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Abstract In this article we give necessary and sufficient conditions, in terms of
certain tensors called semispecial tensors, respectively slope zero tensors, in order
that the universal covering of a complex projective manifold be a symmetric domain
of tube type. As an application, we give precisions of a result of Kazhdan showing
that a Galois conjugate of such a manifold has the same universal covering.
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1 Introduction

The uniformization theorem states that any complex manifold C of dimension one
which is not of special type (i.e., not P

1,C,C∗, or an elliptic curve) has as universal
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420 F. Catanese, A. J. Di Scala

covering the unit disk B1 = {z ∈ C||z| < 1}, which is biholomorphic to the upper
half plane H = {z ∈ C|I m(z) > 0}.

A central problem in the theory of complex manifolds has been the one of determin-
ing the compact complex manifolds X whose universal covering X̃ is biholomorphic
to a bounded domain � ⊂ C

n .

A first important restriction is given by theorems by Siegel and Kodaira, extending
to several variables a result of Poincaré, and asserting that necessarily such a manifold
X is projective and has ample canonical divisor K X (see [17], [18], Theorem 8.4 page
144, where the Bergman metric is used, while the method of Poincaré series is used
in [26], Theorem 3 page 117, see also [19], Chapter 5).

In particular X is a projective variety of general type embedded in projective space
by a pluricanonical embedding associated to the sections of OX (mK X ) for large m.

This is a restriction on X,whereas a restriction on� is given by another theorem of
Siegel ([25], cf. also [14], Theorem 6.21), asserting that � must be holomorphically
convex.

The problems which naturally come up are then of two types:

Problem 1 Given a bounded domain � ⊂ C
n, when does there exist a properly

discontinuous group � ⊂ Aut(�) which acts freely on � and is cocompact (i.e., is
such that X =: �/� is a compact complex manifold with universal cover ∼= �)?

The functions on�which yield then a pluricanonical embedding of X are classically
called automorphic functions, and in [26, page 119] C.L. Siegel posed a second type
of problem writing:

... we have no method of deciding whether a given algebraic variety of higher
dimension can be uniformized by automorphic functions.

A more specific question than the one posed by Siegel is:

Problem 2 Given a bounded domain � ⊂ C
n, how can we tell when a projective

manifold X with ample canonical divisor K X has � as universal covering?

Obviously an answer to the second problem presupposes an answer to the first one.
For the first question it is natural to look at domains which have a big group of auto-

morphisms, especially at bounded homogeneous domains, i.e., bounded domains
such that the group Aut(�) of biholomorphisms of� acts transitively. And especially
at the bounded symmetric domains, the domains such that for each point p ∈ � there
is a symmetry at p (an automorphism g with g(p) = p and (Dg)p = −I denti t y).

Bounded symmetric domains were classified by Elie Cartan in [6], and they are a
finite number for each dimension n (see also [12], Theorem 7.1 page 383 and exercise
D, pages 526–527, and [24] page 525 for a list of them). Among them are the so
called bounded symmetric domains of tube type, which are biholomorphic to a
tube domain, a generalized Siegel upper halfspace TC = V ⊕ √−1C where V is a
real vector space and C ⊂ V is a symmetric cone, i.e., a self dual homogeneous convex
cone containing no full lines.

1 We are indebted to Pascal Dingoyan for providing this reference.
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Borel proved in [5] that for each bounded symmetric domain � Problem 1 has a
positive answer; and such a compact free quotient X = �/� is called a compact
Clifford-Klein form of the symmetric domain �.

Even if the bounded symmetric domains� are not the only ones for which Problem
1 has a positive answer (i.e., such a compact quotient X exists), Frankel proved in [9]
that if� is a bounded convex domain, and Problem 1 has a positive answer, then� is
a bounded symmetric domain.

Another theorem of Frankel ([10])2 shows that K X ample implies the splitting of
a finite unramified covering of X as a product of a locally symmetric manifold and a
locally rigid manifold, i.e., a manifold whose local group of isometries is discrete.

A classical result of J. Hano (see [11] Theorem IV, page 886, and Lemma 6.2,
page 317 of [21]) asserts that a bounded homogeneous domain that covers a compact
complex manifold is symmetric. Henceforth we restrict our attention in this paper to
Problem 2 for the case where � is a bounded symmetric domain.

In this respect the first breakthrough, giving an answer to C.L. Siegel’s question in
an important special case, was based on the theorems of Aubin and Yau (see [2,29])
showing the existence, on a projective manifold with ample canonical divisor K X , of
a Kähler–Einstein metric, i.e., a Kähler metric ω such that

Ric(ω) = −ω.

This theorem is indeed the right substitute for the uniformization theorem in dimen-
sion n > 1.

Yau showed in fact ([28]) that, for a projective manifold with ample canonical
divisor K X , the famous Yau inequality is valid

K n
X ≤ 2(n + 1)

n
K n−2

X c2(X),

equality holding if and only if the universal cover ˜X is the unit ball Bn in C
n .

The uniformization theorems of Yau ([30,31]) for a manifold X with ample canon-
ical bundle K X go in the direction of providing further answers to Siegel’s question,
sketching sufficient (but not necessary) conditions in order that ˜X be the product of a
bounded symmetric domain with another manifold.

