2

Y = (2F1 +
2F2 + 2F3)3 = 48. On the other hand, since S is homotopically equivalent to a
primary Burniat surface, we have that K2

S = 6, whence K2
Ŝ

= 6 · 23 = 48.
Moreover, we have

pg(Ŝ) = q(Ŝ) + χ(Ŝ) − 1 = 3 + 8χ(S) − 1 = 10.

The short exact sequence

0 → OT → OT (Y ) → ωY → 0,

induces a long exact cohomology sequence

0 → H0(T,OT ) → H0(T,OT (Y )) → H0(Y,ωY ) →
→ H1(T,OT ) → H1(T,OT (Y )) = 0,

where the last equality holds since Y is an ample divisor on T .
Moreover H0(T,OT ) ∼= C, and H1(T,OT ) ∼= C3, and therefore

pg(Y ) = h0(Y,ωY ) = 10 = pg(Ŝ).

Since |ωY | is base point free, and it has the same dimension as |ωŜ |, this implies
that Y has at most rational double points as singularities. This concludes the
proof that S is a primary Burniat surface.
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4.1. The rationality of the moduli space of primary Burniat surfaces.
This subsection is devoted to the proof of the following:

Theorem 4.5. Let C be the connected component of the moduli space constituted
by the primary Burniat surfaces (K2

S = 6). Then C is a rational 4-fold.

Proof. The proof goes along similar lines as the one of the rationality of the moduli
space of secondary Burniat surfaces with K2 = 5, explained in [BC09b].

We have to divide a parameter space ∼= C6, parametrizing three pairs of lines
of equations xi+2 = aixi+1, xi+2 = bixi+1 by the action of (C∗)2, of S3, of the
(Z/2Z)3 generated by the transformations τi such that τi exchanges ai with bi,
and finally of the Cremona transformation (mapping ai to a−1

i , bi to b−1
i ).

Now, we can replace the action of S3 by the direct sum of two copies of the
standard permutation representation (of the ai’s and of the bi’s).

Moreover, we have the action of the subgroup (C∗)2 ⊂ PGL(3, C) of diagonal
matrices (C∗)2 := {diag(t1, t2, t3)|ti ∈ C∗} :

ai (→ ai
ti+1

ti+2
, bi (→ bi

ti+1

ti+2
, i ∈ {1, 2, 3}.

We set: λi := ti+1
ti+2

, thus
∏

i λi = 1 and our (C∗)2 is the subgroup of (C∗)3,

(C∗)2 = {(λ1,λ2,λ3)|
∏

i

λi = 1}.

The invariants for the (Z/2Z)3-action are: ui := aibi, vi := ai + bi and (C∗)3 acts
by

ui (→ λ2
i ui, vi (→ λivi.

Claim 4.6. The invariants for the (C∗)2-action are

wi :=
ui

v2
i

, i = 1, 2, 3; v :=
3∏

i=1

vi.

Proof of the claim. Clearly the field of (C∗)3 -invariants is generated by the wi’s,
and we can replace the generators ui, vi (i = 1, 2, 3) by the generators wi, vi (i =
1, 2, 3). Now the exact sequence of algebraic groups

1 → (C∗)2 → (C∗)3 → C∗ → 1

where (λ1,λ2,λ3) (→ λ :=
∏

i λi, shows that the projection (C∗)3 → C∗ is the
quotient map by the (C∗)2 action. Since C(v1, v2, v3) is the function field of (C∗)3,
the field of invariants for (C∗)2 acting on C(v1, v2, v3) is C(v).

Note that S3 acts on {w1, w2, w3} by the permutation representation, whereas
the Cremona transformation acts by wi (→ wi, v (→

Q
viQ
ui

=: v
u . In fact, the

Cremona transformation sends ui to u−1
i and vi to 1

ai
+ 1

bi
= ai+bi

aibi
= vi

ui
. Since
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u
v2 =

∏
wi it follows that u =

∏
wiv2, thus v (→ (

∏
wi)−1v−1. The invariants for

the Cremona transformations are therefore

w1, w2, w3, v +
1

v
∏

wi

where the last element is S3-invariant.
Finally, the invariants for the action of S3 are: the elementary symmetric

functions σ1(w1, w2, w3), σ2(w1, w2, w3), σ3(w1, w2, w3), and v + 1
v

Q
wi

. Thus the
field of invariants is rational.

5. The Burniat surface with K2 = 2 is a classical Campedelli
surface

The aim of this short last section is to illustrate how the Burniat surface with
K2 = 2 can be seen as a classical Campedelli surface (with fundamental group
(Z/2Z)3).