However Yau makes the unnecessary assumption that �1
X splits as a direct sum

�1
X = V1 ⊕ V2 ⊕ · · · ⊕ Vk,

does not give an answer to the more specific Problem 2 and moreover, as we shall
show here, his conditions for a summand Vj apply only for an irreducible factor of
the universal cover which is a ball or a symmetric domain of tube type.

A very readable exposition of Yau’s results, based on the concept of stability of the
cotangent bundle�1

X , is contained in the first section of [27]. Moreover Viehweg and
Zuo, while still assuming the splitting of the cotangent bundle, characterize (statement

2 We are indebted to Gang Tian for providing this reference.
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(c.iii) in Theorem 1.4 of [27]) the addenda coming from bounded symmetric domains
of rank ≥ 2 as those for which Vj is stable, but there is a symmetric power Sm(Vj )

which is not stable.3

In the special case where �1
X splits as a sum of line bundles it follows from Yau’s

theorem that ˜X is the polydisk H
n, where n = dim(X).

The splitting of �1
X as a sum of lines bundles is not a necessary condition, even if

it does indeed hold on a finite unramified covering X ′ → X.
The reason lies in the semidirect product (where Sn is the symmetric group):

1 → Aut(H)n → Aut(Hn) → Sn → 1.

A necessary condition for a compact complex manifold of dimension n to be uni-
formized by a polydisk was found in [7], based on the consideration that the tensor
(here � denotes the symmetric product)

ψ̃ =: dz1 � · · · � dzn

dz1 ∧ · · · ∧ dzn

is transformed by every automorphism g into σ(g)ψ̃, where σ(g) = ±1 is the signa-
ture of the permutation corresponding to g.

Namely, the tensor ψ̃ descends to a so called semi special tensor ψ on X, which is
simply a non zero section of the sheaf Sn(�1

X )(−K X ) ⊗ η, where η is an invertible
sheaf such that η2 ∼= OX (corresponding to the signature character).

The necessary condition about the existence of a semi special tensor was proven,
in dimension n ≤ 3, to be a sufficient condition for X to be uniformized by a polydisk
([7, Theorem 1.9.]).

Unfortunately, the above necessary condition is not sufficient for n ≥ 4 (see [7,
Theorem 1.10.]).

Our first result in this paper is the following necessary and sufficient condition for
a compact complex manifold to be uniformized by a polydisk.

Theorem 1.1 Let X be a compact complex manifold of dimension n. Then the follow-
ing two conditions:

(1) K X is ample
(2) X admits a semi special tensor ψ ∈ H0(Sn(�1

X )(−K X ) ⊗ η) such that, given
any point p ∈ X, the corresponding hypersurface Fp =: {ψp = 0} ⊂ P(T X p)

is reduced

hold if and only if X ∼= (Hn)/� (where� is a cocompact discrete subgroup of Aut(Hn)

acting freely).

Remark 1.1 The second condition is quite explicit, since it amounts to verifying that
the polynomialψp,obtained by evaluatingψ at the point p, is a squarefree polynomial:
and to verify this it suffices to use the GCD of univariate polynomials.

3 They however took for granted Yau’s wrong assertion, that if Sm (Vj ) is not stable, then it should have a
direct factor of rank one having the same slope.
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Our second and third results show that semispecial tensors, and a generalization of
them, the slope zero tensors (see [4] for the related concepts of slope and stability)
work out in a more general setting, and give a necessary and sufficient condition for a
complex compact manifold X to be uniformized by a bounded symmetric domain of
tube type.

Here a slope zero tensor is a non zero section ψ ∈ H0(Snm(�1
X )(−mK X )), where

m is a positive integer.

Theorem 1.2 Let X be a compact complex manifold of dimension n. Then the follow-
ing two conditions:

(1) K X is ample
(2) X admits a semi special tensor ψ;
hold if and only if X ∼= �/�, where � is a bounded symmetric domain of tube type
with the special property

(*)� is a product of irreducible bounded symmetric domains D j of tube type whose
rank r j divides the dimension n j of D j , and � is a cocompact discrete subgroup of
Aut(�) acting freely.

Moreover, the degrees and the multiplicities of the irreducible factors of the poly-
nomial ψp determine uniquely the universal covering ˜X = �.

Theorem 1.3 Let X be a compact complex manifold of dimension n. Then the follow-
ing two conditions:

(1) K X is ample
(2) X admits a slope zero tensor ψ ∈ H0(Smn(�1

X )(−mK X )), (here m is a positive
integer);

hold if and only if X ∼= �/�, where � is a bounded symmetric domain of tube type
and � is a cocompact discrete subgroup of Aut(�) acting freely.

Moreover, the degrees and the multiplicities of the irreducible factors of the poly-
nomial ψp determine uniquely the universal covering ˜X = �.

In particular, for m = 2, we get that the universal covering ˜X is a polydisk if and
only if ψp is the square of a squarefree polynomial.

We obtain as a corollary a simple proof of a variant of Kazhdan’s Theorem [13]
about the Galois conjugates of an arithmetic projective manifold X. Namely, we have
the following application.

Corollary 1.4 Assume that X is a projective manifold with K X ample, and that the
universal covering X̃ is a bounded symmetric domain of tube type.

Let σ ∈ Aut(C) be an automorphism of C.

Then the conjugate variety Xσ has universal covering X̃σ ∼= X̃ .

Our paper leaves two questions open:

(1) Is it possible (as in [7]) to remove the assumption that K X is ample, replacing it
by the condition that X be of general type?

(2) Study necessary and sufficient conditions for the case where there are irreducible
factors which are bounded symmetric domains not of tube type: these should
probably involve subbundles of higher rank of the bundles Sk(�1

X )(−mK X ).
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The paper is organized as follows: in Sect. 2 we recall a result by Korányi and Vági
which plays a central role for our theorems, since it determines the holonomy invariant
hypersurfaces in the tangent space to an irreducible symmetric bounded domain.

After this, in Sects. 3 and 4, we provide the proofs of our two main Theorems 1.1
and 1.2, using the existence of the Kähler–Einstein metric, the classical theorems of
De Rham and Berger and the Bochner principle, in order to show the sufficiency of
the condition of the existence of a semispecial tensor.

In Sect. 4 we show that this condition is also necessary for every bounded symmetric
domain of tube type satisfying (*), thereby partly generalizing the result of Korányi
and Vági (we prove semi-invariance of our tensor for the full group).

We conclude with the Kazhdan type Corollary 1.4, a couple of examples, and the
proof of Theorem 1.3.

2 Preliminaries

2.1 Symmetric bounded domains and its invariant polynomials

Let D ⊂ C
n be a bounded symmetric domain in its circle realization around the origin

0 ∈ C
n . Let Aut(D) be the full group of automorphisms of D. It is well-known that

Aut(D) is the full group of isometries of D endowed with its Bergman metric.
Let K ⊂ Aut(D) be the isotropy group of D at the origin 0 ∈ C

n, so that we have
D = Aut(D)/K .

A polynomial f ∈ C[X1, . . . , Xn] is said to be K-semi-invariant if there is a
character χ : K → C

∗ such that, for all g ∈ K , f (gX) = χ(g) f (X). Since K is
compact we have: |χ(g)| = 1.

An inner function on D is a bounded holomorphic function on D such that | f ∗(z)| =
1 for almost every z ∈ S where S is the Shilov boundary of D and f ∗ is the radial
limit of f, see [20, page 185] for details.

Let D = D′ × D′′ be the decomposition of D as a product of two domains where
D′ is of tube type and D′′ has no irreducible factor of tube type.

The following theorem collects several results in [20].

Theorem 2.1 [20, Korányi-Vági] Let D = D′ × D′′ be the above decomposition and
let moreover

D′ = D′
1 × D′

2 × · · · × D′
p

be the decomposition of D′ as a product of irreducible tube type domains D′
j , ( j =

1, . . . , p).
Then there exists, for each j = 1, . . . , p, a unique polynomial N j (z j ), which is an

inner function on D′
j such that: for all inner function f on D there exist a constant

c ∈ C and exponents k j with

(1)

f = c
p

∏

j=1

N
k j
j ,

hence in particular
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A characterization of varieties whose universal cover is the polydisk or a tube domain 425

(2)

f (z′, z′′) = f (z′)

where z′ denotes a vector in the domain D′ and z′′ ∈ D′′.

The second part of the above theorem follows from part (i i i) in Theorem 3.3. of
[20, page 187]. The first part is contained in Lemma 2.5. and Lemma 2.3 of [20, pages
184,182].

It is well-known that the isotropy group K acts transitively on the Shilov boundary S
of D.So a K-semi-invariant polynomial f is, up to a multiple, an inner function. Notice
that, by the uniqueness in the above result, the polynomials N j are K-semi-invariant.
Thus, we have the following corollary.

Corollary 2.2 The above theorem holds replacing inner function by K-semi-invariant
polynomial.

The same result was rediscovered by Mok in [22].
It is very important to observe that the polynomials N j have degree equal to the

rank(D′
j ) of the irreducible domain D′

j . Here rank(D′
j ) denotes the dimension r of

the maximal totally geodesic embedded polydisc H
r ⊂ D′

j . Therefore rank(D′
j ) ≤

dim(D′
j ) and equality holds if and only if D′

j = H.

Remark 2.1 For the explicit form of the polynomials N j see [20, page 183]. In Sects.
4.2 and 4.3 we will see that the polynomials N j are used to construct an Aut(D)0-
invariant tensor ψ̃.

2.2 Irreducible symmetric domains of tube-type whose dimension is divisible
by its rank

Recall the notation for the classical domains:

• In,p is the omain D = {Z ∈ Mn,p(C) : Ip −t Z · Z > 0}.
• I In is the intersection of the domain In,n with the subspace of skew symmetric

matrices.
• I I In is instead the intersection of the domain In,n with the subspace of symmetric

matrices.
• I Vn, the so called Lie Balls, are described in Sect. 4.3.

Theorem 2.3 Let D be an irreducible symmetric domain of tube-type. Let d =
dim(D) be the complex dimension of D and r its rank.