A classical Campedelli surface can be described as the tautological (Z/2Z)3
Galois-covering of P2 branched in seven lines. This means that each line {lα = 0}
is set to correspond to a non zero element of the Galois group (Z/2Z)3, and then,
for each character χ ∈ (Z/2Z)3∗, we consider the covering given (cf. [Par91]) by

wχwχ′ =
∏

χ(ν)=χ′(ν)=1

lν wχ+χ′

in the vector bundle whose sheaf of sections is
⊕

χ∈(Z/2Z)3∗ OP2(1).
As we have seen before, the singular model X of a Burniat surface S with

K2
S = 2 (i.e., K2

X = 6) is the (Z/2Z)2 Galois covering branched in 9 lines having
4 points of type (1, 1, 1), whereas the minimal model S of a Burniat surface with
K2

S = 2 is the smooth bidouble cover of a weak Del Pezzo surface Y ′′ of degree
2. Note that the strict transforms of the lines of D ⊂ P2 passing through 2 of the
points P4, P5, P6, P7 yield rational (−2)-curves on Y ′′. There are six of them on
Y ′′, namely Di,j for 1 ≤ i ≤ 3, j ∈ {2, 3}.

Contracting these six (−2) curves, we obtain a normal Del Pezzo surface Y ′ of
degree 2 having six nodes, and with −KY ′ ample. Then the anticanonical map
ϕ := ϕ|−KY ′ | : Y ′ → P2 is a finite double cover branched on a quartic curve, which
has 6 nodes (since Y ′ has six nodes). But a plane quartic having 6 nodes has to
be the union of four lines L1, L2, L3, L4 in general position.

Let S → Y ′′ be the bidouble cover branched in the Burniat configuration
yielding a minimal model of the Burniat surface with K2

S = 2. Then the preimages
of the (−2)-curves Di,j for 1 ≤ i ≤ 3, j ∈ {2, 3} on Y are rational (−2) curves of
S.

Let now X ′ be the canonical model of S and consider the composition of the
bidouble cover ψ : X ′ → Y ′ with ϕ. Since ψ branches on the image ∆ of D1,1 +
D2,1 + D3,1 in Y ′ (the other 6 lines being contracted), we see that the branch
divisor of ϕ ◦ ψ consists of Q := L1 + L2 + L3 + L4 and the image of ∆ in P2.
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Looking at the configuration of the lines (cf. figure 1), we see that D1,1 intersects
D2,2 and D2,3, that D2,1 intersects D3,2 and D3,3, and that D3,1 intersects D1,2

and D1,3. Hence the image of Di,1 under ϕ has to intersect two nodes of the plane
quartic Q := L1 + L2 + L3 + L4, which implies that, denoting the image of Di,1

under ϕ by L′
i, the branch divisor of the (Z/2Z)3 Galois-covering ϕ◦ψ : X → P2 is

a configuration of seven lines L1 +L2 +L3 +L4 +L′
1 +L′

2 +L′
3, where L1, L2, L3, L4

are four lines in general position, i.e., form a complete quadrilateral, and L′
1, L

′
2, L

′
3

are the three diagonals.
The covering ϕ◦ψ : X → P2 is a Galois covering with Galois group (Z/2Z)3. In

fact we already have as covering transformations the elements of the Galois group
G′′ := (Z/2Z)2 of ψ. Moreover the involution i : Y ′ → Y ′ can be lifted to X ′ since
i leaves the individual branch curves invariant (as they are inverse image of the
diagonals of the quadrilateral), and also the line bundles associated to the covering
of Y ′′ (Y ′′ is simply connected, whence division by 2 is unique in Pic(Y ′′)).

To show that the covering is the tautological one it suffices to verify that for
each non trivial element of the Galois group its fixed divisor is exactly the inverse
image of one of the 7 lines in P2.

We omit further details since they are contained in the article [Ku04] by Ku-
likov. The idea there is simply to take the tautological cover and observe that it
factors as a bidouble cover of Y ′ branched on the inverse image of the diagonals,
each splitting into the divisor corresponding to the line Di,1 and the divisor corre-
sponding to Ei+2. Whence Kulikov verifies that one gets in this way the Burniat
surface with K2 = 2.

Remark 5.1. There are other interesting (Z/2Z)3-Galois covers of the plane
branched on the seven lines L1, L2, L3, L4, L′

1, L
′
2, L

′
3.

One such is the fibre product Z of the standard bidouble cover P2 → P2 branched
on the diagonals L′

1, L
′
2, L

′
3 with the double covering Y ′ branched on L1, L2, L3, L4.

This gives Z as a double plane branched on four conics touching in 12 points. Z
is a surface with K2

Z = 2, pg(Z) = 3, whose singularities are precisely 12 points of
type A3.
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