If d is multiple of r then one of the following holds:

(i) D is of type In,n, n ≥ 1. In this case r = n and d = n2,

(ii) D is of type I I2k, k ≥ 1. In this case r = k and d = k(2k − 1),
(iii) D is of type I I I2k+1, k ≥ 0. In this case r = 2k + 1 and d = (2k + 1)(k + 1),
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(iv) D is of type I V2k, k ≥ 2. In this case r = 2 and d = 2k,
(v) D is the exceptional domain of dimension d = 27 and rank r = 3.

Proof The proof follows from the classification of irreducible bounded symmetric
domains, see e.g., [24, page 525]. ��

3 Manifolds uniformized by a polydisk

Here we prove Theorem 1.1.
By a semi special tensor ψ with reduced divisor we mean, as in [7, Definition 1.3],

a semi special tensor

ψ ∈ H0(Sn(�1
X )(−K X )⊗ η)

such that the homogeneous polynomial ψp, obtained by evaluating the tensor on the
fibre over the point p ∈ X (ψp is a polynomial of degree n on the tangent space T X p),

is not divisible by a square.
Proposition 1.4. and its proof in [7, page 162] shows that, as explained in the

introduction, (1) and (2) are necessary if X ∼= (Hn)/� (where � is a cocompact
discrete subgroup of Aut(Hn) acting freely).

Assume now that (1) and (2) hold and let ˜X be the universal cover of X.
Proceeding as in [7, page 160] the semispecial tensor ψ pulls back to a special

tensor ψ̃ =: 	 on X̃ which is parallel with respect to the Levi-Civita connection
associated to the Kähler-Einstein metric (this follows from the Bochner principle, see
[15,30], page 272 and [31], page 479).

Fix a point x ∈ ˜X and let Hx ⊂ U(Tx ˜X) be the restricted holonomy group with
respect to the Levi-Civita connection associated to the Kähler–Einstein metric.

Since 	 is parallel there exists a degree n polynomial f := ψx on Tx ˜X such that

Fx = {vx ∈ Tx ˜X : ψx (vx ) =: 	(x, vx ) = 0}
is Hx -invariant.

This implies that f = ψx is Hx -semi-invariant.
Notice that f = ψx is not divisible by a square since ψx has a reduced divisor Fx .

Since ˜X has no flat De Rham factor (otherwise X is flat and the canonical divisor K X

cannot be ample) we use the second author’s Proposition A.1 (appendix to [7], page
178) implying that there is a decomposition of the vector space Tx ˜X as Tx ˜X = V1⊕V2
and where f (v1, v2) = f (v1) depends only on the variable v1.

Moreover V1 is the tangent space at the origin of a bounded symmetric domain
D ⊂ C

m such that the action of Hx on V1 is equal to the action of the connected
component K 0 of the isotropy group K at the origin 0 ∈ C

m .

Let us use now Theorem 2.1 and the notation therein.
We obtain that f splits as

f = c
p

∏

j=1

N
ε j
j
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where ε j ∈ {0, 1}. Then we get

n = deg( f ) =
p

∑

j=1

ε j deg(N j ) =
p

∑

j=1

ε j r j .

We also have that

p
∑

j=1

ε j r j = n ≥ m = dim(D) =
p

∑

j=1

dim(D′
j )+ dim(D′′) ≥

p
∑

j=1

r j + dim(D′′)

since r j ≤ dim(D′
j ).

We conclude that ε j = 1 ∀ j, n = m, p = n, dim(D′′) = 0, and moreover
dim(D′

j ) = r j = 1 for j = 1, . . . , n.

This shows that Hx = K 0 splits as K 0 = U(1)n and completes the proof that ˜X is
a polydisk H

n .

4 Manifolds uniformized by a tube domain

Here we give the proof of Theorem 1.2.

4.1 Sufficient conditions

We want here to show that if K X is ample, and X admits a semispecial tensor ψ, then
the universal covering X̃ is a product of irreducible symmetric domains of tube type
whose rank divides the dimension.

We proceed as for the proof of Theorem 1.1.
Namely, we write the universal cover X̃ , according to the theorems of De Rham

and Berger (see [3] and also [23]), as the product X̃ = D1 × D2 = D′
1 × D′′

1 × D2
where (since there are no flat factors, as already observed):

• D2 is the product of the irreducible factors of dimension ≥ 2 for which the
holonomy group is transitive (actually, it is the unitary group)

• D1 is a bounded symmetric domain
• D′

1 is the product of all the irreducible bounded symmetric domains of tube type
• D′′

1 is the product of all the irreducible bounded symmetric domains which are
neither a ball nor are of tube type.

Consider now the pull back tensor 	 = ψ̃, and consider coordinates (u, w, z)
according to the product decomposition X̃ = D′

1 × D′′
1 × D2.

Let a = dim(D′
1), b = dim(D′′

1 ), r = dim(D2).

Then the tensor ψx in a point x can be written as

ψx = f (u, w, z)(du1 ∧ · · · ∧ dua)
−1 ∧ (dw1 ∧ · · · ∧ dwb)

−1 ∧ (dz1 ∧ · · · ∧ dzr )
−1

and it is holonomy invariant.
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By the same argument as in the previous section (Proposition A.1 of the appendix
to [7], page 178, and the theorem of Korányi-Vági ) we have:

f (u, w, z) = f (u).

Write the (restricted) holonomy group as K ′
1 × K ′′

1 × K2 and observe that none
of the subgroups K2, K ′

1, K ′′
1 is contained in the special unitary group, otherwise the

Kähler-Einstein metric is Ricci flat in a certain direction, contradicting the ampleness
of K X .

Hence for instance K2 acts nontrivially on (dz1∧· · ·∧dzr )
−1,while it acts trivially

on f.
This would contradict the holonomy invariance of the tensor unless there is no

factor D2. The same identical argument implies that there is no factor D′′
1 , hence D

is a product of irreducible bounded symmetric domains of tube type.
We write now accordingly D as a product of such irreducible bounded symmetric

domains of tube type

D =
h

∏

j=1

� j

and we take variables (z1, . . . , zh) with z j ∈ � j , and write, if z j = (z j,1, . . . , z j,n j ),

and n j = dim(� j ),

dztop
j =: dz j,1 ∧ · · · ∧ dz j,n j .

By the theorem of Korányi-Vági, up to a constant we can write

ψx = N m1
1 (z1) · · · N mh

h (zh)(dztop
1 ∧ · · · ∧ dztop

h )−1.

We impose invariance for each holonomy subgroup K j .

We know that K j acts on N j (z j ) by a character χ j (g), and similarly K j acts on
(dztop

1 ) by a character χ ′
j .

Recall that, � j being a circular domain, K j contains the diagonal subgroup S j =
{eiθ In j }.

Restricting to S j we see that, if φ j is the tautological character, then χ j |S j =
φ

r j
j , χ

′
j |S j = φ

n j
j , hence, by S j invariance, we conclude that

m jr j = n j , ∀ j = 1, . . . , h.

We are done since we observe that the classification Theorem 2.3 shows that the pair
of integers (r j , n j ), under the condition r j |n j , completely determines the irreducible
bounded symmetric domain of tube type � j .
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4.2 Necessary conditions

As we observed in the introduction the ampleness of the canonical line bundle K X is
a result of Kodaira, i.e., condition (1) is necessary.

We shall give two proofs that condition (2), i.e., the existence of a semi special
tensor, is necessary.

Our first proof relies on the foundations of the theory of bounded symmetric domains
of tube type by means of their associated cones C and their Jordan algebras, developed
for instance in [8].

The second proof is a case by case computation which works just for the classical
domains but provides an explicit expression for the semi special tensor.

Both proofs are based on the fact that, if � is a bounded symmetric domain, and

� = 
h
j=1� j

is its decomposition as a product of irreducible bounded symmetric domains, then we
have a semidirect product

1 → 
h
j=1Aut(� j ) → Aut(�) → S → 1

where S ⊂ Sh .

This follows from the fact that the De Rham decomposition of the universal cover
of a complete Riemannian manifold is unique up to the ordering of the factors (see
[16], Theorem 6.2 of Chapter IV).

As in the proof of Proposition 1.4 in [7] and by the above exact sequence it is enough
to construct, for each irreducible bounded symmetric domain of tube type D, a special
tensor 	 semi-invariant by the group of holomorphic automorphisms Aut(D).

Then such a tensor 	 necessarily descends to a semi special tensor ψ on any
quotient X of �.

Let D be an irreducible bounded symmetric domain of tube type. Following [8,
Chapter X] D is biholomorphic, via the Cayley map, to a tube domain TC = V + iC
where V is a real finite dimensional vector space and C ⊂ V is a so called symmetric
cone.

Both D and TC are open subsets of the Hermitian Jordan algebra VC := C ⊗ V

which is the complexification of a simple Euclidean Jordan algebra whose real vector
space is V.

Let ψ̃ be the tensor defined as follows

ψ̃ := det(dz)
n
r

K
(1)

where n = dim(D), r is the rank of D, det(·) is defined in [8, page 29] and K is a
generator of ∧n(VC), viewed as a non vanishing holomorphic top-degree form.

Notice that det(·) is also denoted by �(·) and called the Koecher norm in [20]. It
is the same polynomial N j we encountered before.
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Let G(TC) be the group of biholomorphic maps of the tube TC and let G(TC)0 its
identity component.

Lemma 4.1 ψ̃ is invariant by G(TC)0.

Proof According to Theorem X.5.6 in [8, page 207] the group G(TC) is generated by
the involution j (z) := −z−1 and the subgroups G(C) and N+. So it is enough to show
that ψ̃ is invariant by j (z) := −z−1 and by the subgroups G(C) and N+. ��

That ψ̃ is invariant by the translations of N+ is obvious.
The invariance by G(C)0 follows from Proposition III.4.3 in [8, page 53].
To show that j∗ψ̃ = ψ̃ we will use the results in [8, Chapter II] about the so called

quadratic representation P(·), and also Lemma 1.1 and Proposition 1.2 of [1] stating
the crucial properties:

• P(x)(x−1) = x
• P(x)−1 = P(x−1)

• Dj (x) = P(x)−1

• Det (P(x)) = det (x)
2n
r

• det (P(y) · x) = (dety)2 · det x .

We have then:

j∗ψ̃ = det(d j (z))
n
r

j∗K
= det(P(z)−1 · dz)

n
r

j∗K

= det(P(z−1) · dz)
n
r

j∗K
= ((detz−1)2 · det(dz))

n
r

j∗K
= (detz)

−2n
r · det(dz)

n
r

j∗K

= (detz)
−2n

r .det(dz)
n
r

Det(P(z)−1)K
= (detz)

−2n
r .det(dz)

n
r

(detz)
−2n

r K
= ψ̃.

This completes the proof of the claim.
It is known that either G(TC) is connected or has just two connected components.

Indeed, Aut(D) is connected unless D is a classical domain D = In,n (n ≥ 2) or
D = I V2k where Aut(D) has two connected components [6, page 152].

So we get the following corollary.

Lemma 4.2 ψ̃ is semi-invariant by G(TC). That is to say, there exists a character
χ : G(TC) → {1,−1} such that for g ∈ G(TC):

g.ψ̃ = χ(g)ψ̃

A simple example where the above character χ is not trivial is given by the domain
I2,2. Indeed, in this case

ψ̃ = (dz1 ⊗ dz4 − dz2 ⊗ dz3)
2

dz1 ∧ dz2 ∧ dz3 ∧ dz4
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where Z =
(

z1 z2
z3 z4

)

∈ I2,2. The transposition τ(Z) = Zt belongs to Aut(I2,2) and

τ ∗ψ̃ = −ψ̃ since

τ ∗(dz1 ∧ dz2 ∧ dz3 ∧ dz4) = dz1 ∧ dz3 ∧ dz2 ∧ dz4 = −dz1 ∧ dz2 ∧ dz3 ∧ dz4.

4.3 Necessary conditions found classically

Here we construct explicitly ψ̃ for the classical bounded symmetric domains of tube
type D whose rank r divides the dimension n = dim(D). We give a simpler direct
proof of the semi-invariance of our tensor ψ̃ by Aut(D) the full automorphism group
of the domain D.

We will follow the standard Elie Cartan’s notation.

Domains of type In,n

The Cartan–Harish-Chandra realization of In,n := SU (n, n)/S(U (n) × U (n)) is
the domain � = {Z ∈ Mn,n(C) : In − Zt · Z > 0}.

To an element γ ∈ SU (n, n) corresponds the transformation

γ (Z) = (AZ + B) · (C Z + D)−1.

As in [7, p. 174] the function γ �→ χ(γ ) ∈ C
∗ defined by the equation:

det (dγ (Z)) = χ(γ ) · det (C Z + D)−2 · det (dZ)

is a character of SU (n, n).
Indeed, if γ ′ ∈ SU (n, n) is another isometry, say γ ′(Z) = (A′Z + B ′) · (C ′Z +

D′)−1, then

det (d(γ · γ ′)(Z)) = χ(γ.γ ′) · det ((C A′ + DC ′)Z + C B ′ + DD′)−2 · det (dZ)

and by direct computation we have

det (d(γ · γ ′)(Z)) = χ(γ ) · det (Cγ ′(Z)+ D)−2 · det (dγ ′(z))
= χ(γ )χ(γ ′) · det (Cγ ′(Z)+D)−2 · det (C ′Z +D′)−2 · det (dZ)

so that we only have to show that

det ((C A′ + DC ′)Z + C B ′ + DD′)−2 = det (Cγ ′(Z)+ D)−2 · det (C ′Z + D′)−2

which is equivalent to

det ((C A′ + DC ′)Z + C B ′ + DD′) = det (Cγ ′(Z)+ D) · det (C ′Z + D′)
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but indeed

det (Cγ ′(Z)+ D) · det (C ′Z + D′) = det (C(A′Z + B ′) · (C ′Z + D′)−1 + D)

·det (C ′Z + D′),
= det (C(A′Z + B ′)+ D(C ′Z + D′)),
= det ((C A′ + DC ′)Z + C B ′ + DD′).

This shows thatχ(γ ) is a character of SU (n, n).Actually, any character of SU (n, n)
is trivial since SU (n, n) is a connected semisimple Lie group. Hence the

Claim 4.3 χ(γ ) ≡ 1, i.e., the character χ is trivial.

Thus, for γ ∈ SU (n, n), we get the formula

det (dγ (Z)) = det (C Z + D)−2 · det (dZ).

The Jacobian determinant ofγ is det (C Z+D)−2n, i.e.,γ ∗K = det (C Z+D)−2nK,
where K is the holomorphic volume form of In,n . For In,n our tensor ψ̃ is given by

ψ̃ = det (dZ)n

K

Then for γ ∈ SU (n, n) we have

γ ∗ψ̃ = det (dγ Z)n

γ ∗K

= (det (C Z + D)−2 · det (dZ))n

det (C Z + D)−2nK

= (det (C Z + D)−2)n

det (C Z + D)−2n
ψ̃

= ψ̃

This shows that ψ̃ is SU (n, n)-invariant. Hence it is Aut(In,n)-semi-invariant.

Domains of type I I2k .

This is the subdomain of I2k,2k given by the skew-symmetric matrices.
Here ψ̃ is given by

ψ̃ = det (dZ)
2k−1

2

K

The Jacobian determinant of an isometry γ is given by

γ ∗K = det (C Z + D)−(2k−1)K.

123



A characterization of varieties whose universal cover is the polydisk or a tube domain 433

So

γ ∗ψ̃ = det (dγ Z)
2k−1

2

γ ∗K

= (det (C Z + D)−2 · det (dZ))
2k−1

2

det (C Z + D)−(2k−1)K

= ψ̃

This shows that ψ̃ is invariant by Aut0(I I2k). Actually, in this case ψ̃ is invariant
by Aut(I I2k) since this last group is connected by [6, page 152].

Domains of type I I I2k+1.

This is the subdomain of I2k+1,2k+1 given by the symmetric matrices.
Here ψ̃ is given by

ψ̃ = det (dZ)k+1

K

The Jacobian determinant of an isometry γ is given by

γ ∗K = det (C Z + D)−2(k+1)K.

So

γ ∗ψ̃ = det (dγ Z)k+1

γ ∗K

= (det (C Z + D)−2 · det (dZ))k+1

det (C Z + D)−2(k+1)K

= ψ̃

This shows that ψ̃ is invariant by Aut0(I I I2k+1).Actually, in this case ψ̃ is invariant
by Aut(I I I2k+1) since this last group is connected by [6, page 152].

Domains of type I V2k, the so called Lie Balls.
The Cartan–Harish-Chandra realization of a domain of type I Vn in C

n is the subset
D defined by the inequalities (compare [12], page 527)

|z2
1 + z2

2 + · · · + z2
n| < 1,

1 + |z2
1 + z2

2 + · · · + z2
n|2 − 2

(|z1|2 + |z2|2 + · · · + |zn|2
)

> 0.

When n = 2k our tensor ψ̃ is given by

ψ̃ = (dz1 � dz1 + · · · + dzn � dzn)
n
2

dz1 ∧ dz2 ∧ · · · ∧ dzn
.
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Indeed, this follows from the proof of Theorem 1.2 and the fact that the Koecher
norm function of D is (

∑n
j=1 z2

j )
n
2 (see [20, page 183]).

Here we describe an alternative way to get the explicit formula for ψ̃, due to the
second referee.

The compact dual of D is the hyperquadric Qn ⊂ P
n+1 defined by the polynomial

∑n−1
j=0 X2

j − X2
n − X2

n+1. Notice that SO0(n, 2) ⊂ Aut(Qn). The Borel embedding
j : D → Qn is given by

j (z1, · · · , zn) = [2z1 : 2z2 : · · · : 2zn : i(�− 1) : �+ 1],

where� := z2
1 +· · ·+ z2

n . The map j identifies the domain D with the SO0(n,2)-orbit
of the point [0 : 0 : · · · : 1 : i] ∈ Qn , i.e., D ∼= SO0(n, 2)/SO(n)× SO(2).

The second fundamental form σ of Qn in P
n+1 is a section of S2(�1

Qn ) ⊗ N ,

where N is the normal bundle of Qn ⊂ P
n+1. It is well-known that N , as a sheaf

on Qn , is OQn (2). Since the canonical sheaf K Qn is OQn (−n), for n = 2k we have
K Qn = O(−2)⊗k = (N∨)⊗k . So σ k := σ ⊗ · · · ⊗ σ (k copies) gives a section of
Sn(�1

Qn )(−K Qn ) whose restriction to j (D) induces ψ̃ = j∗σ k on D.
Indeed, we have, up to a constant depending on the chosen isomorphism K Qn =

O(−2)⊗k = (N∨)⊗k,

j∗σ k = j∗
(

(dX0)
2 + · · · + (dXn−1)

2 − (dXn)
2 − (dXn+1)

2
)k

dX0 ∧ · · · ∧ dXn−1

=
(

(d2z1)
2 + · · · + (d2zn)

2 − (di(�− 1))2 − (d(�+ 1))2
)k

d2z1 ∧ · · · ∧ d2zn

= 4k
(

(dz1)
2 + · · · + (dzn)

2
)k

2ndz1 ∧ · · · ∧ dzn

= ψ̃

5 Proof of the Kazhdan’s type corollary

Consider the conjugate variety Xσ : since K X is ample we may assume that X is
projectively embedded by H0(X,OX (mK X ).

σ carries X to Xσ and K X to K Xσ , hence also Xσ has ample canonical divisor.
Consider a slope zero tensor ψ on X : then ψσ is also a slope zero tensor, and

moreover σ sends the ring of polynomial functions on the tangent space T X p to the
corresponding ring of polynomial functions on the tangent space T Xσσ(p): hence the
degrees and multiplicities of the irreducible factors of ψp are the same as the degrees
and multiplicities of the irreducible factors of ψσ(p).

We conclude then immediately by the last assertion of our main Theorems 1.2 and
1.3 that the universal covering of Xσ is X̃ .
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6 Examples

Assume that the polynomial ψp associated to a semi special tensor is a square ψp =
N 2,where N is irreducible (the more general case where N is squarefree follows then
right away).

Then the universal covering X̃ is an irreducible symmetric tube domain such that
d/r = 2.

It follows from Theorem 2.3 that X̃ is either I2,2 or I I I3. In particular X has either
dimension 4 or 6.

Proposition 6.1 Assume that K X is ample and X admits a semispecial tensor ψ.
If the multiplicities of the divisor associated to f =: ψp are at most two then X̃ is

a product of one-dimensional disks, of domains of type I2,2 or of type I I I3.

Moreover, if all multiplicities are two then the number of factors of f and the
dimension n of X determine X̃ .

Proof The hypotheses imply that the polynomial f = ψp can be factorized as

f = c
p

∏

j=1

N
e j
j

where e j ≤ 2. If e j = 1 then the corresponding factor is a disk.
If e j = 2 by the previous observation the corresponding factor is is either I2,2 or

I I I3, and this shows the first assertion.
The hypothesis of the second statement is that

f = c
p

∏

j=1

N 2
j

Let us denote by a the number of times that I2,2 occurs in X̃ and by b the number
of times that I I I3 occurs in X̃ .

Then
{

4a + 6b = n = dim(X)
a + b = p

Hence, knowing p and n, we know a, b and also X̃ . ��

7 Slope zero tensors of higher degree

Let’s treat first the case where X̃ is an irreducible symmetric bounded domain of
tube type of dimension n and rank r , but where we consider more generally the sheaf
Sk(�1

X̃
)(−mK X̃ ), k,m being positive integers.

Assume that there exists a tensor ψ̃ ∈ H0(X̃ , Sk(�1
X̃
)(−mK X̃ )) semi-invariant by

the full automorphism group Aut(X̃).
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Then by the theorem of Korányi-Vági and its Corollary 2.2

ψ̃x = N a(z)(dztop)−m (2)

and
k = m · n = r · a (3)

since ψ̃ is invariant by the diagonal subgroup S = {eiθ In}.
Conversely, if condition (3) holds then ψ̃ is semi-invariant by the full group of

automorphisms (the proof is the same as in 4.1), hence ψ̃ descends to any Clifford-
Klein form X of X̃ : providing a section ψ of the sheaf Sk(�X )(−mK X )⊗ η, where
η is the sheaf corresponding to the signature character.

Let now X̃ be the product �1 × · · · × �h of the irreducible symmetric bounded
domains of tube type of dimension n j and rank r j , j = 1, . . . , h.

If ψ̃ ∈ H0(X̃ , Sk(�1
X̃
)(−mK X̃ )) is invariant by Aut(�1)× · · · × Aut(�h) then

ψx = N a1
1 (z1) . . . N ah

h (zh)(dztop
1 ∧ · · · ∧ dztop

h )−m . (4)

k = m · n and a j · r j = m · n j for j = 1, . . . , h.
Conversely, if the numerical conditions a j ·r j = m ·n j hold for j = 1, . . . , h, then

the above formula for ψx defines a section of the sheaf Sk(�1
X̃
)(−mK X̃ ) invariant by

Aut(�1)× · · · × Aut(�h).
Now notice that, for any product�1 × · · · ×�h of irreducible symmetric bounded

domains of tube type of dimension n j and rank r j , we can always find integers
m, a1, . . . , a j such that the numerical conditions a j ·r j = m ·n j hold for j = 1, . . . , h.

By using the two-torsion invertible sheaf η corresponding to the signature (of S ⊂
Sh) we get a non zero section

ψ ∈ H0(Smn(�1
X̃
)(−mK X̃ )⊗ η).

If η is nontrivial, replaceψ byψ2: we obtain in this way a slope zero tensor. Hence
Theorem 1.3 Let X be a compact complex manifold of dimension n.
Then the following two conditions:

(1) K X is ample
(2) X admits a slope zero tensor ψ ∈ H0(Smn(�1

X )(−mK X )), where m is a positive
integer;

hold if and only if X ∼= �/�, where � is a bounded symmetric domain of tube type
and � is a cocompact discrete subgroup of Aut(�) acting freely.

Moreover, the degrees and the multiplicities of the irreducible factors of the poly-
nomial ψp determine uniquely the universal covering ˜X = �.

In particular, for m = 2, we get that the universal covering ˜X is a polydisk if and
only if ψp is the square of a squarefree polynomial.

The proof is identical to the proof of Theorem 1.2 taken into account the observation
made above (for the existence part) that it is possible to find the numbers m, a1, · · · , a j

such that the numerical conditions a j · r j = m · n j holds for j = 1, . . . , h.
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Here is one more example.
Let X be a compact three-dimensional complex manifold with K X ample and such

that ψ ∈ H0(S3m(�1
X )(−mK X )⊗ η).

Then either X̃ = H × H × H or X̃ is the Lie ball, i.e., the domain of type I V and
dimension 3.

In this last case the sheaf S6(�1
X )(−2K X ) has a section.

Notice that the rank = 2 does not divide the dimension = 3 and that the divisor of the
section is not reduced.
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